code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : List[str] = {} def snake_case__ ( self): '''simple docstring''' print(self.vertex) for i in self.vertex: print(__a, " -> ", " -> ".join([str(__a) for j in self.vertex[i]])) def snake_case__ ( self, __a, __a): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(__a) else: # else make a new vertex _lowerCAmelCase : Any = [to_vertex] def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(__a, __a) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = True print(__a, end=" ") # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__a, __a) if __name__ == "__main__": _snake_case = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
500
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _a ( UpperCAmelCase ) -> Any: """simple docstring""" return getitem, k def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" return setitem, k, v def _a ( UpperCAmelCase ) -> Any: """simple docstring""" return delitem, k def _a ( UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) -> Optional[int]: """simple docstring""" try: return fun(UpperCAmelCase , *UpperCAmelCase ), None except Exception as e: return None, e _A : List[str] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) _A : Optional[Any] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] _A : str = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] _A : Any = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] _A : Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _A : List[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Dict = HashMap(initial_block_size=4 ) lowerCamelCase__ : List[str] = {} for _, (fun, *args) in enumerate(UpperCAmelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = _run_operation(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = _run_operation(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) assert my_res == py_res assert str(UpperCAmelCase ) == str(UpperCAmelCase ) assert set(UpperCAmelCase ) == set(UpperCAmelCase ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) assert set(my.items() ) == set(py.items() ) def _a ( ) -> Any: """simple docstring""" def is_public(UpperCAmelCase ) -> bool: return not name.startswith('''_''' ) lowerCamelCase__ : List[Any] = {name for name in dir({} ) if is_public(UpperCAmelCase )} lowerCamelCase__ : Dict = {name for name in dir(HashMap() ) if is_public(UpperCAmelCase )} assert dict_public_names > hash_public_names
315
0
import argparse import hashlib # hashlib is only used inside the Test class import struct class __UpperCamelCase : '''simple docstring''' def __init__( self , UpperCAmelCase_ ): lowerCAmelCase = data lowerCAmelCase = [0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0] @staticmethod def __snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ): return ((n << b) | (n >> (32 - b))) & 0XFF_FFF_FFF def __snake_case ( self ): lowerCAmelCase = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def __snake_case ( self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __snake_case ( self , UpperCAmelCase_ ): lowerCAmelCase = list(struct.unpack('''>16L''' , UpperCAmelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __snake_case ( self ): lowerCAmelCase = self.padding() lowerCAmelCase = self.split_blocks() for block in self.blocks: lowerCAmelCase = self.expand_block(UpperCAmelCase_ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase = (b & c) | ((~b) & d) lowerCAmelCase = 0X5A_827_999 elif 20 <= i < 40: lowerCAmelCase = b ^ c ^ d lowerCAmelCase = 0X6E_D9E_BA1 elif 40 <= i < 60: lowerCAmelCase = (b & c) | (b & d) | (c & d) lowerCAmelCase = 0X8F_1BB_CDC elif 60 <= i < 80: lowerCAmelCase = b ^ c ^ d lowerCAmelCase = 0XCA_62C_1D6 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = ( self.rotate(UpperCAmelCase_ , 5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF, a, self.rotate(UpperCAmelCase_ , 30 ), c, d, ) lowerCAmelCase = ( self.h[0] + a & 0XFF_FFF_FFF, self.h[1] + b & 0XFF_FFF_FFF, self.h[2] + c & 0XFF_FFF_FFF, self.h[3] + d & 0XFF_FFF_FFF, self.h[4] + e & 0XFF_FFF_FFF, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase ( ): lowerCAmelCase = B'''Test String''' assert SHAaHash(_snake_case ).final_hash() == hashlib.shaa(_snake_case ).hexdigest() # noqa: S324 def UpperCAmelCase ( ): lowerCAmelCase = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: lowerCAmelCase = f.read() else: lowerCAmelCase = bytes(_snake_case , '''utf-8''' ) print(SHAaHash(_snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
33
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __a : Any ="""hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def __snake_case ( self , UpperCAmelCase_=0 ): lowerCAmelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(UpperCAmelCase_ ) ) lowerCAmelCase = np.random.RandomState(UpperCAmelCase_ ) lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __snake_case ( self ): lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**UpperCAmelCase_ ).images lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __snake_case ( self ): lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**UpperCAmelCase_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self ): lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) # warmup pass to apply optimizations lowerCAmelCase = pipe(**self.get_dummy_inputs() ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**UpperCAmelCase_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self ): lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**UpperCAmelCase_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self ): lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**UpperCAmelCase_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self ): lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**UpperCAmelCase_ ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowerCAmelCase = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __snake_case ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case ( self ): lowerCAmelCase = ort.SessionOptions() lowerCAmelCase = False return options def __snake_case ( self ): lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCAmelCase = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase = '''A fantasy landscape, trending on artstation''' lowerCAmelCase = np.random.RandomState(0 ) lowerCAmelCase = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase_ , output_type='''np''' , ) lowerCAmelCase = output.images lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) lowerCAmelCase = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __snake_case ( self ): lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCAmelCase = init_image.resize((7_68, 5_12) ) lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) lowerCAmelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCAmelCase = '''A fantasy landscape, trending on artstation''' lowerCAmelCase = np.random.RandomState(0 ) lowerCAmelCase = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCAmelCase_ , output_type='''np''' , ) lowerCAmelCase = output.images lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) lowerCAmelCase = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
33
1
"""simple docstring""" import os def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = os.path.dirname(os.path.realpath(lowercase_ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(lowercase_ , '''triangle.txt''' ) with open(lowercase_ ) as f: __SCREAMING_SNAKE_CASE : Dict = f.readlines() __SCREAMING_SNAKE_CASE : Optional[int] = [] for line in triangle: __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(lowercase_ ) ) a.append(lowercase_ ) for i in range(1 , len(lowercase_ ) ): for j in range(len(a[i] ) ): __SCREAMING_SNAKE_CASE : Optional[int] = a[i - 1][j] if j != len(a[i - 1] ) else 0 __SCREAMING_SNAKE_CASE : Optional[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowercase_ , lowercase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''' , [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ] , ) def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfosDict.from_directory(lowercase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''' , [ DatasetInfo(), DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ), ] , ) def lowerCAmelCase_ ( lowercase_ : Any , lowercase_ : DatasetInfo ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = str(lowercase_ ) dataset_info.write_to_directory(lowercase_ ) __SCREAMING_SNAKE_CASE : Dict = DatasetInfo.from_directory(lowercase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowercase_ , '''dataset_info.json''' ) ) def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = DatasetInfo( description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) __SCREAMING_SNAKE_CASE : Optional[int] = dataset_info._to_yaml_dict() assert sorted(lowercase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __SCREAMING_SNAKE_CASE : int = yaml.safe_dump(lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = yaml.safe_load(lowercase_ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase_ ( ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = DatasetInfo() __SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''' , [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=1337 ), } ), ] , ) def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : DatasetInfosDict ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = str(lowercase_ ) dataset_infos_dict.write_to_directory(lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfosDict.from_directory(lowercase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __SCREAMING_SNAKE_CASE : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __SCREAMING_SNAKE_CASE : Tuple = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowercase_ , '''README.md''' ) )
674
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A : List[str] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A : Any = direct_transformers_import(PATH_TO_TRANSFORMERS) A : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A : int = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") A : Union[str, Any] = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = None # source code of `config_class` __lowerCAmelCase = inspect.getsource(lowercase__ ) __lowerCAmelCase = _re_checkpoint.findall(lowercase__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): __lowerCAmelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowerCAmelCase = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __lowerCAmelCase = ckpt_name break return checkpoint def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowerCAmelCase = get_checkpoint_from_config_class(lowercase__ ) __lowerCAmelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowercase__ ) if len(lowercase__ ) > 0: __lowerCAmelCase = "\n".join(sorted(lowercase__ ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
719
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging A : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a=7_68 ): super().__init__(__a ) __lowerCAmelCase = proj_size __lowerCAmelCase = CLIPVisionModel(__a ) __lowerCAmelCase = PaintByExampleMapper(__a ) __lowerCAmelCase = nn.LayerNorm(config.hidden_size ) __lowerCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __lowerCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def snake_case ( self , __a , __a=False ): __lowerCAmelCase = self.model(pixel_values=__a ) __lowerCAmelCase = clip_output.pooler_output __lowerCAmelCase = self.mapper(latent_states[:, None] ) __lowerCAmelCase = self.final_layer_norm(__a ) __lowerCAmelCase = self.proj_out(__a ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCAmelCase = (config.num_hidden_layers + 1) // 5 __lowerCAmelCase = config.hidden_size __lowerCAmelCase = 1 __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock(__a , __a , __a , activation_fn="gelu" , attention_bias=__a ) for _ in range(__a ) ] ) def snake_case ( self , __a ): for block in self.blocks: __lowerCAmelCase = block(__a ) return hidden_states
282
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__ ( nn.Module ): def __init__(self : str, __UpperCAmelCase : int = 16, __UpperCAmelCase : int = 88, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : int = 1, __UpperCAmelCase : float = 0.0, __UpperCAmelCase : int = 32, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : bool = False, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : Optional[int] = None, __UpperCAmelCase : str = "geglu", __UpperCAmelCase : Optional[int] = None, ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCAmelCase, attention_head_dim=__UpperCAmelCase, in_channels=__UpperCAmelCase, num_layers=__UpperCAmelCase, dropout=__UpperCAmelCase, norm_num_groups=__UpperCAmelCase, cross_attention_dim=__UpperCAmelCase, attention_bias=__UpperCAmelCase, sample_size=__UpperCAmelCase, num_vector_embeds=__UpperCAmelCase, activation_fn=__UpperCAmelCase, num_embeds_ada_norm=__UpperCAmelCase, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference SCREAMING_SNAKE_CASE : int = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` SCREAMING_SNAKE_CASE : Dict = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` SCREAMING_SNAKE_CASE : int = [1, 0] def lowercase__ (self : Optional[Any], __UpperCAmelCase : int, __UpperCAmelCase : Dict, __UpperCAmelCase : List[Any]=None, __UpperCAmelCase : Optional[int]=None, __UpperCAmelCase : str=None, __UpperCAmelCase : bool = True, ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Dict = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens SCREAMING_SNAKE_CASE : List[str] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] SCREAMING_SNAKE_CASE : int = self.transformer_index_for_condition[i] SCREAMING_SNAKE_CASE : List[Any] = self.transformers[transformer_index]( __UpperCAmelCase, encoder_hidden_states=__UpperCAmelCase, timestep=__UpperCAmelCase, cross_attention_kwargs=__UpperCAmelCase, return_dict=__UpperCAmelCase, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] SCREAMING_SNAKE_CASE : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) SCREAMING_SNAKE_CASE : str = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCAmelCase )
507
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
264
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ ): # This function is recursive a_ = len(A__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else a_ = array[0] a_ = False a_ = 1 a_ = [] while not is_found and i < array_length: if array[i] < pivot: a_ = True a_ = [element for element in array[i:] if element >= array[i]] a_ = longest_subsequence(A__ ) if len(A__ ) > len(A__ ): a_ = temp_array else: i += 1 a_ = [element for element in array[1:] if element >= pivot] a_ = [pivot, *longest_subsequence(A__ )] if len(A__ ) > len(A__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a_ ( UpperCamelCase__ ): lowerCamelCase__ : torch.FloatTensor class a_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self , UpperCAmelCase = 3 , UpperCAmelCase = 3 , UpperCAmelCase = ("DownEncoderBlock2D",) , UpperCAmelCase = ("UpDecoderBlock2D",) , UpperCAmelCase = (64,) , UpperCAmelCase = 1 , UpperCAmelCase = "silu" , UpperCAmelCase = 3 , UpperCAmelCase = 32 , UpperCAmelCase = 2_56 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = 0.1_82_15 , UpperCAmelCase = "group" , ): super().__init__() # pass init params to Encoder a_ = Encoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , down_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , double_z=UpperCAmelCase , ) a_ = vq_embed_dim if vq_embed_dim is not None else latent_channels a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) a_ = VectorQuantizer(UpperCAmelCase , UpperCAmelCase , beta=0.25 , remap=UpperCAmelCase , sane_index_shape=UpperCAmelCase ) a_ = nn.Convad(UpperCAmelCase , UpperCAmelCase , 1 ) # pass init params to Decoder a_ = Decoder( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , up_block_types=UpperCAmelCase , block_out_channels=UpperCAmelCase , layers_per_block=UpperCAmelCase , act_fn=UpperCAmelCase , norm_num_groups=UpperCAmelCase , norm_type=UpperCAmelCase , ) @apply_forward_hook def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = True ): a_ = self.encoder(UpperCAmelCase ) a_ = self.quant_conv(UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ): # also go through quantization layer if not force_not_quantize: a_ , a_ , a_ = self.quantize(UpperCAmelCase ) else: a_ = h a_ = self.post_quant_conv(UpperCAmelCase ) a_ = self.decoder(UpperCAmelCase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = True ): a_ = sample a_ = self.encode(UpperCAmelCase ).latents a_ = self.decode(UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase )
511
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple=14 , _lowercase : List[Any]=7 , _lowercase : Optional[Any]=True , _lowercase : str=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[Any]=True , _lowercase : List[str]=True , _lowercase : Union[str, Any]=99 , _lowercase : Any=32 , _lowercase : Union[str, Any]=5 , _lowercase : List[Any]=4 , _lowercase : Optional[Any]=37 , _lowercase : Dict="gelu" , _lowercase : Tuple=0.1 , _lowercase : List[str]=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : str=16 , _lowercase : List[Any]=2 , _lowercase : Union[str, Any]=0.02 , _lowercase : int=3 , _lowercase : List[Any]=4 , _lowercase : Union[str, Any]=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_labels __UpperCAmelCase = use_mc_token_ids __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = scope __UpperCAmelCase = self.vocab_size - 1 def a ( self : Optional[Any] ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None if self.use_mc_token_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() __UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def a ( self : Tuple ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def a ( self : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : str , _lowercase : Tuple , _lowercase : int , *_lowercase : Tuple ): __UpperCAmelCase = CTRLModel(config=_lowercase ) model.to(_lowercase ) model.eval() model(_lowercase , token_type_ids=_lowercase , head_mask=_lowercase ) model(_lowercase , token_type_ids=_lowercase ) __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def a ( self : Any , _lowercase : Any , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Any , *_lowercase : str ): __UpperCAmelCase = CTRLLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def a ( self : Tuple , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : List[str] , *_lowercase : Optional[int] ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = CTRLForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[str] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () a__ : int = (CTRLLMHeadModel,) if is_torch_available() else () a__ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) a__ : List[str] = True a__ : Dict = False a__ : int = False def a ( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def a ( self : List[Any] ): __UpperCAmelCase = CTRLModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , n_embd=37 ) def a ( self : List[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def a ( self : Tuple ): self.config_tester.run_common_tests() def a ( self : Dict ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a ( self : Tuple ): pass @slow def a ( self : List[Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = CTRLModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def a ( self : Union[str, Any] ): pass @require_torch class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Optional[Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def a ( self : Union[str, Any] ): __UpperCAmelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(_lowercase ) __UpperCAmelCase = torch.tensor( [[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=_lowercase ) # Legal the president is __UpperCAmelCase = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __UpperCAmelCase = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].tolist() , _lowercase )
49
import random def lowerCAmelCase_ ( lowercase: int , lowercase: float , lowercase: bool = False ) -> dict: '''simple docstring''' _UpperCamelCase: dict = {i: [] for i in range(lowercase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase ): for j in range(i + 1 , lowercase ): if random.random() < probability: graph[i].append(lowercase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase ) return graph def lowerCAmelCase_ ( lowercase: int ) -> dict: '''simple docstring''' return { i: [j for j in range(lowercase ) if i != j] for i in range(lowercase ) } if __name__ == "__main__": import doctest doctest.testmod()
271
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if subparsers is not None: snake_case_ : Tuple = subparsers.add_parser("test" ) else: snake_case_ : List[str] = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file", default=__SCREAMING_SNAKE_CASE, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), ) if subparsers is not None: parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: snake_case_ : Union[str, Any] = script_name else: snake_case_ : Tuple = f'--config_file={args.config_file} {script_name}' snake_case_ : Optional[Any] = ["accelerate-launch"] + test_args.split() snake_case_ : Union[str, Any] = execute_subprocess_async(__SCREAMING_SNAKE_CASE, env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : Optional[int] = test_command_parser() snake_case_ : Tuple = parser.parse_args() test_command(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
92
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
92
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Any: SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__UpperCAmelCase ) ), } , features=__UpperCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return filename # FILE_CONTENT + files lowerCamelCase__ : Optional[Any] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> str: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt' SCREAMING_SNAKE_CASE_ = FILE_CONTENT with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[Any]: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with gzip.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> Any: if datasets.config.LZ4_AVAILABLE: import lza.frame SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lza.frame.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) -> List[Any]: if datasets.config.PY7ZR_AVAILABLE: import pyazr SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__UpperCAmelCase , 'w' ) as archive: archive.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: import tarfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: import lzma SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with lzma.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: import zipfile SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> str: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' SCREAMING_SNAKE_CASE_ = bytes(__UpperCAmelCase , 'utf-8' ) with zstd.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'file.xml' SCREAMING_SNAKE_CASE_ = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase ) return filename lowerCamelCase__ : Dict = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCamelCase__ : Optional[Any] = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCamelCase__ : List[str] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCamelCase__ : str = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCamelCase__ : Union[str, Any] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> Any: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> List[str]: SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: SCREAMING_SNAKE_CASE_ = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__UpperCAmelCase , 'w' , newline='' ) as f: SCREAMING_SNAKE_CASE_ = csv.DictWriter(__UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> List[str]: import bza SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__UpperCAmelCase , 'rb' ) as f: SCREAMING_SNAKE_CASE_ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__UpperCAmelCase , 'wb' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) SCREAMING_SNAKE_CASE_ = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__UpperCAmelCase , 'wb' ) as f: SCREAMING_SNAKE_CASE_ = pq.ParquetWriter(__UpperCAmelCase , schema=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__UpperCAmelCase ) )] for k in DATA[0]} , schema=__UpperCAmelCase ) writer.write_table(__UpperCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) SCREAMING_SNAKE_CASE_ = {'data': DATA_DICT_OF_LISTS} with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__UpperCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__UpperCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Any: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] ) -> Any: import gzip SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__UpperCAmelCase , 'rb' ) as orig_file: with gzip.open(__UpperCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.add(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__UpperCAmelCase , 'w' ) as f: f.add(__UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = ['0', '1', '2', '3'] SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__UpperCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) f.write(__UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__UpperCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> Dict: SCREAMING_SNAKE_CASE_ = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) SCREAMING_SNAKE_CASE_ = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(__UpperCAmelCase ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> str: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( ) -> int: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__UpperCAmelCase , 'w' ) as f: f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ) ) f.write(__UpperCAmelCase , arcname=os.path.basename(__UpperCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
31
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
451
0
'''simple docstring''' from manim import * class UpperCAmelCase__ ( snake_case_ ): """simple docstring""" def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Tuple = Rectangle(height=0.5 ,width=0.5 ) _a : List[str] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) _a : Union[str, Any] = Rectangle(height=0.25 ,width=0.25 ) _a : str = [mem.copy() for i in range(6 )] _a : Tuple = [mem.copy() for i in range(6 )] _a : Dict = VGroup(*_a ).arrange(_a ,buff=0 ) _a : List[str] = VGroup(*_a ).arrange(_a ,buff=0 ) _a : Dict = VGroup(_a ,_a ).arrange(_a ,buff=0 ) _a : int = Text('CPU' ,font_size=24 ) _a : List[str] = Group(_a ,_a ).arrange(_a ,buff=0.5 ,aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _a : int = [mem.copy() for i in range(4 )] _a : List[Any] = VGroup(*_a ).arrange(_a ,buff=0 ) _a : Dict = Text('GPU' ,font_size=24 ) _a : int = Group(_a ,_a ).arrange(_a ,buff=0.5 ,aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _a : Union[str, Any] = [mem.copy() for i in range(6 )] _a : Any = VGroup(*_a ).arrange(_a ,buff=0 ) _a : Any = Text('Model' ,font_size=24 ) _a : List[Any] = Group(_a ,_a ).arrange(_a ,buff=0.5 ,aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _a : List[Any] = [] _a : Optional[Any] = [] for i, rect in enumerate(_a ): _a : List[Any] = fill.copy().set_fill(_a ,opacity=0.8 ) target.move_to(_a ) model_arr.append(_a ) _a : Optional[Any] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(_a ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_a ) self.add(*_a ,*_a ) _a : int = [meta_mem.copy() for i in range(6 )] _a : List[Any] = [meta_mem.copy() for i in range(6 )] _a : List[str] = VGroup(*_a ).arrange(_a ,buff=0 ) _a : str = VGroup(*_a ).arrange(_a ,buff=0 ) _a : Any = VGroup(_a ,_a ).arrange(_a ,buff=0 ) _a : Optional[Any] = Text('Disk' ,font_size=24 ) _a : Optional[int] = Group(_a ,_a ).arrange(_a ,buff=0.5 ,aligned_edge=_a ) disk.move_to([-4, -1.25, 0] ) self.add(_a ,_a ) _a : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _a : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(_a ,_a ) _a : int = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,) blue_text.next_to(_a ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(_a ) _a : Tuple = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(_a ) ) _a : str = Square(0.3 ) input.set_fill(_a ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,_a ,buff=0.5 ) self.play(Write(_a ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=_a ,buff=0.02 ) self.play(MoveToTarget(_a ) ) self.play(FadeOut(_a ) ) _a : Optional[Any] = Arrow(start=_a ,end=_a ,color=_a ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,_a ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _a : Union[str, Any] = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(_a ,run_time=3 ) ) _a : Any = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_a ) ,Circumscribe(model_arr[0] ,color=_a ,**_a ) ,Circumscribe(model_cpu_arr[0] ,color=_a ,**_a ) ,Circumscribe(gpu_rect[0] ,color=_a ,**_a ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) _a : Tuple = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,_a ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _a : List[str] = AnimationGroup( FadeOut(_a ,run_time=0.5 ) ,MoveToTarget(_a ,run_time=0.5 ) ,FadeIn(_a ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(_a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _a : Tuple = 0.7 self.play( Circumscribe(model_arr[i] ,**_a ) ,Circumscribe(cpu_left_col_base[i] ,**_a ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=_a ,**_a ) ,Circumscribe(gpu_rect[0] ,color=_a ,**_a ) ,Circumscribe(model_arr[i + 1] ,color=_a ,**_a ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=_a ,**_a ) ,Circumscribe(cpu_left_col_base[-1] ,color=_a ,**_a ) ,Circumscribe(gpu_rect[0] ,color=_a ,**_a ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) _a : Dict = a_c _a : Dict = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(_a ) ,FadeOut(_a ,run_time=0.5 ) ,) _a : Tuple = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a ,run_time=3 ) ,MoveToTarget(_a ) ) self.wait()
701
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None @property def __lowercase ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : int = (3, 32, 128) _a : Any = tempfile.mkdtemp() # fmt: off _a : Optional[int] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _a : Any = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) _a : Dict = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } _a : Dict = os.path.join(self.tmpdirname ,_a ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(_a ,_a ) def __lowercase ( self : Dict ,**_a : Any ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : Optional[int] ,**_a : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta ) _a : int = Image.fromarray(np.moveaxis(_a ,0 ,-1 ) ) return image_input def __lowercase ( self : Any ): '''simple docstring''' _a : str = self.get_tokenizer() _a : Optional[int] = self.get_image_processor() _a : int = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : List[Any] = MgpstrProcessor.from_pretrained(self.tmpdirname ,use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer ,_a ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Union[str, Any] = self.get_tokenizer() _a : Any = self.get_image_processor() _a : List[str] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : int = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) _a : Dict = self.get_image_processor(do_normalize=_a ,padding_value=1.0 ) _a : Optional[int] = MgpstrProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=_a ,padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer ,_a ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = self.get_image_processor() _a : int = self.get_tokenizer() _a : int = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Optional[int] = self.prepare_image_inputs() _a : Optional[int] = image_processor(_a ,return_tensors='np' ) _a : str = processor(images=_a ,return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Optional[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Dict = 'test' _a : Optional[Any] = processor(text=_a ) _a : Any = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_image_processor() _a : Any = self.get_tokenizer() _a : List[str] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Optional[int] = 'test' _a : Optional[Any] = self.prepare_image_inputs() _a : Tuple = processor(text=_a ,images=_a ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self : int ): '''simple docstring''' _a : Any = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Any = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _a : Any = processor.char_decode(_a ) _a : int = tokenizer.batch_decode(_a ) _a : List[Any] = [seq.replace(' ' ,'' ) for seq in decoded_tok] self.assertListEqual(_a ,_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : int = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : List[str] = None _a : int = self.prepare_image_inputs() _a : List[str] = processor(text=_a ,images=_a ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_image_processor() _a : List[str] = self.get_tokenizer() _a : Optional[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Tuple = torch.randn(1 ,27 ,38 ) _a : Optional[int] = torch.randn(1 ,27 ,5_0257 ) _a : List[str] = torch.randn(1 ,27 ,3_0522 ) _a : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) ,['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
319
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , snake_case__=0 , ): """simple docstring""" lowerCAmelCase : Any = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Union[str, Any] = seq_length lowerCAmelCase : Optional[Any] = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : List[str] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Any = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : Optional[int] = num_labels lowerCAmelCase : Dict = num_choices lowerCAmelCase : Tuple = scope lowerCAmelCase : Optional[int] = projection_dim def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[Any] = None if self.use_token_type_ids: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = None lowerCAmelCase : Any = None if self.use_labels: lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) lowerCAmelCase : Tuple = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFDPRContextEncoder(config=snake_case__ ) lowerCAmelCase : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : str = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = TFDPRQuestionEncoder(config=snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TFDPRReader(config=snake_case__ ) lowerCAmelCase : Tuple = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Any = config_and_inputs lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) a : List[Any] ={"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} a : Dict =False a : List[str] =False a : Any =False a : int =False a : Union[str, Any] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = TFDPRModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Dict = TFDPRQuestionEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[str] = TFDPRReader.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) lowerCAmelCase : Optional[Any] = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase : List[str] = model(snake_case__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase : Dict = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
645
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ = NewType('''DataClass''', Any) lowerCAmelCase__ = NewType('''DataClassType''', Any) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def a__ ( SCREAMING_SNAKE_CASE : list ): '''simple docstring''' lowerCAmelCase : Any = {str(SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda SCREAMING_SNAKE_CASE : str_to_choice.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( *, SCREAMING_SNAKE_CASE : Union[str, List[str]] = None , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : Any = dataclasses.MISSING , SCREAMING_SNAKE_CASE : Callable[[], Any] = dataclasses.MISSING , SCREAMING_SNAKE_CASE : dict = None , **SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase : Tuple = {} if aliases is not None: lowerCAmelCase : Union[str, Any] = aliases if help is not None: lowerCAmelCase : Optional[Any] = help return dataclasses.field(metadata=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , default_factory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Iterable[DataClassType] def __init__( self , snake_case__ , **snake_case__ ): """simple docstring""" if "formatter_class" not in kwargs: lowerCAmelCase : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**snake_case__ ) if dataclasses.is_dataclass(snake_case__ ): lowerCAmelCase : List[Any] = [dataclass_types] lowerCAmelCase : List[str] = list(snake_case__ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(snake_case__ ) @staticmethod def lowercase__ ( snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = f"""--{field.name}""" lowerCAmelCase : Optional[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , snake_case__ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) lowerCAmelCase : List[str] = kwargs.pop("aliases" , [] ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : int = [aliases] lowerCAmelCase : int = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(snake_case__ , "UnionType" ) and isinstance(snake_case__ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(snake_case__ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f""" Problem encountered in field '{field.name}'.""" ) if type(snake_case__ ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase : str = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase : Optional[int] = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase : List[Any] = ( field.type.__args__[0] if isinstance(snake_case__ , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase : List[Any] = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase : List[Any] = {} if origin_type is Literal or (isinstance(field.type , snake_case__ ) and issubclass(field.type , snake_case__ )): if origin_type is Literal: lowerCAmelCase : str = field.type.__args__ else: lowerCAmelCase : List[str] = [x.value for x in field.type] lowerCAmelCase : List[Any] = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: lowerCAmelCase : int = field.default else: lowerCAmelCase : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase : Dict = copy(snake_case__ ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase : str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase : int = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase : Any = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase : List[str] = "?" # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase : Union[str, Any] = True elif isclass(snake_case__ ) and issubclass(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = field.type.__args__[0] lowerCAmelCase : List[str] = "+" if field.default_factory is not dataclasses.MISSING: lowerCAmelCase : Union[str, Any] = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase : int = True else: lowerCAmelCase : Optional[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase : Union[str, Any] = field.default_factory() else: lowerCAmelCase : List[str] = True parser.add_argument(snake_case__ , *snake_case__ , **snake_case__ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase : Any = False parser.add_argument(f"""--no_{field.name}""" , action="store_false" , dest=field.name , **snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if hasattr(snake_case__ , "_argument_group_name" ): lowerCAmelCase : Optional[int] = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase : Any = self try: lowerCAmelCase : Dict[str, type] = get_type_hints(snake_case__ ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(snake_case__ ): lowerCAmelCase : Optional[int] = ".".join(map(snake_case__ , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(snake_case__ ): if not field.init: continue lowerCAmelCase : Any = type_hints[field.name] self._parse_dataclass_field(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__=None , snake_case__=False , snake_case__=True , snake_case__=None , snake_case__=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase : Dict = [] if args_filename: args_files.append(Path(snake_case__ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase : Optional[Any] = ArgumentParser() args_file_parser.add_argument(snake_case__ , type=snake_case__ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase , lowerCAmelCase : List[Any] = args_file_parser.parse_known_args(args=snake_case__ ) lowerCAmelCase : Optional[int] = vars(snake_case__ ).get(args_file_flag.lstrip("-" ) , snake_case__ ) if cmd_args_file_paths: args_files.extend([Path(snake_case__ ) for p in cmd_args_file_paths] ) lowerCAmelCase : Optional[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase : List[str] = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.parse_known_args(args=snake_case__ ) lowerCAmelCase : List[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase : Union[str, Any] = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} lowerCAmelCase : List[str] = {k: v for k, v in vars(snake_case__ ).items() if k in keys} for k in keys: delattr(snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = dtype(**snake_case__ ) outputs.append(snake_case__ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(snake_case__ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase__ ( self , snake_case__ , snake_case__ = False ): """simple docstring""" lowerCAmelCase : Optional[Any] = set(args.keys() ) lowerCAmelCase : Optional[Any] = [] for dtype in self.dataclass_types: lowerCAmelCase : Optional[Any] = {f.name for f in dataclasses.fields(snake_case__ ) if f.init} lowerCAmelCase : Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase : Tuple = dtype(**snake_case__ ) outputs.append(snake_case__ ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(snake_case__ )}""" ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = False ): """simple docstring""" with open(Path(snake_case__ ) , encoding="utf-8" ) as open_json_file: lowerCAmelCase : Dict = json.loads(open_json_file.read() ) lowerCAmelCase : Union[str, Any] = self.parse_dict(snake_case__ , allow_extra_keys=snake_case__ ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = False ): """simple docstring""" lowerCAmelCase : List[Any] = self.parse_dict(yaml.safe_load(Path(snake_case__ ).read_text() ) , allow_extra_keys=snake_case__ ) return tuple(snake_case__ )
645
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __a : Dict = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ ( cls : int ): """simple docstring""" __A = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase_ ( cls : Any ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __A = FlaxBertModel(UpperCamelCase_ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) __A = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) __A = flatten_dict(unfreeze(model.params ) ) __A = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __A = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCamelCase_ , repo_id="""test-model-flax""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __A = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) __A = flatten_dict(unfreeze(model.params ) ) __A = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __A = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1e-3 , msg=F"{key} not identical" ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __A = FlaxBertModel(UpperCamelCase_ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) __A = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) __A = flatten_dict(unfreeze(model.params ) ) __A = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __A = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __A = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) __A = flatten_dict(unfreeze(model.params ) ) __A = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __A = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1e-3 , msg=F"{key} not identical" ) def _SCREAMING_SNAKE_CASE ( __lowercase : Optional[int] , __lowercase : str ) -> Any: """simple docstring""" __A = True __A = flatten_dict(modela.params ) __A = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: __A = False return models_are_equal @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" __A = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __A = FlaxBertModel(UpperCamelCase_ ) __A = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) with self.assertRaises(UpperCamelCase_ ): __A = FlaxBertModel.from_pretrained(UpperCamelCase_ ) __A = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertTrue(check_models_equal(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __A = FlaxBertModel(UpperCamelCase_ ) __A = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , max_shard_size="""10KB""" ) with self.assertRaises(UpperCamelCase_ ): __A = FlaxBertModel.from_pretrained(UpperCamelCase_ ) __A = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertTrue(check_models_equal(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = """bert""" __A = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(UpperCamelCase_ ): __A = FlaxBertModel.from_pretrained(UpperCamelCase_ ) __A = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = """bert""" __A = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(UpperCamelCase_ ): __A = FlaxBertModel.from_pretrained(UpperCamelCase_ ) __A = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ )
199
from collections.abc import Sequence def _SCREAMING_SNAKE_CASE ( __lowercase : Sequence[float] , __lowercase : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(__lowercase ) ) def _SCREAMING_SNAKE_CASE ( __lowercase : Sequence[float] , __lowercase : float ) -> float: """simple docstring""" __A = 0.0 for coeff in reversed(__lowercase ): __A = result * x + coeff return result if __name__ == "__main__": __a : Dict = (0.0, 0.0, 5.0, 9.3, 7.0) __a : Optional[Any] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
199
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = ["image_processor", "tokenizer"] lowerCamelCase__ = "BlipImageProcessor" lowerCamelCase__ = "AutoTokenizer" def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any ): super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer SCREAMING_SNAKE_CASE = qformer_tokenizer def __call__( self : List[str] , __lowerCamelCase : ImageInput = None , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : Dict , ): if images is None and text is None: raise ValueError("You have to specify at least images or text." ) SCREAMING_SNAKE_CASE = BatchFeature() if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("input_ids" ) SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("attention_mask" ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _snake_case ( self : List[str] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Any ): return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _snake_case ( self : str , __lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[int] ): if os.path.isfile(__lowerCamelCase ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , __lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) SCREAMING_SNAKE_CASE = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
