code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import qiskit def A ( a_ ,a_ ) -> qiskit.result.counts.Counts: __UpperCamelCase : Any =qiskit.Aer.get_backend('aer_simulator' ) __UpperCamelCase : List[str] =qiskit.QuantumCircuit(4 ,2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 ,2 ) qc_ha.cx(1 ,2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 ,1 ,3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 ,0 ) # extract XOR value qc_ha.measure(3 ,1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCamelCase : Dict =qiskit.execute(a_ ,a_ ,shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(a_ ) if __name__ == "__main__": A_ :Union[str, Any] = half_adder(1, 1) print(f"Half Adder Output Qubit Counts: {counts}")
71
import random from .binary_exp_mod import bin_exp_mod def A ( a_ ,a_=1_000 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCamelCase : List[Any] =n - 1 __UpperCamelCase : Dict =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCamelCase : Optional[Any] =0 while count < prec: __UpperCamelCase : Dict =random.randint(2 ,n - 1 ) __UpperCamelCase : Optional[Any] =bin_exp_mod(a_ ,a_ ,a_ ) if b != 1: __UpperCamelCase : List[str] =True for _ in range(a_ ): if b == n - 1: __UpperCamelCase : Tuple =False break __UpperCamelCase : Dict =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A_ :str = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
71
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
365
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : Any = MBartConfig __UpperCamelCase : Tuple = {} __UpperCamelCase : Dict = '''gelu''' def __init__( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Union[str, Any]=3_7 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[Any] = batch_size _A: Dict = seq_length _A: Dict = is_training _A: str = use_labels _A: int = vocab_size _A: str = hidden_size _A: Tuple = num_hidden_layers _A: Optional[Any] = num_attention_heads _A: Tuple = intermediate_size _A: int = hidden_dropout_prob _A: Tuple = attention_probs_dropout_prob _A: Tuple = max_position_embeddings _A: Dict = eos_token_id _A: int = pad_token_id _A: Any = bos_token_id def __magic_name__ ( self : Dict ): """simple docstring""" _A: Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: List[str] = inputs_dict['''input_ids'''] _A: Tuple = input_ids[:1, :] _A: List[Any] = inputs_dict['''attention_mask'''][:1, :] _A: str = inputs_dict['''head_mask'''] _A: Optional[Any] = 1 # first forward pass _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A , _A: List[str] = outputs.to_tuple() _A: Dict = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Tuple: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Tuple = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : int = False __UpperCamelCase : Optional[Any] = False def __magic_name__ ( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Any ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: Tuple = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Union[str, Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Tuple ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : str ): """simple docstring""" _A: Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[Any] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Any = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: Optional[Any] = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : List[str] ): """simple docstring""" self._assert_generated_batch_equal_expected()
301
0
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False): UpperCAmelCase__ : str = scheduler UpperCAmelCase__ : Dict = optimizers if isinstance(_lowerCamelCase , (list, tuple)) else [optimizers] UpperCAmelCase__ : List[Any] = split_batches UpperCAmelCase__ : Tuple = step_with_optimizer UpperCAmelCase__ : Union[str, Any] = GradientState() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase__ : Dict = AcceleratorState().num_processes for _ in range(_lowerCamelCase): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps"""): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_last_lr() def snake_case__ ( self): return self.scheduler.state_dict() def snake_case__ ( self , _lowerCamelCase): self.scheduler.load_state_dict(_lowerCamelCase) def snake_case__ ( self): return self.scheduler.get_lr() def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase)
163
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( a__ ): lowerCAmelCase :Dict = ['''image_processor''', '''tokenizer'''] lowerCAmelCase :Union[str, Any] = '''BlipImageProcessor''' lowerCAmelCase :Any = '''AutoTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): super().__init__(_lowerCamelCase , _lowerCamelCase) # add QFormer tokenizer UpperCAmelCase__ : List[str] = qformer_tokenizer def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""") UpperCAmelCase__ : List[str] = BatchFeature() if text is not None: UpperCAmelCase__ : Any = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) encoding.update(_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.qformer_tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : Dict = qformer_text_encoding.pop("""input_ids""") UpperCAmelCase__ : Tuple = qformer_text_encoding.pop("""attention_mask""") if images is not None: UpperCAmelCase__ : List[str] = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase) encoding.update(_lowerCamelCase) return encoding def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.tokenizer.model_input_names UpperCAmelCase__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def snake_case__ ( self , _lowerCamelCase , **_lowerCamelCase): if os.path.isfile(_lowerCamelCase): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''') os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) UpperCAmelCase__ : Dict = os.path.join(_lowerCamelCase , """qformer_tokenizer""") self.qformer_tokenizer.save_pretrained(_lowerCamelCase) return super().save_pretrained(_lowerCamelCase , **_lowerCamelCase) @classmethod def snake_case__ ( cls , _lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_lowerCamelCase , subfolder="""qformer_tokenizer""") UpperCAmelCase__ : List[Any] = cls._get_arguments_from_pretrained(_lowerCamelCase , **_lowerCamelCase) args.append(_lowerCamelCase) return cls(*_lowerCamelCase)
163
1
import unittest import numpy as np def UpperCAmelCase_ ( __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : np.ndarray | None = None , ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = np.shape(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = np.shape(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = np.shape(__UpperCAmelCase ) if shape_a[0] != shape_b[0]: SCREAMING_SNAKE_CASE_ = ( 'Expected the same number of rows for A and B. ' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(__UpperCAmelCase ) if shape_b[1] != shape_c[1]: SCREAMING_SNAKE_CASE_ = ( 'Expected the same number of columns for B and C. ' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = pseudo_inv if a_inv is None: try: SCREAMING_SNAKE_CASE_ = np.linalg.inv(__UpperCAmelCase ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE_ = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE_ = np.array([[2, 1], [6, 3]] ) SCREAMING_SNAKE_CASE_ = schur_complement(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.block([[a, b], [b.T, c]] ) SCREAMING_SNAKE_CASE_ = np.linalg.det(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.linalg.det(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.linalg.det(_lowerCAmelCase ) self.assertAlmostEqual(_lowerCAmelCase , det_a * det_s ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE_ = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE_ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCAmelCase ): schur_complement(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE_ = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE_ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCAmelCase ): schur_complement(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
210
def UpperCAmelCase_ ( ) -> int: return 1 def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : int = 2_00 ) -> int: return two_pound(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
210
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase : def __init__( self : Optional[int] , __snake_case : int , __snake_case : Optional[Any]=2 , __snake_case : int=True , __snake_case : str=False , __snake_case : List[str]=10 , __snake_case : Union[str, Any]=3 , __snake_case : List[Any]=32 * 4 , __snake_case : str=32 * 6 , __snake_case : int=4 , __snake_case : str=32 , ) -> str: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = is_training _lowerCAmelCase = use_auxiliary_loss _lowerCAmelCase = num_queries _lowerCAmelCase = num_channels _lowerCAmelCase = min_size _lowerCAmelCase = max_size _lowerCAmelCase = num_labels _lowerCAmelCase = mask_feature_size def lowercase__ ( self : Optional[int] ) -> Optional[int]: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) _lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) _lowerCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() _lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() _lowerCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Any ) -> Union[str, Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase__ ( self : List[Any] , __snake_case : str , __snake_case : Optional[int] ) -> List[Any]: _lowerCAmelCase = output.encoder_hidden_states _lowerCAmelCase = output.pixel_decoder_hidden_states _lowerCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_config.decoder_layers ) def lowercase__ ( self : str , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict=False ) -> Dict: with torch.no_grad(): _lowerCAmelCase = MaskFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(pixel_values=__snake_case , pixel_mask=__snake_case ) _lowerCAmelCase = model(__snake_case , output_hidden_states=__snake_case ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : Dict , __snake_case : Dict , __snake_case : str ) -> str: _lowerCAmelCase = MaskFormerForInstanceSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(__snake_case : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCAmelCase = model(pixel_values=__snake_case , pixel_mask=__snake_case ) _lowerCAmelCase = model(__snake_case ) comm_check_on_output(__snake_case ) _lowerCAmelCase = model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _lowercase: int = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _lowercase: Optional[int] = False _lowercase: Union[str, Any] = False _lowercase: Dict = False _lowercase: Union[str, Any] = False def lowercase__ ( self : Tuple ) -> List[Any]: _lowerCAmelCase = MaskFormerModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def lowercase__ ( self : Dict ) -> Dict: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ) -> str: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def lowercase__ ( self : str ) -> Optional[int]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def lowercase__ ( self : List[Any] ) -> List[str]: pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def lowercase__ ( self : List[str] ) -> Any: pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Optional[Any] ) -> Dict: pass def lowercase__ ( self : Tuple ) -> Union[str, Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def lowercase__ ( self : Optional[Any] ) -> str: for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCAmelCase = MaskFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowercase__ ( self : str ) -> int: _lowerCAmelCase = (self.model_tester.min_size,) * 2 _lowerCAmelCase = { """pixel_values""": torch.randn((2, 3, *size) , device=__snake_case ), """mask_labels""": torch.randn((2, 10, *size) , device=__snake_case ), """class_labels""": torch.zeros(2 , 10 , device=__snake_case ).long(), } _lowerCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__snake_case ) _lowerCAmelCase = model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def lowercase__ ( self : str ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(__snake_case ).to(__snake_case ) _lowerCAmelCase = model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : Tuple ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCAmelCase = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.train() _lowerCAmelCase = model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def lowercase__ ( self : Dict ) -> int: # only MaskFormerForInstanceSegmentation has the loss _lowerCAmelCase = self.all_model_classes[1] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = model_class(__snake_case ) model.to(__snake_case ) model.train() _lowerCAmelCase = model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) _lowerCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A__ : int =1e-4 def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ) -> Dict: return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(__snake_case ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) _lowerCAmelCase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _lowerCAmelCase = model(**__snake_case ) _lowerCAmelCase = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) _lowerCAmelCase = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) _lowerCAmelCase = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def lowercase__ ( self : Any ) -> Tuple: _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__snake_case ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) _lowerCAmelCase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _lowerCAmelCase = model(**__snake_case ) # masks_queries_logits _lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCAmelCase = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] _lowerCAmelCase = torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits _lowerCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCAmelCase = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def lowercase__ ( self : Tuple ) -> Optional[Any]: _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(__snake_case ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(__snake_case , return_tensors="""pt""" ).to(__snake_case ) _lowerCAmelCase = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) ) with torch.no_grad(): _lowerCAmelCase = model(**__snake_case ) # masks_queries_logits _lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCAmelCase = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] _lowerCAmelCase = torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits _lowerCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCAmelCase = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(__snake_case ) .eval() ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors="""pt""" , ) _lowerCAmelCase = inputs["""pixel_values"""].to(__snake_case ) _lowerCAmelCase = [el.to(__snake_case ) for el in inputs["""mask_labels"""]] _lowerCAmelCase = [el.to(__snake_case ) for el in inputs["""class_labels"""]] with torch.no_grad(): _lowerCAmelCase = model(**__snake_case ) self.assertTrue(outputs.loss is not None )
70
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar a_ : Any = TypeVar("T") class a ( Generic[T] ): def __init__( self , __magic_name__ , __magic_name__ ) -> None: _a = None _a = len(__magic_name__ ) _a = [any_type for _ in range(self.N )] + arr _a = fnc self.build() def __UpperCAmelCase ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: p += self.N _a = v while p > 1: _a = p // 2 _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> T | None: # noqa: E741 _a , _a = l + self.N, r + self.N _a = None while l <= r: if l % 2 == 1: _a = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: _a = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) _a , _a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce a_ : Union[str, Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] a_ : str = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } a_ : Dict = SegmentTree(test_array, min) a_ : Optional[int] = SegmentTree(test_array, max) a_ : int = SegmentTree(test_array, lambda a, b: a + b) def _A () -> None: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert max_range == max_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) test_all_segments() for index, value in test_updates.items(): a_ : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
168
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = args.log_outputs __SCREAMING_SNAKE_CASE = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric __SCREAMING_SNAKE_CASE = load_metric("wer" ) __SCREAMING_SNAKE_CASE = load_metric("cer" ) # compute metrics __SCREAMING_SNAKE_CASE = wer.compute(references=result["target"] , predictions=result["prediction"] ) __SCREAMING_SNAKE_CASE = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results __SCREAMING_SNAKE_CASE = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowerCAmelCase_ ) with open(f"""{dataset_id}_eval_results.txt""" , "w" ) as f: f.write(lowerCAmelCase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __SCREAMING_SNAKE_CASE = f"""log_{dataset_id}_predictions.txt""" __SCREAMING_SNAKE_CASE = f"""log_{dataset_id}_targets.txt""" with open(lowerCAmelCase_ , "w" ) as p, open(lowerCAmelCase_ , "w" ) as t: # mapping function to write output def write_to_file(lowerCAmelCase_ , lowerCAmelCase_ ): p.write(f"""{i}""" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f"""{i}""" + "\n" ) t.write(batch["target"] + "\n" ) result.map(lowerCAmelCase_ , with_indices=lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __SCREAMING_SNAKE_CASE = re.sub(lowerCAmelCase_ , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __SCREAMING_SNAKE_CASE = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: __SCREAMING_SNAKE_CASE = " ".join(text.split(lowerCAmelCase_ ) ) return text def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCAmelCase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(args.model_id ) __SCREAMING_SNAKE_CASE = feature_extractor.sampling_rate # resample audio __SCREAMING_SNAKE_CASE = dataset.cast_column("audio" , Audio(sampling_rate=lowerCAmelCase_ ) ) # load eval pipeline if args.device is None: __SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else -1 __SCREAMING_SNAKE_CASE = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __SCREAMING_SNAKE_CASE = prediction["text"] __SCREAMING_SNAKE_CASE = normalize_text(batch["sentence"] ) return batch # run inference on all examples __SCREAMING_SNAKE_CASE = dataset.map(lowerCAmelCase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) a__ : Optional[Any] = parser.parse_args() main(args)
195
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if dataset.ndim != value_array.ndim: __SCREAMING_SNAKE_CASE = ( "Wrong input data's dimensions... " f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowerCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: __SCREAMING_SNAKE_CASE = ( "Wrong input data's shape... " f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowerCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: __SCREAMING_SNAKE_CASE = ( "Input data have different datatype... " f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for value in value_array: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , dataset[0] ) __SCREAMING_SNAKE_CASE = dataset[0].tolist() for dataset_value in dataset[1:]: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , lowerCAmelCase_ ) if dist > temp_dist: __SCREAMING_SNAKE_CASE = temp_dist __SCREAMING_SNAKE_CASE = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
195
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] ) class __lowerCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = ['sentencepiece'] def __init__( self , *_a , **_a ): requires_backends(self , ['''sentencepiece'''] )
45
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''BlipImageProcessor''' lowerCAmelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , a , a ) -> Tuple: snake_case_ = False super().__init__(a , a ) snake_case_ = self.image_processor def __call__( self , a = None , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = False , a = False , a = False , a = False , a = False , a = True , a = None , **a , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: snake_case_ = self.tokenizer snake_case_ = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding # add pixel_values snake_case_ = self.image_processor(a , return_tensors=a ) if text is not None: snake_case_ = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) else: snake_case_ = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def _UpperCamelCase ( self , *a , **a ) -> int: return self.tokenizer.batch_decode(*a , **a ) def _UpperCamelCase ( self , *a , **a ) -> Any: return self.tokenizer.decode(*a , **a ) @property def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
178
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class _lowerCamelCase ( a_ ): _lowerCamelCase :Any = "xlm-roberta" def __init__( self : int , UpperCamelCase : Optional[int]=3_05_22 , UpperCamelCase : Dict=7_68 , UpperCamelCase : str=12 , UpperCamelCase : Dict=12 , UpperCamelCase : List[str]=30_72 , UpperCamelCase : str="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : Dict=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[str]=1E-1_2 , UpperCamelCase : Any=1 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Any="absolute" , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : int = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : int = position_embedding_type lowerCAmelCase__ : int = use_cache lowerCAmelCase__ : Optional[Any] = classifier_dropout class _lowerCamelCase ( a_ ): @property def _lowerCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