16
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( ): """simple docstring""" snake_case__ : int = 10 snake_case__ : List[str] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) snake_case__ : Optional[Any] = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowerCamelCase_ ) ), } , features=lowerCamelCase_ , ) return dataset @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowerCamelCase_ ) return filename # FILE_CONTENT + files lowerCAmelCase__ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt""" snake_case__ : Dict = FILE_CONTENT with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return filename @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" import bza snake_case__ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" snake_case__ : Dict = bytes(lowerCamelCase_ , """utf-8""" ) with bza.open(lowerCamelCase_ , """wb""" ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" import gzip snake_case__ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) snake_case__ : List[Any] = bytes(lowerCamelCase_ , """utf-8""" ) with gzip.open(lowerCamelCase_ , """wb""" ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame snake_case__ : int = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" snake_case__ : Optional[Any] = bytes(lowerCamelCase_ , """utf-8""" ) with lza.frame.open(lowerCamelCase_ , """wb""" ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr snake_case__ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCamelCase_ , """w""" ) as archive: archive.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" import tarfile snake_case__ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowerCamelCase_ , """w""" ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" import lzma snake_case__ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" snake_case__ : List[Any] = bytes(lowerCamelCase_ , """utf-8""" ) with lzma.open(lowerCamelCase_ , """wb""" ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" import zipfile snake_case__ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd snake_case__ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" snake_case__ : List[str] = bytes(lowerCamelCase_ , """utf-8""" ) with zstd.open(lowerCamelCase_ , """wb""" ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.xml""" snake_case__ : str = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ ) return filename lowerCAmelCase__ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] lowerCAmelCase__ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] lowerCAmelCase__ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase__ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] lowerCAmelCase__ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( ): """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : str = datasets.Dataset.from_dict(lowerCamelCase_ ) snake_case__ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowerCamelCase_ ) ) as con: snake_case__ : str = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowerCamelCase_ , """w""" , newline="""""" ) as f: snake_case__ : Any = csv.DictWriter(lowerCamelCase_ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowerCamelCase_ , """w""" , newline="""""" ) as f: snake_case__ : List[Any] = csv.DictWriter(lowerCamelCase_ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" import bza snake_case__ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowerCamelCase_ , """rb""" ) as f: snake_case__ : List[Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase_ , """wb""" ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) snake_case__ : str = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowerCamelCase_ , """wb""" ) as f: snake_case__ : Tuple = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_ ) snake_case__ : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase_ ) )] for k in DATA[0]} , schema=lowerCamelCase_ ) writer.write_table(lowerCamelCase_ ) writer.close() return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case__ : Any = {"""data""": DATA} with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) snake_case__ : str = {"""data""": DATA_DICT_OF_LISTS} with open(lowerCamelCase_ , """w""" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowerCamelCase_ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowerCamelCase_ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowerCamelCase_ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowerCamelCase_ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" import gzip snake_case__ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowerCamelCase_ , """rb""" ) as orig_file: with gzip.open(lowerCamelCase_ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" import gzip snake_case__ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowerCamelCase_ , """rb""" ) as orig_file: with gzip.open(lowerCamelCase_ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : str = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCamelCase_ , """w""" ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCamelCase_ , """w""" ) as f: f.add(lowerCamelCase_ , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Dict = ["""0""", """1""", """2""", """3"""] snake_case__ : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowerCamelCase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Dict = ["""0""", """1""", """2""", """3"""] snake_case__ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowerCamelCase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : List[Any] = ["""0""", """1""", """2""", """3"""] snake_case__ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowerCamelCase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowerCamelCase_ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Dict = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) snake_case__ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( ): """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( ): """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" snake_case__ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCamelCase_ , """w""" ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : Optional[Any] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
712
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , lowerCamelCase : Path , lowerCamelCase : Union[str, None] = None , lowerCamelCase : Union[List[str], None] = None , lowerCamelCase : Union[str, List[str], None] = None , lowerCamelCase : bool = True , )-> Dict: snake_case__ : int = [file for file in os.listdir(lowerCamelCase ) if os.path.isfile(os.path.join(lowerCamelCase , lowerCamelCase ) )] if identifier is not None: snake_case__ : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCamelCase , lowerCamelCase ): for n_ in n_identifier: snake_case__ : Union[str, Any] = [file for file in files if n_ not in file] else: snake_case__ : Optional[Any] = [file for file in files if n_identifier not in file] snake_case__ : Tuple = ignore_files or [] ignore_files.append("""__init__.py""" ) snake_case__ : int = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , lowerCamelCase ) if only_modules: snake_case__ : Union[str, Any] = file.split(""".""" )[0] try: snake_case__ : Any = getattr(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = doctest.DocTestSuite(lowerCamelCase ) snake_case__ : int = unittest.TextTestRunner().run(lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: snake_case__ : List[Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __lowerCAmelCase ( self : Tuple )-> List[str]: snake_case__ : Optional[int] = Path("""src/transformers""" ) snake_case__ : Optional[Any] = """modeling""" snake_case__ : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase , ignore_files=lowerCamelCase ) def __lowerCAmelCase ( self : List[str] )-> Union[str, Any]: snake_case__ : Optional[Any] = Path("""src/transformers""" ) snake_case__ : Any = """tokenization""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Dict: snake_case__ : Any = Path("""src/transformers""" ) snake_case__ : List[Any] = """configuration""" self.analyze_directory(lowerCamelCase , identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> Tuple: snake_case__ : int = Path("""src/transformers""" ) snake_case__ : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(lowerCamelCase , n_identifier=lowerCamelCase ) def __lowerCAmelCase ( self : Union[str, Any] )-> Tuple: snake_case__ : List[Any] = Path("""docs/source""" ) snake_case__ : Optional[int] = ["""favicon.ico"""] self.analyze_directory(lowerCamelCase , ignore_files=lowerCamelCase , only_modules=lowerCamelCase )
172
0
"""simple docstring""" def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _lowerCAmelCase = mf_knapsack(i - 1, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: _lowerCAmelCase = max( mf_knapsack(i - 1, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ), mf_knapsack(i - 1, UpperCAmelCase__, UpperCAmelCase__, j - wt[i - 1] ) + val[i - 1], ) _lowerCAmelCase = val return f[i][j] def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: _lowerCAmelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: _lowerCAmelCase = dp[i - 1][w_] return dp[n][w_], dp def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" if not (isinstance(UpperCAmelCase__, (list, tuple) ) and isinstance(UpperCAmelCase__, (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) _lowerCAmelCase = len(UpperCAmelCase__ ) if num_items != len(UpperCAmelCase__ ): _lowerCAmelCase = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(UpperCAmelCase__ )} values''' ) raise ValueError(UpperCAmelCase__ ) for i in range(UpperCAmelCase__ ): if not isinstance(wt[i], UpperCAmelCase__ ): _lowerCAmelCase = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(UpperCAmelCase__ ) _lowerCAmelCase = knapsack(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) _lowerCAmelCase = set() _construct_solution(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return optimal_val, example_optional_set def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): """simple docstring""" # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCAmelCase__, UpperCAmelCase__, i - 1, UpperCAmelCase__, UpperCAmelCase__ ) else: optimal_set.add(UpperCAmelCase__ ) _construct_solution(UpperCAmelCase__, UpperCAmelCase__, i - 1, j - wt[i - 1], UpperCAmelCase__ ) if __name__ == "__main__": a__ : str = [3, 2, 4, 4] a__ : Union[str, Any] = [4, 3, 2, 3] a__ : List[Any] = 4 a__ : Any = 6 a__ : List[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] a__ , a__ : Tuple = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 a__ , a__ : Tuple = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
589
'''simple docstring''' def UpperCAmelCase ( UpperCAmelCase__ : int): if number < 0: raise ValueError('number must not be negative') return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
320
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Any, SCREAMING_SNAKE_CASE__: Union[str, Any], SCREAMING_SNAKE_CASE__: Tuple ) -> Optional[Any]: """simple docstring""" __a = 1.5 __a = int(factor * num_class_images ) __a = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE__, aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""", exist_ok=SCREAMING_SNAKE_CASE__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: __a = client.query(text=SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) >= factor * num_class_images or num_images > 1e4: break else: __a = int(factor * num_images ) __a = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE__, aesthetic_weight=0.1, ) __a = 0 __a = 0 __a = tqdm(desc='downloading real regularization images', total=SCREAMING_SNAKE_CASE__ ) with open(f"""{class_data_dir}/caption.txt""", 'w' ) as fa, open(f"""{class_data_dir}/urls.txt""", 'w' ) as fa, open( f"""{class_data_dir}/images.txt""", 'w' ) as fa: while total < num_class_images: __a = class_images[count] count += 1 try: __a = requests.get(images['url'] ) if img.status_code == 200: __a = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""", 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" __a = argparse.ArgumentParser('', add_help=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--class_prompt', help='text prompt to retrieve images', required=SCREAMING_SNAKE_CASE__, type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--class_data_dir', help='path to save images', required=SCREAMING_SNAKE_CASE__, type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--num_class_images', help='number of images to download', default=200, type=SCREAMING_SNAKE_CASE__ ) return parser.parse_args() if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
0
'''simple docstring''' def _A ( UpperCAmelCase ): '''simple docstring''' A__ = [] A__ = [] A__ = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator A__ = len(UpperCAmelCase ) if (len(UpperCAmelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) ,'Stack'.center(UpperCAmelCase ) ,'Postfix'.center(UpperCAmelCase ) ,sep=' | ' ,) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCAmelCase ) == 0: stack.append(UpperCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCAmelCase ) # push x to stack print( x.center(8 ) ,(''.join(UpperCAmelCase )).ljust(UpperCAmelCase ) ,(''.join(UpperCAmelCase )).ljust(UpperCAmelCase ) ,sep=' | ' ,) # Output in tabular format while len(UpperCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) ,(''.join(UpperCAmelCase )).ljust(UpperCAmelCase ) ,(''.join(UpperCAmelCase )).ljust(UpperCAmelCase ) ,sep=' | ' ,) # Output in tabular format return "".join(UpperCAmelCase ) # return Postfix as str def _A ( UpperCAmelCase ): '''simple docstring''' A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCAmelCase ) ): if infix[i] == "(": A__ = ')' # change "(" to ")" elif infix[i] == ")": A__ = '(' # change ")" to "(" return (infix_2_postfix(''.join(UpperCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase_ = input('''\nEnter an Infix Equation = ''') # Input an Infix equation lowerCAmelCase_ = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
531
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case: def __init__(self : Any , a : str , a : Union[str, Any]=12 , a : List[str]=7 , a : Dict=True , a : Tuple=True , a : Any=True , a : Optional[Any]=99 , a : Optional[Any]=32 , a : Tuple=32 , a : List[Any]=2 , a : str=4 , a : Dict=37 , a : Optional[Any]=0.1 , a : List[Any]=0.1 , a : Dict=5_12 , a : List[Any]=0.02 , a : Any=0 , a : Optional[int]=None , ) -> List[Any]: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _UpperCamelCase (self : Union[str, Any] ) -> List[Any]: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(a ) def _UpperCamelCase (self : Tuple ) -> Union[str, Any]: """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCamelCase (self : Optional[int] , a : Any , a : List[Any] , a : Union[str, Any] ) -> Any: """simple docstring""" A__ = TFBlipTextModel(config=a ) A__ = model(a , attention_mask=a , training=a ) A__ = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase (self : str ) -> List[Any]: """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _snake_case( UpperCAmelCase , unittest.TestCase ): __snake_case: Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __snake_case: Union[str, Any] = False __snake_case: Any = False __snake_case: Union[str, Any] = False def _UpperCamelCase (self : Optional[Any] ) -> List[Any]: """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=a , hidden_size=37 ) def _UpperCamelCase (self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase (self : Any ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase (self : Dict ) -> Dict: """simple docstring""" pass def _UpperCamelCase (self : str ) -> int: """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCamelCase (self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase (self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCamelCase (self : int ) -> Optional[Any]: """simple docstring""" pass @slow def _UpperCamelCase (self : int ) -> Optional[Any]: """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCamelCase (self : str , a : Optional[int]=True ) -> List[Any]: """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=a )
531
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """""" UpperCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCamelCase = None # compression type in fsspec. ex: "gzip" UpperCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Optional[int] , a_ : str = "" , a_ : Optional[str] = None , a_ : Optional[dict] = None , **a_ : List[Any] ): '''simple docstring''' super().__init__(self , **a_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCAmelCase : Optional[int] = fsspec.open( a_ , mode='''rb''' , protocol=a_ , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCAmelCase : Optional[Any] = os.path.basename(self.file.path.split('''::''' )[0] ) __UpperCAmelCase : Union[str, Any] = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) __UpperCAmelCase : Any = None @classmethod def snake_case__ ( cls : List[Any] , a_ : List[str] ): '''simple docstring''' return super()._strip_protocol(a_ ).lstrip('''/''' ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' if self.dir_cache is None: __UpperCAmelCase : int = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} __UpperCAmelCase : int = {f['''name''']: f} def snake_case__ ( self : str , a_ : str ): '''simple docstring''' return self.file.open().read() def snake_case__ ( self : str , a_ : str , a_ : str = "rb" , a_ : str=None , a_ : int=True , a_ : List[str]=None , **a_ : int , ): '''simple docstring''' __UpperCAmelCase : int = self._strip_protocol(a_ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """bz2""" UpperCamelCase = """bz2""" UpperCamelCase = """.bz2""" class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """gzip""" UpperCamelCase = """gzip""" UpperCamelCase = """.gz""" class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """lz4""" UpperCamelCase = """lz4""" UpperCamelCase = """.lz4""" class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """xz""" UpperCamelCase = """xz""" UpperCamelCase = """.xz""" class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase = """zstd""" UpperCamelCase = """zstd""" UpperCamelCase = """.zst""" def __init__( self : Tuple , a_ : str , a_ : str = "rb" , a_ : Optional[str] = None , a_ : Optional[dict] = None , a_ : int = DEFAULT_BLOCK_SIZE , **a_ : Union[str, Any] , ): '''simple docstring''' super().__init__( fo=a_ , mode=a_ , target_protocol=a_ , target_options=a_ , block_size=a_ , **a_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCAmelCase : List[str] = self.file.__enter__ class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Optional[int] , a_ : int ): '''simple docstring''' __UpperCAmelCase : List[str] = file_ def __enter__( self : int ): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Optional[int] , *a_ : Union[str, Any] , **a_ : List[str] ): '''simple docstring''' self._file.__exit__(*a_ , **a_ ) def __iter__( self : List[str] ): '''simple docstring''' return iter(self._file ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' return next(self._file ) def __getattr__( self : Union[str, Any] , a_ : Any ): '''simple docstring''' return getattr(self._file , a_ ) def fixed_enter(*a_ : Union[str, Any] , **a_ : Tuple ): return WrappedFile(_enter(*a_ , **a_ ) ) __UpperCAmelCase : Any = fixed_enter
704
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __UpperCAmelCase : Dict = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __UpperCAmelCase : int = model(a_ )['''last_hidden_state'''] __UpperCAmelCase : Optional[int] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , a_ ) # compare the actual values for a slice. __UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
241
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCAmelCase_ ( __a , __a , __a = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path lowerCamelCase__: Union[str, Any] =quote(__a ) return hfh.hf_hub_url(__a , __a , repo_type="dataset" , revision=__a )
59
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str ): def get_masked_lm_array(UpperCamelCase : str ): A__ = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_array(UpperCamelCase : str ): A__ = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_layer_array(UpperCamelCase : int , UpperCamelCase : str ): A__ = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) def get_encoder_attention_layer_array(UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : int ): A__ = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" A__ = tf.train.load_variable(UpperCamelCase , UpperCamelCase ) A__ = array.reshape(UpperCamelCase ) if "kernel" in name: A__ = array.transpose() return torch.from_numpy(UpperCamelCase ) print(F"""Loading model based on config from {config_path}...""" ) A__ = BertConfig.from_json_file(UpperCamelCase ) A__ = BertForMaskedLM(UpperCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): A__ = model.bert.encoder.layer[layer_index] # Self-attention A__ = layer.attention.self A__ = get_encoder_attention_layer_array( UpperCamelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output A__ = layer.attention.output A__ = get_encoder_attention_layer_array( UpperCamelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) A__ = get_encoder_attention_layer_array( UpperCamelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) A__ = get_encoder_layer_array(UpperCamelCase , """_attention_layer_norm/gamma""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_attention_layer_norm/beta""" ) # Intermediate A__ = layer.intermediate A__ = get_encoder_layer_array(UpperCamelCase , """_intermediate_dense/kernel""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_intermediate_dense/bias""" ) # Output A__ = layer.output A__ = get_encoder_layer_array(UpperCamelCase , """_output_dense/kernel""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_dense/bias""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_layer_norm/gamma""" ) A__ = get_encoder_layer_array(UpperCamelCase , """_output_layer_norm/beta""" ) # Embeddings A__ = get_encoder_array("""_position_embedding_layer/embeddings""" ) A__ = get_encoder_array("""_type_embedding_layer/embeddings""" ) A__ = get_encoder_array("""_embedding_norm_layer/gamma""" ) A__ = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head A__ = model.cls.predictions.transform A__ = get_masked_lm_array("""dense/kernel""" ) A__ = get_masked_lm_array("""dense/bias""" ) A__ = get_masked_lm_array("""layer_norm/gamma""" ) A__ = get_masked_lm_array("""layer_norm/beta""" ) A__ = get_masked_lm_array("""embedding_table""" ) # Pooling A__ = BertPooler(config=UpperCamelCase ) A__ = get_encoder_array("""_pooler_layer/kernel""" ) A__ = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(UpperCamelCase ) # Integration test - should load without any errors ;) A__ = BertForMaskedLM.from_pretrained(UpperCamelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) lowerCamelCase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
574
0
'''simple docstring''' from functools import lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> set: _a : Any =2 _a : Tuple =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCAmelCase ) if n > 1: factors.add(_UpperCAmelCase ) return factors @lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: return len(unique_prime_factors(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> bool: return len(set(_UpperCAmelCase ) ) in (0, 1) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> list: _a : int =2 while True: # Increment each value of a generated range _a : str =[base + i for i in range(_UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _a : List[Any] =[upf_len(_UpperCAmelCase ) for x in group] checker.append(_UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4 ) -> int: _a : Optional[int] =run(_UpperCAmelCase ) return results[0] if len(_UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
700
'''simple docstring''' from functools import lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> set: _a : Any =2 _a : Tuple =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCAmelCase ) if n > 1: factors.add(_UpperCAmelCase ) return factors @lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: return len(unique_prime_factors(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> bool: return len(set(_UpperCAmelCase ) ) in (0, 1) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> list: _a : int =2 while True: # Increment each value of a generated range _a : str =[base + i for i in range(_UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _a : List[Any] =[upf_len(_UpperCAmelCase ) for x in group] checker.append(_UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4 ) -> int: _a : Optional[int] =run(_UpperCAmelCase ) return results[0] if len(_UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
506
0
'''simple docstring''' def __snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __UpperCAmelCase = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" __UpperCAmelCase = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" __UpperCAmelCase = max(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase ) , b_binary.zfill(lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
396
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
15
0
"""simple docstring""" __lowerCAmelCase = 65_521 def A_ ( __UpperCamelCase : str ): lowercase = 1 lowercase = 0 for plain_chr in plain_text: lowercase = (a + ord(__UpperCamelCase )) % MOD_ADLER lowercase = (b + a) % MOD_ADLER return (b << 16) | a
721
"""simple docstring""" def A_ ( __UpperCamelCase : int = 1 , __UpperCamelCase : int = 10_00 ): lowercase = 1 lowercase = 0 for divide_by_number in range(__UpperCamelCase , digit + 1 ): lowercase = [] lowercase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCamelCase ): lowercase = len(__UpperCamelCase ) lowercase = divide_by_number else: has_been_divided.append(__UpperCamelCase ) lowercase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
396
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() _lowerCAmelCase = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _lowerCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = None if token is not None: _lowerCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = result.headers["Location"] _lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE_ , allow_redirects=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{artifact_name}.zip''' ) with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fp: fp.write(response.content ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = None with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(SCREAMING_SNAKE_CASE_ ) as f: for line in f: _lowerCAmelCase = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase = line[: line.index(": " )] _lowerCAmelCase = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _lowerCAmelCase = line[len("FAILED " ) :] failed_tests.append(SCREAMING_SNAKE_CASE_ ) elif filename == "job_name.txt": _lowerCAmelCase = line if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE_ )} for `errors` ''' F'''and {len(SCREAMING_SNAKE_CASE_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) _lowerCAmelCase = None if job_name and job_links: _lowerCAmelCase = job_links.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] return result def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE_ , job_links=SCREAMING_SNAKE_CASE_ ) ) return errors def __a(SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=None ): '''simple docstring''' _lowerCAmelCase = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = test.split("::" )[0] if test.startswith("tests/models/" ): _lowerCAmelCase = test.split("/" )[2] else: _lowerCAmelCase = None return test def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase = [x for x in logs if x[2] is not None] _lowerCAmelCase = {x[2] for x in logs} _lowerCAmelCase = {} for test in tests: _lowerCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase = counter.most_common() _lowerCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase = {"count": n_errors, "errors": error_counts} _lowerCAmelCase = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE_ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE_ ) ) return r def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| no. | error | status |" _lowerCAmelCase = "|-:|:-|:-|" _lowerCAmelCase = [header, sep] for error in reduced_by_error: _lowerCAmelCase = reduced_by_error[error]["count"] _lowerCAmelCase = F'''| {count} | {error[:100]} | |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "| model | no. of errors | major error | count |" _lowerCAmelCase = "|-:|-:|-:|-:|" _lowerCAmelCase = [header, sep] for model in reduced_by_model: _lowerCAmelCase = reduced_by_model[model]["count"] _lowerCAmelCase , _lowerCAmelCase = list(reduced_by_model[model]["errors"].items() )[0] _lowerCAmelCase = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(SCREAMING_SNAKE_CASE_ ) return "\n".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(" / ") _SCREAMING_SNAKE_CASE = k[index + len(" / ") :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "donut-swin" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , **_lowerCAmelCase , ) -> Optional[Any]: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) )
18
1
def _snake_case (_snake_case : list[list[float]]) -> list[list[float]]: _lowercase =[] for data in source_data: for i, el in enumerate(_snake_case): if len(_snake_case) < i + 1: data_lists.append([]) data_lists[i].append(float(_snake_case)) return data_lists def _snake_case (_snake_case : list[list[float]] , _snake_case : list[int]) -> list[list[float]]: _lowercase =[] for dlist, weight in zip(_snake_case , _snake_case): _lowercase =min(_snake_case) _lowercase =max(_snake_case) _lowercase =[] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: _lowercase =f'''Invalid weight of {weight:f} provided''' raise ValueError(_snake_case) score_lists.append(_snake_case) return score_lists def _snake_case (_snake_case : list[list[float]]) -> list[float]: _lowercase =[0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(_snake_case): _lowercase =final_scores[j] + ele return final_scores def _snake_case (_snake_case : list[list[float]] , _snake_case : list[int]) -> list[list[float]]: _lowercase =get_data(_snake_case) _lowercase =calculate_each_score(_snake_case , _snake_case) _lowercase =generate_final_scores(_snake_case) # append scores to source data for i, ele in enumerate(_snake_case): source_data[i].append(_snake_case) return source_data
557
from math import isqrt, loga def _snake_case (_snake_case : int) -> list[int]: _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , _snake_case , _snake_case): _lowercase =False return [i for i in range(2 , _snake_case) if is_prime[i]] def _snake_case (_snake_case : int = 80_0800 , _snake_case : int = 80_0800) -> int: _lowercase =degree * loga(_snake_case) _lowercase =int(_snake_case) _lowercase =calculate_prime_numbers(_snake_case) _lowercase =0 _lowercase =0 _lowercase =len(_snake_case) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
557
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = "MCTCTFeatureExtractor" _UpperCAmelCase :Dict = "AutoTokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = self.feature_extractor lowercase__: Dict = False def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowercase__: Union[str, Any] = kwargs.pop('''raw_speech''' ) else: lowercase__: Union[str, Any] = kwargs.pop('''audio''' , _UpperCAmelCase ) lowercase__: Union[str, Any] = kwargs.pop('''sampling_rate''' , _UpperCAmelCase ) lowercase__: str = kwargs.pop('''text''' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: lowercase__: Optional[Any] = args[0] lowercase__: str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowercase__: Dict = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: lowercase__: int = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: lowercase__: Optional[int] = encodings['''input_ids'''] return inputs def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_UpperCAmelCase , **_UpperCAmelCase ) lowercase__: int = kwargs.pop('''input_features''' , _UpperCAmelCase ) lowercase__: Optional[Any] = kwargs.pop('''labels''' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: lowercase__: Tuple = args[0] lowercase__: Optional[int] = args[1:] if input_features is not None: lowercase__: Dict = self.feature_extractor.pad(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) if labels is not None: lowercase__: Union[str, Any] = self.tokenizer.pad(_UpperCAmelCase , **_UpperCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: lowercase__: Optional[Any] = labels['''input_ids'''] return input_features def _snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @contextmanager def _snake_case ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowercase__: Optional[int] = True lowercase__: Dict = self.tokenizer yield lowercase__: Tuple = self.feature_extractor lowercase__: List[str] = False
586
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __A = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __A = 1_0 __A = 2_5_6 def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[MinHash]: if len(__UpperCAmelCase ) < MIN_NUM_TOKENS: return None lowercase__: Tuple = MinHash(num_perm=__UpperCAmelCase ) for token in set(__UpperCAmelCase ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Set[str]: return {t for t in NON_ALPHA.split(__UpperCAmelCase ) if len(t.strip() ) > 0} class UpperCAmelCase : """simple docstring""" def __init__( self , *, _UpperCAmelCase = 0.85 , ): lowercase__: Optional[int] = duplication_jaccard_threshold lowercase__: str = NUM_PERM lowercase__: Tuple = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase__: Optional[int] = defaultdict(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = self._index.query(_UpperCAmelCase ) if code_key in self._index.keys: print(F"""Duplicate key {code_key}""" ) return self._index.insert(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_UpperCAmelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: List[Any] = [] for base, duplicates in self._duplicate_clusters.items(): lowercase__: Dict = [base] + list(_UpperCAmelCase ) # reformat the cluster to be a list of dict lowercase__: Union[str, Any] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_UpperCAmelCase ) return duplicate_clusters def _snake_case ( self , _UpperCAmelCase ): lowercase__: int = self.get_duplicate_clusters() with open(_UpperCAmelCase , '''w''' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: lowercase__, lowercase__: Union[str, Any] = element lowercase__: Any = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Union[str, Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__UpperCAmelCase , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowercase__: Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=__UpperCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__UpperCAmelCase ) ) , max_queue_size=1_0_0 ) ): di.add(__UpperCAmelCase , __UpperCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: lowercase__: Optional[Any] = get_tokens(__UpperCAmelCase ) lowercase__: Optional[Any] = get_tokens(__UpperCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __A = None def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Any = [] for elementa in cluster: lowercase__: List[str] = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: lowercase__: Any = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__UpperCAmelCase , __UpperCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase__: int = 1 extremes.append(__UpperCAmelCase ) return extremes def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: global _shared_dataset lowercase__: Optional[int] = dataset lowercase__: Union[str, Any] = [] lowercase__: str = partial(_find_cluster_extremes_shared , jaccard_threshold=__UpperCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __UpperCAmelCase , __UpperCAmelCase , ) , total=len(__UpperCAmelCase ) , ): extremes_list.append(__UpperCAmelCase ) return extremes_list def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = 0.8_5 ) -> Tuple[Type[Dataset], List[List[Dict]]]: lowercase__: Any = make_duplicate_clusters(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} lowercase__: List[str] = {} lowercase__: int = find_extremes(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for extremes in extremes_clusters: for element in extremes: lowercase__: str = element lowercase__: List[str] = duplicate_indices - set(extreme_dict.keys() ) lowercase__: List[str] = dataset.filter(lambda __UpperCAmelCase , __UpperCAmelCase : idx not in remove_indices , with_indices=__UpperCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase__: Optional[int] = element['''base_index'''] in extreme_dict if element["is_extreme"]: lowercase__: Optional[int] = extreme_dict[element['''base_index''']]['''copies'''] print(F"""Original dataset size: {len(__UpperCAmelCase )}""" ) print(F"""Number of duplicate clusters: {len(__UpperCAmelCase )}""" ) print(F"""Files in duplicate cluster: {len(__UpperCAmelCase )}""" ) print(F"""Unique files in duplicate cluster: {len(__UpperCAmelCase )}""" ) print(F"""Filtered dataset size: {len(__UpperCAmelCase )}""" ) return ds_filter, duplicate_clusters
586
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Tuple = logging.get_logger(__name__) __a: Optional[Any] = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "biogpt" def __init__( self , __lowerCAmelCase=42384 , __lowerCAmelCase=1024 , __lowerCAmelCase=24 , __lowerCAmelCase=16 , __lowerCAmelCase=4096 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1024 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ) -> str: lowercase__ : Optional[Any] = vocab_size lowercase__ : Optional[int] = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : Tuple = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : List[Any] = initializer_range lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = scale_embedding lowercase__ : List[str] = use_cache lowercase__ : Optional[int] = layerdrop lowercase__ : Any = activation_dropout super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
718
'''simple docstring''' from random import randint, random def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = 5 , ): lowercase__ : Optional[Any] = [[-1] * number_of_cells] # Create a highway without any car lowercase__ : List[str] = 0 lowercase__ : Optional[Any] = max(UpperCAmelCase , 0 ) while i < number_of_cells: lowercase__ : str = ( randint(0 , UpperCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : str = 0 lowercase__ : Union[str, Any] = highway_now[car_index + 1 :] for cell in range(len(UpperCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCAmelCase , -1 ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = len(UpperCAmelCase ) # Beforce calculations, the highway is empty lowercase__ : List[Any] = [-1] * number_of_cells for car_index in range(UpperCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowercase__ : int = min(highway_now[car_index] + 1 , UpperCAmelCase ) # Number of empty cell before the next car lowercase__ : Dict = get_distance(UpperCAmelCase , UpperCAmelCase ) - 1 # We can't have the car causing an accident lowercase__ : int = min(next_highway[car_index] , UpperCAmelCase ) if random() < probability: # Randomly, a driver will slow down lowercase__ : Any = max(next_highway[car_index] - 1 , 0 ) return next_highway def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = len(highway[0] ) for i in range(UpperCAmelCase ): lowercase__ : Union[str, Any] = update(highway[i] , UpperCAmelCase , UpperCAmelCase ) lowercase__ : Dict = [-1] * number_of_cells for car_index in range(UpperCAmelCase ): lowercase__ : int = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowercase__ : List[str] = (car_index + speed) % number_of_cells # Commit the change of position lowercase__ : Union[str, Any] = speed highway.append(UpperCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
428
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE = DetaConfig( backbone_config=A__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=A__ , with_box_refine=A__ , two_stage=A__ , ) # set labels SCREAMING_SNAKE_CASE = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE = 366 SCREAMING_SNAKE_CASE = "object365-id2label.json" else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __a ( A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Any ): SCREAMING_SNAKE_CASE = dct.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : str , A__ : int ): SCREAMING_SNAKE_CASE = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE = in_proj_bias[: dim] SCREAMING_SNAKE_CASE = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-dim :] # fmt: on def __a ( A__ : Any , A__ : Tuple ): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-hidden_size:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] , A__ : str ): SCREAMING_SNAKE_CASE = get_deta_config(A__ ) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(A__ , param.shape ) # rename keys SCREAMING_SNAKE_CASE = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_swin_q_k_v(A__ , config.backbone_config ) read_in_decoder_q_k_v(A__ , A__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val if "input_proj" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = DetaForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" model.to(A__ ) # load image processor SCREAMING_SNAKE_CASE = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] SCREAMING_SNAKE_CASE = model(pixel_values.to(A__ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(A__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(A__ ) , atol=1E-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
16
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Union[str, Any] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
195
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , UpperCAmelCase__ : List[Any] , ): '''simple docstring''' lowercase : List[str] =parent lowercase : str =13 lowercase : Optional[int] =7 lowercase : Optional[int] =True lowercase : Any =True lowercase : List[Any] =False lowercase : Optional[Any] =True lowercase : Dict =99 lowercase : Union[str, Any] =32 lowercase : List[str] =2 lowercase : Union[str, Any] =4 lowercase : int =37 lowercase : Tuple ='''gelu''' lowercase : Any =0.1 lowercase : List[str] =0.1 lowercase : Dict =512 lowercase : Optional[Any] =16 lowercase : List[str] =2 lowercase : str =0.02 lowercase : int =3 lowercase : int =4 lowercase : Tuple =None def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : str =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : List[str] =None lowercase : Optional[Any] =None lowercase : str =None if self.use_labels: lowercase : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Optional[int] =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : int =TFDistilBertModel(config=UpperCAmelCase__ ) lowercase : Dict ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase__ ) lowercase : str =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : str =TFDistilBertForMaskedLM(config=UpperCAmelCase__ ) lowercase : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : int =model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : Dict =TFDistilBertForQuestionAnswering(config=UpperCAmelCase__ ) lowercase : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } lowercase : Any =model(UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ): '''simple docstring''' lowercase : Union[str, Any] =self.num_labels lowercase : Tuple =TFDistilBertForSequenceClassification(UpperCAmelCase__ ) lowercase : Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : List[str] =model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : Tuple =self.num_choices lowercase : Optional[Any] =TFDistilBertForMultipleChoice(UpperCAmelCase__ ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) lowercase : str =tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) lowercase : Optional[int] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } lowercase : List[Any] =model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : Optional[int] =self.num_labels lowercase : Dict =TFDistilBertForTokenClassification(UpperCAmelCase__ ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase : Dict =model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Optional[int] =self.prepare_config_and_inputs() (lowercase) : List[Any] =config_and_inputs lowercase : Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowerCamelCase_ = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Union[str, Any] =TFDistilBertModelTester(self ) lowercase : str =ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowercase : Tuple =TFDistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : Tuple =TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : Any =model(UpperCAmelCase__ )[0] lowercase : List[Any] =[1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase__ ) lowercase : int =tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 )
714
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=99 , UpperCAmelCase__ : str=32 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : int=4 , ): '''simple docstring''' lowercase : int =parent lowercase : List[str] =batch_size lowercase : str =seq_length lowercase : Optional[Any] =is_training lowercase : Union[str, Any] =use_attention_mask lowercase : Optional[Any] =use_token_type_ids lowercase : Tuple =use_labels lowercase : List[str] =vocab_size lowercase : List[str] =hidden_size lowercase : Tuple =num_hidden_layers lowercase : Any =num_attention_heads lowercase : List[str] =intermediate_size lowercase : Optional[Any] =hidden_act lowercase : Dict =hidden_dropout_prob lowercase : List[Any] =attention_probs_dropout_prob lowercase : Optional[Any] =max_position_embeddings lowercase : Tuple =type_vocab_size lowercase : Optional[int] =type_sequence_label_size lowercase : Optional[Any] =initializer_range lowercase : Optional[int] =num_choices def lowerCamelCase_ ( self : str ): '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Union[str, Any] =None if self.use_attention_mask: lowercase : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Tuple =None if self.use_token_type_ids: lowercase : str =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : int =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : List[Any] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : str =config_and_inputs lowercase : Optional[Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : List[str] =self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Any =config_and_inputs lowercase : List[str] =True lowercase : Optional[Any] =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase : str =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = True lowerCamelCase_ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =FlaxRobertaModelTester(self ) @slow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : Optional[int] =model_class_name.from_pretrained('''roberta-base''' , from_pt=UpperCAmelCase__ ) lowercase : List[Any] =model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ )
88
0
'''simple docstring''' import math import unittest def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def lowerCamelCase_ ( self : Tuple ): with self.assertRaises(__A ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ),"Zero doesn't have any positive factors, primes must have exactly two.",) self.assertFalse( is_prime(1 ),"One only has 1 positive factor, primes must have exactly two.",) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
44
# Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" for i in range(0 ,lowerCAmelCase_ ): for _ in range(0 ,n - i - 1 ): # printing spaces print(' ' ,end='' ) for _ in range(0 ,i + 1 ): # printing stars print('* ' ,end='' ) print() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" for i in range(lowerCAmelCase_ ,0 ,-1 ): for _ in range(lowerCAmelCase_ ,0 ,-1 ): # printing stars print('* ' ,end='' ) print() for _ in range(n - i + 1 ,0 ,-1 ): # printing spaces print(' ' ,end='' ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') __SCREAMING_SNAKE_CASE = 1 while K: __SCREAMING_SNAKE_CASE = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __SCREAMING_SNAKE_CASE = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
220
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable snake_case_ = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
68
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __lowerCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
68
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase__ : Dict = None UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Dict = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Dict = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } UpperCamelCase__ : Any = '''▁''' class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[str] = VOCAB_FILES_NAMES __a : int = PRETRAINED_VOCAB_FILES_MAP __a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[Any] = ["input_ids", "attention_mask"] __a : Dict = BarthezTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="</s>" ,snake_case__="<s>" ,snake_case__="<unk>" ,snake_case__="<pad>" ,snake_case__="<mask>" ,**snake_case__ ,): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : str = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else mask_token super().__init__( snake_case__ ,tokenizer_file=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,cls_token=snake_case__ ,pad_token=snake_case__ ,mask_token=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_file SCREAMING_SNAKE_CASE_ : int = False if not self.vocab_file else True def snake_case ( self ,snake_case__ ,snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file ,snake_case__ ) return (out_vocab_file,)
105
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __a : Any = None __a : Dict = logging.get_logger(__name__) __a : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __a : Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } __a : Optional[Any] = { """camembert-base""": 5_12, } __a : List[Any] = """▁""" class A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ['''input_ids''', '''attention_mask'''] _SCREAMING_SNAKE_CASE : str = CamembertTokenizer def __init__( self : int , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str=None , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : Dict="</s>" , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : Optional[int]="<unk>" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : int=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCAmelCase : Optional[int] , ) -> str: """simple docstring""" UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = False if not self.vocab_file else True def lowercase__ ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
559
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __a : Optional[int] = None __a : List[Any] = logging.get_logger(__name__) __a : int = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __a : Optional[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } __a : int = { """google/bigbird-roberta-base""": 40_96, """google/bigbird-roberta-large""": 40_96, """google/bigbird-base-trivia-itc""": 40_96, } __a : Tuple = """▁""" class A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[str] = BigBirdTokenizer _SCREAMING_SNAKE_CASE : Optional[int] = ['''input_ids''', '''attention_mask'''] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Optional[Any] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[Any]="<unk>" , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : Dict="[SEP]" , __UpperCAmelCase : Optional[Any]="[MASK]" , __UpperCAmelCase : List[str]="[CLS]" , **__UpperCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = False if not self.vocab_file else True def lowercase__ ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def lowercase__ ( self : Any , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
559
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir('fixtures/test_sentencepiece.model') lowercase_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') lowercase_ = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __lowercase , unittest.TestCase ): _a = CamembertTokenizer _a = CamembertTokenizerFast _a = True _a = True def A__ ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowercase =CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase ="<pad>" _lowercase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCAmelCase ) , 1_004 ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def A__ ( self ) -> int: '''simple docstring''' _lowercase =CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) _lowercase =CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _lowercase ="I was born in 92000, and this is falsé." _lowercase =tokenizer.encode(lowerCAmelCase ) _lowercase =rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) _lowercase =tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) _lowercase =rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _lowercase =tokenizer.convert_ids_to_tokens(lowerCAmelCase ) _lowercase =rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return _lowercase =self.get_tokenizer() _lowercase =self.get_rust_tokenizer() _lowercase ="I was born in 92000, and this is falsé." _lowercase =tokenizer.tokenize(lowerCAmelCase ) _lowercase =rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) _lowercase =tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) _lowercase =rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) _lowercase =self.get_rust_tokenizer() _lowercase =tokenizer.encode(lowerCAmelCase ) _lowercase =rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase ={"input_ids": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _lowercase =[ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=lowerCAmelCase , )
291
from __future__ import annotations class lowerCamelCase__ : '''simple docstring''' def __init__( self :Dict , a :str , a :str ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase : Optional[int] = text, pattern __UpperCamelCase , __UpperCamelCase : Tuple = len(a ), len(a ) def _lowerCamelCase ( self :Any , a :str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self :str , a :int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self :Union[str, Any] ) -> list[int]: # searches pattern in text and returns index positions __UpperCamelCase : Any = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCamelCase : List[Any] = self.mismatch_in_text(a ) if mismatch_index == -1: positions.append(a ) else: __UpperCamelCase : Any = self.match_in_pattern(self.text[mismatch_index] ) __UpperCamelCase : Dict = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase : Any = 'ABAABA' lowercase : str = 'AB' lowercase : str = BoyerMooreSearch(text, pattern) lowercase : Union[str, Any] = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
557
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ : Optional[int] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : int = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase_ : def __init__( self : Any , UpperCAmelCase_ : Collection[float] | None = None ) -> None: '''simple docstring''' if components is None: _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Any = list(UpperCAmelCase_ ) def __len__( self : Tuple ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self : List[Any] ) -> str: '''simple docstring''' return "(" + ",".join(map(UpperCAmelCase_ , self.__components ) ) + ")" def __add__( self : List[str] , UpperCAmelCase_ : Vector ) -> Vector: '''simple docstring''' _UpperCAmelCase : Optional[int] = len(self ) if size == len(UpperCAmelCase_ ): _UpperCAmelCase : List[str] = [self.__components[i] + other.component(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ )] return Vector(UpperCAmelCase_ ) else: raise Exception('''must have the same size''' ) def __sub__( self : Optional[int] , UpperCAmelCase_ : Vector ) -> Vector: '''simple docstring''' _UpperCAmelCase : str = len(self ) if size == len(UpperCAmelCase_ ): _UpperCAmelCase : Any = [self.__components[i] - other.component(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ )] return Vector(UpperCAmelCase_ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : List[Any] , UpperCAmelCase_ : float ) -> Vector: '''simple docstring''' ... @overload def __mul__( self : Dict , UpperCAmelCase_ : Vector ) -> float: '''simple docstring''' ... def __mul__( self : Dict , UpperCAmelCase_ : float | Vector ) -> float | Vector: '''simple docstring''' if isinstance(UpperCAmelCase_ , (float, int) ): _UpperCAmelCase : Dict = [c * other for c in self.__components] return Vector(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(self ) == len(UpperCAmelCase_ ): _UpperCAmelCase : Optional[int] = len(self ) _UpperCAmelCase : Optional[Any] = [self.__components[i] * other.component(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ )] return sum(UpperCAmelCase_ ) else: # error case raise Exception('''invalid operand!''' ) def a_ ( self : Optional[int] ) -> Vector: '''simple docstring''' return Vector(self.__components ) def a_ ( self : Optional[int] , UpperCAmelCase_ : int ) -> float: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def a_ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : float ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _UpperCAmelCase : Optional[Any] = value def a_ ( self : List[str] ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) _UpperCAmelCase : str = [c**2 for c in self.__components] return math.sqrt(sum(UpperCAmelCase_ ) ) def a_ ( self : Optional[int] , UpperCAmelCase_ : Vector , UpperCAmelCase_ : bool = False ) -> float: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self * other _UpperCAmelCase : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _A ( _UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) return Vector([0] * dimension ) def _A ( _UpperCamelCase , _UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and (isinstance(_UpperCamelCase , _UpperCamelCase )) _UpperCAmelCase : Optional[Any] = [0] * dimension _UpperCAmelCase : Optional[Any] = 1 return Vector(_UpperCamelCase ) def _A ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): assert ( isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) and (isinstance(_UpperCamelCase , (int, float) )) ) return x * scalar + y def _A ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): random.seed(_UpperCamelCase ) _UpperCAmelCase : Tuple = [random.randint(_UpperCamelCase , _UpperCamelCase ) for _ in range(_UpperCamelCase )] return Vector(_UpperCamelCase ) class lowerCAmelCase_ : def __init__( self : int , UpperCAmelCase_ : list[list[float]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> None: '''simple docstring''' _UpperCAmelCase : Tuple = matrix _UpperCAmelCase : Tuple = w _UpperCAmelCase : Tuple = h def __str__( self : str ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : str , UpperCAmelCase_ : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[int] = [] for i in range(self.__height ): _UpperCAmelCase : Union[str, Any] = [ self.__matrix[i][j] + other.component(UpperCAmelCase_ , UpperCAmelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCAmelCase_ ) return Matrix(UpperCAmelCase_ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : Dict , UpperCAmelCase_ : Matrix ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[Any] = [] for i in range(self.__height ): _UpperCAmelCase : Union[str, Any] = [ self.__matrix[i][j] - other.component(UpperCAmelCase_ , UpperCAmelCase_ ) for j in range(self.__width ) ] matrix.append(UpperCAmelCase_ ) return Matrix(UpperCAmelCase_ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : int , UpperCAmelCase_ : float ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self : Optional[Any] , UpperCAmelCase_ : Vector ) -> Vector: '''simple docstring''' ... def __mul__( self : List[str] , UpperCAmelCase_ : float | Vector ) -> Vector | Matrix: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # matrix-vector if len(UpperCAmelCase_ ) == self.__width: _UpperCAmelCase : int = zero_vector(self.__height ) for i in range(self.__height ): _UpperCAmelCase : Optional[int] = [ self.__matrix[i][j] * other.component(UpperCAmelCase_ ) for j in range(self.__width ) ] ans.change_component(UpperCAmelCase_ , sum(UpperCAmelCase_ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(UpperCAmelCase_ , (int, float) ): # matrix-scalar _UpperCAmelCase : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCAmelCase_ , self.__width , self.__height ) return None def a_ ( self : Optional[int] ) -> int: '''simple docstring''' return self.__height def a_ ( self : Tuple ) -> int: '''simple docstring''' return self.__width def a_ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def a_ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCAmelCase : Dict = value else: raise Exception('''change_component: indices out of bounds''' ) def a_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) _UpperCAmelCase : Any = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCAmelCase_ ) ): _UpperCAmelCase : Dict = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCAmelCase_ , self.__width - 1 , self.__height - 1 ).determinant() def a_ ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCAmelCase_ , UpperCAmelCase_ ) else: raise Exception('''Indices out of bounds''' ) def a_ ( self : Optional[int] ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCAmelCase : Optional[int] = [ self.__matrix[0][y] * self.cofactor(0 , UpperCAmelCase_ ) for y in range(self.__width ) ] return sum(UpperCAmelCase_ ) def _A ( _UpperCamelCase ): _UpperCAmelCase : list[list[float]] = [[0] * n for _ in range(_UpperCamelCase )] return Matrix(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def _A ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): random.seed(_UpperCamelCase ) _UpperCAmelCase : list[list[float]] = [ [random.randint(_UpperCamelCase , _UpperCamelCase ) for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase ) ] return Matrix(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
416
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowercase__ = '''bart''' lowercase__ = True @st.cache(allow_output_mutation=lowercase ) def __snake_case ( ): if LOAD_DENSE_INDEX: snake_case_ = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) snake_case_ = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) snake_case_ = qar_model.eval() else: snake_case_ , snake_case_ = (None, None) if MODEL_TYPE == "bart": snake_case_ = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) snake_case_ = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) snake_case_ = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) snake_case_ = sas_model.eval() else: snake_case_ , snake_case_ = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowercase ) def __snake_case ( ): if LOAD_DENSE_INDEX: snake_case_ = faiss.StandardGpuResources() snake_case_ = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] snake_case_ = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) snake_case_ = faiss.IndexFlatIP(128 ) snake_case_ = faiss.index_cpu_to_gpu(lowercase , 1 , lowercase ) wikiaab_gpu_index_flat.add(lowercase ) # TODO fix for larger GPU else: snake_case_ , snake_case_ = (None, None) snake_case_ = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowercase ) def __snake_case ( ): snake_case_ = datasets.load_dataset("eli5" , name="LFQA_reddit" ) snake_case_ = elia["train_eli5"] snake_case_ = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) snake_case_ = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowercase ) return (elia_train, eli5_train_q_index) lowercase__ , lowercase__ , lowercase__ = load_indexes() lowercase__ , lowercase__ , lowercase__ , lowercase__ = load_models() lowercase__ , lowercase__ = load_train_data() def __snake_case ( lowercase : Union[str, Any] , lowercase : str=10 ): snake_case_ = embed_questions_for_retrieval([question] , lowercase , lowercase ) snake_case_ , snake_case_ = eli5_train_q_index.search(lowercase , lowercase ) snake_case_ = [elia_train[int(lowercase )] for i in I[0]] return nn_examples def __snake_case ( lowercase : Optional[Any] , lowercase : Union[str, Any]="wiki40b" , lowercase : Any="dense" , lowercase : List[Any]=10 ): if source == "none": snake_case_ , snake_case_ = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case_ , snake_case_ = query_qa_dense_index( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) else: snake_case_ , snake_case_ = query_es_index( lowercase , lowercase , index_name="english_wiki40b_snippets_100w" , n_results=lowercase , ) snake_case_ = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] snake_case_ = "question: {} context: {}".format(lowercase , lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase : None), } ) def __snake_case ( lowercase : Tuple , lowercase : str , lowercase : List[Any] , lowercase : Optional[int]=64 , lowercase : Any=256 , lowercase : Tuple=False , lowercase : Dict=2 , lowercase : Any=0.95 , lowercase : Optional[int]=0.8 ): with torch.no_grad(): snake_case_ = qa_sas_generate( lowercase , lowercase , lowercase , num_answers=1 , num_beams=lowercase , min_len=lowercase , max_len=lowercase , do_sample=lowercase , temp=lowercase , top_p=lowercase , top_k=lowercase , max_input_length=1_024 , device="cuda:0" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar lowercase__ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' lowercase__ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowercase__ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) lowercase__ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] lowercase__ = st.sidebar.checkbox('''Demo options''') if demo_options: lowercase__ = st.sidebar.selectbox( '''''', action_list, index=3, ) lowercase__ = action_list.index(action_st) lowercase__ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) lowercase__ = show_type == '''Show full text of passages''' else: lowercase__ = 3 lowercase__ = True lowercase__ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: lowercase__ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) lowercase__ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) lowercase__ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: lowercase__ = '''wiki40b''' lowercase__ = '''dense''' lowercase__ = '''beam''' lowercase__ = 2 lowercase__ = 64 lowercase__ = 2_56 lowercase__ = None lowercase__ = None lowercase__ = st.sidebar.checkbox('''Generation options''') if generate_options: lowercase__ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) lowercase__ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) lowercase__ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) lowercase__ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": lowercase__ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowercase__ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowercase__ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowercase__ = None # start main text lowercase__ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] lowercase__ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": lowercase__ = st.text_input('''Enter your question here:''', '''''') else: lowercase__ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": lowercase__ , lowercase__ = make_support(question, source=wiki_source, method='''dense''', n_results=10) lowercase__ , lowercase__ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) lowercase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowercase__ = support_list[:10] lowercase__ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: lowercase__ , lowercase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowercase__ , lowercase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): lowercase__ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) lowercase__ = res[1].strip() if sec_titles == "": lowercase__ = '''[{}]({})'''.format(res[0], wiki_url) else: lowercase__ = sec_titles.split(''' & ''') lowercase__ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: lowercase__ = find_nearest_training(question) lowercase__ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) lowercase__ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) lowercase__ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
508
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase__ = '''true''' def __snake_case ( lowercase : Optional[int] , lowercase : Tuple=82 , lowercase : int=16 ): set_seed(42 ) snake_case_ = RegressionModel() snake_case_ = deepcopy(lowercase ) snake_case_ = RegressionDataset(length=lowercase ) snake_case_ = DataLoader(lowercase , batch_size=lowercase ) model.to(accelerator.device ) snake_case_ , snake_case_ = accelerator.prepare(lowercase , lowercase ) return model, ddp_model, dataloader def __snake_case ( lowercase : Accelerator , lowercase : int=False ): snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) snake_case_ = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(lowercase : Optional[Any] ): snake_case_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs with accelerator.main_process_first(): snake_case_ = dataset.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) snake_case_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase : List[Any] ): if use_longest: return tokenizer.pad(lowercase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(lowercase , padding="max_length" , max_length=128 , return_tensors="pt" ) return DataLoader(lowercase , shuffle=lowercase , collate_fn=lowercase , batch_size=16 ) def __snake_case ( lowercase : List[Any] , lowercase : str ): snake_case_ = Accelerator(dispatch_batches=lowercase , split_batches=lowercase ) snake_case_ = get_dataloader(lowercase , not dispatch_batches ) snake_case_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=lowercase ) snake_case_ , snake_case_ = accelerator.prepare(lowercase , lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __snake_case ( lowercase : List[Any] , lowercase : str , lowercase : Tuple ): snake_case_ = [] for batch in dataloader: snake_case_ , snake_case_ = batch.values() with torch.no_grad(): snake_case_ = model(lowercase ) snake_case_ , snake_case_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) snake_case_ , snake_case_ = [], [] for logit, targ in logits_and_targets: logits.append(lowercase ) targs.append(lowercase ) snake_case_ , snake_case_ = torch.cat(lowercase ), torch.cat(lowercase ) return logits, targs def __snake_case ( lowercase : Accelerator , lowercase : Union[str, Any]=82 , lowercase : str=False , lowercase : List[Any]=False , lowercase : int=16 ): snake_case_ , snake_case_ , snake_case_ = get_basic_setup(lowercase , lowercase , lowercase ) snake_case_ , snake_case_ = generate_predictions(lowercase , lowercase , lowercase ) assert ( len(lowercase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase )}''' def __snake_case ( lowercase : bool = False , lowercase : bool = False ): snake_case_ = evaluate.load("glue" , "mrpc" ) snake_case_ , snake_case_ = get_mrpc_setup(lowercase , lowercase ) # First do baseline snake_case_ , snake_case_ , snake_case_ = setup["no"] model.to(lowercase ) model.eval() for batch in dataloader: batch.to(lowercase ) with torch.inference_mode(): snake_case_ = model(**lowercase ) snake_case_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase , references=batch["labels"] ) snake_case_ = metric.compute() # Then do distributed snake_case_ , snake_case_ , snake_case_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): snake_case_ = model(**lowercase ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ = batch["labels"] snake_case_ , snake_case_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase , references=lowercase ) snake_case_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __snake_case ( ): snake_case_ = Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase , lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: snake_case_ = Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) snake_case_ = Accelerator() test_torch_metrics(lowercase , 512 ) accelerator.state._reset_state() def __snake_case ( lowercase : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
508
1
import requests from bsa import BeautifulSoup def A(__a: str , __a: dict ): lowerCAmelCase_ = BeautifulSoup(requests.get(__a , params=__a ).content , "html.parser" ) lowerCAmelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) lowerCAmelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": lowerCamelCase__ = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 20_18, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
226
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
226
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness SCREAMING_SNAKE_CASE_ = '''\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n''' SCREAMING_SNAKE_CASE_ = '''\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n''' SCREAMING_SNAKE_CASE_ = '''\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n''' SCREAMING_SNAKE_CASE_ = '''\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n''' SCREAMING_SNAKE_CASE_ = '''The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def __A ( self ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __A ( self , snake_case_ , snake_case_ , snake_case_=[1, 10, 100] , snake_case_=4 , snake_case_=3.0 ) -> int: if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=_SCREAMING_SNAKE_CASE ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(_SCREAMING_SNAKE_CASE ) for task_id, (candidates, test_case) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): for candidate in candidates: _UpperCAmelCase = candidate + '''\n''' + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) futures.append(_SCREAMING_SNAKE_CASE ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["completion_id"], result) ) _UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]['''passed'''] for r in result] total.append(len(_SCREAMING_SNAKE_CASE ) ) correct.append(sum(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = k _UpperCAmelCase = {F"""pass@{k}""": estimate_pass_at_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A__ ( A__ , A__ , A__ ) -> int: '''simple docstring''' def estimator(A__ , A__ , A__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_lowercase , _lowercase ): _UpperCAmelCase = itertools.repeat(_lowercase , len(_lowercase ) ) else: assert len(_lowercase ) == len(_lowercase ) _UpperCAmelCase = iter(_lowercase ) return np.array([estimator(int(_lowercase ) , int(_lowercase ) , _lowercase ) for n, c in zip(_lowercase , _lowercase )] )
426
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __a = None __a = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __a = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __a: """simple docstring""" lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "PIL.Image.Image" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Image''' , init=_a , repr=_a ) def __call__( self ) -> Tuple: return self.pa_type def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE ,PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> "PIL.Image.Image": if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: UpperCAmelCase_ : Dict = {} UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Dict = path.split('''::''' )[-1] try: UpperCAmelCase_ : Optional[int] = string_to_dict(_SCREAMING_SNAKE_CASE ,config.HUB_DATASETS_URL )['''repo_id'''] UpperCAmelCase_ : Tuple = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCAmelCase_ : Optional[Any] = None with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ,use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCAmelCase_ : List[str] = BytesIO(f.read() ) UpperCAmelCase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: UpperCAmelCase_ : List[Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): UpperCAmelCase_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Tuple = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCAmelCase_ : Dict = storage.field('''bytes''' ) else: UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCAmelCase_ : int = storage.field('''path''' ) else: UpperCAmelCase_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCAmelCase_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,) UpperCAmelCase_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) ,type=pa.string() ) UpperCAmelCase_ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE ,'''rb''' ) as f: UpperCAmelCase_ : Any = f.read() return bytes_ UpperCAmelCase_ : Union[str, Any] = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] ,type=pa.binary() ,) UpperCAmelCase_ : List[str] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,) UpperCAmelCase_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE ,self.pa_type ) def lowerCamelCase__ ( ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCAmelCase_ : Optional[int] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BytesIO() if image.format in list_image_compression_formats(): UpperCAmelCase_ : int = image.format else: UpperCAmelCase_ : List[Any] = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if hasattr(_lowercase , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) UpperCAmelCase_ : Tuple = array.dtype UpperCAmelCase_ : List[str] = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER UpperCAmelCase_ : Dict = dtype.kind UpperCAmelCase_ : Union[str, Any] = dtype.itemsize UpperCAmelCase_ : Optional[Any] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCAmelCase_ : Tuple = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCAmelCase_ : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCAmelCase_ : Union[str, Any] = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCAmelCase_ : str = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCAmelCase_ : Any = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: UpperCAmelCase_, UpperCAmelCase_ : Tuple = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCAmelCase_ : Any = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCAmelCase_ : Union[str, Any] = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
30
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase ( unittest.TestCase ): def __init__(self : List[Any] , A__ : Dict , A__ : str=1_3 , A__ : List[str]=7 , A__ : int=True , A__ : Tuple=True , A__ : str=True , A__ : List[str]=True , A__ : str=9_9 , A__ : str=3_2 , A__ : Tuple=5 , A__ : Dict=4 , A__ : Optional[Any]=3_7 , A__ : Dict="gelu" , A__ : Optional[int]=0.1 , A__ : Any=0.1 , A__ : Dict=5_1_2 , A__ : Any=1_6 , A__ : Tuple=2 , A__ : Optional[Any]=0.0_2 , A__ : Any=4 , ) -> str: lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def UpperCAmelCase__ (self : Optional[Any] ) -> int: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ (self : Tuple ) -> Tuple: lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCAmelCase__ (self : List[Any] ) -> Tuple: lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = True lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase : str = True UpperCAmelCase : List[str] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ (self : Dict ) -> List[Any]: lowercase = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase__ (self : Tuple ) -> Tuple: for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("roberta-base" , from_pt=A__ ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(A__ )
701
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Optional[Any] = '''MCTCTFeatureExtractor''' UpperCAmelCase : Tuple = '''AutoTokenizer''' def __init__(self : int , A__ : Tuple , A__ : Union[str, Any] ) -> Dict: super().__init__(A__ , A__ ) lowercase = self.feature_extractor lowercase = False def __call__(self : Tuple , *A__ : str , **A__ : Dict ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A__ , **A__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowercase = kwargs.pop("raw_speech" ) else: lowercase = kwargs.pop("audio" , A__ ) lowercase = kwargs.pop("sampling_rate" , A__ ) lowercase = kwargs.pop("text" , A__ ) if len(A__ ) > 0: lowercase = args[0] lowercase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowercase = self.feature_extractor(A__ , *A__ , sampling_rate=A__ , **A__ ) if text is not None: lowercase = self.tokenizer(A__ , **A__ ) if text is None: return inputs elif audio is None: return encodings else: lowercase = encodings["input_ids"] return inputs def UpperCAmelCase__ (self : Tuple , *A__ : str , **A__ : str ) -> str: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCAmelCase__ (self : Any , *A__ : List[Any] , **A__ : List[str] ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A__ , **A__ ) lowercase = kwargs.pop("input_features" , A__ ) lowercase = kwargs.pop("labels" , A__ ) if len(A__ ) > 0: lowercase = args[0] lowercase = args[1:] if input_features is not None: lowercase = self.feature_extractor.pad(A__ , *A__ , **A__ ) if labels is not None: lowercase = self.tokenizer.pad(A__ , **A__ ) if labels is None: return input_features elif input_features is None: return labels else: lowercase = labels["input_ids"] return input_features def UpperCAmelCase__ (self : Tuple , *A__ : Optional[int] , **A__ : Optional[int] ) -> Tuple: return self.tokenizer.decode(*A__ , **A__ ) @contextmanager def UpperCAmelCase__ (self : Optional[Any] ) -> Union[str, Any]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowercase = True lowercase = self.tokenizer yield lowercase = self.feature_extractor lowercase = False
459
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _lowerCamelCase = None _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } _lowerCamelCase = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } _lowerCamelCase = '▁' class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = BigBirdTokenizer lowerCamelCase_ = ["input_ids", "attention_mask"] lowerCamelCase_ = [] def __init__( self :str , __A :Tuple=None , __A :Optional[Any]=None , __A :Any="<unk>" , __A :Any="<s>" , __A :Union[str, Any]="</s>" , __A :List[str]="<pad>" , __A :Optional[Any]="[SEP]" , __A :str="[MASK]" , __A :Optional[Any]="[CLS]" , **__A :Union[str, Any] , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = False if not self.vocab_file else True def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self :Optional[int] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
6
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging a_ : List[Any] = logging.get_logger(__name__) def a_ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : List[Any] , __snake_case : int=False ) -> List[str]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowerCamelCase_ =os.path.abspath(__snake_case ) logger.info(F'''Loading PyTorch weights from {pt_path}''' ) lowerCamelCase_ =torch.load(__snake_case , map_location='''cpu''' ) logger.info(F'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) lowerCamelCase_ =convert_pytorch_state_dict_to_flax(__snake_case , __snake_case ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCamelCase_ =convert_pytorch_sharded_state_dict_to_flax(__snake_case , __snake_case ) return flax_state_dict def a_ ( __snake_case : Tuple[str] , __snake_case : np.ndarray , __snake_case : Dict[str, jnp.ndarray] , __snake_case : str , ) -> (Tuple[str], np.ndarray): """simple docstring""" def is_key_or_prefix_key_in_dict(__snake_case : Tuple[str] ) -> bool: return len(set(__snake_case ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCamelCase_ =pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCamelCase_ =pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCamelCase_ =pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCamelCase_ =pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(__snake_case ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase_ =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(__snake_case ): lowerCamelCase_ =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase_ =pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(__snake_case ): lowerCamelCase_ =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase_ =pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase_ =pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCamelCase_ =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCamelCase_ =pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCamelCase_ =pt_tuple_key[-2] + '''_v''' if name is not None: lowerCamelCase_ =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a_ ( __snake_case : Union[str, Any] , __snake_case : str ) -> str: """simple docstring""" # convert pytorch tensor to numpy lowerCamelCase_ ={k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase_ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCamelCase_ =flax_model.params['''params'''] else: lowerCamelCase_ =flax_model.params lowerCamelCase_ =flatten_dict(__snake_case ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase_ =flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(__snake_case ) lowerCamelCase_ ={} lowerCamelCase_ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCamelCase_ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase_ =tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCamelCase_ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase_ =pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase_, lowerCamelCase_ =rename_key_and_reshape_tensor( __snake_case , __snake_case , __snake_case , __snake_case ) # add model prefix if necessary lowerCamelCase_ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase_ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCamelCase_ =jnp.asarray(__snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__snake_case , __snake_case ) continue # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) else: # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) return unflatten_dict(__snake_case ) def a_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" import torch # Load the index lowerCamelCase_ ={} for shard_file in shard_filenames: # load using msgpack utils lowerCamelCase_ =torch.load(__snake_case ) lowerCamelCase_ ={k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase_ =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase_ =flax_model.params['''params'''] lowerCamelCase_ =flatten_dict(__snake_case ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowerCamelCase_ =flax_model.params lowerCamelCase_ =flatten_dict(__snake_case ) lowerCamelCase_ =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCamelCase_ =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase_ =tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCamelCase_ =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase_ =pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase_, lowerCamelCase_ =rename_key_and_reshape_tensor( __snake_case , __snake_case , __snake_case , __snake_case ) # add model prefix if necessary lowerCamelCase_ =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase_ =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCamelCase_ =jnp.asarray(__snake_case ) continue if "var" in flax_key[-1]: lowerCamelCase_ =jnp.asarray(__snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(__snake_case , __snake_case ) continue # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) else: # also add unexpected weight so that warning is thrown lowerCamelCase_ =jnp.asarray(__snake_case ) return unflatten_dict(__snake_case ) def a_ ( __snake_case : List[str] , __snake_case : Dict ) -> str: """simple docstring""" lowerCamelCase_ =os.path.abspath(__snake_case ) logger.info(F'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class lowerCamelCase_ =getattr(__snake_case , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(__snake_case , '''rb''' ) as state_f: try: lowerCamelCase_ =from_bytes(__snake_case , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__snake_case , __snake_case ) def a_ ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowerCamelCase_ =flatten_dict(jax.tree_util.tree_map(lambda __snake_case : x.dtype == jnp.bfloataa , __snake_case ) ).values() if any(__snake_case ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowerCamelCase_ =jax.tree_util.tree_map( lambda __snake_case : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __snake_case ) lowerCamelCase_ =flatten_dict(__snake_case ) lowerCamelCase_ =pt_model.state_dict() lowerCamelCase_ =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowerCamelCase_ =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCamelCase_ =[] lowerCamelCase_ =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase_ =flax_key_tuple[0] == pt_model.base_model_prefix lowerCamelCase_ ='''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase_ =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase_ =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(__snake_case ) not in pt_model_dict: # conv layer lowerCamelCase_ =flax_key_tuple[:-1] + ('''weight''',) lowerCamelCase_ =jnp.transpose(__snake_case , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__snake_case ) not in pt_model_dict: # linear layer lowerCamelCase_ =flax_key_tuple[:-1] + ('''weight''',) lowerCamelCase_ =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase_ =flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCamelCase_ =flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowerCamelCase_ =flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowerCamelCase_ ='''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCamelCase_ ='''.'''.join(__snake_case ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCamelCase_ ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCamelCase_ =key.split('''.''' ) lowerCamelCase_ =None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCamelCase_ =key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCamelCase_ =key_components[-2] + '''_v''' if name is not None: lowerCamelCase_ =key_components[:-3] + [name] lowerCamelCase_ ='''.'''.join(__snake_case ) lowerCamelCase_ =key if flax_key in special_pt_names: lowerCamelCase_ =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowerCamelCase_ =np.asarray(__snake_case ) if not isinstance(__snake_case , np.ndarray ) else flax_tensor lowerCamelCase_ =torch.from_numpy(__snake_case ) # remove from missing keys missing_keys.remove(__snake_case ) else: # weight is not expected by PyTorch model unexpected_keys.append(__snake_case ) pt_model.load_state_dict(__snake_case ) # re-transform missing_keys to list lowerCamelCase_ =list(__snake_case ) if len(__snake_case ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(__snake_case ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) else: logger.warning( F'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
676
0
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) < k or k < 0: raise ValueError('Invalid Input' ) A__ = A__ = sum(array[:k] ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - k ): A__ = current_sum - array[i] + array[i + k] A__ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowercase_ = [randint(-1000, 1000) for i in range(100)] lowercase_ = randint(0, 110) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
586
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( f'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' f' reinstalling {pkg}.' ) if not ops[op](version.parse(SCREAMING_SNAKE_CASE__ ) , version.parse(SCREAMING_SNAKE_CASE__ ) ): raise ImportError( f'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> None: '''simple docstring''' A__ = f'\n{hint}' if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , SCREAMING_SNAKE_CASE__ ): A__ , A__ , A__ = requirement, None, None else: A__ = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , SCREAMING_SNAKE_CASE__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' f' got {requirement}' ) A__ , A__ = match[0] A__ = want_full.split(',' ) # there could be multiple requirements A__ = {} for w in want_range: A__ = re.findall(R'^([\s!=<>]{1,2})(.+)' , SCREAMING_SNAKE_CASE__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' f' but got {requirement}' ) A__ , A__ = match[0] A__ = want_ver if op not in ops: raise ValueError(f'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": A__ = '.'.join([str(SCREAMING_SNAKE_CASE__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return # check if any version is installed try: A__ = importlib.metadata.version(SCREAMING_SNAKE_CASE__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: '''simple docstring''' A__ = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
586
1
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: List[Any] ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE__ = mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ = max( mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , j - wt[i - 1] ) + val[i - 1] , ) SCREAMING_SNAKE_CASE__ = val return f[i][j] def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE__ = dp[i - 1][w_] return dp[n][w_], dp def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: list , UpperCamelCase__: list ): if not (isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) if num_items != len(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = ( """The number of weights must be the same as the number of values.\n""" f'''But got {num_items} weights and {len(UpperCamelCase__ )} values''' ) raise ValueError(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): if not isinstance(wt[i] , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = ( """All weights must be integers but got weight of """ f'''type {type(wt[i] )} at index {i}''' ) raise TypeError(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = set() _construct_solution(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return optimal_val, example_optional_set def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list , UpperCamelCase__: list , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: set ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: optimal_set.add(UpperCamelCase__ ) _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , j - wt[i - 1] , UpperCamelCase__ ) if __name__ == "__main__": _lowerCamelCase = [3, 2, 4, 4] _lowerCamelCase = [4, 3, 2, 3] _lowerCamelCase = 4 _lowerCamelCase = 6 _lowerCamelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _lowerCamelCase , _lowerCamelCase = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _lowerCamelCase , _lowerCamelCase = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