355
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a_ ) class _lowerCamelCase ( a_ ): _lowerCamelCase :str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _lowerCamelCase :ClassVar[Features] = Features({"audio": Audio()} ) _lowerCamelCase :ClassVar[Features] = Features({"labels": ClassLabel} ) _lowerCamelCase :str = "audio" _lowerCamelCase :str = "labels" def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase__ : str = copy.deepcopy(self ) lowerCAmelCase__ : Optional[int] = self.label_schema.copy() lowerCAmelCase__ : List[Any] = features[self.label_column] lowerCAmelCase__ : Optional[int] = label_schema return task_template @property def _lowerCAmelCase ( self : List[Any] ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
212
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A__ ( A__ ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''falcon''' UpperCamelCase_ : List[str] = ['''past_key_values'''] def __init__( self : int , lowerCAmelCase__ : Dict=6_5_0_2_4 , lowerCAmelCase__ : Optional[int]=4_5_4_4 , lowerCAmelCase__ : Optional[Any]=3_2 , lowerCAmelCase__ : Optional[Any]=7_1 , lowerCAmelCase__ : int=1e-5 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : List[str]=1_1 , lowerCAmelCase__ : List[Any]=1_1 , **lowerCAmelCase__ : List[str] , ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : List[str] = kwargs.pop("n_embed" , snake_case_ ) _UpperCAmelCase : Any = hidden_size if n_embed is None else n_embed _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = layer_norm_epsilon _UpperCAmelCase : str = initializer_range _UpperCAmelCase : List[Any] = use_cache _UpperCAmelCase : Union[str, Any] = hidden_dropout _UpperCAmelCase : Optional[int] = attention_dropout _UpperCAmelCase : List[str] = bos_token_id _UpperCAmelCase : Union[str, Any] = eos_token_id _UpperCAmelCase : str = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase : List[str] = alibi _UpperCAmelCase : Optional[Any] = new_decoder_architecture _UpperCAmelCase : List[Any] = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase : Optional[Any] = parallel_attn _UpperCAmelCase : int = bias super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) @property def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return not self.alibi
145
"""simple docstring""" from math import pi, sqrt def lowercase (_lowerCAmelCase ): if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase (): assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = 1.0 while num: SCREAMING_SNAKE_CASE_ = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
301
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _UpperCAmelCase : List[Any] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Any: if subparsers is not None: lowerCamelCase__ : str = subparsers.add_parser('tpu-config' , description=_description ) else: lowerCamelCase__ : List[str] = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments lowerCamelCase__ : int = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_UpperCAmelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_UpperCAmelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) lowerCamelCase__ : List[str] = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_UpperCAmelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): lowerCamelCase__ : int = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowerCamelCase__ : Any = defaults.command_file if not args.command and defaults.commands is not None: lowerCamelCase__ : Optional[Any] = defaults.commands if not args.tpu_name: lowerCamelCase__ : int = defaults.tpu_name if not args.tpu_zone: lowerCamelCase__ : Tuple = defaults.tpu_zone if args.accelerate_version == "dev": lowerCamelCase__ : Optional[int] = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": lowerCamelCase__ : Union[str, Any] = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , _UpperCAmelCase ): lowerCamelCase__ : List[Any] = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: lowerCamelCase__ : List[str] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _UpperCAmelCase ): lowerCamelCase__ : Tuple = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowerCamelCase__ : Tuple = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command lowerCamelCase__ : Optional[int] = '; '.join(_UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowerCamelCase__ : Tuple = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {" ".join(_UpperCAmelCase )}""" ) return subprocess.run(_UpperCAmelCase ) print('Successfully setup pod.' ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = tpu_command_parser() lowerCamelCase__ : Optional[Any] = parser.parse_args() tpu_command_launcher(_UpperCAmelCase )
45
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[Any] = get_failure_array(_UpperCAmelCase ) # 2) Step through text searching for pattern lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0 # index into text, pattern while i < len(_UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(_UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCamelCase__ : str = failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: lowerCamelCase__ : int = [0] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Any = 1 while j < len(_UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCamelCase__ : int = failure[i - 1] continue j += 1 failure.append(_UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) _UpperCAmelCase : Union[str, Any] = """abc1abc12""" _UpperCAmelCase : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _UpperCAmelCase : Dict = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCAmelCase : Any = """ABABX""" _UpperCAmelCase : Union[str, Any] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) _UpperCAmelCase : int = """AAAB""" _UpperCAmelCase : str = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) _UpperCAmelCase : Optional[Any] = """abcdabcy""" _UpperCAmelCase : List[Any] = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) _UpperCAmelCase : str = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
45
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata __a : List[Any] = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class _UpperCamelCase ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCAmelCase__ = " " ) -> Union[str, Any]: '''simple docstring''' __lowercase = sentence_delimiter def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' return list(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' __lowercase = [] for sent_idx, sentence in enumerate(lowerCAmelCase__ ): chars.extend(self.process_string(lowerCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars __a : List[str] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __a : Optional[Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __a : str = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ __a : List[str] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ __a : Optional[int] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )["wer"] __lowercase = 0 __lowercase = 0 for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
210
import warnings from functools import wraps from typing import Callable def UpperCAmelCase ( lowercase ): """simple docstring""" @wraps(lowercase ) def _inner_fn(*lowercase , **lowercase ): warnings.warn( (F"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , lowercase , ) return fn(*lowercase , **lowercase ) return _inner_fn
210
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __lt__( self : List[Any] , _lowerCAmelCase : List[Any] ): return self[-1] < other[-1] def __eq__( self : Dict , _lowerCAmelCase : int ): return self[-1] == other[-1] def UpperCAmelCase_ ( __UpperCAmelCase : list ) -> list: SCREAMING_SNAKE_CASE_ = [] # sort into stacks for element in collection: SCREAMING_SNAKE_CASE_ = Stack([element] ) SCREAMING_SNAKE_CASE_ = bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if i != len(__UpperCAmelCase ): stacks[i].append(__UpperCAmelCase ) else: stacks.append(__UpperCAmelCase ) # use a heap-based merge to merge stack efficiently SCREAMING_SNAKE_CASE_ = merge(*(reversed(__UpperCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase__ : Optional[int] = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase__ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
210
def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def UpperCAmelCase_ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
210
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : str = """blip_text_model""" def __init__( self , snake_case=3_0524 , snake_case=768 , snake_case=768 , snake_case=3072 , snake_case=768 , snake_case=12 , snake_case=8 , snake_case=512 , snake_case="gelu" , snake_case=1E-12 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=3_0522 , snake_case=2 , snake_case=0 , snake_case=102 , snake_case=True , snake_case=True , **snake_case , ): super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , sep_token_id=snake_case , **snake_case , ) lowercase = vocab_size lowercase = hidden_size lowercase = encoder_hidden_size lowercase = intermediate_size lowercase = projection_dim lowercase = hidden_dropout_prob lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = max_position_embeddings lowercase = layer_norm_eps lowercase = hidden_act lowercase = initializer_range lowercase = attention_probs_dropout_prob lowercase = is_decoder lowercase = use_cache @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": lowercase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[int] = """blip_vision_model""" def __init__( self , snake_case=768 , snake_case=3072 , snake_case=512 , snake_case=12 , snake_case=12 , snake_case=384 , snake_case=16 , snake_case="gelu" , snake_case=1E-5 , snake_case=0.0 , snake_case=1E-10 , **snake_case , ): super().__init__(**snake_case ) lowercase = hidden_size lowercase = intermediate_size lowercase = projection_dim lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : str = """blip""" _UpperCamelCase : Any = True def __init__( self , snake_case=None , snake_case=None , snake_case=512 , snake_case=2.6_592 , snake_case=256 , **snake_case , ): super().__init__(**snake_case ) if text_config is None: lowercase = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: lowercase = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) lowercase = BlipTextConfig(**snake_case ) lowercase = BlipVisionConfig(**snake_case ) lowercase = self.vision_config.hidden_size lowercase = projection_dim lowercase = logit_scale_init_value lowercase = 1.0 lowercase = 0.02 lowercase = image_text_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , **snake_case ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.text_config.to_dict() lowercase = self.vision_config.to_dict() lowercase = self.__class__.model_type return output