6
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = '''sew-d''' def __init__(self : Tuple , A__ : str=3_2 , A__ : str=7_6_8 , A__ : Union[str, Any]=1_2 , A__ : List[str]=1_2 , A__ : List[Any]=3_0_7_2 , A__ : List[Any]=2 , A__ : Dict=5_1_2 , A__ : Any=2_5_6 , A__ : str=True , A__ : Dict=True , A__ : str=("p2c", "c2p") , A__ : Optional[int]="layer_norm" , A__ : Optional[int]="gelu_python" , A__ : List[Any]=0.1 , A__ : List[str]=0.1 , A__ : Optional[Any]=0.1 , A__ : Optional[Any]=0.0 , A__ : str=0.1 , A__ : Optional[int]=0.0_2 , A__ : Union[str, Any]=1e-7 , A__ : List[str]=1e-5 , A__ : Union[str, Any]="group" , A__ : List[Any]="gelu" , A__ : Dict=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , A__ : Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A__ : Optional[Any]=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A__ : Optional[Any]=False , A__ : List[str]=1_2_8 , A__ : int=1_6 , A__ : List[str]=True , A__ : Dict=0.0_5 , A__ : Any=1_0 , A__ : str=2 , A__ : Optional[int]=0.0 , A__ : str=1_0 , A__ : List[Any]=0 , A__ : Tuple="mean" , A__ : Union[str, Any]=False , A__ : Optional[Any]=False , A__ : Optional[int]=2_5_6 , A__ : Dict=0 , A__ : List[str]=1 , A__ : str=2 , **A__ : Tuple , ) -> List[Any]: super().__init__(**A__ , pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ ) lowercase = hidden_size lowercase = feat_extract_norm lowercase = feat_extract_activation lowercase = list(A__ ) lowercase = list(A__ ) lowercase = list(A__ ) lowercase = conv_bias lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = len(self.conv_dim ) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = squeeze_factor lowercase = max_position_embeddings lowercase = position_buckets lowercase = share_att_key lowercase = relative_attention lowercase = norm_rel_ebd lowercase = list(A__ ) lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layer_norm_eps lowercase = feature_layer_norm_eps lowercase = initializer_range lowercase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = apply_spec_augment lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length lowercase = mask_feature_min_masks # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # sequence classification lowercase = use_weighted_layer_sum lowercase = classifier_proj_size @property def UpperCAmelCase__ (self : str ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
310
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __lowerCAmelCase : Optional[Any] ='.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __lowerCAmelCase : Union[str, Any] =[ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = SavedModel() __SCREAMING_SNAKE_CASE : List[str] = [] with open(os.path.join(lowercase__ , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: __SCREAMING_SNAKE_CASE : str = json.load(lowercase__ )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(lowercase__ )] ) with open(lowercase__ , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) __SCREAMING_SNAKE_CASE : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want __SCREAMING_SNAKE_CASE : Optional[int] = sorted(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(lowercase__ ) if strict and len(lowercase__ ) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(lowercase__ ) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''' ) print(*lowercase__ , sep='''\n''' ) else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __lowerCAmelCase : Optional[Any] =parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
260
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10 def __magic_name__( self :Dict , **lowerCAmelCase__ :Any ) -> int: __SCREAMING_SNAKE_CASE : List[str] = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase__ ) return config def __magic_name__( self :str ) -> Optional[Any]: for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def __magic_name__( self :str ) -> List[str]: for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Dict = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : Any = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample __SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __magic_name__( self :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) __SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __SCREAMING_SNAKE_CASE : Dict = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): __SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.prev_sample __SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def __magic_name__( self :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = self.dummy_model() __SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample __SCREAMING_SNAKE_CASE : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE : Any = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = output.prev_sample __SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
260
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class A : def __init__( self , SCREAMING_SNAKE_CASE = "cpu" , SCREAMING_SNAKE_CASE = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" A : Optional[int] = device A : List[Any] = CLIPTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE ) A : Optional[Any] = [0.48_145_466, 0.4_578_275, 0.40_821_073] A : Optional[int] = [0.26_862_954, 0.26_130_258, 0.27_577_711] A : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) A : List[str] = torchvision.transforms.Resize(224 ) A : List[Any] = torchvision.transforms.CenterCrop(224 ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : str = self.resize(SCREAMING_SNAKE_CASE ) A : Optional[int] = self.center_crop(SCREAMING_SNAKE_CASE ) A : Optional[int] = self.normalize(SCREAMING_SNAKE_CASE ) return images def __call__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" A : str = self.tokenizer(text=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : str = self.preprocess_img(SCREAMING_SNAKE_CASE ) A : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class A ( nn.Module ): def __init__( self , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.01 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="image" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , ) -> None: """simple docstring""" super().__init__() A : List[Any] = None A : Tuple = device if device else get_device() if vqgan: A : Optional[int] = vqgan else: A : str = load_vqgan(self.device , conf_path=SCREAMING_SNAKE_CASE , ckpt_path=SCREAMING_SNAKE_CASE ) self.vqgan.eval() if clip: A : int = clip else: A : Tuple = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) A : Any = ProcessorGradientFlow(device=self.device ) A : str = iterations A : List[Any] = lr A : Optional[int] = log A : str = make_grid A : Any = return_val A : int = quantize A : List[str] = self.vqgan.decoder.z_shape def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=True ) -> Dict: """simple docstring""" A : Any = [] if output_path is None: A : Tuple = '''./animation.gif''' if input_path is None: A : Tuple = self.save_path A : Union[str, Any] = sorted(glob(input_path + '''/*''' ) ) if not len(SCREAMING_SNAKE_CASE ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(SCREAMING_SNAKE_CASE ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) A : Optional[Any] = total_duration / len(SCREAMING_SNAKE_CASE ) A : str = [frame_duration] * len(SCREAMING_SNAKE_CASE ) if extend_frames: A : List[str] = 1.5 A : List[Any] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(SCREAMING_SNAKE_CASE ) ) imageio.mimsave(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , duration=SCREAMING_SNAKE_CASE ) print(F'gif saved to {output_path}' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError A : Optional[int] = preprocess(Image.open(SCREAMING_SNAKE_CASE ) , target_image_size=256 ).to(self.device ) A : Tuple = preprocess_vqgan(SCREAMING_SNAKE_CASE ) A, *A : int = self.vqgan.encode(SCREAMING_SNAKE_CASE ) return z def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : Any = self.latent.detach().requires_grad_() A : Dict = base_latent + transform_vector if self.quantize: A, *A : Dict = self.vqgan.quantize(SCREAMING_SNAKE_CASE ) else: A : str = trans_latent return self.vqgan.decode(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" A : Tuple = self.clip_preprocessor(text=SCREAMING_SNAKE_CASE , images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE ) A : Tuple = self.clip(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = clip_outputs.logits_per_image if weights is not None: A : Tuple = similarity_logits * weights return similarity_logits.sum() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : Any = self._get_clip_similarity(pos_prompts['''prompts'''] , SCREAMING_SNAKE_CASE , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: A : Dict = self._get_clip_similarity(neg_prompts['''prompts'''] , SCREAMING_SNAKE_CASE , weights=neg_prompts['''weights'''] ) else: A : List[str] = torch.tensor([1] , device=self.device ) A : Optional[int] = -torch.log(SCREAMING_SNAKE_CASE ) + torch.log(SCREAMING_SNAKE_CASE ) return loss def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Dict = torch.randn_like(self.latent , requires_grad=SCREAMING_SNAKE_CASE , device=self.device ) A : List[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A : Optional[int] = self._add_vector(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = loop_post_process(SCREAMING_SNAKE_CASE ) A : Tuple = self._get_CLIP_loss(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print('''CLIP loss''' , SCREAMING_SNAKE_CASE ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=SCREAMING_SNAKE_CASE ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" wandb.init(reinit=SCREAMING_SNAKE_CASE , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: A : Optional[Any] = Image.open(SCREAMING_SNAKE_CASE ) A : List[str] = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if not prompts: return [] A : int = [] A : Optional[int] = [] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Union[str, Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(SCREAMING_SNAKE_CASE , (tuple, list) ): A : Union[str, Any] = prompt[0] A : Any = float(prompt[1] ) elif ":" in prompt: A, A : Union[str, Any] = prompt.split(''':''' ) A : Optional[Any] = float(SCREAMING_SNAKE_CASE ) else: A : Dict = prompt A : int = 1.0 processed_prompts.append(SCREAMING_SNAKE_CASE ) weights.append(SCREAMING_SNAKE_CASE ) return { "prompts": processed_prompts, "weights": torch.tensor(SCREAMING_SNAKE_CASE , device=self.device ), } def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> int: """simple docstring""" if image_path: A : List[str] = self._get_latent(SCREAMING_SNAKE_CASE ) else: A : List[Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert pos_prompts, "You must provide at least one positive prompt." A : List[Any] = self.process_prompts(SCREAMING_SNAKE_CASE ) A : List[Any] = self.process_prompts(SCREAMING_SNAKE_CASE ) if save_final and save_path is None: A : List[str] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) else: A : Union[str, Any] = save_path + '''_''' + get_timestamp() os.makedirs(SCREAMING_SNAKE_CASE ) A : str = save_path A : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(SCREAMING_SNAKE_CASE ) ) A : Any = loop_post_process(SCREAMING_SNAKE_CASE ) for iter, transformed_img in enumerate(self._optimize_CLIP(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): if show_intermediate: show_pil(SCREAMING_SNAKE_CASE ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(SCREAMING_SNAKE_CASE )} ) if show_final: show_pil(SCREAMING_SNAKE_CASE ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
634
def _lowerCAmelCase ( A__ = 50_000_000 ): lowercase__ = set() lowercase__ = int((limit - 24) ** (1 / 2) ) lowercase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , A__ ) ) ) for primea in primes: lowercase__ = primea * primea for primea in primes: lowercase__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase__ = primea * primea * primea * primea lowercase__ = square + cube + tetr if total >= limit: break ret.add(A__ ) return len(A__ ) if __name__ == "__main__": print(F'''{solution() = }''')
622
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _lowercase ): """simple docstring""" a__ = "bert" def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case) _UpperCamelCase : int = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[str] = num_attention_heads _UpperCamelCase : int = hidden_act _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Any = use_cache _UpperCamelCase : Any = classifier_dropout class lowercase ( _lowercase ): """simple docstring""" @property def A__ ( self): if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
648
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=3 , __snake_case=32 , __snake_case=3 , __snake_case=10 , __snake_case=[8, 16, 32, 64] , __snake_case=[1, 1, 2, 1] , __snake_case=True , __snake_case=True , __snake_case="relu" , __snake_case=3 , __snake_case=None , __snake_case=["stage2", "stage3", "stage4"] , __snake_case=[2, 3, 4] , __snake_case=1 , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = embeddings_size _UpperCamelCase : Tuple = hidden_sizes _UpperCamelCase : Dict = depths _UpperCamelCase : str = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : str = hidden_act _UpperCamelCase : Optional[int] = num_labels _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Tuple = len(__snake_case) _UpperCamelCase : Dict = out_features _UpperCamelCase : Union[str, Any] = out_indices _UpperCamelCase : int = num_groups def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : str = None if self.use_labels: _UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def A__ ( self): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = BitModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = self.num_labels _UpperCamelCase : Dict = BitForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None _UpperCamelCase : Any = None _UpperCamelCase : str = BitBackbone(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def A__ ( self): _UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = config_and_inputs _UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a__ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Dict = BitModelTester(self) _UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case) def A__ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self): return @unittest.skip(reason='Bit does not output attentions') def A__ ( self): pass @unittest.skip(reason='Bit does not use inputs_embeds') def A__ ( self): pass @unittest.skip(reason='Bit does not support input and output embeddings') def A__ ( self): pass def A__ ( self): _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : int = model_class(__snake_case) _UpperCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Optional[int] = [*signature.parameters.keys()] _UpperCamelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case) def A__ ( self): _UpperCamelCase , _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = model_class(config=__snake_case) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self): def check_hidden_states_output(__snake_case , __snake_case , __snake_case): _UpperCamelCase : str = model_class(__snake_case) model.to(__snake_case) model.eval() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__snake_case , __snake_case)) _UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : str = self.model_tester.num_stages self.assertEqual(len(__snake_case) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : List[str] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase : Any = layer_type _UpperCamelCase : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case) @unittest.skip(reason='Bit does not use feedforward chunking') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Optional[Any] = BitModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> Optional[int]: '''simple docstring''' _UpperCamelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ ( self): _UpperCamelCase : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(__snake_case) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Any = model(**__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : Optional[int] = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @require_torch class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = (BitBackbone,) if is_torch_available() else () a__ = BitConfig a__ = False def A__ ( self): _UpperCamelCase : List[str] = BitModelTester(self)
648
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = CLIPTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPTokenizerFast SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Tuple = {} SCREAMING_SNAKE_CASE_ : str = False def __UpperCAmelCase ( self : Optional[int] ) -> int: super().setUp() # fmt: off _lowercase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowercase = dict(zip(__A ,range(len(__A ) ) ) ) _lowercase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _lowercase = {'unk_token': '<unk>'} _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__A ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def __UpperCAmelCase ( self : Tuple ,**__A : Tuple ) -> str: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : Union[str, Any] ,**__A : List[str] ) -> Dict: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**__A ) def __UpperCAmelCase ( self : List[str] ,__A : Any ) -> Optional[Any]: _lowercase = 'lower newer' _lowercase = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self : Dict ) -> List[str]: _lowercase = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowercase = 'lower newer' _lowercase = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _lowercase = tokenizer.tokenize(__A ) self.assertListEqual(__A ,__A ) _lowercase = tokens + [tokenizer.unk_token] _lowercase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) ,__A ) @require_ftfy def __UpperCAmelCase ( self : int ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = self.tokenizer_class.from_pretrained(__A ,**__A ) _lowercase = self.rust_tokenizer_class.from_pretrained(__A ,**__A ) _lowercase = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _lowercase = tokenizer_s.tokenize(__A ) _lowercase = tokenizer_r.tokenize(__A ) self.assertListEqual(__A ,__A ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _lowercase = 'xa\u0303y' + ' ' + 'x\xe3y' _lowercase = tokenizer_s.tokenize(__A ) _lowercase = tokenizer_r.tokenize(__A ) self.assertListEqual(__A ,__A ) # Test that the tokenization is identical on unicode of space type _lowercase = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _lowercase = tokenizer_s.tokenize(__A ) _lowercase = tokenizer_r.tokenize(__A ) self.assertListEqual(__A ,__A ) # Test that the tokenization is identical on unicode of line break type _lowercase = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _lowercase = tokenizer_s.tokenize(__A ) _lowercase = tokenizer_r.tokenize(__A ) self.assertListEqual(__A ,__A ) def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase = F"""{text_of_1_token} {text_of_1_token}""" _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__A ) + 1, len(__A ) + 1 + len(__A )) ,) _lowercase = F""" {text}""" _lowercase = self.rust_tokenizer_class.from_pretrained( __A ,use_fast=__A ,) _lowercase = tokenizer_r(__A ,return_offsets_mapping=__A ,add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) ,) def __UpperCAmelCase ( self : int ) -> Any: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(__A ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def __UpperCAmelCase ( self : List[Any] ) -> str: super().test_tokenization_python_rust_equals() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: # CLIP always lower cases letters pass
67
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase_ = None def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , ) -> List[str]: '''simple docstring''' import pyspark def generate_fn(): _lowercase : Any = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: _lowercase : int = df_with_partition_id.select('''*''' ).where(F'part_id = {partition_id}' ).drop('''part_id''' ) _lowercase : Union[str, Any] = partition_df.collect() _lowercase : int = 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class UpperCAmelCase__ ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : List[str]=None , ): """simple docstring""" _lowercase : List[Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Optional[Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : List[Any] ): """simple docstring""" yield from self.generate_examples_fn() def lowerCAmelCase_ ( self : Tuple , UpperCamelCase : np.random.Generator ): """simple docstring""" _lowercase : Dict = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase : int , UpperCamelCase : int ): """simple docstring""" _lowercase : List[Any] = self.split_shard_indices_by_worker(UpperCamelCase , UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return len(self.partition_order ) class UpperCAmelCase__ ( datasets.DatasetBuilder ): '''simple docstring''' UpperCAmelCase_ = SparkConfig def __init__( self : Optional[int] , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : str = None , UpperCamelCase : str = None , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" import pyspark _lowercase : List[str] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : Any = df _lowercase : Dict = working_dir super().__init__( cache_dir=UpperCamelCase , config_name=str(self.df.semanticHash() ) , **UpperCamelCase , ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" def create_cache_and_write_probe(UpperCamelCase : Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase ) _lowercase : Tuple = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : Any = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def lowerCAmelCase_ ( self : str ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self : str , UpperCamelCase : datasets.download.download_manager.DownloadManager ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase_ ( self : str , UpperCamelCase : Union[str, Any] ): """simple docstring""" import pyspark def get_arrow_batch_size(UpperCamelCase : int ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) _lowercase : int = self.df.count() _lowercase : Optional[Any] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : List[Any] = ( self.df.limit(UpperCamelCase ) .repartition(1 ) .mapInArrow(UpperCamelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : int = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : List[Any] = min(UpperCamelCase , int(approx_total_size / max_shard_size ) ) _lowercase : Optional[int] = self.df.repartition(UpperCamelCase ) def lowerCAmelCase_ ( self : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int , ): """simple docstring""" import pyspark _lowercase : Optional[Any] = ParquetWriter if file_format == '''parquet''' else ArrowWriter _lowercase : List[str] = os.path.join(self._working_dir , os.path.basename(UpperCamelCase ) ) if self._working_dir else fpath _lowercase : str = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Tuple = self.config.features _lowercase : Tuple = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCamelCase : Dict ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : str = pyspark.TaskContext().taskAttemptId() _lowercase : List[Any] = next(UpperCamelCase , UpperCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) _lowercase : Dict = 0 _lowercase : Optional[int] = writer_class( features=UpperCamelCase , path=working_fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _lowercase : int = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 _lowercase : List[str] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _lowercase : List[str] = pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase ) if writer._num_bytes > 0: _lowercase , _lowercase : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase ) ): _lowercase : List[str] = os.path.join(os.path.dirname(UpperCamelCase ) , os.path.basename(UpperCamelCase ) ) shutil.move(UpperCamelCase , UpperCamelCase ) _lowercase : int = ( self.df.mapInArrow(UpperCamelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase_ ( self : Dict , UpperCamelCase : "datasets.SplitGenerator" , UpperCamelCase : str = "arrow" , UpperCamelCase : Optional[Union[str, int]] = None , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Union[str, Any] , ): """simple docstring""" self._validate_cache_dir() _lowercase : List[str] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase ) _lowercase : Optional[Any] = not is_remote_filesystem(self._fs ) _lowercase : List[Any] = os.path.join if is_local else posixpath.join _lowercase : Optional[int] = '''-TTTTT-SSSSS-of-NNNNN''' _lowercase : str = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' _lowercase : List[str] = path_join(self._output_dir , UpperCamelCase ) _lowercase : Optional[Any] = 0 _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : int = [] _lowercase : Union[str, Any] = [] for task_id, content in self._prepare_split_single(UpperCamelCase , UpperCamelCase , UpperCamelCase ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase ) _lowercase : Optional[Any] = total_num_examples _lowercase : int = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , ): rename( UpperCamelCase , fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , fpath.replace('''TTTTT-SSSSS''' , F'{global_shard_id:05d}' ).replace('''NNNNN''' , F'{total_shards:05d}' ) , ) _lowercase : List[Any] = [] _lowercase : int = 0 for i in range(len(UpperCamelCase ) ): _lowercase , _lowercase : Optional[Any] = task_id_and_num_shards[i] for shard_id in range(UpperCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase , len(UpperCamelCase ) ).map(lambda UpperCamelCase : _rename_shard(*UpperCamelCase ) ).collect() else: # don't use any pattern _lowercase : Optional[int] = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F'{shard_id:05d}' ).replace('''TTTTT''' , F'{task_id:05d}' ) , fpath.replace(UpperCamelCase , '''''' ) , ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : "datasets.SplitGenerator" , ): """simple docstring""" return SparkExamplesIterable(self.df )
322
0
from __future__ import annotations def lowercase_ ( __snake_case : dict , __snake_case : str ) -> set[str]: '''simple docstring''' snake_case__ , snake_case__ :Tuple = set(__snake_case ), [start] while stack: snake_case__ :Dict = stack.pop() explored.add(__snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__snake_case ) return explored __UpperCAmelCase : Optional[int] = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
57
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowerCamelCase : Dict = parser.parse_args() lowerCamelCase : Optional[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCamelCase : List[str] = CLIPImageProcessor() lowerCamelCase : List[Any] = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowerCamelCase : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
587
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : List[str] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """camembert""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , **A , ) -> Any: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) snake_case : int = vocab_size snake_case : Dict = hidden_size snake_case : Any = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Any = hidden_act snake_case : List[str] = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : str = type_vocab_size snake_case : List[Any] = initializer_range snake_case : int = layer_norm_eps snake_case : Optional[int] = position_embedding_type snake_case : Tuple = use_cache snake_case : Tuple = classifier_dropout class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
587
1
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __snake_case ( nn.Module ): def __init__( self): super().__init__() SCREAMING_SNAKE_CASE_ = nn.Linear(3 , 4) SCREAMING_SNAKE_CASE_ = nn.BatchNormad(4) SCREAMING_SNAKE_CASE_ = nn.Linear(4 , 5) def lowerCAmelCase__ ( self , _A): return self.lineara(self.batchnorm(self.lineara(_A))) class __snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , model.state_dict()) SCREAMING_SNAKE_CASE_ = os.path.join(_A , 'index.json') self.assertTrue(os.path.isfile(_A)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: SCREAMING_SNAKE_CASE_ = os.path.join(_A , f"""{key}.dat""") self.assertTrue(os.path.isfile(_A)) # TODO: add tests on the fact weights are properly loaded def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: SCREAMING_SNAKE_CASE_ = torch.randn(2 , 3 , dtype=_A) with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = offload_weight(_A , 'weight' , _A , {}) SCREAMING_SNAKE_CASE_ = os.path.join(_A , 'weight.dat') self.assertTrue(os.path.isfile(_A)) self.assertDictEqual(_A , {'weight': {'shape': [2, 3], 'dtype': str(_A).split('.')[1]}}) SCREAMING_SNAKE_CASE_ = load_offloaded_weight(_A , index['weight']) self.assertTrue(torch.equal(_A , _A)) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = ModelForTest() SCREAMING_SNAKE_CASE_ = model.state_dict() SCREAMING_SNAKE_CASE_ = {k: v for k, v in state_dict.items() if 'linear2' not in k} SCREAMING_SNAKE_CASE_ = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A) SCREAMING_SNAKE_CASE_ = OffloadedWeightsLoader(state_dict=_A , save_folder=_A) # Every key is there with the right value self.assertEqual(sorted(_A) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key])) SCREAMING_SNAKE_CASE_ = {k: v for k, v in state_dict.items() if 'weight' in k} SCREAMING_SNAKE_CASE_ = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A) SCREAMING_SNAKE_CASE_ = OffloadedWeightsLoader(state_dict=_A , save_folder=_A) # Every key is there with the right value self.assertEqual(sorted(_A) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(_A , _A) # Duplicates are removed SCREAMING_SNAKE_CASE_ = OffloadedWeightsLoader(state_dict=_A , save_folder=_A) # Every key is there with the right value self.assertEqual(sorted(_A) , sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(_A , weight_map[key])) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = {'a.1': 0, 'a.10': 1, 'a.2': 2} SCREAMING_SNAKE_CASE_ = extract_submodules_state_dict(_A , ['a.1', 'a.2']) self.assertDictEqual(_A , {'a.1': 0, 'a.2': 2}) SCREAMING_SNAKE_CASE_ = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} SCREAMING_SNAKE_CASE_ = extract_submodules_state_dict(_A , ['a.1', 'a.2']) self.assertDictEqual(_A , {'a.1.a': 0, 'a.2.a': 2})
714
def _UpperCAmelCase ( ): """simple docstring""" for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _UpperCAmelCase ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(_SCREAMING_SNAKE_CASE ) > 500 ) if __name__ == "__main__": print(solution())
620
0
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def A_( A : Features): UpperCamelCase = np.inf def set_batch_size(A : FeatureType) -> None: nonlocal batch_size if isinstance(A , A): UpperCamelCase = min(A , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS) elif isinstance(A , A): UpperCamelCase = min(A , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS) elif isinstance(A , A) and feature.dtype == "binary": UpperCamelCase = min(A , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS) _visit(A , A) return None if batch_size is np.inf else batch_size class SCREAMING_SNAKE_CASE__ ( snake_case_): def __init__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = False , A_ = False , A_ = None , **A_ , )-> Optional[Any]: '''simple docstring''' super().__init__( A_ , split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , num_proc=A_ , **A_ , ) UpperCamelCase = path_or_paths if isinstance(A_ , A_ ) else {self.split: path_or_paths} UpperCamelCase = _PACKAGED_DATASETS_MODULES['parquet'][1] UpperCamelCase = Parquet( cache_dir=A_ , data_files=A_ , features=A_ , hash=A_ , **A_ , ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' if self.streaming: UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None self.builder.download_and_prepare( download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , num_proc=self.num_proc , ) UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=A_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_ , A_ = None , **A_ , )-> Dict: '''simple docstring''' UpperCamelCase = dataset UpperCamelCase = path_or_buf UpperCamelCase = batch_size or get_writer_batch_size(dataset.features ) UpperCamelCase = parquet_writer_kwargs def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: UpperCamelCase = self._write(file_obj=A_ , batch_size=A_ , **self.parquet_writer_kwargs ) else: UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=A_ , **self.parquet_writer_kwargs ) return written def UpperCAmelCase_ ( self , A_ , A_ , **A_ )-> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = parquet_writer_kwargs.pop('path_or_buf' , A_ ) UpperCamelCase = self.dataset.features.arrow_schema UpperCamelCase = pq.ParquetWriter(A_ , schema=A_ , **A_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , A_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): UpperCamelCase = query_table( table=self.dataset._data , key=slice(A_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(A_ ) written += batch.nbytes writer.close() return written
3
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def snake_case_ ( _lowerCAmelCase : float ) -> float: if num <= 0: raise ValueError('''math domain error''' ) return quad(_lowerCAmelCase , 0 , _lowerCAmelCase , args=(_lowerCAmelCase) )[0] def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float ) -> float: return math.pow(_lowerCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
127
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A( __lowercase ): '''simple docstring''' UpperCamelCase = ['''image_processor'''] UpperCamelCase = '''SamImageProcessor''' def __init__( self : List[str] , A_ : int ) -> Any: """simple docstring""" super().__init__(_A ) lowerCamelCase_ = self.image_processor lowerCamelCase_ = -10 lowerCamelCase_ = self.image_processor.size['longest_edge'] def __call__( self : Optional[Any] , A_ : Tuple=None , A_ : List[Any]=None , A_ : Dict=None , A_ : Any=None , A_ : Optional[Union[str, TensorType]] = None , **A_ : List[str] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.image_processor( _A , return_tensors=_A , **_A , ) # pop arguments that are not used in the foward but used nevertheless lowerCamelCase_ = encoding_image_processor['original_sizes'] if hasattr(_A , 'numpy' ): # Checks if Torch or TF tensor lowerCamelCase_ = original_sizes.numpy() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._check_and_preprocess_points( input_points=_A , input_labels=_A , input_boxes=_A , ) lowerCamelCase_ = self._normalize_and_convert( _A , _A , input_points=_A , input_labels=_A , input_boxes=_A , return_tensors=_A , ) return encoding_image_processor def a__ ( self : str , A_ : List[Any] , A_ : Optional[int] , A_ : Union[str, Any]=None , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Dict="pt" , ) -> Optional[Any]: """simple docstring""" if input_points is not None: if len(_A ) != len(_A ): lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , original_sizes[0] ) for point in input_points ] else: lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , _A ) for point, original_size in zip(_A , _A ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowerCamelCase_ , lowerCamelCase_ = self._pad_points_and_labels(_A , _A ) lowerCamelCase_ = np.array(_A ) if input_labels is not None: lowerCamelCase_ = np.array(_A ) if input_boxes is not None: if len(_A ) != len(_A ): lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , original_sizes[0] , is_bounding_box=_A ) for box in input_boxes ] else: lowerCamelCase_ = [ self._normalize_coordinates(self.target_size , _A , _A , is_bounding_box=_A ) for box, original_size in zip(_A , _A ) ] lowerCamelCase_ = np.array(_A ) if input_boxes is not None: if return_tensors == "pt": lowerCamelCase_ = torch.from_numpy(_A ) # boxes batch size of 1 by default lowerCamelCase_ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowerCamelCase_ = tf.convert_to_tensor(_A ) # boxes batch size of 1 by default lowerCamelCase_ = tf.expand_dims(_A , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": lowerCamelCase_ = torch.from_numpy(_A ) # point batch size of 1 by default lowerCamelCase_ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowerCamelCase_ = tf.convert_to_tensor(_A ) # point batch size of 1 by default lowerCamelCase_ = tf.expand_dims(_A , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": lowerCamelCase_ = torch.from_numpy(_A ) # point batch size of 1 by default lowerCamelCase_ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowerCamelCase_ = tf.convert_to_tensor(_A ) # point batch size of 1 by default lowerCamelCase_ = tf.expand_dims(_A , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def a__ ( self : Any , A_ : str , A_ : Dict ) -> int: """simple docstring""" lowerCamelCase_ = max([point.shape[0] for point in input_points] ) lowerCamelCase_ = [] for i, point in enumerate(_A ): if point.shape[0] != expected_nb_points: lowerCamelCase_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowerCamelCase_ = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_A ) lowerCamelCase_ = processed_input_points return input_points, input_labels def a__ ( self : List[Any] , A_ : int , A_ : np.ndarray , A_ : Any , A_ : Dict=False ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = original_size lowerCamelCase_ , lowerCamelCase_ = self.image_processor._get_preprocess_shape(_A , longest_edge=_A ) lowerCamelCase_ = deepcopy(_A ).astype(_A ) if is_bounding_box: lowerCamelCase_ = coords.reshape(-1 , 2 , 2 ) lowerCamelCase_ = coords[..., 0] * (new_w / old_w) lowerCamelCase_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCamelCase_ = coords.reshape(-1 , 4 ) return coords def a__ ( self : Any , A_ : Optional[int]=None , A_ : List[str]=None , A_ : Optional[int]=None , ) -> Union[str, Any]: """simple docstring""" if input_points is not None: if hasattr(_A , 'numpy' ): # Checks for TF or Torch tensor lowerCamelCase_ = input_points.numpy().tolist() if not isinstance(_A , _A ) or not isinstance(input_points[0] , _A ): raise ValueError('Input points must be a list of list of floating points.' ) lowerCamelCase_ = [np.array(_A ) for input_point in input_points] else: lowerCamelCase_ = None if input_labels is not None: if hasattr(_A , 'numpy' ): lowerCamelCase_ = input_labels.numpy().tolist() if not isinstance(_A , _A ) or not isinstance(input_labels[0] , _A ): raise ValueError('Input labels must be a list of list integers.' ) lowerCamelCase_ = [np.array(_A ) for label in input_labels] else: lowerCamelCase_ = None if input_boxes is not None: if hasattr(_A , 'numpy' ): lowerCamelCase_ = input_boxes.numpy().tolist() if ( not isinstance(_A , _A ) or not isinstance(input_boxes[0] , _A ) or not isinstance(input_boxes[0][0] , _A ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) lowerCamelCase_ = [np.array(_A ).astype(np.floataa ) for box in input_boxes] else: lowerCamelCase_ = None return input_points, input_labels, input_boxes @property def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(_A ) ) def a__ ( self : List[Any] , *A_ : Union[str, Any] , **A_ : Optional[Any] ) -> int: """simple docstring""" return self.image_processor.post_process_masks(*_A , **_A )
705
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A: '''simple docstring''' def __init__( self : Optional[Any] , A_ : Union[str, Any] , A_ : str=13 , A_ : List[Any]=32 , A_ : Tuple=2 , A_ : Dict=3 , A_ : Union[str, Any]=16 , A_ : List[str]=[32, 64, 128] , A_ : Optional[Any]=[1, 2, 1] , A_ : Tuple=[2, 2, 4] , A_ : Dict=2 , A_ : Optional[Any]=2.0 , A_ : List[str]=True , A_ : Dict=0.0 , A_ : List[str]=0.0 , A_ : Optional[int]=0.1 , A_ : str="gelu" , A_ : Optional[Any]=False , A_ : Any=True , A_ : Optional[Any]=0.02 , A_ : Dict=1E-5 , A_ : int=True , A_ : Optional[int]=None , A_ : List[str]=True , A_ : Tuple=10 , A_ : Any=8 , A_ : Dict=["stage1", "stage2"] , A_ : Optional[Any]=[1, 2] , ) -> List[str]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = num_heads lowerCamelCase_ = window_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_absolute_embeddings lowerCamelCase_ = patch_norm lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = is_training lowerCamelCase_ = scope lowerCamelCase_ = use_labels lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = encoder_stride lowerCamelCase_ = out_features lowerCamelCase_ = out_indices def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__ ( self : Union[str, Any] , A_ : Dict , A_ : int , A_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = FocalNetModel(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) lowerCamelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__ ( self : Tuple , A_ : List[str] , A_ : Optional[int] , A_ : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = FocalNetBackbone(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self : int , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForMaskedImageModeling(config=A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForMaskedImageModeling(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self : Tuple , A_ : List[Any] , A_ : int , A_ : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FocalNetForImageClassification(A_ ) model.to(A_ ) model.eval() lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCamelCase = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , embed_dim=37 , has_text_modality=A_ ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Any ) -> Optional[int]: """simple docstring""" return def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def a__ ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : int , A_ : List[Any] , A_ : int , A_ : Dict , A_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(A_ , A_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(A_ ) , A_ ) # FocalNet has a different seq_length lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(A_ ) , A_ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reshaped_hidden_states[0].shape lowerCamelCase_ = ( reshaped_hidden_states[0].view(A_ , A_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , A_ ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = 3 lowerCamelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True self.check_hidden_states_output(A_ , A_ , A_ , (padded_height, padded_width) ) @slow def a__ ( self : str ) -> Optional[Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = FocalNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = _config_zero_init(A_ ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=A_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(A_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCamelCase_ = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCamelCase = FocalNetConfig UpperCamelCase = False def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = FocalNetModelTester(self )
651
0
from PIL import Image def UpperCAmelCase ( a_ , a_ ) -> Image: """simple docstring""" def brightness(a_ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(a_ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE :Union[str, Any] = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
55
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ): A_ = torch.nn.Linear(10 , 10 ) A_ = torch.optim.SGD(model.parameters() , 0.1 ) A_ = Accelerator() A_ = accelerator.prepare(UpperCAmelCase ) try: pickle.loads(pickle.dumps(UpperCAmelCase ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
86
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class __lowerCAmelCase( __lowerCAmelCase ): __snake_case : str = "efficientformer" def __init__( self : Any , SCREAMING_SNAKE_CASE : List[int] = [3, 2, 6, 4] , SCREAMING_SNAKE_CASE : List[int] = [48, 96, 224, 448] , SCREAMING_SNAKE_CASE : List[bool] = [True, True, True, True] , SCREAMING_SNAKE_CASE : int = 448 , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : int = 4 , SCREAMING_SNAKE_CASE : int = 7 , SCREAMING_SNAKE_CASE : int = 5 , SCREAMING_SNAKE_CASE : int = 8 , SCREAMING_SNAKE_CASE : int = 4 , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : int = 16 , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : float = 1E-5 , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : float = 1E-12 , SCREAMING_SNAKE_CASE : int = 224 , SCREAMING_SNAKE_CASE : float = 1E-05 , **SCREAMING_SNAKE_CASE : str , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ :List[Any] = hidden_act SCREAMING_SNAKE_CASE_ :List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ :Optional[Any] = hidden_sizes SCREAMING_SNAKE_CASE_ :Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ :Dict = num_attention_heads SCREAMING_SNAKE_CASE_ :Any = initializer_range SCREAMING_SNAKE_CASE_ :List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ :Tuple = patch_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ :List[Any] = depths SCREAMING_SNAKE_CASE_ :List[Any] = mlp_expansion_ratio SCREAMING_SNAKE_CASE_ :Union[str, Any] = downsamples SCREAMING_SNAKE_CASE_ :Tuple = dim SCREAMING_SNAKE_CASE_ :Union[str, Any] = key_dim SCREAMING_SNAKE_CASE_ :Optional[int] = attention_ratio SCREAMING_SNAKE_CASE_ :List[Any] = resolution SCREAMING_SNAKE_CASE_ :Union[str, Any] = pool_size SCREAMING_SNAKE_CASE_ :List[Any] = downsample_patch_size SCREAMING_SNAKE_CASE_ :Union[str, Any] = downsample_stride SCREAMING_SNAKE_CASE_ :List[str] = downsample_pad SCREAMING_SNAKE_CASE_ :List[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ :List[str] = num_metaad_blocks SCREAMING_SNAKE_CASE_ :Union[str, Any] = distillation SCREAMING_SNAKE_CASE_ :str = use_layer_scale SCREAMING_SNAKE_CASE_ :Union[str, Any] = layer_scale_init_value SCREAMING_SNAKE_CASE_ :Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ :int = batch_norm_eps
718
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE__ : Any = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE__ : int = BASE_URL + """/user""" # https://github.com/settings/tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.environ.get("""USER_TOKEN""", """""") def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :Dict = { 'Authorization': F'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
233
0
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowercase_ = [ "kernels/rwkv/wkv_cuda.cu", "kernels/rwkv/wkv_op.cpp", "kernels/deformable_detr/ms_deform_attn.h", "kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh", "models/graphormer/algos_graphormer.pyx", ] def A_ ( lowercase ) -> int: """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.") lowercase_ = parser.parse_args() if args.check_lib: lowercase_ = importlib.import_module("transformers") lowercase_ = Path(transformers_module.__file__).parent else: lowercase_ = Path.cwd() / "build/lib/transformers" if not test_custom_files_are_present(transformers_path): raise ValueError("The built release does not contain the custom files. Fix this before going further!")
470
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] = "gptsan-japanese" SCREAMING_SNAKE_CASE_: Any = [ "past_key_values", ] SCREAMING_SNAKE_CASE_: List[Any] = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , UpperCAmelCase_ : Dict=36_000 , UpperCAmelCase_ : Any=1_280 , UpperCAmelCase_ : Optional[int]=1_024 , UpperCAmelCase_ : str=8_192 , UpperCAmelCase_ : int=4_096 , UpperCAmelCase_ : Optional[int]=128 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Tuple=1E-5 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]="float32" , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Dict=0.002 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : str=35_998 , UpperCAmelCase_ : str=35_995 , UpperCAmelCase_ : Optional[int]=35_999 , **UpperCAmelCase_ : int , ) -> int: """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = d_ff _lowerCAmelCase = d_ext _lowerCAmelCase = d_spout _lowerCAmelCase = num_switch_layers _lowerCAmelCase = num_ext_layers _lowerCAmelCase = num_switch_layers + num_ext_layers _lowerCAmelCase = num_heads _lowerCAmelCase = num_experts _lowerCAmelCase = expert_capacity _lowerCAmelCase = dropout_rate _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = router_bias _lowerCAmelCase = router_jitter_noise _lowerCAmelCase = router_dtype _lowerCAmelCase = router_ignore_padding_tokens _lowerCAmelCase = output_hidden_states _lowerCAmelCase = output_attentions _lowerCAmelCase = initializer_factor _lowerCAmelCase = output_router_logits _lowerCAmelCase = use_cache super().__init__( separator_token_id=UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
580
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self ): __UpperCamelCase : Any = get_activation('swish' ) self.assertIsInstance(_lowerCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def lowerCAmelCase ( self ): __UpperCamelCase : List[Any] = get_activation('silu' ) self.assertIsInstance(_lowerCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def lowerCAmelCase ( self ): __UpperCamelCase : Tuple = get_activation('mish' ) self.assertIsInstance(_lowerCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def lowerCAmelCase ( self ): __UpperCamelCase : Dict = get_activation('gelu' ) self.assertIsInstance(_lowerCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
287
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = LayoutLMTokenizer SCREAMING_SNAKE_CASE__ = LayoutLMTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def lowerCAmelCase ( self ): super().setUp() __UpperCamelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , **_lowerCamelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : Dict = 'UNwant\u00E9d,running' __UpperCamelCase : Union[str, Any] = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ): __UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file ) __UpperCamelCase : Optional[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowerCamelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [7, 4, 5, 1_0, 8, 9] ) def lowerCAmelCase ( self ): pass
287
1
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , __lowerCamelCase : Callable , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[dict] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__( features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = Generator( cache_dir=__lowerCamelCase , features=__lowerCamelCase , generator=__lowerCamelCase , gen_kwargs=__lowerCamelCase , **__lowerCamelCase , ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" # Build iterable dataset if self.streaming: _snake_case = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: _snake_case = None _snake_case = None _snake_case = None _snake_case = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) _snake_case = self.builder.as_dataset( split='''train''' , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
103
def lowerCamelCase ( ) -> List[Any]: for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def lowerCamelCase ( a_ ) -> str: lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 while i * i <= n: lowerCAmelCase_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase ( ) -> Optional[Any]: return next(i for i in triangle_number_generator() if count_divisors(a_ ) > 500 ) if __name__ == "__main__": print(solution())
318
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : Tuple ) -> str: snake_case = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split() snake_case = dict(zip(_A , range(len(_A ) ) ) ) snake_case = { "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", } snake_case = { "feature_size": 1, "padding_value": 0.0, "sampling_rate": 1_6_0_0_0, "return_attention_mask": False, "do_normalize": True, } snake_case = tempfile.mkdtemp() snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_A ) + "\n" ) # load decoder from hub snake_case = "hf-internal-testing/ngram-beam-search-decoder" def UpperCAmelCase(self : List[str] , **_A : List[str] ) -> Tuple: snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase(self : Optional[Any] , **_A : int ) -> List[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase(self : int , **_A : str ) -> Any: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def UpperCAmelCase(self : Tuple ) -> Tuple: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase(self : List[str] ) -> Optional[int]: snake_case = self.get_tokenizer() snake_case = self.get_feature_extractor() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def UpperCAmelCase(self : List[Any] ) -> Optional[Any]: snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase(self : Optional[Any] ) -> Dict: snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["xx"] ) with self.assertRaisesRegex(_A , "include" ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) snake_case = floats_list((3, 1_0_0_0) ) snake_case = feature_extractor(_A , return_tensors="np" ) snake_case = processor(_A , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase(self : List[Any] ) -> Optional[int]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) snake_case = "This is a test string" snake_case = processor(text=_A ) snake_case = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase(self : Optional[Any] , _A : Any=(2, 1_0, 1_6) , _A : List[Any]=7_7 ) -> Optional[Any]: np.random.seed(_A ) return np.random.rand(*_A ) def UpperCAmelCase(self : Any ) -> str: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) snake_case = self._get_dummy_logits(shape=(1_0, 1_6) , seed=1_3 ) snake_case = processor.decode(_A ) snake_case = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("</s> <s> </s>" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["fork"], ["spawn"]] ) def UpperCAmelCase(self : str , _A : str ) -> List[Any]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: snake_case = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: snake_case = processor.batch_decode(_A , _A ) snake_case = list(_A ) with get_context("fork" ).Pool() as p: snake_case = decoder.decode_beams_batch(_A , _A ) snake_case , snake_case , snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def UpperCAmelCase(self : List[str] ) -> List[str]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) snake_case = self._get_dummy_logits() snake_case = 1_5 snake_case = -20.0 snake_case = -4.0 snake_case = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) snake_case = decoded_processor_out.text snake_case = list(_A ) with get_context("fork" ).Pool() as pool: snake_case = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) snake_case = [d[0][0] for d in decoded_decoder_out] snake_case = [d[0][2] for d in decoded_decoder_out] snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , _A , atol=1E-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , _A , atol=1E-3 ) ) def UpperCAmelCase(self : Optional[int] ) -> Any: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) snake_case = self._get_dummy_logits() snake_case = 2.0 snake_case = 5.0 snake_case = -20.0 snake_case = True snake_case = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) snake_case = decoded_processor_out.text snake_case = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context("fork" ).Pool() as pool: snake_case = decoder.decode_beams_batch( _A , _A , ) snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , _A ) snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _A ) def UpperCAmelCase(self : Optional[Any] ) -> Any: snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case = processor.decoder.model_container[processor.decoder._model_key] snake_case = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case = os.listdir(_A ) snake_case = ["alphabet.json", "language_model"] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def UpperCAmelCase(self : List[Any] ) -> str: snake_case = snapshot_download("hf-internal-testing/processor_with_lm" ) snake_case = WavaVecaProcessorWithLM.from_pretrained(_A ) snake_case = processor.decoder.model_container[processor.decoder._model_key] snake_case = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute() snake_case = os.listdir(_A ) snake_case = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def UpperCAmelCase(self : List[str] ) -> Optional[int]: snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case = floats_list((3, 1_0_0_0) ) snake_case = processor_wavaveca(_A , return_tensors="np" ) snake_case = processor_auto(_A , return_tensors="np" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) snake_case = self._get_dummy_logits() snake_case = processor_wavaveca.batch_decode(_A ) snake_case = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase(self : Tuple ) -> List[Any]: snake_case = self.get_feature_extractor() snake_case = self.get_tokenizer() snake_case = self.get_decoder() snake_case = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , ) @staticmethod def UpperCAmelCase(_A : List[Any] , _A : Union[str, Any] ) -> Dict: snake_case = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase(self : Optional[int] ) -> List[Any]: snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case = self._get_dummy_logits()[0] snake_case = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] ) def UpperCAmelCase(self : Tuple ) -> Optional[int]: snake_case = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" ) snake_case = self._get_dummy_logits() snake_case = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("text" in outputs ) self.assertTrue("word_offsets" in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [" ".join(self.get_from_offsets(_A , "word" ) ) for o in outputs["word_offsets"]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase(self : Tuple ) -> Optional[Any]: import torch snake_case = load_dataset("common_voice" , "en" , split="train" , streaming=_A ) snake_case = ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6_0_0_0 ) ) snake_case = iter(_A ) snake_case = next(_A ) snake_case = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) snake_case = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train snake_case = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values with torch.no_grad(): snake_case = model(_A ).logits.cpu().numpy() snake_case = processor.decode(logits[0] , output_word_offsets=_A ) snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate snake_case = [ { "start_time": d["start_offset"] * time_offset, "end_time": d["end_offset"] * time_offset, "word": d["word"], } for d in output["word_offsets"] ] snake_case = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL" # output words self.assertEqual(" ".join(self.get_from_offsets(_A , "word" ) ) , _A ) self.assertEqual(" ".join(self.get_from_offsets(_A , "word" ) ) , output.text ) # output times snake_case = torch.tensor(self.get_from_offsets(_A , "start_time" ) ) snake_case = torch.tensor(self.get_from_offsets(_A , "end_time" ) ) # fmt: off snake_case = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) snake_case = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.01 ) )
294
def lowercase_ ( A__ = 1000 ) -> int: """simple docstring""" snake_case = -1 snake_case = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c snake_case = (n * n - 2 * a * n) // (2 * n - 2 * a) snake_case = n - a - b if c * c == (a * a + b * b): snake_case = a * b * c if candidate >= product: snake_case = candidate return product if __name__ == "__main__": print(f"{solution() = }")
294
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(__SCREAMING_SNAKE_CASE , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCamelCase__ : Any = _distribute_shards(**__SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCamelCase__ : Any = _split_gen_kwargs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: if expected is RuntimeError: with pytest.raises(__SCREAMING_SNAKE_CASE ): _number_of_shards_in_gen_kwargs(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Tuple = _number_of_shards_in_gen_kwargs(__SCREAMING_SNAKE_CASE ) assert out == expected
410
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCamelCase__ : Dict = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase__ : List[str] = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } UpperCamelCase__ : Optional[int] = F"""{src_lang}-{tgt_lang}""" UpperCamelCase__ : Tuple = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , 'README.md' ) print(F"""Generating {path}""" ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(__SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCAmelCase__ : Any = Path(__file__).resolve().parent.parent.parent UpperCAmelCase__ : Optional[Any] = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCAmelCase__ : List[str] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
410
1
def __magic_name__ ( lowercase = 1000000 ) -> int: """simple docstring""" lowercase_ : Tuple = limit + 1 lowercase_ : int = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): lowercase_ : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : Dict = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
720
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : Dict = """mvp""" __a : List[str] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self, snake_case__=5_02_67, snake_case__=10_24, snake_case__=12, snake_case__=40_96, snake_case__=16, snake_case__=12, snake_case__=40_96, snake_case__=16, snake_case__=0.0, snake_case__=0.0, snake_case__="gelu", snake_case__=10_24, snake_case__=0.1, snake_case__=0.0, snake_case__=0.0, snake_case__=0.02, snake_case__=0.0, snake_case__=False, snake_case__=True, snake_case__=1, snake_case__=0, snake_case__=2, snake_case__=True, snake_case__=2, snake_case__=2, snake_case__=False, snake_case__=1_00, snake_case__=8_00, **snake_case__, ) -> str: """simple docstring""" lowercase_ : Dict = vocab_size lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : List[Any] = d_model lowercase_ : Tuple = encoder_ffn_dim lowercase_ : List[Any] = encoder_layers lowercase_ : Union[str, Any] = encoder_attention_heads lowercase_ : int = decoder_ffn_dim lowercase_ : str = decoder_layers lowercase_ : Tuple = decoder_attention_heads lowercase_ : Union[str, Any] = dropout lowercase_ : int = attention_dropout lowercase_ : Any = activation_dropout lowercase_ : Tuple = activation_function lowercase_ : str = init_std lowercase_ : int = encoder_layerdrop lowercase_ : Dict = decoder_layerdrop lowercase_ : List[Any] = classifier_dropout lowercase_ : Union[str, Any] = use_cache lowercase_ : Optional[Any] = encoder_layers lowercase_ : str = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : List[str] = use_prompt lowercase_ : Union[str, Any] = prompt_length lowercase_ : Dict = prompt_mid_dim super().__init__( pad_token_id=snake_case__, bos_token_id=snake_case__, eos_token_id=snake_case__, is_encoder_decoder=snake_case__, decoder_start_token_id=snake_case__, forced_eos_token_id=snake_case__, **snake_case__, ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""", snake_case__ ): lowercase_ : Dict = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" )
436
0
from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] ): # test for the above condition self.test() def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = 0 _UpperCamelCase = False while not completed: if counter == 1: self.reset() _UpperCamelCase = self.advance() if not self.does_advance(_A ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.update(_A ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCamelCase_ ( self : Union[str, Any] ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Any , _A : int ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Optional[Any] , _A : int ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Optional[Any] ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : str ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase_ ( self : Optional[int] , _A : str=False ): raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowerCAmelCase_ ( __lowercase ): def __init__( self : Tuple , _A : List[int] ): super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _UpperCamelCase = token_ids _UpperCamelCase = len(self.token_ids ) _UpperCamelCase = -1 # the index of the currently fulfilled step _UpperCamelCase = False def UpperCamelCase_ ( self : Optional[int] ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self : int , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_A )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self : Optional[Any] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_A )}""" ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False if self.does_advance(_A ): self.fulfilled_idx += 1 _UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): _UpperCamelCase = True _UpperCamelCase = completed else: # failed to make progress. _UpperCamelCase = True self.reset() return stepped, completed, reset def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = False _UpperCamelCase = 0 def UpperCamelCase_ ( self : str ): return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase_ ( self : Any , _A : Optional[int]=False ): _UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: _UpperCamelCase = self.seqlen _UpperCamelCase = self.fulfilled_idx _UpperCamelCase = self.completed return new_constraint class lowerCAmelCase_ : def __init__( self : Any , _A : List[List[int]] , _A : Optional[int]=True ): _UpperCamelCase = max([len(_A ) for one in nested_token_ids] ) _UpperCamelCase = {} for token_ids in nested_token_ids: _UpperCamelCase = root for tidx, token_id in enumerate(_A ): if token_id not in level: _UpperCamelCase = {} _UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(_A , _A ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) _UpperCamelCase = root def UpperCamelCase_ ( self : str , _A : Union[str, Any] ): _UpperCamelCase = self.trie for current_token in current_seq: _UpperCamelCase = start[current_token] _UpperCamelCase = list(start.keys() ) return next_tokens def UpperCamelCase_ ( self : Any , _A : Optional[Any] ): _UpperCamelCase = self.next_tokens(_A ) return len(_A ) == 0 def UpperCamelCase_ ( self : int , _A : List[str] ): _UpperCamelCase = list(root.values() ) if len(_A ) == 0: return 1 else: return sum([self.count_leaves(_A ) for nn in next_nodes] ) def UpperCamelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : Any ): _UpperCamelCase = self.count_leaves(_A ) return len(_A ) != leaf_count class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[Any] , _A : List[List[int]] ): super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_A , _A ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _UpperCamelCase = DisjunctiveTrie(_A ) _UpperCamelCase = nested_token_ids _UpperCamelCase = self.trie.max_height _UpperCamelCase = [] _UpperCamelCase = False def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(_A ) == 0: return None else: return token_list def UpperCamelCase_ ( self : Optional[int] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}""" ) _UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase_ ( self : Union[str, Any] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}""" ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False if self.does_advance(_A ): self.current_seq.append(_A ) _UpperCamelCase = True else: _UpperCamelCase = True self.reset() _UpperCamelCase = self.trie.reached_leaf(self.current_seq ) _UpperCamelCase = completed return stepped, completed, reset def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = False _UpperCamelCase = [] def UpperCamelCase_ ( self : int ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase_ ( self : List[str] , _A : int=False ): _UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: _UpperCamelCase = self.seqlen _UpperCamelCase = self.current_seq _UpperCamelCase = self.completed return new_constraint class lowerCAmelCase_ : def __init__( self : Tuple , _A : List[Constraint] ): _UpperCamelCase = constraints # max # of steps required to fulfill a given constraint _UpperCamelCase = max([c.seqlen for c in constraints] ) _UpperCamelCase = len(_A ) _UpperCamelCase = False self.init_state() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = [] _UpperCamelCase = None _UpperCamelCase = [constraint.copy(stateful=_A ) for constraint in self.constraints] def UpperCamelCase_ ( self : int ): _UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _UpperCamelCase = constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) else: _UpperCamelCase = self.inprogress_constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) if len(_A ) == 0: return None else: return token_list def UpperCamelCase_ ( self : Optional[int] , _A : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _UpperCamelCase , _UpperCamelCase = self.add(_A ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase_ ( self : Union[str, Any] , _A : int ): if not isinstance(_A , _A ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) _UpperCamelCase , _UpperCamelCase = False, False if self.completed: _UpperCamelCase = True _UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.inprogress_constraint.update(_A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_A ) ) _UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! _UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_A ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = pending_constraint.update(_A ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_A ) _UpperCamelCase = None if not complete and stepped: _UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase_ ( self : str , _A : Optional[Any]=True ): _UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _UpperCamelCase = [ constraint.copy(stateful=_A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _UpperCamelCase = self.inprogress_constraint.copy(stateful=_A ) _UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
10
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _a : Union[str, Any] = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ _a : Union[str, Any] = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ _a : List[str] = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=4 , _lowerCAmelCase=False ): '''simple docstring''' lowerCAmelCase__ :Any = compute_bleu( reference_corpus=_lowerCAmelCase , translation_corpus=_lowerCAmelCase , max_order=_lowerCAmelCase , smooth=_lowerCAmelCase ) ((lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__) ,(lowerCAmelCase__)) :Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
145
0
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ): _A = name _A = value _A = weight def __repr__( self : Dict ): return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def lowerCAmelCase_ ( self : List[Any] ): return self.value def lowerCAmelCase_ ( self : Any ): return self.name def lowerCAmelCase_ ( self : Optional[int] ): return self.weight def lowerCAmelCase_ ( self : int ): return self.value / self.weight def _snake_case ( _snake_case : Any , _snake_case : int , _snake_case : Optional[int] ) -> Optional[Any]: '''simple docstring''' _A = [] for i in range(len(_snake_case ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _snake_case ( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : Tuple ) -> Any: '''simple docstring''' _A = sorted(_snake_case , key=_snake_case , reverse=_snake_case ) _A = [] _A , _A = 0.0, 0.0 for i in range(len(_snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _snake_case ( ) -> Optional[int]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
505
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a = logging.get_logger(__name__) class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : str = None , _UpperCAmelCase : uuid.UUID = None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None ): if not conversation_id: _A = uuid.uuida() if past_user_inputs is None: _A = [] if generated_responses is None: _A = [] _A = conversation_id _A = past_user_inputs _A = generated_responses _A = text def __eq__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ): if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) _A = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: _A = text def lowerCAmelCase_ ( self : List[str] ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _A = None def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str ): self.generated_responses.append(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ): _A = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): _A = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( __lowerCAmelCase , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Any ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _A = self.tokenizer.eos_token def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : List[Any] ): _A = {} _A = {} _A = {} if min_length_for_response is not None: _A = min_length_for_response if minimum_tokens is not None: _A = minimum_tokens if "max_length" in generate_kwargs: _A = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _A = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[Conversation, List[Conversation]] , _UpperCAmelCase : int=0 , **_UpperCAmelCase : str ): _A = super().__call__(_UpperCAmelCase , num_workers=_UpperCAmelCase , **_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Conversation , _UpperCAmelCase : int=32 ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _A = self.tokenizer._build_conversation_input_ids(_UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _A = self._legacy_parse_and_tokenize(_UpperCAmelCase ) if self.framework == "pt": _A = torch.LongTensor([input_ids] ) elif self.framework == "tf": _A = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=10 , **_UpperCAmelCase : Any ): _A = generate_kwargs.get('max_length' , self.model.config.max_length ) _A = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) _A = max_length - minimum_tokens _A = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _A = model_inputs['attention_mask'][:, -trim:] _A = model_inputs.pop('conversation' ) _A = max_length _A = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) if self.model.config.is_encoder_decoder: _A = 1 else: _A = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=True ): _A = model_outputs['output_ids'] _A = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) _A = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_UpperCAmelCase ) return conversation def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Conversation ): _A = self.tokenizer.eos_token_id _A = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > self.tokenizer.model_max_length: _A = input_ids[-self.tokenizer.model_max_length :] return input_ids
505
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _lowerCamelCase ( UpperCAmelCase_ : Tuple="ro", UpperCAmelCase_ : Any="en", UpperCAmelCase_ : List[str]="wmt16", UpperCAmelCase_ : Dict=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) A__ = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) A__ = datasets.load_dataset(UpperCAmelCase_, UpperCAmelCase_ ) if save_dir is None: A__ = F"""{dataset}-{pair}""" A__ = Path(UpperCAmelCase_ ) save_dir.mkdir(exist_ok=UpperCAmelCase_ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets A__ = "val" if split == "validation" else split A__ = save_dir.joinpath(F"""{fn}.source""" ) A__ = save_dir.joinpath(F"""{fn}.target""" ) A__ = src_path.open("w+" ) A__ = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): A__ = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
104
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , __snake_case ): __lowerCamelCase : Optional[int] = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , a , a , a = None , a = 5_0257 , a = 1024 , a = 768 , a = 12 , a = 12 , a = None , a = "gelu_new" , a = 0.1 , a = 0.1 , a = 0.1 , a = 1e-5 , a = 0.02 , a = True , a = True , a = False , a = False , ): super().__init__() lowercase__ : List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""") lowercase__ : Any = prefix_inner_dim lowercase__ : List[str] = prefix_hidden_dim lowercase__ : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ : Dict = ( nn.Linear(self.prefix_hidden_dim , a) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase__ : Tuple = GPTaConfig( vocab_size=a , n_positions=a , n_embd=a , n_layer=a , n_head=a , n_inner=a , activation_function=a , resid_pdrop=a , embd_pdrop=a , attn_pdrop=a , layer_norm_epsilon=a , initializer_range=a , scale_attn_weights=a , use_cache=a , scale_attn_by_inverse_layer_idx=a , reorder_and_upcast_attn=a , ) lowercase__ : Tuple = GPTaLMHeadModel(a) def snake_case_ ( self , a , a , a = None , a = None , ): lowercase__ : Optional[Any] = self.transformer.transformer.wte(a) lowercase__ : Optional[Any] = self.encode_prefix(a) lowercase__ : Union[str, Any] = self.decode_prefix(a) lowercase__ : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1) if labels is not None: lowercase__ : Optional[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device) lowercase__ : Optional[int] = torch.cat((dummy_token, input_ids) , dim=1) lowercase__ : Optional[Any] = self.transformer(inputs_embeds=a , labels=a , attention_mask=a) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case_ ( self , a , a): return torch.zeros(a , self.prefix_length , dtype=torch.intaa , device=a) def snake_case_ ( self , a): return self.encode_prefix(a) @torch.no_grad() def snake_case_ ( self , a , a , a): lowercase__ : List[str] = torch.split(a , 1 , dim=0) lowercase__ : Optional[Any] = [] lowercase__ : str = [] for feature in features: lowercase__ : Dict = self.decode_prefix(feature.to(a)) # back to the clip feature # Only support beam search for now lowercase__ , lowercase__ : str = self.generate_beam( input_embeds=a , device=a , eos_token_id=a) generated_tokens.append(output_tokens[0]) generated_seq_lengths.append(seq_lengths[0]) lowercase__ : str = torch.stack(a) lowercase__ : List[str] = torch.stack(a) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case_ ( self , a=None , a=None , a=None , a = 5 , a = 67 , a = 1.0 , a = None , ): lowercase__ : Optional[int] = eos_token_id lowercase__ : List[Any] = None lowercase__ : int = None lowercase__ : str = torch.ones(a , device=a , dtype=torch.int) lowercase__ : List[Any] = torch.zeros(a , device=a , dtype=torch.bool) if input_embeds is not None: lowercase__ : int = input_embeds else: lowercase__ : int = self.transformer.transformer.wte(a) for i in range(a): lowercase__ : Union[str, Any] = self.transformer(inputs_embeds=a) lowercase__ : Optional[int] = outputs.logits lowercase__ : Union[str, Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase__ : Union[str, Any] = logits.softmax(-1).log() if scores is None: lowercase__ , lowercase__ : Tuple = logits.topk(a , -1) lowercase__ : Dict = generated.expand(a , *generated.shape[1:]) lowercase__ , lowercase__ : Dict = next_tokens.permute(1 , 0), scores.squeeze(0) if tokens is None: lowercase__ : Union[str, Any] = next_tokens else: lowercase__ : Dict = tokens.expand(a , *tokens.shape[1:]) lowercase__ : Dict = torch.cat((tokens, next_tokens) , dim=1) else: lowercase__ : str = -float(np.inf) lowercase__ : Optional[Any] = 0 lowercase__ : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase__ : str = scores_sum / seq_lengths[:, None] lowercase__ , lowercase__ : List[str] = scores_sum_average.view(-1).topk(a , -1) lowercase__ : List[str] = next_tokens // scores_sum.shape[1] lowercase__ : List[Any] = seq_lengths[next_tokens_source] lowercase__ : Dict = next_tokens % scores_sum.shape[1] lowercase__ : Tuple = next_tokens.unsqueeze(1) lowercase__ : Union[str, Any] = tokens[next_tokens_source] lowercase__ : Any = torch.cat((tokens, next_tokens) , dim=1) lowercase__ : List[str] = generated[next_tokens_source] lowercase__ : Union[str, Any] = scores_sum_average * seq_lengths lowercase__ : str = is_stopped[next_tokens_source] lowercase__ : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0] , 1 , -1) lowercase__ : Optional[Any] = torch.cat((generated, next_token_embed) , dim=1) lowercase__ : Optional[Any] = is_stopped + next_tokens.eq(a).squeeze() if is_stopped.all(): break lowercase__ : Dict = scores / seq_lengths lowercase__ : Optional[Any] = scores.argsort(descending=a) # tokens tensors are already padded to max_seq_length lowercase__ : int = [tokens[i] for i in order] lowercase__ : Optional[int] = torch.stack(a , dim=0) lowercase__ : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype) return output_texts, seq_lengths
164
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase__ : list[int]): if not nums: return 0 lowerCamelCase : Tuple = nums[0] lowerCamelCase : Optional[int] = 0 for num in nums[1:]: lowerCamelCase : Dict = ( max_excluding + num, max(UpperCAmelCase__ , UpperCAmelCase__), ) return max(UpperCAmelCase__ , UpperCAmelCase__) if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase__ : int): lowerCamelCase : List[Any] = str(UpperCAmelCase__) return len(UpperCAmelCase__) == 9 and set(UpperCAmelCase__) == set('123456789') def UpperCAmelCase ( ): for base_num in range(99_99 , 49_99 , -1): lowerCamelCase : Tuple = 10_00_02 * base_num if is_9_pandigital(UpperCAmelCase__): return candidate for base_num in range(3_33 , 99 , -1): lowerCamelCase : List[Any] = 1_00_20_03 * base_num if is_9_pandigital(UpperCAmelCase__): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
449
0
def __lowerCAmelCase ( UpperCamelCase ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(UpperCamelCase ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
678
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
678
1
def __lowerCAmelCase ( A , A = " " ): UpperCAmelCase_ = [] UpperCAmelCase_ = 0 for index, char in enumerate(A ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase_ = index + 1 elif index + 1 == len(A ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
715
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a: Dict = logging.get_logger(__name__) class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : List[str]=125 , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : Optional[Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ = [F"<extra_id_{i}>" for i in range(lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase_ = len(set(filter(lambda lowerCAmelCase : bool("extra_id" in str(lowerCAmelCase ) ) , lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token UpperCAmelCase_ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token super().__init__( eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , extra_ids=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = extra_ids UpperCAmelCase_ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase_ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase_ = len(self.special_tokens_encoder ) UpperCAmelCase_ = len(lowerCAmelCase ) for i, token in enumerate(lowerCAmelCase ): UpperCAmelCase_ = self.vocab_size + i - n UpperCAmelCase_ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __A ( self : Optional[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __A ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase )) + [1] return ([0] * len(lowerCAmelCase )) + [1] + ([0] * len(lowerCAmelCase )) + [1] def __A ( self : Any , lowerCAmelCase : List[int] ): '''simple docstring''' if len(lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self : Optional[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = self._add_eos_if_not_present(lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase_ = self._add_eos_if_not_present(lowerCAmelCase ) return token_ids_a + token_ids_a def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = [chr(lowerCAmelCase ) for i in text.encode("utf-8" )] return tokens def __A ( self : Optional[Any] , lowerCAmelCase : List[Any] ): '''simple docstring''' if token in self.special_tokens_encoder: UpperCAmelCase_ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase_ = self.added_tokens_encoder[token] elif len(lowerCAmelCase ) != 1: UpperCAmelCase_ = self.unk_token_id else: UpperCAmelCase_ = ord(lowerCAmelCase ) + self._num_special_tokens return token_id def __A ( self : str , lowerCAmelCase : Any ): '''simple docstring''' if index in self.special_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[index] else: UpperCAmelCase_ = chr(index - self._num_special_tokens ) return token def __A ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = b"" for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: UpperCAmelCase_ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: UpperCAmelCase_ = token.encode("utf-8" ) elif token in self.added_tokens_encoder: UpperCAmelCase_ = token.encode("utf-8" ) else: UpperCAmelCase_ = bytes([ord(lowerCAmelCase )] ) bstring += tok_string UpperCAmelCase_ = bstring.decode("utf-8" , errors="ignore" ) return string def __A ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' return ()
268
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure)
109
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a = logging.getLogger(__name__) torch.set_grad_enabled(False) a = "cuda" if torch.cuda.is_available() else "cpu" def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=" " ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = text.split(__UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )] def __magic_name__ ( __UpperCAmelCase ) -> dict: '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__UpperCAmelCase ): titles.append(title if title is not None else """""" ) texts.append(__UpperCAmelCase ) return {"title": titles, "text": texts} def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __SCREAMING_SNAKE_CASE = ctx_encoder(input_ids.to(device=__UpperCAmelCase ) , return_dict=__UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __SCREAMING_SNAKE_CASE = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __SCREAMING_SNAKE_CASE = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __SCREAMING_SNAKE_CASE = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __SCREAMING_SNAKE_CASE = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __SCREAMING_SNAKE_CASE = dataset.map( partial(__UpperCAmelCase , ctx_encoder=__UpperCAmelCase , ctx_tokenizer=__UpperCAmelCase ) , batched=__UpperCAmelCase , batch_size=processing_args.batch_size , features=__UpperCAmelCase , ) # And finally save your dataset __SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __SCREAMING_SNAKE_CASE = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__UpperCAmelCase ) # And save the index __SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __a : __UpperCamelCase : str = field( default=str(Path(_snake_case ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ), metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''}, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'}, ) __UpperCamelCase : str = field( default='facebook/rag-sequence-nq', metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''}, ) __UpperCamelCase : str = field( default='facebook/dpr-ctx_encoder-multiset-base', metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) }, ) __UpperCamelCase : Optional[str] = field( default=str(Path(_snake_case ).parent / 'test_run' / 'dummy-kb' ), metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'}, ) @dataclass class __a : __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' }, ) __UpperCamelCase : int = field( default=16, metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' }, ) @dataclass class __a : __UpperCamelCase : int = field( default=768, metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'}, ) __UpperCamelCase : int = field( default=128, metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a , a , a = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
109
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase_ : Optional[Any] ={ "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict =[ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : List[Any] , __A : List[Any] , __A : Optional[int] ) -> Dict: """simple docstring""" a_ : Optional[Any] = multiprocessing.Manager() a_ : Tuple = manager.list() a_ : Optional[int] = multiprocessing.Process(target=__A , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[Any] , __A : Optional[Any] ) -> Dict: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil a_ : Any = shutil.rmtree a_ : List[str] = os.rmdir a_ : List[Any] = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: a_ : Any = {} with swallow_io(): with time_limit(__A ): exec(__A , __A ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F"""failed: {e}""" ) # Needed for cleaning up. a_ : Tuple = rmtree a_ : Any = rmdir a_ : Optional[int] = chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> str: """simple docstring""" def signal_handler(__A : List[str] , __A : Dict ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , __A ) signal.signal(signal.SIGALRM , __A ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( ) -> Dict: """simple docstring""" a_ : int = WriteOnlyStringIO() with contextlib.redirect_stdout(__A ): with contextlib.redirect_stderr(__A ): with redirect_stdin(__A ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__A ): yield dirname class SCREAMING_SNAKE_CASE__ ( lowercase__ ): pass class SCREAMING_SNAKE_CASE__ ( io.StringIO ): def SCREAMING_SNAKE_CASE ( self : List[Any] , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: raise OSError def SCREAMING_SNAKE_CASE ( self : Tuple , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: raise OSError def SCREAMING_SNAKE_CASE ( self : int , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: raise OSError def SCREAMING_SNAKE_CASE ( self : Any , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: return False class SCREAMING_SNAKE_CASE__ ( contextlib._RedirectStream ): # type: ignore snake_case__ : Optional[int] = '''stdin''' @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Union[str, Any]: """simple docstring""" if root == ".": yield return a_ : str = os.getcwd() os.chdir(__A ) try: yield except BaseException as exc: raise exc finally: os.chdir(__A ) def SCREAMING_SNAKE_CASE_ ( __A : Dict=None ) -> Dict: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins a_ : str = None a_ : str = None import os a_ : Optional[int] = '1' a_ : Any = None a_ : int = None a_ : int = None a_ : Tuple = None a_ : Dict = None a_ : Any = None a_ : Dict = None a_ : Dict = None a_ : List[str] = None a_ : Optional[Any] = None a_ : Tuple = None a_ : Union[str, Any] = None a_ : Dict = None a_ : Dict = None a_ : int = None a_ : str = None a_ : Union[str, Any] = None a_ : str = None a_ : Optional[int] = None a_ : List[Any] = None a_ : Union[str, Any] = None a_ : Dict = None a_ : Tuple = None a_ : List[str] = None a_ : str = None a_ : str = None a_ : str = None import shutil a_ : Dict = None a_ : Tuple = None a_ : str = None import subprocess a_ : str = None # type: ignore a_ : List[Any] = None import sys a_ : Optional[int] = None a_ : int = None a_ : Any = None a_ : str = None a_ : str = None
443
0
from __future__ import annotations def A__ ( snake_case_ : str , snake_case_ : list[str] | None = None ): SCREAMING_SNAKE_CASE__: Union[str, Any]= word_bank or [] # create a table SCREAMING_SNAKE_CASE__: int= len(snake_case_ ) + 1 SCREAMING_SNAKE_CASE__: list[list[list[str]]]= [] for _ in range(snake_case_ ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__: Tuple= [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: SCREAMING_SNAKE_CASE__: list[list[str]]= [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
64
def snake_case( __magic_name__ ) -> int: '''simple docstring''' assert isinstance(__magic_name__ , __magic_name__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowercase : Union[str, Any] = F"""The input value of [n={number}] has to be > 0""" raise ValueError(__magic_name__ ) else: lowercase : int = sylvester(number - 1 ) lowercase : List[Any] = num - 1 lowercase : str = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
217