195
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = """xlnet""" _UpperCamelCase : Optional[Any] = ["""mems"""] _UpperCamelCase : Tuple = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case=3_2000 , snake_case=1024 , snake_case=24 , snake_case=16 , snake_case=4096 , snake_case="gelu" , snake_case=True , snake_case="bi" , snake_case=0.02 , snake_case=1E-12 , snake_case=0.1 , snake_case=512 , snake_case=None , snake_case=True , snake_case=False , snake_case=False , snake_case=-1 , snake_case=False , snake_case="last" , snake_case=True , snake_case="tanh" , snake_case=0.1 , snake_case=5 , snake_case=5 , snake_case=5 , snake_case=1 , snake_case=2 , **snake_case , ): lowercase = vocab_size lowercase = d_model lowercase = n_layer lowercase = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) lowercase = d_model // n_head lowercase = ff_activation lowercase = d_inner lowercase = untie_r lowercase = attn_type lowercase = initializer_range lowercase = layer_norm_eps lowercase = dropout lowercase = mem_len lowercase = reuse_len lowercase = bi_data lowercase = clamp_len lowercase = same_length lowercase = summary_type lowercase = summary_use_proj lowercase = summary_activation lowercase = summary_last_dropout lowercase = start_n_top lowercase = end_n_top lowercase = bos_token_id lowercase = pad_token_id lowercase = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , snake_case , ) lowercase = kwargs['use_cache'] lowercase = use_mems_eval lowercase = use_mems_train super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
195
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def __lowerCamelCase ( lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class snake_case__: """simple docstring""" lowercase_ = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) lowercase_ = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) lowercase_ = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Use FP16 to accelerate inference."""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Benchmark training of model"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Verbose memory tracing"""} ) lowercase_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) lowercase_ = field( default=_UpperCamelCase , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Trace memory line by line"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Save result to a CSV file"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Save all print statements in a log file"""} ) lowercase_ = field(default=_UpperCamelCase , metadata={"""help""": """Whether to print environment information"""} ) lowercase_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) lowercase_ = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) lowercase_ = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) lowercase_ = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) lowercase_ = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) lowercase_ = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) lowercase_ = field( default=F'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) lowercase_ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) lowercase_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def snake_case ( self : List[Any] ): warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , SCREAMING_SNAKE_CASE , ) def snake_case ( self : Dict ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case ( self : Union[str, Any] ): if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def snake_case ( self : Dict ): if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
121
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase__ = 1.054571817e-34 # unit of ℏ : J * s lowerCAmelCase__ = 3e8 # unit of c : m * s^-1 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowercase__ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase__ : str = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase__ : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
121
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCamelCase_ = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: UpperCamelCase_ = json.load(f) @require_torch class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Dict: return FSMTTokenizer.from_pretrained(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: a_ = FSMTForConditionalGeneration.from_pretrained(__UpperCAmelCase).to(__UpperCAmelCase) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ]) @slow def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Dict: a_ = F'''facebook/wmt19-{pair}''' a_ = self.get_tokenizer(__UpperCAmelCase) a_ = self.get_model(__UpperCAmelCase) a_ = bleu_data[pair]['src'] a_ = bleu_data[pair]['tgt'] a_ = tokenizer(__UpperCAmelCase , return_tensors="pt" , truncation=__UpperCAmelCase , padding="longest").to(__UpperCAmelCase) a_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) a_ = tokenizer.batch_decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase) a_ = calculate_bleu(__UpperCAmelCase , __UpperCAmelCase) print(__UpperCAmelCase) self.assertGreaterEqual(scores["bleu"] , __UpperCAmelCase)
243
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: lowerCAmelCase__ : Optional[Any] = args.log_outputs lowerCAmelCase__ : Union[str, Any] = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric lowerCAmelCase__ : Dict = load_metric('wer' ) lowerCAmelCase__ : Tuple = load_metric('cer' ) # compute metrics lowerCAmelCase__ : Dict = wer.compute(references=result['target'] , predictions=result['prediction'] ) lowerCAmelCase__ : int = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results lowerCAmelCase__ : Optional[int] = F'''WER: {wer_result}\nCER: {cer_result}''' print(SCREAMING_SNAKE_CASE_ ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase__ : List[str] = F'''log_{dataset_id}_predictions.txt''' lowerCAmelCase__ : Union[str, Any] = F'''log_{dataset_id}_targets.txt''' with open(SCREAMING_SNAKE_CASE_ , 'w' ) as p, open(SCREAMING_SNAKE_CASE_ , 'w' ) as t: # mapping function to write output def write_to_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(SCREAMING_SNAKE_CASE_ , with_indices=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : List[str] = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase__ : Union[str, Any] = re.sub(SCREAMING_SNAKE_CASE_ , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase__ : List[Any] = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: lowerCAmelCase__ : Optional[int] = ' '.join(text.split(SCREAMING_SNAKE_CASE_ ) ) return text def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: # load dataset lowerCAmelCase__ : Tuple = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=SCREAMING_SNAKE_CASE_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase__ : Union[str, Any] = feature_extractor.sampling_rate # resample audio lowerCAmelCase__ : Union[str, Any] = dataset.cast_column('audio' , Audio(sampling_rate=SCREAMING_SNAKE_CASE_ ) ) # load eval pipeline if args.device is None: lowerCAmelCase__ : List[Any] = 0 if torch.cuda.is_available() else -1 lowerCAmelCase__ : List[Any] = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[int] = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase__ : int = prediction['text'] lowerCAmelCase__ : Optional[int] = normalize_text(batch['sentence'] ) return batch # run inference on all examples lowerCAmelCase__ : Dict = dataset.map(SCREAMING_SNAKE_CASE_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowerCamelCase__ = parser.parse_args() main(args)
212
0
from __future__ import annotations import math import random from typing import Any class UpperCamelCase__ : '''simple docstring''' def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> bool: '''simple docstring''' return self.head == self.tail def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Any ) -> None: '''simple docstring''' self.data.append(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.tail + 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.data[self.head] SCREAMING_SNAKE_CASE = self.head + 1 return ret def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def SCREAMING_SNAKE_CASE__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class UpperCamelCase__ : '''simple docstring''' def __init__( self : List[str] ,lowerCamelCase__ : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 1 def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: '''simple docstring''' return self.data def SCREAMING_SNAKE_CASE__ ( self : Any ) -> MyNode | None: '''simple docstring''' return self.left def SCREAMING_SNAKE_CASE__ ( self : str ) -> MyNode | None: '''simple docstring''' return self.right def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: '''simple docstring''' return self.height def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = data def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = node def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = node def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = height def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if a > b: return a return b def __lowercase ( _SCREAMING_SNAKE_CASE ) -> MyNode: '''simple docstring''' print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def __lowercase ( _SCREAMING_SNAKE_CASE ) -> MyNode: '''simple docstring''' print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def __lowercase ( _SCREAMING_SNAKE_CASE ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE = node.get_left() assert left_child is not None node.set_left(left_rotation(_SCREAMING_SNAKE_CASE ) ) return right_rotation(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> MyNode: '''simple docstring''' SCREAMING_SNAKE_CASE = node.get_right() assert right_child is not None node.set_right(right_rotation(_SCREAMING_SNAKE_CASE ) ) return left_rotation(_SCREAMING_SNAKE_CASE ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(_SCREAMING_SNAKE_CASE ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _SCREAMING_SNAKE_CASE ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE = right_rotation(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = lr_rotation(_SCREAMING_SNAKE_CASE ) else: node.set_right(insert_node(node.get_right() , _SCREAMING_SNAKE_CASE ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE = node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE = rl_rotation(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = left_rotation(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) return node def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE = root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE = right_child return