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=3 , a__=None , a__=2 , ) -> str: '''simple docstring''' __snake_case :List[Any] = parent __snake_case :Dict = batch_size __snake_case :List[str] = image_size __snake_case :Dict = patch_size __snake_case :List[Any] = num_channels __snake_case :Optional[int] = is_training __snake_case :Tuple = use_labels __snake_case :Any = hidden_size __snake_case :Optional[Any] = num_hidden_layers __snake_case :Optional[Any] = num_attention_heads __snake_case :Any = intermediate_size __snake_case :Dict = hidden_act __snake_case :str = hidden_dropout_prob __snake_case :Optional[Any] = attention_probs_dropout_prob __snake_case :Optional[Any] = type_sequence_label_size __snake_case :Union[str, Any] = initializer_range __snake_case :List[str] = scope __snake_case :Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __snake_case :List[Any] = (image_size // patch_size) ** 2 __snake_case :Any = num_patches + 2 def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case :Union[str, Any] = None if self.use_labels: __snake_case :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case :List[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self ) -> List[Any]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowercase ( self , a__ , a__ , a__ ) -> Tuple: '''simple docstring''' __snake_case :Tuple = TFDeiTModel(config=a__ ) __snake_case :Any = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self , a__ , a__ , a__ ) -> Any: '''simple docstring''' __snake_case :Any = TFDeiTForMaskedImageModeling(config=a__ ) __snake_case :List[str] = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case :List[str] = 1 __snake_case :int = TFDeiTForMaskedImageModeling(a__ ) __snake_case :Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case :List[Any] = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase ( self , a__ , a__ , a__ ) -> Dict: '''simple docstring''' __snake_case :Any = self.type_sequence_label_size __snake_case :str = TFDeiTForImageClassification(a__ ) __snake_case :List[str] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case :Tuple = 1 __snake_case :List[str] = TFDeiTForImageClassification(a__ ) __snake_case :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case :Optional[Any] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Dict = self.prepare_config_and_inputs() __snake_case :str = config_and_inputs __snake_case :List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class snake_case__ ( lowercase_ , lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : Dict = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase : Optional[int] = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[Any] = False lowerCamelCase : Optional[int] = False lowerCamelCase : List[Any] = False def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[int] = TFDeiTModelTester(self ) __snake_case :Dict = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __lowercase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def __lowercase ( self ) -> str: '''simple docstring''' pass def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case :List[str] = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __snake_case :str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Dense ) ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case :Tuple = model_class(a__ ) __snake_case :Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case :Any = [*signature.parameters.keys()] __snake_case :Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def __lowercase ( self , a__ , a__ , a__=False ) -> Any: '''simple docstring''' __snake_case :Tuple = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowercase ( self ) -> List[str]: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :Union[str, Any] = TFDeiTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def UpperCamelCase ( ): '''simple docstring''' __snake_case :Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class snake_case__ ( unittest.TestCase): '''simple docstring''' @cached_property def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :Any = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __snake_case :Dict = self.default_image_processor __snake_case :List[Any] = prepare_img() __snake_case :Optional[Any] = image_processor(images=a__ , return_tensors="""tf""" ) # forward pass __snake_case :Optional[int] = model(**a__ ) # verify the logits __snake_case :Tuple = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , a__ ) __snake_case :Tuple = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
713
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : Optional[int] = GPTSanJapaneseTokenizer lowerCamelCase : Any = False lowerCamelCase : Optional[Any] = {"do_clean_text": False, "add_prefix_space": False} def __lowercase ( self ) -> Any: '''simple docstring''' super().setUp() # fmt: off __snake_case :str = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __snake_case :Optional[Any] = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __snake_case :Optional[int] = {"""unk_token""": """<unk>"""} __snake_case :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(a__ ) ) def __lowercase ( self , **a__ ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __lowercase ( self , a__ ) -> List[str]: '''simple docstring''' __snake_case :Tuple = """こんにちは、世界。 \nこんばんは、㔺界。😀""" __snake_case :Union[str, Any] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def __lowercase ( self , a__ ) -> List[str]: '''simple docstring''' __snake_case , __snake_case :Dict = self.get_input_output_texts(a__ ) __snake_case :Dict = tokenizer.encode(a__ , add_special_tokens=a__ ) __snake_case :int = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) return text, ids def __lowercase ( self ) -> Optional[int]: '''simple docstring''' pass # TODO add if relevant def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' pass # TODO add if relevant def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :Optional[int] = self.get_tokenizer() # Testing tokenization __snake_case :int = """こんにちは、世界。 こんばんは、㔺界。""" __snake_case :Dict = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __snake_case :Optional[Any] = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens __snake_case :List[str] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __snake_case :Any = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens __snake_case :Tuple = tokens + [tokenizer.unk_token] __snake_case :Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __snake_case :List[Any] = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , a__ ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Tuple = self.get_tokenizer() # Testing tokenization __snake_case :Optional[Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __snake_case :Tuple = """こんにちは、、、、世界。こんばんは、、、、世界。""" __snake_case :str = tokenizer.encode(a__ ) __snake_case :Optional[int] = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ ) @slow def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :List[str] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case :str = """こんにちは、世界。""" __snake_case :List[str] = """こんばんは、㔺界。😀""" __snake_case :Dict = """こんにちは、世界。こんばんは、世界。😀""" __snake_case :int = tokenizer.encode(prefix_text + input_text ) __snake_case :Optional[Any] = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __snake_case :Any = tokenizer.encode(a__ , prefix_text=a__ ) __snake_case :Optional[Any] = tokenizer.decode(a__ ) __snake_case :Optional[Any] = tokenizer.decode(a__ ) __snake_case :Optional[Any] = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) @slow def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __snake_case :List[Any] = """こんにちは、世界。""" __snake_case :Dict = """こんばんは、㔺界。😀""" __snake_case :Optional[int] = len(tokenizer.encode(a__ ) ) - 2 __snake_case :Union[str, Any] = len(tokenizer.encode(a__ ) ) - 2 __snake_case :Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1) __snake_case :Optional[Any] = [1] * (len_prefix + len_text + 1) + [0] __snake_case :Union[str, Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __snake_case :int = tokenizer(prefix_text + input_text ).token_type_ids __snake_case :List[Any] = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __snake_case :int = tokenizer(a__ , prefix_text=a__ ).token_type_ids self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) @slow def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case :Tuple = tokenizer.encode("""あンいワ""" ) __snake_case :List[str] = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) __snake_case :int = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(a__ ) , tokenizer.decode(a__ ) ) self.assertEqual(tokenizer.decode(a__ ) , tokenizer.decode(a__ ) ) self.assertNotEqual(a__ , a__ ) self.assertNotEqual(a__ , a__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case :List[str] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __snake_case :int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __snake_case :Optional[int] = tokenizer(a__ , padding=a__ ) __snake_case :int = tokenizer.batch_encode_plus(a__ , padding=a__ ) # fmt: off __snake_case :Tuple = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] __snake_case :Any = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __snake_case :int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , a__ ) self.assertListEqual(x_token.token_type_ids , a__ ) self.assertListEqual(x_token.attention_mask , a__ ) self.assertListEqual(x_token_a.input_ids , a__ ) self.assertListEqual(x_token_a.token_type_ids , a__ ) self.assertListEqual(x_token_a.attention_mask , a__ ) def __lowercase ( self ) -> List[str]: '''simple docstring''' pass def __lowercase ( self ) -> Optional[int]: '''simple docstring''' pass
291
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def A__ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): SCREAMING_SNAKE_CASE__: List[Any]= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: int= {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__: int= JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def A__ ( snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Tuple ): SCREAMING_SNAKE_CASE__: int= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: int= {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__: Tuple= features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__: Union[str, Any]= ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__: List[str]= JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def A__ ( snake_case_ : Dict , snake_case_ : int , snake_case_ : Any ): SCREAMING_SNAKE_CASE__: str= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: Optional[Any]= {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} SCREAMING_SNAKE_CASE__: Union[str, Any]= features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__: int= ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__: Optional[Any]= JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A__ ( snake_case_ : Tuple , snake_case_ : int ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} SCREAMING_SNAKE_CASE__: int= {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} SCREAMING_SNAKE_CASE__: Optional[Any]= features.copy() SCREAMING_SNAKE_CASE__: Any= ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__: Optional[Any]= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: Union[str, Any]= JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A__ ( snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Tuple ): SCREAMING_SNAKE_CASE__: Tuple= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: int= {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__: Any= JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def A__ ( snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): if issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__: str= jsonl_path elif issubclass(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__: int= [jsonl_path] SCREAMING_SNAKE_CASE__: Optional[Any]= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: Optional[int]= {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__: Union[str, Any]= JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def A__ ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : str=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: SCREAMING_SNAKE_CASE__: str= dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def A__ ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__: Tuple= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: int= {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__: int= JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def A__ ( snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : List[Any] ): SCREAMING_SNAKE_CASE__: Optional[int]= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: Dict= {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__: List[Any]= features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__: Any= ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__: str= JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A__ ( snake_case_ : str , snake_case_ : Any , snake_case_ : Tuple ): if split: SCREAMING_SNAKE_CASE__: Dict= {split: jsonl_path} else: SCREAMING_SNAKE_CASE__: Any= '''train''' SCREAMING_SNAKE_CASE__: Any= {'''train''': jsonl_path, '''test''': jsonl_path} SCREAMING_SNAKE_CASE__: int= tmp_path / '''cache''' SCREAMING_SNAKE_CASE__: Dict= {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} SCREAMING_SNAKE_CASE__: Union[str, Any]= JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( snake_case_ : List[str] ): return json.load(snake_case_ ) def A__ ( snake_case_ : Dict ): return [json.loads(snake_case_ ) for line in buffer] class _lowerCamelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase , lowerCAmelCase , lines=lowerCAmelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= load_json_function(lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert isinstance(exported_content[0] , lowerCAmelCase ) assert len(lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase , lowerCAmelCase , lines=lowerCAmelCase , orient=lowerCAmelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__: int= load_json(lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCAmelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase , lowerCAmelCase , lines=lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__: List[str]= load_json_function(lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert isinstance(exported_content[0] , lowerCAmelCase ) assert len(lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> int: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase , lowerCAmelCase , lines=lowerCAmelCase , orient=lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE__: Union[str, Any]= load_json(lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCAmelCase ) == 10 def UpperCamelCase_ ( self , lowerCAmelCase ) -> int: with pytest.raises(lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase , lowerCAmelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: List[str]= tmp_path_factory.mktemp('''data''' ) / f'test.json.{extension}' SCREAMING_SNAKE_CASE__: Dict= str(shared_datadir / f'test_file.json.{extension}' ) JsonDatasetWriter(lowerCAmelCase , lowerCAmelCase , compression=lowerCAmelCase ).write() with fsspec.open(lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE__: Tuple= f.read() with fsspec.open(lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: SCREAMING_SNAKE_CASE__: Dict= f.read() assert exported_content == original_content
64
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case = logging.get_logger(__name__) snake_case = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def snake_case ( lowerCAmelCase_ ) -> str: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _snake_case = model_type_to_module_name(lowerCAmelCase_ ) _snake_case = importlib.import_module(f""".{module_name}""" , '''transformers.models''' ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , '''__name__''' , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _snake_case = importlib.import_module('''transformers''' ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , ) -> int: _snake_case = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as reader: return json.load(lowerCAmelCase_ ) class UpperCAmelCase : def __init__( self : Any ): """simple docstring""" raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def __UpperCAmelCase ( cls : List[str] , __lowerCamelCase : List[str] , **__lowerCamelCase : Dict ): """simple docstring""" _snake_case = kwargs.pop('''config''' , __lowerCamelCase ) _snake_case = kwargs.pop('''trust_remote_code''' , __lowerCamelCase ) _snake_case = True _snake_case , _snake_case = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) _snake_case = config_dict.get('''image_processor_type''' , __lowerCamelCase ) _snake_case = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _snake_case = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _snake_case = config_dict.pop('''feature_extractor_type''' , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _snake_case = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _snake_case = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _snake_case = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` _snake_case = getattr(__lowerCamelCase , '''image_processor_type''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _snake_case = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _snake_case = image_processor_class_from_name(__lowerCamelCase ) _snake_case = image_processor_auto_map is not None _snake_case = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING _snake_case = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: _snake_case = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) _snake_case = kwargs.pop('''code_revision''' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: _snake_case = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
103
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class A ( _UpperCAmelCase ): lowercase_ = field(default='summarization' ,metadata={'include_in_asdict_even_if_is_default': True} ) lowercase_ = Features({'text': Value('string' )} ) lowercase_ = Features({'summary': Value('string' )} ) lowercase_ = "text" lowercase_ = "summary" @property def __lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
704
'''simple docstring''' import math import unittest def snake_case_ (UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
377
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0.0 ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = "geglu" ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = "layer_norm" ,SCREAMING_SNAKE_CASE_ = False ,): '''simple docstring''' super().__init__() snake_case : Union[str, Any] = only_cross_attention snake_case : List[Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case : Optional[int] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case : Optional[int] = AdaLayerNorm(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) elif self.use_ada_layer_norm_zero: snake_case : str = AdaLayerNormZero(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else: snake_case : List[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = Attention( query_dim=SCREAMING_SNAKE_CASE_ ,heads=SCREAMING_SNAKE_CASE_ ,dim_head=SCREAMING_SNAKE_CASE_ ,dropout=SCREAMING_SNAKE_CASE_ ,bias=SCREAMING_SNAKE_CASE_ ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=SCREAMING_SNAKE_CASE_ ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case : List[str] = ( AdaLayerNorm(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) ) snake_case : Union[str, Any] = Attention( query_dim=SCREAMING_SNAKE_CASE_ ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=SCREAMING_SNAKE_CASE_ ,dim_head=SCREAMING_SNAKE_CASE_ ,dropout=SCREAMING_SNAKE_CASE_ ,bias=SCREAMING_SNAKE_CASE_ ,upcast_attention=SCREAMING_SNAKE_CASE_ ,) # is self-attn if encoder_hidden_states is none else: snake_case : str = None snake_case : Any = None # 3. Feed-forward snake_case : Tuple = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) snake_case : Dict = FeedForward(SCREAMING_SNAKE_CASE_ ,dropout=SCREAMING_SNAKE_CASE_ ,activation_fn=SCREAMING_SNAKE_CASE_ ,final_dropout=SCREAMING_SNAKE_CASE_ ) # let chunk size default to None snake_case : Optional[int] = None snake_case : Optional[int] = 0 def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # Sets chunk feed-forward snake_case : Any = chunk_size snake_case : List[Any] = dim def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,): '''simple docstring''' # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) elif self.use_ada_layer_norm_zero: snake_case , snake_case , snake_case , snake_case , snake_case : int = self.norma( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,hidden_dtype=hidden_states.dtype ) else: snake_case : str = self.norma(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case : Tuple = self.attna( SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) if self.use_ada_layer_norm_zero: snake_case : Tuple = gate_msa.unsqueeze(1 ) * attn_output snake_case : Dict = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case : int = ( self.norma(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE_ ) ) snake_case : Any = self.attna( SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) snake_case : Optional[Any] = attn_output + hidden_states # 3. Feed-forward snake_case : Dict = self.norma(SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm_zero: snake_case : int = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case : Dict = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case : Union[str, Any] = torch.cat( [self.ff(SCREAMING_SNAKE_CASE_ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE_ ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case : int = self.ff(SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm_zero: snake_case : List[Any] = gate_mlp.unsqueeze(1 ) * ff_output snake_case : Tuple = ff_output + hidden_states return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 4 ,SCREAMING_SNAKE_CASE_ = 0.0 ,SCREAMING_SNAKE_CASE_ = "geglu" ,SCREAMING_SNAKE_CASE_ = False ,): '''simple docstring''' super().__init__() snake_case : List[Any] = int(dim * mult ) snake_case : int = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case : Optional[Any] = GELU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if activation_fn == "gelu-approximate": snake_case : List[str] = GELU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case : str = GEGLU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) elif activation_fn == "geglu-approximate": snake_case : str = ApproximateGELU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE_ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE_ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for module in self.net: snake_case : str = module(SCREAMING_SNAKE_CASE_ ) return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "none" ): '''simple docstring''' super().__init__() snake_case : Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = approximate def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE_ ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : str = self.proj(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = self.gelu(SCREAMING_SNAKE_CASE_ ) return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : Dict = nn.Linear(SCREAMING_SNAKE_CASE_ ,dim_out * 2 ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case , snake_case : Optional[int] = self.proj(SCREAMING_SNAKE_CASE_ ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE_ ) class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : str = nn.Linear(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = self.proj(SCREAMING_SNAKE_CASE_ ) return x * torch.sigmoid(1.7_02 * x ) class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : List[Any] = nn.Embedding(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = nn.SiLU() snake_case : str = nn.Linear(SCREAMING_SNAKE_CASE_ ,embedding_dim * 2 ) snake_case : str = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE_ ) ) ) snake_case , snake_case : Tuple = torch.chunk(SCREAMING_SNAKE_CASE_ ,2 ) snake_case : int = self.norm(SCREAMING_SNAKE_CASE_ ) * (1 + scale) + shift return x class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : int = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Dict = nn.SiLU() snake_case : Dict = nn.Linear(SCREAMING_SNAKE_CASE_ ,6 * embedding_dim ,bias=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ,eps=1E-6 ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' snake_case : Any = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,hidden_dtype=SCREAMING_SNAKE_CASE_ ) ) ) snake_case , snake_case , snake_case , snake_case , snake_case , snake_case : Optional[Any] = emb.chunk(6 ,dim=1 ) snake_case : int = self.norm(SCREAMING_SNAKE_CASE_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 1E-5 ): '''simple docstring''' super().__init__() snake_case : Optional[Any] = num_groups snake_case : Dict = eps if act_fn is None: snake_case : Tuple = None else: snake_case : Tuple = get_activation(SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = nn.Linear(SCREAMING_SNAKE_CASE_ ,out_dim * 2 ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if self.act: snake_case : int = self.act(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = self.linear(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = emb[:, :, None, None] snake_case , snake_case : Optional[int] = emb.chunk(2 ,dim=1 ) snake_case : Union[str, Any] = F.group_norm(SCREAMING_SNAKE_CASE_ ,self.num_groups ,eps=self.eps ) snake_case : List[Any] = x * (1 + scale) + shift return x
36
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : str = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Dict = '''mobilenet_v1''' def __init__( self ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=224 ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=8 ,SCREAMING_SNAKE_CASE_="relu6" ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=0.9_99 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=0.0_01 ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case : List[Any] = num_channels snake_case : str = image_size snake_case : List[Any] = depth_multiplier snake_case : Optional[int] = min_depth snake_case : Union[str, Any] = hidden_act snake_case : int = tf_padding snake_case : Optional[int] = classifier_dropout_prob snake_case : Tuple = initializer_range snake_case : List[str] = layer_norm_eps class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self ): '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def snake_case_ ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def snake_case_ ( self ): '''simple docstring''' return 1E-4
36
1
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" , [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] , ) def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: Any ) -> str: '''simple docstring''' _a = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" , "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" , "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _a = DatasetInfosDict.from_directory(UpperCamelCase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" , [ DatasetInfo(), DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ), ] , ) def lowerCAmelCase ( UpperCamelCase_: Dict , UpperCamelCase_: DatasetInfo ) -> Dict: '''simple docstring''' _a = str(UpperCamelCase_ ) dataset_info.write_to_directory(UpperCamelCase_ ) _a = DatasetInfo.from_directory(UpperCamelCase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase_ , "dataset_info.json" ) ) def lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' _a = DatasetInfo( description="foo" , citation="bar" , homepage="https://foo.bar" , license="CC0" , features=Features({"a": Value("int32" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train", "num_examples": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _a = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a = yaml.safe_dump(UpperCamelCase_ ) _a = yaml.safe_load(UpperCamelCase_ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase ( ) -> List[str]: '''simple docstring''' _a = DatasetInfo() _a = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" , [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" , features=Features({"a": Value("int32" )} ) , builder_name="builder" , config_name="config" , version="1.0.0" , splits=[{"name": "train"}] , download_size=42 , ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1337 ), } ), ] , ) def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: DatasetInfosDict ) -> Optional[Any]: '''simple docstring''' _a = str(UpperCamelCase_ ) dataset_infos_dict.write_to_directory(UpperCamelCase_ ) _a = DatasetInfosDict.from_directory(UpperCamelCase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase_ , "README.md" ) )
721
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase ( UpperCamelCase_: Dict ) -> Any: '''simple docstring''' _a = os.path.join(args.tf_model_dir , "parameters.json" ) _a = json.loads(open(UpperCamelCase_ ).read() ) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(".pt" ): _a = args.output + ".pt" _a = OrderedDict() with tf.device("/CPU:0" ): _a = tf.train.load_checkpoint(args.tf_model_dir ) _a = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _a = reader.get_tensor(UpperCamelCase_ ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _a = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _a = 8 _a = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/moe" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/softmlp/kernel" ): _a = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _a = key_name[-9:-7] for i in range(16 ): _a = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _a = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/mlp" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p1/bias" ): _a = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p2/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p2/bias" ): _a = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/ln" ): _a = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _a = "model.blocks.%d.feed_forward.norm.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/g" ): _a = "model.blocks.%d.feed_forward.norm.weight" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/att" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _a = state[:, 0, :, :] _a = state[:, 1, :, :] _a = state[:, 2, :, :] _a = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) _a = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) _a = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/o/kernel" ): _a = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _a = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/an" ): _a = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _a = "model.blocks.%d.self_attn.norm.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/g" ): _a = "model.blocks.%d.self_attn.norm.weight" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _a = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _a = "model.%s.weight" % nlayer _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase_ ) if key_name.startswith("model/wte" ): _a = "lm_head.weight" _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/wob" ): _a = "final_logits_bias" _a = vnp.copy() # same in embedded _a = state.reshape((1, -1) ) _a = torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense/kernel": _a = "model.last_project.weight" _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense_1/bias": _a = "model.last_project.bias" _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) torch.save(UpperCamelCase_ , args.output ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") UpperCamelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
612
0
'''simple docstring''' lowerCAmelCase_ : Tuple = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : Optional[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Tuple = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
527
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowerCAmelCase_ : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def UpperCAmelCase ( A : Dict ): SCREAMING_SNAKE_CASE : Optional[Any] = {} with open(A , '''r''' ) as file: for line_number, line in enumerate(A ): SCREAMING_SNAKE_CASE : Dict = line.strip() if line: SCREAMING_SNAKE_CASE : Union[str, Any] = line.split() SCREAMING_SNAKE_CASE : Any = line_number SCREAMING_SNAKE_CASE : Any = words[0] SCREAMING_SNAKE_CASE : Optional[Any] = value return result def UpperCAmelCase ( A : Union[str, Any] , A : Tuple , A : List[Any] , A : str , A : int ): for attribute in key.split('''.''' ): SCREAMING_SNAKE_CASE : Optional[Any] = getattr(A , A ) SCREAMING_SNAKE_CASE : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): SCREAMING_SNAKE_CASE : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE : Tuple = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE : List[Any] = getattr(A , A ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE : List[str] = hf_pointer for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE : int = getattr(A , A ) SCREAMING_SNAKE_CASE : int = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE : Dict = value[0] else: SCREAMING_SNAKE_CASE : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : str = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : List[str] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): SCREAMING_SNAKE_CASE : List[str] = getattr(A , A ) SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase ( A : Optional[Any] , A : List[str] , A : Optional[int] , A : Tuple , A : Tuple ): SCREAMING_SNAKE_CASE : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A ): SCREAMING_SNAKE_CASE : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] SCREAMING_SNAKE_CASE : List[Any] = '''param''' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE : Tuple = '''.'''.join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = key SCREAMING_SNAKE_CASE : int = value if '''lm_head''' in full_key else value[0] lowerCAmelCase_ : Union[str, Any] = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def UpperCAmelCase ( A : List[Any] , A : Tuple , A : Dict=None , A : Optional[int]=None ): SCREAMING_SNAKE_CASE : Union[str, Any] = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : Optional[Any] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Optional[int] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : int = name.split(A )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Union[str, Any] = mapped_key.replace('''*''' , A ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[Any] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : int = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Optional[Any] = '''weight''' else: SCREAMING_SNAKE_CASE : Optional[int] = None if hf_dict is not None: rename_dict(A , A , A , A , A ) else: set_recursively(A , A , A , A , A ) return is_used return is_used def UpperCAmelCase ( A : Optional[int] , A : Any , A : int ): SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Any = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : str = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : List[str] = True else: SCREAMING_SNAKE_CASE : Optional[Any] = load_wavaveca_layer(A , A , A ) if not is_used: unused_weights.append(A ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCAmelCase ( A : Tuple , A : int , A : Tuple , A : int , A : Union[str, Any] ): SCREAMING_SNAKE_CASE : str = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : Optional[Any] = name.split('''.''' ) SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) SCREAMING_SNAKE_CASE : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(A ) @torch.no_grad() def UpperCAmelCase ( A : Any , A : Union[str, Any] , A : Optional[Any]=None , A : Any=None , A : Any=True , A : str=False ): if config_path is not None: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig.from_pretrained(A ) else: SCREAMING_SNAKE_CASE : Any = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE : List[Any] = read_txt_into_dict(A ) SCREAMING_SNAKE_CASE : Optional[Any] = idalabel SCREAMING_SNAKE_CASE : Tuple = WavaVecaForSequenceClassification(A ) SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) feature_extractor.save_pretrained(A ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : Optional[Any] = Dictionary.load(A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : List[str] = target_dict.pad_index SCREAMING_SNAKE_CASE : Optional[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE : Dict = target_dict.eos_index SCREAMING_SNAKE_CASE : Dict = len(target_dict.symbols ) SCREAMING_SNAKE_CASE : str = os.path.join(A , '''vocab.json''' ) if not os.path.isdir(A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A ) ) return os.makedirs(A , exist_ok=A ) SCREAMING_SNAKE_CASE : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Tuple = 1 with open(A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(A , A ) SCREAMING_SNAKE_CASE : Any = WavaVecaCTCTokenizer( A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A , ) SCREAMING_SNAKE_CASE : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) SCREAMING_SNAKE_CASE : Any = WavaVecaProcessor(feature_extractor=A , tokenizer=A ) processor.save_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = WavaVecaForCTC(A ) else: SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaForPreTraining(A ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: SCREAMING_SNAKE_CASE : str = argparse.Namespace(task='''audio_pretraining''' ) SCREAMING_SNAKE_CASE : Dict = fairseq.tasks.setup_task(A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A ) SCREAMING_SNAKE_CASE : List[Any] = model[0].eval() recursively_load_weights(A , A , not is_finetuned ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowerCAmelCase_ : Union[str, Any] = parser.parse_args() lowerCAmelCase_ : Dict = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
527
1
"""simple docstring""" import itertools import math def __magic_name__ ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __magic_name__ ( ) -> int: lowercase : Optional[Any] = 2 while True: if is_prime(__snake_case ): yield num num += 1 def __magic_name__ ( __snake_case : int = 1_0001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , __snake_case ) ) if __name__ == "__main__": print(F"{solution() = }")
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A : int = logging.get_logger(__name__) _A : int = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class a__ ( a_ ): __lowerCAmelCase = """mgp-str""" def __init__( self , _a=[32, 128] , _a=4 , _a=3 , _a=27 , _a=38 , _a=50_257 , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=4.0 , _a=True , _a=False , _a=1E-5 , _a=0.0 , _a=0.0 , _a=0.0 , _a=False , _a=0.0_2 , **_a , ): super().__init__(**_a ) lowercase : Tuple = image_size lowercase : Optional[Any] = patch_size lowercase : List[str] = num_channels lowercase : Optional[int] = max_token_length lowercase : List[Any] = num_character_labels lowercase : int = num_bpe_labels lowercase : Any = num_wordpiece_labels lowercase : Optional[Any] = hidden_size lowercase : Optional[int] = num_hidden_layers lowercase : int = num_attention_heads lowercase : List[Any] = mlp_ratio lowercase : Optional[int] = distilled lowercase : List[Any] = layer_norm_eps lowercase : Any = drop_rate lowercase : List[Any] = qkv_bias lowercase : int = attn_drop_rate lowercase : Union[str, Any] = drop_path_rate lowercase : Optional[Any] = output_aa_attentions lowercase : Dict = initializer_range
518
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = [0 for i in range(r + 1 )] # nc0 = 1 lowercase_ : str = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowercase_ : Union[str, Any] = min(_UpperCamelCase , _UpperCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
620
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = 'deta' __lowerCamelCase: str = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , a : Union[str, Any]=None , a : Dict=9_0_0 , a : str=2_0_4_8 , a : Union[str, Any]=6 , a : int=2_0_4_8 , a : Optional[int]=8 , a : Optional[Any]=6 , a : Optional[Any]=1_0_2_4 , a : Any=8 , a : Dict=0.0 , a : Optional[int]=True , a : Union[str, Any]="relu" , a : str=2_5_6 , a : str=0.1 , a : Any=0.0 , a : Optional[Any]=0.0 , a : str=0.02 , a : int=1.0 , a : Tuple=True , a : Optional[int]=False , a : str="sine" , a : List[Any]=5 , a : str=4 , a : Any=4 , a : Optional[Any]=True , a : Union[str, Any]=3_0_0 , a : List[Any]=True , a : Tuple=True , a : Any=1 , a : int=5 , a : Optional[int]=2 , a : Tuple=1 , a : List[str]=1 , a : Tuple=5 , a : Tuple=2 , a : List[str]=0.1 , a : Tuple=0.25 , **a : Optional[int] , ): '''simple docstring''' if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowercase_ : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(a , a ): lowercase_ : Any = backbone_config.pop("model_type" ) lowercase_ : str = CONFIG_MAPPING[backbone_model_type] lowercase_ : Any = config_class.from_dict(a ) lowercase_ : Optional[int] = backbone_config lowercase_ : Dict = num_queries lowercase_ : Tuple = max_position_embeddings lowercase_ : Union[str, Any] = d_model lowercase_ : Optional[Any] = encoder_ffn_dim lowercase_ : Any = encoder_layers lowercase_ : int = encoder_attention_heads lowercase_ : Tuple = decoder_ffn_dim lowercase_ : Dict = decoder_layers lowercase_ : Dict = decoder_attention_heads lowercase_ : List[Any] = dropout lowercase_ : Union[str, Any] = attention_dropout lowercase_ : List[str] = activation_dropout lowercase_ : Optional[Any] = activation_function lowercase_ : str = init_std lowercase_ : Dict = init_xavier_std lowercase_ : List[Any] = encoder_layerdrop lowercase_ : Optional[int] = auxiliary_loss lowercase_ : str = position_embedding_type # deformable attributes lowercase_ : Optional[int] = num_feature_levels lowercase_ : List[Any] = encoder_n_points lowercase_ : Optional[Any] = decoder_n_points lowercase_ : List[Any] = two_stage lowercase_ : Any = two_stage_num_proposals lowercase_ : List[str] = with_box_refine lowercase_ : Optional[int] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher lowercase_ : int = class_cost lowercase_ : Optional[int] = bbox_cost lowercase_ : str = giou_cost # Loss coefficients lowercase_ : Optional[int] = mask_loss_coefficient lowercase_ : Union[str, Any] = dice_loss_coefficient lowercase_ : Optional[Any] = bbox_loss_coefficient lowercase_ : Optional[Any] = giou_loss_coefficient lowercase_ : Any = eos_coefficient lowercase_ : str = focal_alpha super().__init__(is_encoder_decoder=a , **a ) @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.backbone_config.to_dict() lowercase_ : str = self.__class__.model_type return output
620
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for param in module.parameters(): SCREAMING_SNAKE_CASE_ = False def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): SCREAMING_SNAKE_CASE_ = """mps""" if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = plt.imshow(SCREAMING_SNAKE_CASE__ ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE__ ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE__ ) plt.show() def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = datetime.now() SCREAMING_SNAKE_CASE_ = current_time.strftime('%H:%M:%S' ) return timestamp
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int=7 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = None if token is not None: SCREAMING_SNAKE_CASE_ = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE_ = '636036' SCREAMING_SNAKE_CASE_ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" SCREAMING_SNAKE_CASE_ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE_ = workflow_run['id'] break return workflow_run_id def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE_ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE_ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , f"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE_ = f.read().decode('UTF-8' ) return results
620
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __A = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __A = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __A = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase: int = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE_ ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE_ )) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase: Optional[Any] = random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) __lowerCAmelCase: Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] __lowerCAmelCase: str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowerCAmelCase: Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCAmelCase: List[Any] = random.choice(SCREAMING_SNAKE_CASE_ ) return "".join(SCREAMING_SNAKE_CASE_ ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Dict: __lowerCAmelCase: Dict = [] # Generate more children proportionally to the fitness score. __lowerCAmelCase: List[Any] = int(parent_a[1] * 1_0_0 ) + 1 __lowerCAmelCase: List[str] = 1_0 if child_n >= 1_0 else child_n for _ in range(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase: Any = population_score[random.randint(0 , SCREAMING_SNAKE_CASE_ )][0] __lowerCAmelCase , __lowerCAmelCase: List[str] = crossover(parent_a[0] , SCREAMING_SNAKE_CASE_ ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) pop.append(mutate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return pop def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True ) -> int: if N_POPULATION < N_SELECTED: __lowerCAmelCase: Any = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(SCREAMING_SNAKE_CASE_ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCAmelCase: Optional[int] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCAmelCase: Optional[Any] = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(SCREAMING_SNAKE_CASE_ ) # Generate random starting population. __lowerCAmelCase: Optional[Any] = [] for _ in range(SCREAMING_SNAKE_CASE_ ): population.append("".join([random.choice(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCAmelCase , __lowerCAmelCase: Any = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCAmelCase: str = [evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for item in population] # Check if there is a matching evolution. __lowerCAmelCase: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda __SCREAMING_SNAKE_CASE : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCAmelCase: str = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE_ ) # Normalize population score to be between 0 and 1. __lowerCAmelCase: Dict = [ (item, score / len(SCREAMING_SNAKE_CASE_ )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE_ ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE_ )] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE_ ) > N_POPULATION: break if __name__ == "__main__": __A = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) __A = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) __A , __A , __A = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
346
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = AutoencoderKL __lowerCamelCase : List[Any] = "sample" __lowerCamelCase : Tuple = 1e-2 @property def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = 4 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCAmelCase ) return {"sample": image} @property def _snake_case ( self ) -> Any: return (3, 32, 32) @property def _snake_case ( self ) -> List[Any]: return (3, 32, 32) def _snake_case ( self ) -> str: _lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Any: pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def _snake_case ( self ) -> str: # enable deterministic behavior for gradient checkpointing _lowerCAmelCase , _lowerCAmelCase = self.prepare_init_args_and_inputs_for_common() _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) model.to(_lowerCAmelCase ) assert not model.is_gradient_checkpointing and model.training _lowerCAmelCase = model(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _lowerCAmelCase = torch.randn_like(_lowerCAmelCase ) _lowerCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _lowerCAmelCase = self.model_class(**_lowerCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _lowerCAmelCase = model_a(**_lowerCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _lowerCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _lowerCAmelCase = dict(model.named_parameters() ) _lowerCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) _lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _snake_case ( self ) -> Dict: _lowerCAmelCase = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) _lowerCAmelCase = model.to(_lowerCAmelCase ) model.eval() if torch_device == "mps": _lowerCAmelCase = torch.manual_seed(0 ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase = image.to(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , sample_posterior=_lowerCAmelCase , generator=_lowerCAmelCase ).sample _lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _lowerCAmelCase = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": _lowerCAmelCase = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: _lowerCAmelCase = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-2 ) ) @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy''' def _snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 3, 512, 512) , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) ).to(_lowerCAmelCase ).to(_lowerCAmelCase ) return image def _snake_case ( self , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = "fp16" if fpaa else None _lowerCAmelCase = torch.floataa if fpaa else torch.floataa _lowerCAmelCase = AutoencoderKL.from_pretrained( _lowerCAmelCase , subfolder="vae" , torch_dtype=_lowerCAmelCase , revision=_lowerCAmelCase , ) model.to(_lowerCAmelCase ).eval() return model def _snake_case ( self , _lowerCAmelCase=0 ) -> str: if torch_device == "mps": return torch.manual_seed(_lowerCAmelCase ) return torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase , generator=_lowerCAmelCase , sample_posterior=_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase ).sample assert sample.shape == image.shape _lowerCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() _lowerCAmelCase = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] _lowerCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = self.get_sd_vae_model(fpaa=_lowerCAmelCase ) _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def _snake_case ( self , _lowerCAmelCase ) -> Any: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _lowerCAmelCase = model.decode(_lowerCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.get_sd_vae_model() _lowerCAmelCase = self.get_sd_image(_lowerCAmelCase ) _lowerCAmelCase = self.get_generator(_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = model.encode(_lowerCAmelCase ).latent_dist _lowerCAmelCase = dist.sample(generator=_lowerCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _lowerCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() _lowerCAmelCase = torch.tensor(_lowerCAmelCase ) _lowerCAmelCase = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=_lowerCAmelCase )
18
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Dict = logging.get_logger(__name__) class _UpperCAmelCase ( __A ): SCREAMING_SNAKE_CASE_ : Dict = ["input_features", "attention_mask"] def __init__( self : Dict , A : List[str]=80 , A : Optional[int]=1_60_00 , A : Tuple=80 , A : Dict=0.0 , A : str=True , A : Union[str, Any]=True , A : str=True , **A : Union[str, Any] , ) -> Optional[Any]: super().__init__(feature_size=A , sampling_rate=A , padding_value=A , **A ) lowercase_ : Dict = num_mel_bins lowercase_ : str = do_ceptral_normalize lowercase_ : Union[str, Any] = normalize_means lowercase_ : Optional[Any] = normalize_vars lowercase_ : List[str] = True def A ( self : List[str] , A : np.ndarray , ) -> np.ndarray: lowercase_ : Tuple = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase_ : List[str] = torch.from_numpy(A ).unsqueeze(0 ) lowercase_ : Dict = ta_kaldi.fbank(A , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def A ( A : np.ndarray , A : int , A : Optional[bool] = True , A : Optional[bool] = True , A : float = 0.0 , ) -> np.ndarray: if normalize_means: lowercase_ : str = x[:input_length].mean(axis=0 ) lowercase_ : Union[str, Any] = np.subtract(A , A ) if normalize_vars: lowercase_ : List[str] = x[:input_length].std(axis=0 ) lowercase_ : Optional[int] = np.divide(A , A ) if input_length < x.shape[0]: lowercase_ : Any = padding_value # make sure array is in float32 lowercase_ : Any = x.astype(np.floataa ) return x def A ( self : Optional[Any] , A : List[np.ndarray] , A : Optional[np.ndarray] = None ) -> List[np.ndarray]: lowercase_ : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(A , A , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(A , A ) ] def __call__( self : Optional[Any] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : Union[bool, str, PaddingStrategy] = False , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[int] = None , A : Optional[bool] = None , **A : List[Any] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase_ : Optional[Any] = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase_ : Optional[int] = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase_ : List[str] = [np.asarray(A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowercase_ : int = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ : Any = [raw_speech] # extract fbank features lowercase_ : Any = [self._extract_fbank_features(A ) for waveform in raw_speech] # convert into correct format for padding lowercase_ : Optional[Any] = BatchFeature({'''input_features''': features} ) lowercase_ : List[str] = self.pad( A , padding=A , max_length=A , truncation=A , pad_to_multiple_of=A , return_attention_mask=A , **A , ) # make sure list is in array format lowercase_ : Any = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , A ): lowercase_ : Optional[Any] = [np.asarray(A , dtype=np.floataa ) for feature in input_features] lowercase_ : Union[str, Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase_ : int = [np.asarray(A , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase_ : List[str] = ( np.array(A , dtype=np.intaa ) if self._get_padding_strategies(A , max_length=A ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase_ : int = self.normalize( padded_inputs['''input_features'''] , attention_mask=A ) if return_tensors is not None: lowercase_ : Dict = padded_inputs.convert_to_tensors(A ) return padded_inputs
708
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowercase ( __snake_case : Union[str, Any] ): return x + 2 class _UpperCAmelCase ( unittest.TestCase ): def A ( self : List[Any] ) -> Dict: lowercase_ : Optional[Any] = '''x = 3''' lowercase_ : Optional[Any] = {} lowercase_ : List[str] = evaluate(A , {} , state=A ) assert result == 3 self.assertDictEqual(A , {'''x''': 3} ) lowercase_ : Optional[Any] = '''x = y''' lowercase_ : Union[str, Any] = {'''y''': 5} lowercase_ : Any = evaluate(A , {} , state=A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A , {'''x''': 5, '''y''': 5} ) def A ( self : Dict ) -> Dict: lowercase_ : Any = '''y = add_two(x)''' lowercase_ : Tuple = {'''x''': 3} lowercase_ : Any = evaluate(A , {'''add_two''': add_two} , state=A ) assert result == 5 self.assertDictEqual(A , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase_ : List[str] = evaluate(A , {} , state=A ) assert result is None assert "tried to execute add_two" in out.out def A ( self : Any ) -> Optional[Any]: lowercase_ : Tuple = '''x = 3''' lowercase_ : Tuple = {} lowercase_ : Union[str, Any] = evaluate(A , {} , state=A ) assert result == 3 self.assertDictEqual(A , {'''x''': 3} ) def A ( self : str ) -> Any: lowercase_ : Dict = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' lowercase_ : List[str] = {'''x''': 3} lowercase_ : Optional[Any] = evaluate(A , {'''add_two''': add_two} , state=A ) self.assertDictEqual(A , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(A , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A ( self : Dict ) -> List[Any]: lowercase_ : Union[str, Any] = '''x = 3\ny = 5''' lowercase_ : Tuple = {} lowercase_ : Optional[Any] = evaluate(A , {} , state=A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A , {'''x''': 3, '''y''': 5} ) def A ( self : Optional[Any] ) -> Union[str, Any]: lowercase_ : Dict = '''text = f\'This is x: {x}.\'''' lowercase_ : Tuple = {'''x''': 3} lowercase_ : Optional[Any] = evaluate(A , {} , state=A ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(A , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def A ( self : str ) -> Union[str, Any]: lowercase_ : List[Any] = '''if x <= 3:\n y = 2\nelse:\n y = 5''' lowercase_ : Optional[int] = {'''x''': 3} lowercase_ : str = evaluate(A , {} , state=A ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(A , {'''x''': 3, '''y''': 2} ) lowercase_ : Dict = {'''x''': 8} lowercase_ : List[str] = evaluate(A , {} , state=A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(A , {'''x''': 8, '''y''': 5} ) def A ( self : Dict ) -> List[str]: lowercase_ : Tuple = '''test_list = [x, add_two(x)]''' lowercase_ : Optional[int] = {'''x''': 3} lowercase_ : Any = evaluate(A , {'''add_two''': add_two} , state=A ) self.assertListEqual(A , [3, 5] ) self.assertDictEqual(A , {'''x''': 3, '''test_list''': [3, 5]} ) def A ( self : int ) -> Tuple: lowercase_ : Optional[int] = '''y = x''' lowercase_ : Any = {'''x''': 3} lowercase_ : List[str] = evaluate(A , {} , state=A ) assert result == 3 self.assertDictEqual(A , {'''x''': 3, '''y''': 3} ) def A ( self : List[Any] ) -> List[str]: lowercase_ : Optional[Any] = '''test_list = [x, add_two(x)]\ntest_list[1]''' lowercase_ : int = {'''x''': 3} lowercase_ : str = evaluate(A , {'''add_two''': add_two} , state=A ) assert result == 5 self.assertDictEqual(A , {'''x''': 3, '''test_list''': [3, 5]} ) lowercase_ : str = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' lowercase_ : Dict = {'''x''': 3} lowercase_ : str = evaluate(A , {'''add_two''': add_two} , state=A ) assert result == 5 self.assertDictEqual(A , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A ( self : List[Any] ) -> Any: lowercase_ : Dict = '''x = 0\nfor i in range(3):\n x = i''' lowercase_ : Dict = {} lowercase_ : Any = evaluate(A , {'''range''': range} , state=A ) assert result == 2 self.assertDictEqual(A , {'''x''': 2, '''i''': 2} )
141
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowerCamelCase_ ( UpperCamelCase__ : int ) -> Optional[int]: # picklable for multiprocessing """simple docstring""" return x.sum() def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] ) -> List[Any]: # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class __lowerCAmelCase : """simple docstring""" snake_case_ = 42 snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = [1, 2] __lowerCamelCase = {'a': 1, 'b': 2} __lowerCamelCase = {'a': [1, 2], 'b': [3, 4]} __lowerCamelCase = {'a': {'1': 1}, 'b': 2} __lowerCamelCase = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __lowerCamelCase = {} __lowerCamelCase = [] __lowerCamelCase = 2 __lowerCamelCase = [2, 3] __lowerCamelCase = {'a': 2, 'b': 3} __lowerCamelCase = {'a': [2, 3], 'b': [4, 5]} __lowerCamelCase = {'a': {'1': 2}, 'b': 3} __lowerCamelCase = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase = 2 self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} __lowerCamelCase = {'a': 2, 'b': 0, 'c': 2} __lowerCamelCase = { 'a': np.eye(2 ).astype(lowerCamelCase__ ), 'b': np.zeros(3 ).astype(lowerCamelCase__ ), 'c': np.ones(2 ).astype(lowerCamelCase__ ), } self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ , num_proc=lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCamelCase__ , lowerCamelCase__ , map_numpy=lowerCamelCase__ , num_proc=lowerCamelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowerCamelCase__ ): # can't pickle a local lambda map_nested(lambda lowerCamelCase__ : x + 1 , lowerCamelCase__ , num_proc=lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = {'a': 1, 'b': 2} __lowerCamelCase = {'a': 3, 'b': 4} __lowerCamelCase = {'a': 5, 'b': 6} __lowerCamelCase = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' class __lowerCAmelCase : """simple docstring""" snake_case_ = '''bar''' __lowerCamelCase = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(lowerCamelCase__ , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: __lowerCamelCase = {F"""{i}""": i for i in range(UpperCamelCase__ )} __lowerCamelCase = map_nested(lambda UpperCamelCase__ : x + 10 , UpperCamelCase__ , num_proc=UpperCamelCase__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @require_tf def lowercase_ ( self ) -> Dict: '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers __lowerCamelCase = layers.Dense(2 ) def gen_random_output(): __lowerCamelCase = tf.random.uniform((1, 3) ) return model(lowerCamelCase__ ).numpy() with temp_seed(42 , set_tensorflow=lowerCamelCase__ ): __lowerCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=lowerCamelCase__ ): __lowerCamelCase = gen_random_output() __lowerCamelCase = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowercase_ ( self ) -> List[str]: '''simple docstring''' import torch def gen_random_output(): __lowerCamelCase = torch.nn.Linear(3 , 2 ) __lowerCamelCase = torch.rand(1 , 3 ) return model(lowerCamelCase__ ).detach().numpy() with temp_seed(42 , set_pytorch=lowerCamelCase__ ): __lowerCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=lowerCamelCase__ ): __lowerCamelCase = gen_random_output() __lowerCamelCase = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): __lowerCamelCase = gen_random_output() with temp_seed(42 ): __lowerCamelCase = gen_random_output() __lowerCamelCase = gen_random_output() np.testing.assert_equal(lowerCamelCase__ , lowerCamelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = NestedDataStructure(UpperCamelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" __lowerCamelCase = NestedDataStructure(UpperCamelCase__ ).flatten() assert output == expected_output def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" __lowerCamelCase = A(x=1 , y='foobar' ) __lowerCamelCase = {'x': 1, 'y': 'foobar'} assert asdict(UpperCamelCase__ ) == expected_output __lowerCamelCase = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} __lowerCamelCase = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(UpperCamelCase__ ) == expected_output with pytest.raises(UpperCamelCase__ ): asdict([1, A(x=10 , y='foo' )] ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Tuple: """simple docstring""" return text.split() def lowerCamelCase_ ( UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" with Pool(2 ) as pool: __lowerCamelCase = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCamelCase__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: __lowerCamelCase = list(iflatmap_unordered(UpperCamelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCamelCase__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: __lowerCamelCase = [] for yield_time, content in iflatmap_unordered( UpperCamelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCamelCase__ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(UpperCamelCase__ ) == 4
469
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __A = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int ) -> List[Any]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(UpperCamelCase__ ) , version.parse(UpperCamelCase__ ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> None: """simple docstring""" __lowerCamelCase = F"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , UpperCamelCase__ ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = requirement, None, None else: __lowerCamelCase = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , UpperCamelCase__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F""" got {requirement}""" ) __lowerCamelCase , __lowerCamelCase = match[0] __lowerCamelCase = want_full.split(',' ) # there could be multiple requirements __lowerCamelCase = {} for w in want_range: __lowerCamelCase = re.findall(R'^([\s!=<>]{1,2})(.+)' , UpperCamelCase__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F""" but got {requirement}""" ) __lowerCamelCase , __lowerCamelCase = match[0] __lowerCamelCase = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": __lowerCamelCase = '.'.join([str(UpperCamelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return # check if any version is installed try: __lowerCamelCase = importlib.metadata.version(UpperCamelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(UpperCamelCase__ , UpperCamelCase__ )
469
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCamelCase ( ) -> Any: '''simple docstring''' __A = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) __A = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(a__ ) DownloadCommand.register_subcommand(a__ ) EnvironmentCommand.register_subcommand(a__ ) RunCommand.register_subcommand(a__ ) ServeCommand.register_subcommand(a__ ) UserCommands.register_subcommand(a__ ) AddNewModelCommand.register_subcommand(a__ ) AddNewModelLikeCommand.register_subcommand(a__ ) LfsCommands.register_subcommand(a__ ) PTtoTFCommand.register_subcommand(a__ ) # Let's go __A = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run __A = args.func(a__ ) service.run() if __name__ == "__main__": main()
714
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( snake_case ) -> Dict: '''simple docstring''' __A = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( snake_case , snake_case ) -> List[str]: '''simple docstring''' __A = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( snake_case ) -> Any: '''simple docstring''' __A = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' __A = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case ) -> List[Any]: '''simple docstring''' __A = '''imagenet-1k-id2label.json''' __A = 1_0_0_0 __A = '''huggingface/label-files''' __A = num_labels __A = json.load(open(cached_download(hf_hub_url(snake_case , snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) __A = {int(snake_case ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(snake_case ) __A = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __A = image_size __A = torch.load(snake_case , map_location=torch.device('''cpu''' ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(snake_case ) __A = list_of_state_dict + embeddings(snake_case ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(snake_case , snake_case ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case ) for i in range(len(snake_case ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_8_4, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=r"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCamelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
341
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __snake_case =abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def a_ ( lowerCamelCase : Dict ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase ) def a_ ( lowerCamelCase : List[str] ): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase , id=lowerCamelCase )
133
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : bool , lowerCamelCase : bool ): def run_func(lowerCamelCase : Dict ): @wraps(lowerCamelCase ) def run_in_eager_mode(*lowerCamelCase : int , **lowerCamelCase : Dict ): return func(*lowerCamelCase , **lowerCamelCase ) @wraps(lowerCamelCase ) @tf.function(experimental_compile=lowerCamelCase ) def run_in_graph_mode(*lowerCamelCase : Tuple , **lowerCamelCase : Union[str, Any] ): return func(*lowerCamelCase , **lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a_ ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): lowerCAmelCase = random.Random() lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : TensorFlowBenchmarkArguments lowerCamelCase : PretrainedConfig lowerCamelCase : str = "TensorFlow" @property def __UpperCAmelCase ( self : List[str] ) -> Dict: return tf.__version__ def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> float: # initialize GPU on separate process lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_inference_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_speed(_inference ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> float: lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_train_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_speed(_train ) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCAmelCase__ ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_inference_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_memory(_inference ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCAmelCase__ ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase = self._prepare_train_func(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return self._measure_memory(_train ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Callable[[], None]: lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase = ( hasattr(UpperCAmelCase__ , 'architectures' ) and isinstance(config.architectures , UpperCAmelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model_cls(UpperCAmelCase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](UpperCAmelCase__ ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(UpperCAmelCase__ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , training=UpperCAmelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCAmelCase__ , training=UpperCAmelCase__ ) lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Callable[[], None]: lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase = ( hasattr(UpperCAmelCase__ , 'architectures' ) and isinstance(config.architectures , UpperCAmelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase = getattr(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model_cls(UpperCAmelCase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCAmelCase__ ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(UpperCAmelCase__ , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase = model(UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__ )[0] lowerCAmelCase = tf.gradients(UpperCAmelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__ )[0] lowerCAmelCase = tf.gradients(UpperCAmelCase__ , model.trainable_variables ) return gradients lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __UpperCAmelCase ( self : int , UpperCAmelCase__ : str ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(UpperCAmelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase = timeit.repeat( UpperCAmelCase__ , repeat=self.args.repeat , number=1_0 , ) return min(UpperCAmelCase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) lowerCAmelCase = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) lowerCAmelCase = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(UpperCAmelCase__ ) lowerCAmelCase = meminfo.used lowerCAmelCase = Memory(UpperCAmelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) lowerCAmelCase = None else: lowerCAmelCase = measure_peak_memory_cpu(UpperCAmelCase__ ) lowerCAmelCase = Memory(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase = stop_memory_tracing(UpperCAmelCase__ ) if memory is None: lowerCAmelCase = summary.total else: lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
133
1
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a : int = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class a ( _lowerCamelCase ): def __init__( self : str , **lowercase_ : Optional[Any] ): super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : int , lowercase_ : Union[np.ndarray, bytes, str] , **lowercase_ : Any ): return super().__call__(lowercase_ , **lowercase_ ) def A_ ( self : List[Any] , **lowercase_ : Optional[Any] ): snake_case_ = {} if "candidate_labels" in kwargs: snake_case_ = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: snake_case_ = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def A_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , lowercase_ : Union[str, Any]="This is a sound of {}." ): if isinstance(lowercase_ , lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case_ = requests.get(lowercase_ ).content else: with open(lowercase_ , '''rb''' ) as f: snake_case_ = f.read() if isinstance(lowercase_ , lowercase_ ): snake_case_ = ffmpeg_read(lowercase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowercase_ , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) snake_case_ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) snake_case_ = candidate_labels snake_case_ = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] snake_case_ = self.tokenizer(lowercase_ , return_tensors=self.framework , padding=lowercase_ ) snake_case_ = [text_inputs] return inputs def A_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] ): snake_case_ = model_inputs.pop('''candidate_labels''' ) snake_case_ = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowercase_ ): snake_case_ = text_inputs[0] else: # Batching case. snake_case_ = text_inputs[0][0] snake_case_ = self.model(**lowercase_ , **lowercase_ ) snake_case_ = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def A_ ( self : Optional[Any] , lowercase_ : List[str] ): snake_case_ = model_outputs.pop('''candidate_labels''' ) snake_case_ = model_outputs['''logits'''][0] if self.framework == "pt": snake_case_ = logits.softmax(dim=0 ) snake_case_ = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) snake_case_ = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_ , lowercase_ ) , key=lambda lowercase_ : -x[0] ) ] return result
593
'''simple docstring''' from __future__ import annotations import time a : Dict = list[tuple[int, int]] a : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a : Optional[int] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class a : def __init__( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : Node | None ): snake_case_ = pos_x snake_case_ = pos_y snake_case_ = (pos_y, pos_x) snake_case_ = goal_x snake_case_ = goal_y snake_case_ = parent class a : def __init__( self : Optional[Any] , lowercase_ : tuple[int, int] , lowercase_ : tuple[int, int] ): snake_case_ = Node(start[1] , start[0] , goal[1] , goal[0] , lowercase_ ) snake_case_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowercase_ ) snake_case_ = [self.start] snake_case_ = False def A_ ( self : List[Any] ): while self.node_queue: snake_case_ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case_ = True return self.retrace_path(lowercase_ ) snake_case_ = self.get_successors(lowercase_ ) for node in successors: self.node_queue.append(lowercase_ ) if not self.reached: return [self.start.pos] return None def A_ ( self : Any , lowercase_ : Node ): snake_case_ = [] for action in delta: snake_case_ = parent.pos_x + action[1] snake_case_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , lowercase_ ) ) return successors def A_ ( self : int , lowercase_ : Node | None ): snake_case_ = node snake_case_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case_ = current_node.parent path.reverse() return path class a : def __init__( self : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ): snake_case_ = BreadthFirstSearch(lowercase_ , lowercase_ ) snake_case_ = BreadthFirstSearch(lowercase_ , lowercase_ ) snake_case_ = False def A_ ( self : Tuple ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case_ = self.fwd_bfs.node_queue.pop(0 ) snake_case_ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case_ = True return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) snake_case_ = current_bwd_node snake_case_ = current_fwd_node snake_case_ = { self.fwd_bfs: self.fwd_bfs.get_successors(lowercase_ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowercase_ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowercase_ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def A_ ( self : Optional[Any] , lowercase_ : Node , lowercase_ : Node ): snake_case_ = self.fwd_bfs.retrace_path(lowercase_ ) snake_case_ = self.bwd_bfs.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() snake_case_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a : Any = (0, 0) a : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a : List[Any] = time.time() a : Any = BreadthFirstSearch(init, goal) a : List[Any] = bfs.search() a : List[Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) a : Optional[Any] = time.time() a : Tuple = BidirectionalBreadthFirstSearch(init, goal) a : str = bd_bfs.search() a : Optional[int] = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
593
1
"""simple docstring""" def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCAmelCase__ : Tuple = str(bin(lowerCAmelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ : Union[str, Any] = str(bin(lowerCAmelCase ) )[2:] UpperCAmelCase__ : Union[str, Any] = max(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase ) , b_binary.zfill(lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
182
"""simple docstring""" def a__ ( ) -> Union[str, Any]: UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Tuple = 1 while len(lowerCAmelCase ) < 1E6: constant.append(str(lowerCAmelCase ) ) i += 1 UpperCAmelCase__ : Any = """""".join(lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
182
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
1
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( UpperCamelCase__ ): def __init__(self : Any , __a : CLIPSegForImageSegmentation , __a : CLIPSegProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , __a , standard_warn=__a ) UpperCAmelCase_ = dict(scheduler.config ) UpperCAmelCase_ = 1 UpperCAmelCase_ = FrozenDict(__a ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , __a , standard_warn=__a ) UpperCAmelCase_ = dict(scheduler.config ) UpperCAmelCase_ = True UpperCAmelCase_ = FrozenDict(__a ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=__a , segmentation_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , ) def _lowercase (self : str , __a : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def _lowercase (self : int ): self.enable_attention_slicing(__a ) def _lowercase (self : Optional[Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase (self : Optional[int] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__(self : Dict , __a : Union[str, List[str]] , __a : Union[torch.FloatTensor, PIL.Image.Image] , __a : str , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : int , ): UpperCAmelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) UpperCAmelCase_ = self.segmentation_model(**__a ) UpperCAmelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ = self.numpy_to_pil(__a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__a , image=__a , mask_image=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , )
78
from ..utils import DummyObject, requires_backends class __magic_name__ (metaclass=__lowercase ): lowerCamelCase__ = ['''speech'''] def __init__( self , *_a , **_a ) -> str: requires_backends(self , ["speech"] ) class __magic_name__ (metaclass=__lowercase ): lowerCamelCase__ = ['''speech'''] def __init__( self , *_a , **_a ) -> Union[str, Any]: requires_backends(self , ["speech"] )
122
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") A : Optional[Any] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"}) A__ = field( default=_UpperCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) A__ = field( default=_UpperCAmelCase , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , ) A__ = field(default=_UpperCAmelCase , metadata={"help": "A folder containing the training data."}) A__ = field(default=_UpperCAmelCase , metadata={"help": "A folder containing the validation data."}) A__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."}) A__ = field(default=32 , metadata={"help": "The size of the square patches to use for masking."}) A__ = field( default=0.6 , metadata={"help": "Percentage of patches to mask."} , ) A__ = field( default=_UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A__ = field( default=_UpperCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = {} if self.train_dir is not None: lowerCamelCase__ : Any = self.train_dir if self.validation_dir is not None: lowerCamelCase__ : Tuple = self.validation_dir lowerCamelCase__ : int = data_files if data_files else None @dataclass class _lowercase : """simple docstring""" A__ = field( default=_UpperCAmelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " "checkpoint identifier on the hub. " "Don't set if you want to train a model from scratch." ) } , ) A__ = field( default=_UpperCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_UpperCAmelCase)} , ) A__ = field( default=_UpperCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) A__ = field( default=_UpperCAmelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) A__ = field( default=_UpperCAmelCase , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , ) A__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A__ = field(default=_UpperCAmelCase , metadata={"help": "Name or path of preprocessor config."}) A__ = field( default=_UpperCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) A__ = field( default=_UpperCAmelCase , metadata={ "help": ( "The size (resolution) of each image. If not specified, will use `image_size` of the configuration." ) } , ) A__ = field( default=_UpperCAmelCase , metadata={ "help": ( "The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." ) } , ) A__ = field( default=_UpperCAmelCase , metadata={"help": "Stride to use for the encoder."} , ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : List[Any]=192 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : List[str]=0.6 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = input_size lowerCamelCase__ : List[Any] = mask_patch_size lowerCamelCase__ : Tuple = model_patch_size lowerCamelCase__ : Dict = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) lowerCamelCase__ : List[Any] = self.input_size // self.mask_patch_size lowerCamelCase__ : List[str] = self.mask_patch_size // self.model_patch_size lowerCamelCase__ : Optional[int] = self.rand_size**2 lowerCamelCase__ : Union[str, Any] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = np.random.permutation(self.token_count )[: self.mask_count] lowerCamelCase__ : Optional[Any] = np.zeros(self.token_count , dtype=lowercase__ ) lowerCamelCase__ : Optional[Any] = 1 lowerCamelCase__ : Any = mask.reshape((self.rand_size, self.rand_size) ) lowerCamelCase__ : List[Any] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def lowercase_ ( _A : Dict ): """simple docstring""" lowerCamelCase__ : Any = torch.stack([example["pixel_values"] for example in examples] ) lowerCamelCase__ : Optional[int] = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. lowerCamelCase__ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. lowerCamelCase__ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowerCamelCase__ : int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: lowerCamelCase__ : List[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) lowerCamelCase__ : List[str] = split["""train"""] lowerCamelCase__ : List[str] = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Dict = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowerCamelCase__ : str = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: lowerCamelCase__ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE__ , "decoder_type" ): lowerCamelCase__ : str = """simmim""" # adapt config lowerCamelCase__ : Tuple = model_args.image_size if model_args.image_size is not None else config.image_size lowerCamelCase__ : str = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowerCamelCase__ : List[Any] = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowerCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: lowerCamelCase__ : str = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowerCamelCase__ : Tuple = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowerCamelCase__ : List[Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowerCamelCase__ : Optional[int] = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE__ ) if training_args.do_train: lowerCamelCase__ : str = ds["""train"""].column_names else: lowerCamelCase__ : Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: lowerCamelCase__ : Any = data_args.image_column_name elif "image" in column_names: lowerCamelCase__ : str = """image""" elif "img" in column_names: lowerCamelCase__ : Dict = """img""" else: lowerCamelCase__ : Optional[int] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowerCamelCase__ : List[str] = Compose( [ Lambda(lambda _A : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowerCamelCase__ : Any = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_A : List[Any] ): lowerCamelCase__ : List[str] = [transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]] lowerCamelCase__ : Any = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowerCamelCase__ : Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowerCamelCase__ : Union[str, Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Initialize our trainer lowerCamelCase__ : Tuple = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: lowerCamelCase__ : Any = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : int = last_checkpoint lowerCamelCase__ : List[Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ : List[Any] = trainer.evaluate() trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub lowerCamelCase__ : Optional[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
703
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : List[Any] ) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): SCREAMING_SNAKE_CASE__ = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = """sgugger/tiny-distilbert-classification""" SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , torchscript=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , fpaa=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) # set architectures equal to `None` SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = """sshleifer/tinier_bart""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = """sshleifer/tinier_bart""" SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase , configs=[config] ) SCREAMING_SNAKE_CASE__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(__UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(__UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(__UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(__UpperCAmelCase , """env.csv""" ) , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """env.csv""" ) ).exists() ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(__UpperCAmelCase : Union[str, Any] ): self.assertTrue(hasattr(__UpperCAmelCase , """sequential""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """cumulative""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """current""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , """log.txt""" ) , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = PyTorchBenchmark(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase , """log.txt""" ) ).exists() )
196
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: SCREAMING_SNAKE_CASE__ = torch.nn.Linear(1_0 , 1_0 ) SCREAMING_SNAKE_CASE__ = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE__ = Accelerator() SCREAMING_SNAKE_CASE__ = accelerator.prepare(__UpperCAmelCase ) try: pickle.loads(pickle.dumps(__UpperCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
196
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING UpperCAmelCase__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int) ->List[Any]: '''simple docstring''' A__ = AudioClassificationPipeline(model=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__) # test with a raw waveform A__ = np.zeros((34_000,)) A__ = np.zeros((14_000,)) return audio_classifier, [audioa, audio] def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]) ->str: '''simple docstring''' A__ , A__ = examples A__ = audio_classifier(UpperCAmelCase__) # by default a model is initialized with num_labels=2 self.assertEqual( UpperCAmelCase__ , [ {'''score''': ANY(UpperCAmelCase__), '''label''': ANY(UpperCAmelCase__)}, {'''score''': ANY(UpperCAmelCase__), '''label''': ANY(UpperCAmelCase__)}, ] , ) A__ = audio_classifier(UpperCAmelCase__ , top_k=1) self.assertEqual( UpperCAmelCase__ , [ {'''score''': ANY(UpperCAmelCase__), '''label''': ANY(UpperCAmelCase__)}, ] , ) self.run_torchaudio(UpperCAmelCase__) @require_torchaudio def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str]) ->List[Any]: '''simple docstring''' import datasets # test with a local file A__ = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') A__ = dataset[0]['''audio''']['''array'''] A__ = audio_classifier(UpperCAmelCase__) self.assertEqual( UpperCAmelCase__ , [ {'''score''': ANY(UpperCAmelCase__), '''label''': ANY(UpperCAmelCase__)}, {'''score''': ANY(UpperCAmelCase__), '''label''': ANY(UpperCAmelCase__)}, ] , ) @require_torch def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = '''anton-l/wav2vec2-random-tiny-classifier''' A__ = pipeline('''audio-classification''' , model=UpperCAmelCase__) A__ = np.ones((8_000,)) A__ = audio_classifier(UpperCAmelCase__ , top_k=4) A__ = [ {'''score''': 0.0842, '''label''': '''no'''}, {'''score''': 0.0838, '''label''': '''up'''}, {'''score''': 0.0837, '''label''': '''go'''}, {'''score''': 0.0834, '''label''': '''right'''}, ] A__ = [ {'''score''': 0.0845, '''label''': '''stop'''}, {'''score''': 0.0844, '''label''': '''on'''}, {'''score''': 0.0841, '''label''': '''right'''}, {'''score''': 0.0834, '''label''': '''left'''}, ] self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) A__ = {'''array''': np.ones((8_000,)), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} A__ = audio_classifier(UpperCAmelCase__ , top_k=4) self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' import datasets A__ = '''superb/wav2vec2-base-superb-ks''' A__ = pipeline('''audio-classification''' , model=UpperCAmelCase__) A__ = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''') A__ = np.array(dataset[3]['''speech'''] , dtype=np.floataa) A__ = audio_classifier(UpperCAmelCase__ , top_k=4) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=3) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''') def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: '''simple docstring''' pass
700
from argparse import ArgumentParser from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : ArgumentParser) ->Any: '''simple docstring''' A__ = parser.add_parser('''download''') download_parser.add_argument( '''--cache-dir''' , type=UpperCAmelCase__ , default=UpperCAmelCase__ , help='''Path to location to store the models''') download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''') download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=UpperCAmelCase__ , help='''Name of the model to download''') download_parser.set_defaults(func=UpperCAmelCase__) def __init__( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : bool , UpperCAmelCase__ : bool) ->int: '''simple docstring''' A__ = model A__ = cache A__ = force A__ = trust_remote_code def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code)
177
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : Union[str, Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCamelCase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __a : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCAmelCase__ , speech_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__=1_60_00 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 5_12 , lowerCAmelCase__ = 50 , lowerCAmelCase__ = 7.5 , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' __lowercase = self.speech_processor.feature_extractor( lowerCAmelCase__ , return_tensors='''pt''' , sampling_rate=lowerCAmelCase__ ).input_features.to(self.device ) __lowercase = self.speech_model.generate(lowerCAmelCase__ , max_length=48_00_00 ) __lowercase = self.speech_processor.tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , normalize=lowerCAmelCase__ )[ 0 ] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = len(lowerCAmelCase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowerCAmelCase__ )}." ) # get prompt text embeddings __lowercase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''''''] * batch_size elif type(lowerCAmelCase__ ) is not type(lowerCAmelCase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase__ )} !=" F" {type(lowerCAmelCase__ )}." ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = [negative_prompt] elif batch_size != len(lowerCAmelCase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' , ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(1 , lowerCAmelCase__ , 1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device='''cpu''' , dtype=lowerCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual __lowercase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = 1 / 0.1_8215 * latents __lowercase = self.vae.decode(lowerCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCAmelCase__ , nsfw_content_detected=lowerCAmelCase__ )
534
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase ={"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure)
462