root.get_data() def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' while True: SCREAMING_SNAKE_CASE = root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE = left_child return root.get_data() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> MyNode | None: '''simple docstring''' SCREAMING_SNAKE_CASE = root.get_left() SCREAMING_SNAKE_CASE = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE = get_left_most(_SCREAMING_SNAKE_CASE ) root.set_data(_SCREAMING_SNAKE_CASE ) root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) elif left_child is not None: SCREAMING_SNAKE_CASE = left_child elif right_child is not None: SCREAMING_SNAKE_CASE = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE = left_rotation(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = rl_rotation(_SCREAMING_SNAKE_CASE ) elif get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE = right_rotation(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE = lr_rotation(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_SCREAMING_SNAKE_CASE ) return root class UpperCamelCase__ : '''simple docstring''' def __init__( self : Tuple ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = insert_node(self.root ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCamelCase__ ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE = del_node(self.root ,lowerCamelCase__ ) def __str__( self : str ,) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE = """""" SCREAMING_SNAKE_CASE = MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE = self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE = 0 while not q.is_empty(): SCREAMING_SNAKE_CASE = q.pop() SCREAMING_SNAKE_CASE = """ """ * int(math.pow(2 ,layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCamelCase__ ) q.push(lowerCamelCase__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE = cnt + 1 for i in range(100 ): if cnt == math.pow(2 ,lowerCamelCase__ ) - 1: SCREAMING_SNAKE_CASE = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __lowercase ( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() SCREAMING_SNAKE_CASE_ = AVLtree() SCREAMING_SNAKE_CASE_ = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
193
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : List[str]=32 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : str=10 ,lowerCamelCase__ : Any=[10, 20, 30, 40] ,lowerCamelCase__ : Optional[Any]=[1, 1, 2, 1] ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Tuple="relu" ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : Optional[int]=None ,) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModel(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case : Tuple = False __snake_case : int = False __snake_case : Tuple = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: '''simple docstring''' return def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ : Dict ,**lowerCamelCase__ : Optional[Any] ): return model(pixel_values=lowerCamelCase__ ,**lowerCamelCase__ ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""np""" ) SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = (1, 1000) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
193
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int = 600851475143 ) -> int: try: __a = int(lowerCAmelCase__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __a = 2 __a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __a = i while n % i == 0: __a = n // i i += 1 return int(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
45
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 1_0 lowercase_ = 2_5_6 def lowercase ( lowerCAmelCase__ : List[str] ) -> Optional[MinHash]: if len(lowerCAmelCase__ ) < MIN_NUM_TOKENS: return None __a = MinHash(num_perm=lowerCAmelCase__ ) for token in set(lowerCAmelCase__ ): min_hash.update(token.encode() ) return min_hash def lowercase ( lowerCAmelCase__ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase__ ) if len(t.strip() ) > 0} class __lowerCAmelCase : '''simple docstring''' def __init__( self , *, _a = 0.85 , ): __a = duplication_jaccard_threshold __a = NUM_PERM __a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a , _a ): __a = self._index.query(_a ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def __UpperCAmelCase ( self ): __a = [] for base, duplicates in self._duplicate_clusters.items(): __a = [base] + list(_a ) # reformat the cluster to be a list of dict __a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def __UpperCAmelCase ( self , _a ): __a = self.get_duplicate_clusters() with open(_a , '''w''' ) as f: json.dump(_a , _a ) def lowercase ( lowerCAmelCase__ : List[str] ) -> int: __a , __a = element __a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase ( lowerCAmelCase__ : Type[Dataset] ) -> str: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase__ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float ) -> Dict: __a = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase__ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase__ , lowerCAmelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: __a = get_tokens(lowerCAmelCase__ ) __a = get_tokens(lowerCAmelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase_ = None def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: __a = [] for elementa in cluster: __a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(lowerCAmelCase__ , lowerCAmelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __a = 1 extremes.append(lowerCAmelCase__ ) return extremes def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: global _shared_dataset __a = dataset __a = [] __a = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase__ , lowerCAmelCase__ , ) , total=len(lowerCAmelCase__ ) , ): extremes_list.append(lowerCAmelCase__ ) return extremes_list def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __a = make_duplicate_clusters(lowerCAmelCase__ , lowerCAmelCase__ ) __a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __a = {} __a = find_extremes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for extremes in extremes_clusters: for element in extremes: __a = element __a = duplicate_indices - set(extreme_dict.keys() ) __a = dataset.filter(lambda lowerCAmelCase__ , lowerCAmelCase__ : idx not in remove_indices , with_indices=lowerCAmelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __a = element['''base_index'''] in extreme_dict if element["is_extreme"]: __a = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(lowerCAmelCase__ )}''' ) print(f'''Number of duplicate clusters: {len(lowerCAmelCase__ )}''' ) print(f'''Files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Unique files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Filtered dataset size: {len(lowerCAmelCase__ )}''' ) return ds_filter, duplicate_clusters
45
1
_SCREAMING_SNAKE_CASE = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _SCREAMING_SNAKE_CASE = [{'type': 'code', 'content': INSTALL_CONTENT}] _SCREAMING_SNAKE_CASE = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
81
def snake_case ( ) -> Any: for n in range(1 , 1_000_000): yield n * (n + 1) // 2 def snake_case ( snake_case__ :Dict) -> Optional[Any]: _A = 1 _A = 2 while i * i <= n: _A = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case ( ) -> Optional[Any]: return next(i for i in triangle_number_generator() if count_divisors(snake_case__) > 500) if __name__ == "__main__": print(solution())
81
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=lowercase , cache_dir=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" with contextlib.closing(sqlitea.connect(lowercase ) ) as con: __lowercase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = os.path.join(lowercase , '''tmp.sql''' ) __lowercase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() __lowercase = iter_sql_file(lowercase ) __lowercase = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = os.path.join(lowercase , '''tmp.sql''' ) __lowercase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() __lowercase = iter_sql_file(lowercase ) __lowercase = iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = os.path.join(lowercase , '''tmp.sql''' ) __lowercase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=lowercase ).read() with pytest.raises(lowercase ): SqlDatasetWriter(lowercase , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
210
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __a : List[Any] = logging.getLogger(__name__) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=lowercase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=lowercase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=lowercase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=lowercase , default=1000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=lowercase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=lowercase , type=lowercase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=lowercase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=lowercase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) __lowercase = parser.parse_args() return args def UpperCAmelCase ( lowercase ): """simple docstring""" def fn(lowercase ): return tokenizer(examples['''text'''] ) return fn def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [] for i in range(len(tokenized_data['''input_ids'''] ) ): __lowercase = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } __lowercase = tf.train.Features(feature=lowercase ) __lowercase = tf.train.Example(features=lowercase ) __lowercase = example.SerializeToString() records.append(lowercase ) return records def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __lowercase = min(len(lowercase ) , args.limit ) __lowercase = dataset.select(range(lowercase ) ) print(F"Limiting the dataset to {args.limit} entries." ) __lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __lowercase = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowercase ): os.makedirs(lowercase ) else: __lowercase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __lowercase = tokenize_function(lowercase ) __lowercase = dataset.map(lowercase , batched=lowercase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase ): # Concatenate all texts. __lowercase = {k: sum(examples[k] , [] ) for k in examples.keys()} __lowercase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __lowercase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __lowercase = { k: [t[i : i + args.max_length] for i in range(0 , lowercase , args.max_length )] for k, t in concatenated_examples.items() } return result __lowercase = dataset_tokenized.map(lowercase , batched=lowercase , batch_size=1000 , num_proc=4 ) __lowercase = 0 __lowercase = 0 for shard in range(0 , len(lowercase ) , args.shard_size ): __lowercase = grouped_dataset[shard : shard + args.shard_size] __lowercase = len(dataset_snapshot['''input_ids'''] ) __lowercase = os.path.join(lowercase , F"dataset-{shard_count}-{records_containing}.tfrecord" ) __lowercase = get_serialized_examples(lowercase ) with tf.io.TFRecordWriter(lowercase ) as out_file: for i in range(len(lowercase ) ): __lowercase = serialized_examples[i] out_file.write(lowercase ) print('''Wrote file {} containing {} records'''.format(lowercase , lowercase ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , '''w''' ) as f: print(F"Total {args.split} records: {total_records}" , file=lowercase ) if __name__ == "__main__": __a : Optional[Any] = parse_args() main(args)