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # word like '180' or '身高' or '神' for char in word: UpperCamelCase__ : Optional[Any] = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : Dict = set() for token in tokens: UpperCamelCase__ : Optional[int] = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) UpperCamelCase__ : List[Any] = list(UpperCamelCase__ ) return word_list def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): if not chinese_word_set: return bert_tokens UpperCamelCase__ : str = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) UpperCamelCase__ : Optional[int] = bert_tokens UpperCamelCase__ ,UpperCamelCase__ : Tuple = 0, len(UpperCamelCase__ ) while start < end: UpperCamelCase__ : Any = True if is_chinese(bert_word[start] ): UpperCamelCase__ : Any = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): UpperCamelCase__ : List[Any] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase__ : Optional[Any] = '''##''' + bert_word[j] UpperCamelCase__ : Dict = start + i UpperCamelCase__ : List[str] = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : str = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): UpperCamelCase__ : Optional[Any] = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['''cws'''] ).cws UpperCamelCase__ : List[str] = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) UpperCamelCase__ : str = [] for i in range(0 , len(UpperCamelCase__ ) , 1_0_0 ): UpperCamelCase__ : Dict = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=5_1_2 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) UpperCamelCase__ : Any = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Union[str, Any] = [] for id in input_ids: UpperCamelCase__ : List[str] = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) UpperCamelCase__ : Optional[Any] = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": UpperCamelCase__ : Union[str, Any] = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : List[Any] = f.readlines() UpperCamelCase__ : Tuple = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase__ : int = LTP(args.ltp ) # faster in GPU device UpperCamelCase__ : int = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase__ : Dict = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: UpperCamelCase__ : Tuple = [json.dumps(UpperCamelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) lowerCamelCase =parser.parse_args() main(args)
462
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : def __init__( self : List[str] ,A : List[Any] ,A : List[str]=13 ,A : Any=32 ,A : List[str]=3 ,A : Optional[int]=4 ,A : Optional[int]=[10, 20, 30, 40] ,A : str=[2, 2, 3, 2] ,A : Optional[Any]=True ,A : Dict=True ,A : Tuple=37 ,A : List[str]="gelu" ,A : Optional[int]=10 ,A : List[Any]=0.0_2 ,A : Optional[int]=["stage2", "stage3", "stage4"] ,A : List[Any]=[2, 3, 4] ,A : List[Any]=None ,): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Optional[int] = num_stages UpperCAmelCase__ : str = hidden_sizes UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : str = is_training UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : List[Any] = out_features UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : Any = scope def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.num_labels ) UpperCAmelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self : int ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=A ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : str ,A : List[Any] ,A : Union[str, Any] ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Union[str, Any] ,A : Union[str, Any] ,A : Optional[Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase__ : Optional[int] = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : int ,A : Optional[int] ,A : Optional[int] ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : Tuple = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase__ : str = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = config_and_inputs UpperCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = config_and_inputs UpperCAmelCase__ : Dict = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __lowercase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) snake_case_ = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = ConvNextVaModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def __lowercase ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __lowercase ( self : str ): '''simple docstring''' pass def __lowercase ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase__ : int = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase__ : Tuple = model_class(A ) model.to(A ) model.train() UpperCAmelCase__ : List[Any] = self._prepare_for_class(A ,A ,return_labels=A ) UpperCAmelCase__ : Optional[int] = model(**A ).loss loss.backward() def __lowercase ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase__ : int = False UpperCAmelCase__ : List[Any] = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase__ : Tuple = self._prepare_for_class(A ,A ,return_labels=A ) UpperCAmelCase__ : Optional[Any] = model(**A ).loss loss.backward() def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(A ) UpperCAmelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,A ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowercase ( self : Any ): '''simple docstring''' def check_hidden_states_output(A : Optional[Any] ,A : Union[str, Any] ,A : str ): UpperCAmelCase__ : List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase__ : int = model(**self._prepare_for_class(A ,A ) ) UpperCAmelCase__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : List[str] = self.model_tester.num_stages self.assertEqual(len(A ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Tuple = True check_hidden_states_output(A ,A ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): @cached_property def __lowercase ( self : int ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : List[Any] = preprocessor(images=A ,return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**A ) # verify the logits UpperCAmelCase__ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1e-4 ) )
65
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : Any ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } _lowercase : int =[ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( _lowercase : int , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : List[str]) -> List[Any]: """simple docstring""" for attribute in key.split("""."""): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a__ : Optional[Any] = """lm_head""" a__ : str = getattr(_lowercase , _lowercase) if weight_type is not None: a__ : Any = getattr(_lowercase , _lowercase).shape else: a__ : str = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a__ : Any = value elif weight_type == "weight_g": a__ : List[Any] = value elif weight_type == "weight_v": a__ : int = value elif weight_type == "bias": a__ : Tuple = value else: a__ : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Any) -> Optional[Any]: """simple docstring""" a__ : Optional[int] = [] a__ : Union[str, Any] = fairseq_model.state_dict() a__ : Dict = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a__ : List[str] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) a__ : Any = True else: for key, mapped_key in MAPPING.items(): a__ : Optional[Any] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""")[-1] == name.split(""".""")[0]: a__ : Dict = True if "*" in mapped_key: a__ : Optional[Any] = name.split(_lowercase)[0].split(""".""")[-2] a__ : Union[str, Any] = mapped_key.replace("""*""" , _lowercase) if "weight_g" in name: a__ : Dict = """weight_g""" elif "weight_v" in name: a__ : List[Any] = """weight_v""" elif "bias" in name: a__ : int = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ : int = """weight""" else: a__ : Any = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) continue if not is_used: unused_weights.append(_lowercase) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase_ ( _lowercase : str , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : int) -> Tuple: """simple docstring""" a__ : Any = full_name.split("""conv_layers.""")[-1] a__ : Tuple = name.split(""".""") a__ : Optional[Any] = int(items[0]) a__ : Optional[int] = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a__ : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a__ : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a__ : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a__ : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(_lowercase) @torch.no_grad() def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : str , _lowercase : Dict=None , _lowercase : Dict=None , _lowercase : Optional[Any]=True) -> List[Any]: """simple docstring""" if config_path is not None: a__ : int = UniSpeechConfig.from_pretrained(_lowercase) else: a__ : Optional[Any] = UniSpeechConfig() if is_finetuned: if dict_path: a__ : List[Any] = Dictionary.load_from_json(_lowercase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ : Dict = target_dict.pad_index a__ : Optional[int] = target_dict.bos_index a__ : Optional[int] = target_dict.eos_index a__ : int = len(target_dict.symbols) a__ : int = os.path.join(_lowercase , """vocab.json""") if not os.path.isdir(_lowercase): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowercase)) return os.makedirs(_lowercase , exist_ok=_lowercase) a__ : str = target_dict.indices # fairseq has the <pad> and <s> switched a__ : Dict = 42 a__ : Optional[Any] = 43 with open(_lowercase , """w""" , encoding="""utf-8""") as vocab_handle: json.dump(_lowercase , _lowercase) a__ : Dict = WavaVecaPhonemeCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowercase , ) a__ : Dict = True if config.feat_extract_norm == """layer""" else False a__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) a__ : Optional[Any] = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase) processor.save_pretrained(_lowercase) a__ : List[Any] = UniSpeechForCTC(_lowercase) else: a__ : Optional[Any] = UniSpeechForPreTraining(_lowercase) if is_finetuned: a__ , a__ , a__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""")[:-1]), """w2v_path""": checkpoint_path}) else: a__ , a__ , a__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) a__ : Tuple = model[0].eval() recursively_load_weights(_lowercase , _lowercase , _lowercase) hf_unispeech.save_pretrained(_lowercase) if __name__ == "__main__": _lowercase : Optional[int] =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowercase : Union[str, Any] =parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
136
0
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """depth_multiplier""" ) ) class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.25 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu6" , __SCREAMING_SNAKE_CASE=1_2_8_0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : Union[str, Any] = parent snake_case__ : str = batch_size snake_case__ : List[str] = num_channels snake_case__ : Any = image_size snake_case__ : str = depth_multiplier snake_case__ : Dict = depth_divisible_by snake_case__ : Union[str, Any] = min_depth snake_case__ : Any = expand_ratio snake_case__ : int = tf_padding snake_case__ : str = output_stride snake_case__ : Optional[Any] = first_layer_is_expansion snake_case__ : Tuple = finegrained_output snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) snake_case__ : str = classifier_dropout_prob snake_case__ : Tuple = use_labels snake_case__ : Optional[Any] = is_training snake_case__ : int = num_labels snake_case__ : Dict = initializer_range snake_case__ : Any = scope def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Dict = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : str = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = MobileNetVaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = self.num_labels snake_case__ : Union[str, Any] = MobileNetVaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : int = self.num_labels snake_case__ : Optional[Any] = MobileNetVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case__ : int = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self ): snake_case__ : List[str] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = config_and_inputs snake_case__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Tuple = MobileNetVaModelTester(self ) snake_case__ : List[str] = MobileNetVaConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[Any] = [*signature.parameters.keys()] snake_case__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) snake_case__ : Union[str, Any] = outputs.hidden_states snake_case__ : List[Any] = 1_6 self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Tuple = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = MobileNetVaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Any: '''simple docstring''' snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ): snake_case__ : str = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.default_image_processor snake_case__ : Dict = prepare_img() snake_case__ : str = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : Dict = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case__ : Any = model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case__ : Dict = prepare_img() snake_case__ : Tuple = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Tuple = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = outputs.logits # verify the logits snake_case__ : Optional[int] = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
419
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer A_ : Any = logging.get_logger(__name__) A_ : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : int = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } A_ : Optional[Any] = {"mobilebert-uncased": 512} A_ : Optional[Any] = {} class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = MobileBertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): snake_case__ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) snake_case__ : List[str] = do_lower_case snake_case__ : List[Any] = strip_accents snake_case__ : Any = tokenize_chinese_chars snake_case__ : List[Any] = normalizer_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = do_lower_case def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
419
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _lowerCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): for attribute in key.split('''.''' ): _UpperCamelCase = getattr(__snake_case , __snake_case ) if weight_type is not None: _UpperCamelCase = getattr(__snake_case , __snake_case ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.feature_extractor _UpperCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(__snake_case , __snake_case , __snake_case , __snake_case ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(__snake_case )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , __snake_case ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "bias" in name: _UpperCamelCase = '''bias''' elif "weight" in name: _UpperCamelCase = '''weight''' else: _UpperCamelCase = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCamelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case ): _UpperCamelCase = full_name.split('''adaptor.''' )[-1] _UpperCamelCase = name.split('''.''' ) if items[1].isdigit(): _UpperCamelCase = int(items[1] ) else: _UpperCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" _UpperCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(__snake_case , __snake_case ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" _UpperCamelCase = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): _UpperCamelCase = WavaVecaConfig.from_pretrained( __snake_case , add_adapter=__snake_case , adapter_stride=__snake_case , adapter_kernel_size=__snake_case , use_auth_token=__snake_case , output_hidden_size=__snake_case , ) _UpperCamelCase = MBartConfig.from_pretrained(__snake_case ) # load model _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) _UpperCamelCase = model[0].eval() # load feature extractor _UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(__snake_case , use_auth_token=__snake_case ) # set weights for wav2vec2 encoder _UpperCamelCase = WavaVecaModel(__snake_case ) recursively_load_weights_wavaveca(model.encoder , __snake_case ) # load decoder weights _UpperCamelCase = MBartForCausalLM(__snake_case ) _UpperCamelCase , _UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) _UpperCamelCase = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) _UpperCamelCase = False _UpperCamelCase = MBartaaTokenizer(__snake_case ) tokenizer.save_pretrained(__snake_case ) _UpperCamelCase = hf_wavavec.config.to_dict() _UpperCamelCase = tokenizer.pad_token_id _UpperCamelCase = tokenizer.bos_token_id _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = '''mbart50''' _UpperCamelCase = '''wav2vec2''' _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = 250004 _UpperCamelCase = tokenizer.eos_token_id _UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") _lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( '''kwargs, expected''' , [ ({'''num_shards''': 0, '''max_num_jobs''': 1}, []), ({'''num_shards''': 10, '''max_num_jobs''': 1}, [range(10 )]), ({'''num_shards''': 10, '''max_num_jobs''': 10}, [range(_snake_case , i + 1 ) for i in range(10 )]), ({'''num_shards''': 1, '''max_num_jobs''': 10}, [range(1 )]), ({'''num_shards''': 10, '''max_num_jobs''': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'''num_shards''': 3, '''max_num_jobs''': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def UpperCAmelCase ( _snake_case , _snake_case ): lowerCAmelCase = _distribute_shards(**_snake_case ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, max_num_jobs, expected''' , [ ({'''foo''': 0}, 10, [{'''foo''': 0}]), ({'''shards''': [0, 1, 2, 3]}, 1, [{'''shards''': [0, 1, 2, 3]}]), ({'''shards''': [0, 1, 2, 3]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}, {'''shards''': [2]}, {'''shards''': [3]}]), ({'''shards''': [0, 1]}, 4, [{'''shards''': [0]}, {'''shards''': [1]}]), ({'''shards''': [0, 1, 2, 3]}, 2, [{'''shards''': [0, 1]}, {'''shards''': [2, 3]}]), ] , ) def UpperCAmelCase ( _snake_case , _snake_case , _snake_case ): lowerCAmelCase = _split_gen_kwargs(_snake_case , _snake_case ) assert out == expected @pytest.mark.parametrize( '''gen_kwargs, expected''' , [ ({'''foo''': 0}, 1), ({'''shards''': [0]}, 1), ({'''shards''': [0, 1, 2, 3]}, 4), ({'''shards''': [0, 1, 2, 3], '''foo''': 0}, 4), ({'''shards''': [0, 1, 2, 3], '''other''': (0, 1)}, 4), ({'''shards''': [0, 1, 2, 3], '''shards2''': [0, 1]}, RuntimeError), ] , ) def UpperCAmelCase ( _snake_case , _snake_case ): if expected is RuntimeError: with pytest.raises(_snake_case ): _number_of_shards_in_gen_kwargs(_snake_case ) else: lowerCAmelCase = _number_of_shards_in_gen_kwargs(_snake_case ) assert out == expected
33
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __a : Any =1 @register_to_config def __init__( self , UpperCAmelCase_=20_00 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20 , UpperCAmelCase_=1E-3 ): lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): lowerCAmelCase = torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase_ , device=UpperCAmelCase_ ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase = std.unsqueeze(-1 ) lowerCAmelCase = -score / std # compute lowerCAmelCase = -1.0 / len(self.timesteps ) lowerCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase = beta_t.unsqueeze(-1 ) lowerCAmelCase = -0.5 * beta_t * x lowerCAmelCase = torch.sqrt(UpperCAmelCase_ ) lowerCAmelCase = drift - diffusion**2 * score lowerCAmelCase = x + drift * dt # add noise lowerCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase_ , device=x.device , dtype=x.dtype ) lowerCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): return self.config.num_train_timesteps
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> str: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Dict = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Any = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: List[Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Dict = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __SCREAMING_SNAKE_CASE: int = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: List[Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Union[str, Any] = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE: str = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __SCREAMING_SNAKE_CASE: Dict = features.copy() __SCREAMING_SNAKE_CASE: Optional[int] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Union[str, Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Any: """simple docstring""" if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: Optional[Any] = jsonl_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: List[str] = [jsonl_path] __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: Tuple = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any]=("train",) ) -> List[str]: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: __SCREAMING_SNAKE_CASE: Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: str = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE: Optional[int] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE: Dict = JsonDatasetReader({'''train''': jsonl_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" if split: __SCREAMING_SNAKE_CASE: str = {split: jsonl_path} else: __SCREAMING_SNAKE_CASE: Dict = '''train''' __SCREAMING_SNAKE_CASE: Tuple = {'''train''': jsonl_path, '''test''': jsonl_path} __SCREAMING_SNAKE_CASE: Tuple = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __SCREAMING_SNAKE_CASE: int = JsonDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_json_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase ( UpperCamelCase__ : Dict ) -> Optional[int]: """simple docstring""" return json.load(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any ) -> Any: """simple docstring""" return [json.loads(UpperCamelCase__ ) for line in buffer] class a : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: str = load_json_function(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(exported_content[0] , _lowerCAmelCase ) assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , orient=_lowerCAmelCase ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Optional[int] = load_json(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = load_json_function(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert isinstance(exported_content[0] , _lowerCAmelCase ) assert len(_lowerCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , lines=_lowerCAmelCase , orient=_lowerCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __SCREAMING_SNAKE_CASE: Dict = load_json(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowerCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowerCAmelCase ) == 10 def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = tmp_path_factory.mktemp('''data''' ) / f"""test.json.{extension}""" __SCREAMING_SNAKE_CASE: Any = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_lowerCAmelCase , _lowerCAmelCase , compression=_lowerCAmelCase ).write() with fsspec.open(_lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: __SCREAMING_SNAKE_CASE: Optional[Any] = f.read() with fsspec.open(_lowerCAmelCase , '''rb''' , compression='''infer''' ) as f: __SCREAMING_SNAKE_CASE: Any = f.read() assert exported_content == original_content
202
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = 'funnel' A = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self ,__SCREAMING_SNAKE_CASE=30522 ,__SCREAMING_SNAKE_CASE=[4, 4, 4] ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=2 ,__SCREAMING_SNAKE_CASE=768 ,__SCREAMING_SNAKE_CASE=12 ,__SCREAMING_SNAKE_CASE=64 ,__SCREAMING_SNAKE_CASE=3072 ,__SCREAMING_SNAKE_CASE="gelu_new" ,__SCREAMING_SNAKE_CASE=0.1 ,__SCREAMING_SNAKE_CASE=0.1 ,__SCREAMING_SNAKE_CASE=0.0 ,__SCREAMING_SNAKE_CASE=0.1 ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=1e-9 ,__SCREAMING_SNAKE_CASE="mean" ,__SCREAMING_SNAKE_CASE="relative_shift" ,__SCREAMING_SNAKE_CASE=True ,__SCREAMING_SNAKE_CASE=True ,__SCREAMING_SNAKE_CASE=True ,**__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : List[str] = block_sizes SCREAMING_SNAKE_CASE : Optional[int] = [1] * len(_UpperCAmelCase ) if block_repeats is None else block_repeats assert len(_UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE : Union[str, Any] = num_decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = d_model SCREAMING_SNAKE_CASE : str = n_head SCREAMING_SNAKE_CASE : Tuple = d_head SCREAMING_SNAKE_CASE : int = d_inner SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE : int = attention_dropout SCREAMING_SNAKE_CASE : Any = activation_dropout SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : List[str] = initializer_std SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" SCREAMING_SNAKE_CASE : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" SCREAMING_SNAKE_CASE : List[str] = attention_type SCREAMING_SNAKE_CASE : Optional[Any] = separate_cls SCREAMING_SNAKE_CASE : Tuple = truncate_seq SCREAMING_SNAKE_CASE : Union[str, Any] = pool_q_only super().__init__(**_UpperCAmelCase ) @property def __a ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def __a ( self ,__SCREAMING_SNAKE_CASE ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def __a ( self ): return len(self.block_sizes ) @num_blocks.setter def __a ( self ,__SCREAMING_SNAKE_CASE ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
714
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = '▁' __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = BigBirdTokenizer A = BigBirdTokenizerFast A = True A = True def __a ( self ): super().setUp() SCREAMING_SNAKE_CASE : Any = self.tokenizer_class(__SCREAMING_SNAKE_CASE ,keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ): SCREAMING_SNAKE_CASE : int = '<s>' SCREAMING_SNAKE_CASE : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) def __a ( self ): SCREAMING_SNAKE_CASE : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'[MASK]' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,1004 ) def __a ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def __a ( self ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : int = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def __a ( self ): SCREAMING_SNAKE_CASE : Optional[Any] = BigBirdTokenizer(__SCREAMING_SNAKE_CASE ,keep_accents=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(__SCREAMING_SNAKE_CASE ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) ,[285, 46, 10, 170, 382] ,) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __SCREAMING_SNAKE_CASE ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,) SCREAMING_SNAKE_CASE : List[str] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) @cached_property def __a ( self ): return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def __a ( self ): SCREAMING_SNAKE_CASE : Optional[int] = 'Hello World!' SCREAMING_SNAKE_CASE : Union[str, Any] = [65, 18536, 2260, 101, 66] self.assertListEqual(__SCREAMING_SNAKE_CASE ,self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def __a ( self ): SCREAMING_SNAKE_CASE : Any = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(__SCREAMING_SNAKE_CASE ,self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @require_torch @slow def __a ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence SCREAMING_SNAKE_CASE : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE : Any = ' '.join(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = self.big_tokenizer.encode_plus(__SCREAMING_SNAKE_CASE ,return_tensors='pt' ,return_token_type_ids=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] ,return_tensors='pt' ,return_token_type_ids=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = BigBirdConfig(attention_type='original_full' ) SCREAMING_SNAKE_CASE : Dict = BigBirdModel(__SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__SCREAMING_SNAKE_CASE ) model(**__SCREAMING_SNAKE_CASE ) @slow def __a ( self ): SCREAMING_SNAKE_CASE : Optional[int] = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def __a ( self ): # fmt: off SCREAMING_SNAKE_CASE : Tuple = {'input_ids': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE ,model_name='google/bigbird-roberta-base' ,revision='215c99f1600e06f83acce68422f2035b2b5c3510' ,)
220
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : List[str]=512 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : List[str]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = self.vocab_size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , *_lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , *_lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = OpenAIGPTDoubleHeadsModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = OpenAIGPTForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=False ): SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = inputs_dict['labels'] SCREAMING_SNAKE_CASE_ = inputs_dict['labels'] SCREAMING_SNAKE_CASE_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Tuple ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = OpenAIGPTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=_lowerCAmelCase ) # the president is SCREAMING_SNAKE_CASE_ = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the SCREAMING_SNAKE_CASE_ = model.generate(_lowerCAmelCase , do_sample=_lowerCAmelCase ) self.assertListEqual(output_ids[0].tolist() , _lowerCAmelCase )
31
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _A : '''simple docstring''' pass
402
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> Union[str, Any]: try: snake_case : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case : Any = default else: # KEY is set, convert it to True or False. try: snake_case : List[Any] = strtobool(lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value lowerCamelCase : List[str] = parse_flag_from_env('RUN_SLOW', default=False) lowerCamelCase : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) lowerCamelCase : str = parse_flag_from_env('RUN_LOCAL', default=True) lowerCamelCase : int = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowerCamelCase : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowerCamelCase : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowerCamelCase : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowerCamelCase : List[str] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowerCamelCase : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowerCamelCase : Tuple = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowerCamelCase : List[Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: try: import faiss # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires faiss""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: try: import regex # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires regex""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: try: import elasticsearch # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires elasticsearch""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: try: import sqlalchemy # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires sqlalchemy""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: if not config.TORCH_AVAILABLE: snake_case : Optional[Any] = unittest.skip("""test requires PyTorch""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: if not config.TF_AVAILABLE: snake_case : Union[str, Any] = unittest.skip("""test requires TensorFlow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if not config.JAX_AVAILABLE: snake_case : List[str] = unittest.skip("""test requires JAX""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if not config.PIL_AVAILABLE: snake_case : List[Any] = unittest.skip("""test requires Pillow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: def _require_spacy_model(lowercase ): try: import spacy # noqa F401 spacy.load(lowercase ) except ImportError: return unittest.skip("""test requires spacy""" )(lowercase ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(lowercase ) )(lowercase ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not _run_slow_tests or _run_slow_tests == 0: snake_case : Optional[int] = unittest.skip("""test is slow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not _run_local_tests or _run_local_tests == 0: snake_case : Tuple = unittest.skip("""test is local""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: if not _run_packaged_tests or _run_packaged_tests == 0: snake_case : Tuple = unittest.skip("""test is packaged""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if not _run_remote_tests or _run_remote_tests == 0: snake_case : Dict = unittest.skip("""test requires remote""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( *lowercase ) -> int: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowercase ) and name.startswith("""test""" ): for decorator in decorators: snake_case : Any = decorator(lowercase ) setattr(cls ,lowercase ,lowercase ) return cls return decorate class __lowercase (UpperCamelCase__ ): """simple docstring""" pass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 0 _snake_case = 1 _snake_case = 2 @contextmanager def SCREAMING_SNAKE_CASE__ ( lowercase=OfflineSimulationMode.CONNECTION_FAILS ,lowercase=1E-16 ) -> List[Any]: snake_case : Any = requests.Session().request def timeout_request(lowercase ,lowercase ,lowercase ,**lowercase ): # Change the url to an invalid url so that the connection hangs snake_case : List[Any] = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) snake_case : Any = timeout try: return online_request(lowercase ,lowercase ,**lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case : Dict = url snake_case : Optional[int] = e.args[0] snake_case : List[Any] = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"""OfflineMock[{url}]""" ),) snake_case : Dict = (max_retry_error,) raise def raise_connection_error(lowercase ,lowercase ,**lowercase ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,lowercase ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Optional[Any]: snake_case : str = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowercase ,**lowercase ) as tmp_dir: try: os.chdir(lowercase ) yield finally: os.chdir(lowercase ) @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Dict: import gc gc.collect() snake_case : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: import gc gc.collect() snake_case : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: return deepcopy(lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(lowercase ).integers(0 ,100 ,10 ).tolist() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: import decorator from requests.exceptions import HTTPError def _wrapper(lowercase ,*lowercase ,**lowercase ): try: return func(*lowercase ,**lowercase ) except HTTPError as err: if str(lowercase ).startswith("""500""" ) or str(lowercase ).startswith("""502""" ): pytest.xfail(str(lowercase ) ) raise err return decorator.decorator(_wrapper ,lowercase ) class __lowercase : """simple docstring""" def __init__( self , A , A , A ) -> Optional[int]: snake_case : List[Any] = returncode snake_case : Tuple = stdout snake_case : Dict = stderr async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: while True: snake_case : List[str] = await stream.readline() if line: callback(lowercase ) else: break async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=None ,lowercase=False ,lowercase=False ) -> _RunOutput: if echo: print("""\nRunning: """ ,""" """.join(lowercase ) ) snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case : str = [] snake_case : List[str] = [] def tee(lowercase ,lowercase ,lowercase ,lowercase="" ): snake_case : List[str] = line.decode("""utf-8""" ).rstrip() sink.append(lowercase ) if not quiet: print(lowercase ,lowercase ,file=lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda lowercase : tee(lowercase ,lowercase ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda lowercase : tee(lowercase ,lowercase ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=lowercase ,) return _RunOutput(await p.wait() ,lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=180 ,lowercase=False ,lowercase=True ) -> _RunOutput: snake_case : Dict = asyncio.get_event_loop() snake_case : Optional[int] = loop.run_until_complete( _stream_subprocess(lowercase ,env=lowercase ,stdin=lowercase ,timeout=lowercase ,quiet=lowercase ,echo=lowercase ) ) snake_case : Any = """ """.join(lowercase ) if result.returncode > 0: snake_case : List[str] = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: snake_case : Optional[Any] = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) snake_case : Tuple = re.sub(R"""^gw""" ,"""""" ,lowercase ,0 ,re.M ) return int(lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Dict = 29500 snake_case : int = pytest_xdist_worker_id() return port + uniq_delta
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = XGLMTokenizer __magic_name__ = XGLMTokenizerFast __magic_name__ = True __magic_name__ = True def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Tuple = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = "<pad>" UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase_ ) , 1_008 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : Tuple = XGLMTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase_ : str = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase_ , f.name ) UpperCAmelCase_ : Optional[Any] = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = pickle.dumps(lowerCAmelCase_ ) pickle.loads(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: if not self.test_rust_tokenizer: return UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ : Tuple = self.get_rust_tokenizer() UpperCAmelCase_ : int = "I was born in 92000, and this is falsé." UpperCAmelCase_ : Optional[int] = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : int = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = self.get_rust_tokenizer() UpperCAmelCase_ : List[str] = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : int = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: UpperCAmelCase_ : Tuple = "Hello World!" UpperCAmelCase_ : Tuple = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : List[str] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off UpperCAmelCase_ : Dict = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase_ , self.big_tokenizer.encode(lowerCAmelCase_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: # fmt: off UpperCAmelCase_ : Union[str, Any] = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase_ , )
95
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : str = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ], dtype=tf.floataa, ) lowercase_ : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.intaa, ) # expected non filtered idx as noted above lowercase_ : List[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023], dtype=tf.floataa, ) # expected non filtered values as noted above lowercase_ : int = tf_top_k_top_p_filtering(snake_case__, top_k=10, top_p=0.6, min_tokens_to_keep=4 ) lowercase_ : Dict = output[output != -float("""inf""" )] lowercase_ : Tuple = tf.cast( tf.where(tf.not_equal(snake_case__, tf.constant(-float("""inf""" ), dtype=tf.floataa ) ) ), dtype=tf.intaa, ) tf.debugging.assert_near(snake_case__, snake_case__, rtol=1E-12 ) tf.debugging.assert_equal(snake_case__, snake_case__ ) @require_tf class UpperCamelCase__ ( unittest.TestCase , lowerCamelCase__ ): '''simple docstring''' if is_tf_available(): __a : Optional[int] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def snake_case__ ( self ) -> str: """simple docstring""" # TF-only test: tf.saved_model export lowercase_ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : int = 2 lowercase_ : Optional[Any] = 2 class UpperCamelCase__ ( tf.Module ): '''simple docstring''' def __init__( self, snake_case__ ) -> Any: """simple docstring""" super(snake_case__, self ).__init__() lowercase_ : int = model @tf.function( input_signature=( tf.TensorSpec((None, input_length), tf.intaa, name="""input_ids""" ), tf.TensorSpec((None, input_length), tf.intaa, name="""attention_mask""" ), ), jit_compile=snake_case__, ) def snake_case__ ( self, snake_case__, snake_case__ ) -> int: """simple docstring""" lowercase_ : Tuple = self.model.generate( input_ids=snake_case__, attention_mask=snake_case__, max_new_tokens=snake_case__, return_dict_in_generate=snake_case__, ) return {"sequences": outputs["sequences"]} lowercase_ : Union[str, Any] = [[2, 0], [1_02, 1_03]] lowercase_ : Tuple = [[1, 0], [1, 1]] lowercase_ : int = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__, snake_case__, signatures={"""serving_default""": dummy_model.serving} ) lowercase_ : List[Any] = tf.saved_model.load(snake_case__ ).signatures["""serving_default"""] for batch_size in range(1, len(snake_case__ ) + 1 ): lowercase_ : str = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } lowercase_ : Optional[int] = serving_func(**snake_case__ )["""sequences"""] lowercase_ : Optional[int] = test_model.generate(**snake_case__, max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__, snake_case__ ) @slow def snake_case__ ( self ) -> Tuple: """simple docstring""" # TF-only test: tf.saved_model export lowercase_ : int = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : Tuple = 1 lowercase_ : Tuple = 2 class UpperCamelCase__ ( tf.Module ): '''simple docstring''' def __init__( self, snake_case__ ) -> List[str]: """simple docstring""" super(snake_case__, self ).__init__() lowercase_ : Union[str, Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None), tf.intaa, name="""input_ids""" ), tf.TensorSpec((batch_size, None), tf.intaa, name="""attention_mask""" ), ), jit_compile=snake_case__, ) def snake_case__ ( self, snake_case__, snake_case__ ) -> Optional[Any]: """simple docstring""" lowercase_ : str = self.model.generate( input_ids=snake_case__, attention_mask=snake_case__, max_new_tokens=snake_case__, return_dict_in_generate=snake_case__, ) return {"sequences": outputs["sequences"]} lowercase_ : Union[str, Any] = [[2], [1_02, 1_03]] lowercase_ : List[str] = [[1], [1, 1]] lowercase_ : Union[str, Any] = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__, snake_case__, signatures={"""serving_default""": dummy_model.serving} ) lowercase_ : Optional[Any] = tf.saved_model.load(snake_case__ ).signatures["""serving_default"""] for input_row in range(len(snake_case__ ) ): lowercase_ : List[str] = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } lowercase_ : Union[str, Any] = serving_func(**snake_case__ )["""sequences"""] lowercase_ : Optional[Any] = test_model.generate(**snake_case__, max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__, snake_case__ ) @slow @require_tensorflow_text def snake_case__ ( self ) -> Any: """simple docstring""" # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""", filename="""spiece.model""", local_dir=snake_case__ ) class UpperCamelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase_ : Tuple = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(snake_case__, """spiece.model""" ), """rb""" ).read() ) lowercase_ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def snake_case__ ( self, snake_case__, *snake_case__, **snake_case__ ) -> Optional[Any]: """simple docstring""" lowercase_ : Union[str, Any] = self.tokenizer.tokenize(snake_case__ ) lowercase_ , lowercase_ : Union[str, Any] = text.pad_model_inputs( snake_case__, max_seq_length=64, pad_value=self.model.config.pad_token_id ) lowercase_ : str = self.model.generate(input_ids=snake_case__, attention_mask=snake_case__ ) return self.tokenizer.detokenize(snake_case__ ) lowercase_ : Optional[int] = CompleteSentenceTransformer() lowercase_ : Union[str, Any] = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name="""inputs""" ) lowercase_ : Any = complete_model(snake_case__ ) lowercase_ : Optional[Any] = tf.keras.Model(snake_case__, snake_case__ ) keras_model.save(snake_case__ ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" # Has PT equivalent: this test relies on random sampling lowercase_ : Any = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } lowercase_ : List[str] = 14 lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : Dict = """Hello, my dog is cute and""" lowercase_ : List[str] = tokenizer(snake_case__, return_tensors="""tf""" ) lowercase_ : Tuple = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : int = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ : Optional[int] = model.generate(**snake_case__, eos_token_id=snake_case__, **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowercase_ : int = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ : Optional[int] = model.generate(**snake_case__, eos_token_id=snake_case__, **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__ ( self ) -> str: """simple docstring""" # Has PT equivalent: ample use of framework-specific code lowercase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ : int = """Hugging Face is a technology company based in New York and Paris.""" lowercase_ : int = bart_tokenizer(snake_case__, return_tensors="""tf""" ).input_ids lowercase_ : Tuple = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ : Union[str, Any] = bart_model.generate(snake_case__ ).numpy() class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' def snake_case__ ( self, snake_case__, snake_case__=None, **snake_case__ ) -> str: """simple docstring""" return super().call(snake_case__, **snake_case__ ) lowercase_ : Tuple = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ : str = bart_model.generate(snake_case__, foo="""bar""" ).numpy() self.assertTrue(np.array_equal(snake_case__, snake_case__ ) ) class UpperCamelCase__ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__ ( self, snake_case__, **snake_case__ ) -> List[str]: """simple docstring""" return super().call(snake_case__, **snake_case__ ) lowercase_ : Optional[int] = FakeEncoder(bart_model.config, bart_model.model.shared ) lowercase_ : Any = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowercase_ : Any = bart_model.generate(snake_case__ ).numpy() with self.assertRaises(snake_case__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(snake_case__, foo="""bar""" )
458
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _UpperCAmelCase ( a : List[Any] ): snake_case__ = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ = 0.01 with locka.acquire(): with pytest.raises(a ): snake_case__ = time.time() locka.acquire(a ) assert time.time() - _start > timeout def _UpperCAmelCase ( a : str ): snake_case__ = """a""" * 1000 + """.lock""" snake_case__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(a ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a ): locka.acquire(0 )
701
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
0