210
1
def lowerCAmelCase_ ( _lowercase : list[list]) -> list[list]: """simple docstring""" a__ : List[str] = current_set.copy() for row_index, row in enumerate(_lowercase): a__ : Union[str, Any] = row[0] for column_index, column in enumerate(_lowercase): if magnitude == 0: a__ : int = column continue a__ : List[str] = column / magnitude # Subtract to cancel term a__ : Optional[Any] = current_set[0] a__ : int = [first_row] a__ : Tuple = current_set[1::] for row in current_set: a__ : int = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowercase) continue for column_index in range(len(_lowercase)): temp_row.append(first_row[column_index] - row[column_index]) final_set.append(_lowercase) # Create next recursion iteration set if len(final_set[0]) != 3: a__ : Union[str, Any] = final_set[0] a__ : Union[str, Any] = [] a__ : List[str] = [] for row in final_set[1::]: current_first_column.append(row[0]) next_iteration.append(row[1::]) a__ : Union[str, Any] = simplify(_lowercase) for i in range(len(_lowercase)): resultant[i].insert(0 , current_first_column[i]) resultant.insert(0 , _lowercase) a__ : Tuple = resultant return final_set def lowerCAmelCase_ ( _lowercase : list[list]) -> list: """simple docstring""" if len(_lowercase) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""") a__ : List[Any] = len(_lowercase) + 1 if any(len(_lowercase) != _length for item in equations): raise IndexError("""solve_simultaneous() requires n lists of length n+1""") for row in equations: if any(not isinstance(_lowercase , (int, float)) for column in row): raise ValueError("""solve_simultaneous() requires lists of integers""") if len(_lowercase) == 1: return [equations[0][-1] / equations[0][0]] a__ : Union[str, Any] = equations.copy() if any(0 in row for row in data_set): a__ : Optional[Any] = data_set.copy() a__ : Tuple = [] for row_index, row in enumerate(_lowercase): if 0 not in row: a__ : Tuple = data_set.pop(_lowercase) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""") data_set.insert(0 , _lowercase) a__ : List[str] = data_set.copy() a__ : Optional[int] = simplify(_lowercase) a__ : Dict = simplified[::-1] a__ : list = [] for row in simplified: a__ : Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0) continue solutions.append(current_solution / row[-2]) continue a__ : str = row.copy()[: len(_lowercase) - 1 :] while temp_row[0] == 0: temp_row.pop(0) if len(_lowercase) == 0: solutions.append(0) continue a__ : List[str] = temp_row[1::] a__ : Optional[Any] = temp_row[::-1] for column_index, column in enumerate(_lowercase): current_solution -= column * solutions[column_index] solutions.append(_lowercase) a__ : int = [] for item in solutions: final.append(float(round(_lowercase , 5))) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[Any] =[ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
266
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case__ (ctypes.Structure ): """simple docstring""" __lowerCAmelCase :Dict = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": a__ : int = CursorInfo() a__ : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25l""") sys.stdout.flush() def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" if os.name == "nt": a__ : List[Any] = CursorInfo() a__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) a__ : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowercase , ctypes.byref(_lowercase)) elif os.name == "posix": sys.stdout.write("""\033[?25h""") sys.stdout.flush() @contextmanager def lowerCAmelCase_ ( ) -> Any: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
266
1
def lowerCamelCase__ ( a ) -> list: if any(not isinstance(a , a ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(a ) ): for i, (rod_upper, rod_lower) in enumerate(zip(a , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
121
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( a ) -> int: _A: int = filter(lambda a : p.requires_grad , model.parameters() ) _A: Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ : str = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Dict: if metric == "rouge2": _A: Tuple = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _A: List[str] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _A: str = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _A: List[str] = ModelCheckpoint( dirpath=a , filename=a , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( a , a ) -> Optional[Any]: return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a , verbose=a , ) class UpperCAmelCase ( pl.Callback ): '''simple docstring''' def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=True ): """simple docstring""" logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _A: Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _A: Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _A: List[str] = od / '''test_results.txt''' _A: Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A: Any = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _A: Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue _A: Optional[int] = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): _A: List[str] = val.item() _A: List[Any] = F"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: _A: Optional[int] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" try: _A: Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _A: Any = pl_module.model.num_parameters() _A: Optional[int] = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __magic_name__ ( self : List[str] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , '''test''' ) @rank_zero_only def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
121
1
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _a = 0 _a = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _a = tuple[int, int] class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = pos_x UpperCAmelCase_ : List[Any] = pos_y UpperCAmelCase_ : Union[str, Any] = (pos_y, pos_x) UpperCAmelCase_ : Any = goal_x UpperCAmelCase_ : Dict = goal_y UpperCAmelCase_ : Any = g_cost UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = self.calculate_heuristic() UpperCAmelCase_ : Any = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.pos_x - self.goal_x UpperCAmelCase_ : Union[str, Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , lowercase_ ): """simple docstring""" return self.f_cost < other.f_cost class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) UpperCAmelCase_ : List[Any] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowercase_ ) UpperCAmelCase_ : str = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : int = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : List[str] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = [] for action in delta: UpperCAmelCase_ : str = parent.pos_x + action[1] UpperCAmelCase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Optional[int] = current_node.parent path.reverse() return path class A_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = AStar(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase_ : List[str] = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase_ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) UpperCAmelCase_ : Tuple = current_bwd_node UpperCAmelCase_ : str = current_fwd_node UpperCAmelCase_ : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path UpperCAmelCase_ : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.fwd_astar.retrace_path(lowercase_ ) UpperCAmelCase_ : int = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase_ : Any = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _a = (0, 0) _a = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _a = time.time() _a = AStar(init, goal) _a = a_star.search() _a = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _a = time.time() _a = BidirectionalAStar(init, goal) _a = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _a = logging.get_logger(__name__) class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Any = padding_value UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" ) UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ ) super().__init__(**lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowercase_ ) == 0: if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[str] = required_input[0] if isinstance(lowercase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowercase_ ): UpperCAmelCase_ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowercase_ ): UpperCAmelCase_ : Dict = "tf" elif is_torch_tensor(lowercase_ ): UpperCAmelCase_ : Any = "pt" elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(lowercase_ )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ ) else: UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ ) UpperCAmelCase_ : str = processed_features[self.model_input_names[0]] UpperCAmelCase_ : int = len(lowercase_ ) if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase_ : int = [] for i in range(lowercase_ ): UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : List[str] = self._truncate( lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , ) truncated_inputs.append(lowercase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : List[str] = {} for i in range(lowercase_ ): # padding UpperCAmelCase_ : int = self._pad( truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Any = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowercase_ ) return BatchFeature(lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : Tuple = len(lowercase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(lowercase_ ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[Any] = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : str = np.pad( lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length] return processed_features def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = padding else: UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
23
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__: List[Any] = logging.getLogger() def UpperCamelCase__( )->Union[str, Any]: A__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A__ = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def UpperCamelCase ( self ): A__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0,'''run_glue_deebert.py''' ) with patch.object(__lowerCamelCase,'''argv''',__lowerCamelCase ): A__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__lowerCamelCase,0.666 ) @slow @require_torch_non_multi_gpu def UpperCamelCase ( self ): A__ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase ) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__lowerCamelCase )
193
import numpy as np def UpperCamelCase__( UpperCamelCase__ : np.array )->np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
193
1
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Tuple = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case_ : List[str] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowerCAmelCase_ = imread('''image_data/lena.jpg''', 1) # convert to its negative lowerCAmelCase_ = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
364
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowerCAmelCase_ = None lowerCAmelCase_ = { '''7B''': 1_1_0_0_8, '''13B''': 1_3_8_2_4, '''30B''': 1_7_9_2_0, '''65B''': 2_2_0_1_6, '''70B''': 2_8_6_7_2, } lowerCAmelCase_ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1 , _UpperCamelCase=256 ) -> Optional[int]: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ) -> Optional[Any]: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : int = os.path.join(_UpperCamelCase , '''tmp''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : Dict = read_json(os.path.join(_UpperCamelCase , '''params.json''' ) ) snake_case_ : Tuple = NUM_SHARDS[model_size] snake_case_ : Optional[Any] = params['''n_layers'''] snake_case_ : int = params['''n_heads'''] snake_case_ : Dict = n_heads // num_shards snake_case_ : List[Any] = params['''dim'''] snake_case_ : str = dim // n_heads snake_case_ : Any = 10_000.0 snake_case_ : Any = 1.0 / (base ** (torch.arange(0 , _UpperCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case_ : Optional[Any] = params['''n_kv_heads'''] # for GQA / MQA snake_case_ : Optional[Any] = n_heads_per_shard // num_key_value_heads snake_case_ : List[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case_ : str = n_heads snake_case_ : Optional[int] = n_heads_per_shard snake_case_ : str = dim # permute for sliced rotary def permute(_UpperCamelCase , _UpperCamelCase=n_heads , _UpperCamelCase=dim , _UpperCamelCase=dim ): return w.view(_UpperCamelCase , dima // n_heads // 2 , 2 , _UpperCamelCase ).transpose(1 , 2 ).reshape(_UpperCamelCase , _UpperCamelCase ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case_ : Optional[Any] = torch.load(os.path.join(_UpperCamelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded snake_case_ : Union[str, Any] = [ torch.load(os.path.join(_UpperCamelCase , f'''consolidated.{i:02d}.pth''' ) , map_location='''cpu''' ) for i in range(_UpperCamelCase ) ] snake_case_ : Optional[Any] = 0 snake_case_ : str = {'''weight_map''': {}} for layer_i in range(_UpperCamelCase ): snake_case_ : Optional[int] = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : str = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case_ : Union[str, Any] = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case_ : int = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Optional[int] = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) snake_case_ : int = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Dict = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : Union[str, Any] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : str = inv_freq for k, v in state_dict.items(): snake_case_ : Dict = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Any = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : List[str] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: snake_case_ : Dict = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_UpperCamelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_UpperCamelCase )] , dim=0 ), } for k, v in state_dict.items(): snake_case_ : List[str] = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) # Write configs snake_case_ : int = {'''total_size''': param_count * 2} write_json(_UpperCamelCase , os.path.join(_UpperCamelCase , '''pytorch_model.bin.index.json''' ) ) snake_case_ : str = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 snake_case_ : Optional[int] = params['''multiple_of'''] if '''multiple_of''' in params else 256 snake_case_ : Optional[Any] = LlamaConfig( hidden_size=_UpperCamelCase , intermediate_size=compute_intermediate_size(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_UpperCamelCase , ) config.save_pretrained(_UpperCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) snake_case_ : Union[str, Any] = LlamaForCausalLM.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_UpperCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_UpperCamelCase , safe_serialization=_UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case_ : Union[str, Any] = tokenizer_class(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_UpperCamelCase , help='''Whether or not to save using `safetensors`.''' ) snake_case_ : Dict = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case_ : Dict = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _UpperCamelCase ) if __name__ == "__main__": main()
279
0
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __A : """simple docstring""" pass
81
"""simple docstring""" def _A ( ): """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def _A ( lowercase ): """simple docstring""" a =1 a =2 while i * i <= n: a =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(lowercase ) > 5_00 ) if __name__ == "__main__": print(solution())
81
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple="shi-labs/oneformer_demo" ): with open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) as f: __a : Optional[Any] = json.load(lowerCAmelCase__ ) __a : Any = {} __a : Dict = [] __a : Tuple = [] for key, info in class_info.items(): __a : Optional[Any] = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase__ ) ) __a : Optional[int] = thing_ids __a : Optional[Any] = class_names return metadata class UpperCamelCase__ ( unittest.TestCase ): def __init__(self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : List[Any]=7 , snake_case_ : int=3 , snake_case_ : List[Any]=3_0 , snake_case_ : List[Any]=4_0_0 , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=True , snake_case_ : Dict=[0.5, 0.5, 0.5] , snake_case_ : Tuple=[0.5, 0.5, 0.5] , snake_case_ : List[Any]=1_0 , snake_case_ : List[Any]=False , snake_case_ : Dict=2_5_5 , snake_case_ : List[Any]="shi-labs/oneformer_demo" , snake_case_ : int="ade20k_panoptic.json" , snake_case_ : List[Any]=1_0 , ): __a : List[Any] = parent __a : List[Any] = batch_size __a : Any = num_channels __a : Tuple = min_resolution __a : int = max_resolution __a : Optional[Any] = do_resize __a : Tuple = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size __a : Dict = do_normalize __a : Optional[int] = image_mean __a : Dict = image_std __a : Tuple = class_info_file __a : int = prepare_metadata(snake_case_ , snake_case_ ) __a : Optional[Any] = num_text __a : Any = repo_path # for the post_process_functions __a : Any = 2 __a : Union[str, Any] = 1_0 __a : Optional[Any] = 1_0 __a : str = 3 __a : str = 4 __a : Optional[Any] = num_labels __a : Union[str, Any] = do_reduce_labels __a : Optional[Any] = ignore_index def lowerCAmelCase (self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCAmelCase (self : Any , snake_case_ : Optional[Any] , snake_case_ : int=False ): if not batched: __a : Optional[int] = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __a , __a : Dict = image.size else: __a , __a : int = image.shape[1], image.shape[2] if w < h: __a : Dict = int(self.size['''shortest_edge'''] * h / w ) __a : int = self.size['''shortest_edge'''] elif w > h: __a : int = self.size['''shortest_edge'''] __a : str = int(self.size['''shortest_edge'''] * w / h ) else: __a : List[Any] = self.size['''shortest_edge'''] __a : str = self.size['''shortest_edge'''] else: __a : List[Any] = [] for image in image_inputs: __a , __a : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : Optional[Any] = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __a : Optional[int] = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def lowerCAmelCase (self : Union[str, Any] ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _SCREAMING_SNAKE_CASE : Optional[int] = image_processing_class def lowerCAmelCase (self : Optional[Any] ): __a : Dict = OneFormerImageProcessorTester(self ) @property def lowerCAmelCase (self : List[str] ): return self.image_processing_tester.prepare_image_processor_dict() def lowerCAmelCase (self : Optional[int] ): __a : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , '''image_mean''' ) ) self.assertTrue(hasattr(snake_case_ , '''image_std''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case_ , '''size''' ) ) self.assertTrue(hasattr(snake_case_ , '''ignore_index''' ) ) self.assertTrue(hasattr(snake_case_ , '''class_info_file''' ) ) self.assertTrue(hasattr(snake_case_ , '''num_text''' ) ) self.assertTrue(hasattr(snake_case_ , '''repo_path''' ) ) self.assertTrue(hasattr(snake_case_ , '''metadata''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_reduce_labels''' ) ) def lowerCAmelCase (self : Optional[int] ): pass def lowerCAmelCase (self : str ): # Initialize image_processor __a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __a : Any = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values __a , __a : int = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : Union[str, Any] = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __a : str = image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : List[Any] ): # Initialize image_processor __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __a : Tuple = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values __a , __a : str = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : Optional[int] = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __a : List[Any] = image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : List[Any] ): # Initialize image_processor __a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __a : int = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values __a , __a : int = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : str = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __a : int = image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : List[str] , snake_case_ : Any=False , snake_case_ : List[str]=False , snake_case_ : int="np" ): __a : int = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __a : Union[str, Any] = self.image_processing_tester.num_labels __a : List[Any] = None __a : Optional[Any] = None __a : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __a : Tuple = num_labels if is_instance_map: __a : List[str] = list(range(snake_case_ ) ) * 2 __a : Dict = dict(enumerate(snake_case_ ) ) __a : List[Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __a : List[Any] = [Image.fromarray(snake_case_ ) for annotation in annotations] __a : Tuple = image_processor( snake_case_ , ['''semantic'''] * len(snake_case_ ) , snake_case_ , return_tensors='''pt''' , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def lowerCAmelCase (self : str ): pass def lowerCAmelCase (self : int ): def common(snake_case_ : Any=False , snake_case_ : Union[str, Any]=None ): __a : int = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __a : int = inputs['''mask_labels'''] __a : Optional[Any] = inputs['''class_labels'''] __a : List[Any] = inputs['''pixel_values'''] __a : Optional[Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type='''pil''' ) common(is_instance_map=snake_case_ , segmentation_type='''pil''' ) def lowerCAmelCase (self : Dict ): __a : Dict = np.zeros((2_0, 5_0) ) __a : Tuple = 1 __a : int = 1 __a : List[Any] = 1 __a : Dict = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def lowerCAmelCase (self : Dict ): __a : Dict = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) __a : str = self.image_processing_tester.get_fake_oneformer_outputs() __a : Optional[int] = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __a : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __a : str = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCAmelCase (self : Any ): __a : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) __a : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() __a : List[Any] = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , snake_case_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCAmelCase (self : Any ): __a : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) __a : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() __a : List[Any] = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , snake_case_ ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
90
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase (self : Tuple ): __a : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=snake_case_ ).to(snake_case_ ) __a : List[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __a : Optional[int] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __a : Dict = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __a : Optional[Any] = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss __a : Tuple = -(labels.shape[-1] * loss.item()) __a : Dict = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
90
1
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = RoFormerTokenizer A_ : Any = RoFormerTokenizerFast A_ : Dict = True A_ : Optional[int] = True def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' super().setUp() def _SCREAMING_SNAKE_CASE ( self : Optional[Any], **_lowerCamelCase : Dict ): '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''', **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], **_lowerCamelCase : Any ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''', **_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = '''永和服装饰品有限公司,今天天气非常好''' __A = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = self.get_tokenizer() __A , __A = self.get_chinese_input_output_texts() __A = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, output_text.split() ) __A = tokens + [tokenizer.unk_token] __A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.get_rust_tokenizer() __A , __A = self.get_chinese_input_output_texts() __A = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, output_text.split() ) __A = tokens + [tokenizer.unk_token] __A = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' pass
266
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase_ = imread(R'digital_image_processing/image_data/lena_small.jpg') lowercase_ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase ( ): """simple docstring""" __A = cn.convert_to_negative(__UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase ( ): """simple docstring""" with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(__UpperCamelCase , 1_1_0 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def lowerCAmelCase ( ): """simple docstring""" __A = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase ( ): """simple docstring""" __A = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __A = canny.canny(__UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase ( ): """simple docstring""" assert gg.gaussian_filter(__UpperCamelCase , 5 , sigma=0.9 ).all() def lowerCAmelCase ( ): """simple docstring""" __A = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __A = conv.img_convolve(__UpperCamelCase , __UpperCamelCase ).astype(__UpperCamelCase ) assert res.any() def lowerCAmelCase ( ): """simple docstring""" assert med.median_filter(__UpperCamelCase , 3 ).any() def lowerCAmelCase ( ): """simple docstring""" __A , __A = sob.sobel_filter(__UpperCamelCase ) assert grad.any() and theta.any() def lowerCAmelCase ( ): """simple docstring""" __A = sp.make_sepia(__UpperCamelCase , 2_0 ) assert sepia.all() def lowerCAmelCase ( __UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" __A = bs.Burkes(imread(__UpperCamelCase , 1 ) , 1_2_0 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase ( __UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" __A = rs.NearestNeighbour(imread(__UpperCamelCase , 1 ) , 4_0_0 , 2_0_0 ) nn.process() assert nn.output.any() def lowerCAmelCase ( ): """simple docstring""" __A = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. __A = imread(__UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None __A = 0 __A = 0 __A = image[x_coordinate][y_coordinate] __A = lbp.get_neighbors_pixel( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __A = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __A = lbp.local_binary_value(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) assert lbp_image.any()
266
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''PoolFormerFeatureExtractor'''] __UpperCAmelCase = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
360
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase__ : List[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase__ : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase__ : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowerCAmelCase__ = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) lowerCAmelCase__ = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior lowerCAmelCase__ = text_classifier('''This is great !''' , return_all_scores=lowerCamelCase_ ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) lowerCAmelCase__ = text_classifier('''This is great !''' , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) lowerCAmelCase__ = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> int: import torch lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = pipeline('''text-classification''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = pipeline('''text-classification''' , framework='''tf''' ) lowerCAmelCase__ = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) lowerCAmelCase__ = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = TextClassificationPipeline(model=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCAmelCase__ = '''HuggingFace is in''' lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual(nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) lowerCAmelCase__ = ['''HuggingFace is in ''', '''Paris is in France'''] lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}, {'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCAmelCase__ = text_classifier(lowerCamelCase_ , top_k=lowerCamelCase_ ) lowerCAmelCase__ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [[{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] * N, [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] * N] , ) lowerCAmelCase__ = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} lowerCAmelCase__ = text_classifier(lowerCamelCase_ ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , {'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCAmelCase__ = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(lowerCamelCase_ ): text_classifier(lowerCamelCase_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCAmelCase__ = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , [{'''label''': ANY(lowerCamelCase_ ), '''score''': ANY(lowerCamelCase_ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
228
0
'''simple docstring''' from math import factorial UpperCamelCase__: dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def snake_case_ ( _lowerCAmelCase : int ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCAmelCase ) ) def snake_case_ ( _lowerCAmelCase : int = 60 , _lowerCAmelCase : int = 1000000 ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCAmelCase : List[str] = 0 # the cached sizes of the previous chains UpperCAmelCase : dict[int, int] = {} for start_chain_element in range(1 , _lowerCAmelCase ): # The temporary set will contain the elements of the chain UpperCAmelCase : List[Any] = set() UpperCAmelCase : List[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase : Any = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCAmelCase ) chain_set_length += 1 UpperCAmelCase : int = digit_factorial_sum(_lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase : int = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution()}")
23
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @classmethod def A ( cls : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def A ( cls : List[str] ) -> Tuple: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A ( self : int ) -> Tuple: UpperCAmelCase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase : str = True UpperCAmelCase : int = flatten_dict(modela.params ) UpperCAmelCase : Dict = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase : Dict = False return models_are_equal @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : int = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase : Dict = FlaxBertModel(__snake_case ) UpperCAmelCase : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : Dict = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : Optional[int] = '''bert''' UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
23
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = '''hf-internal-testing/tiny-random-t5''' A__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) A__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) A__ = tokenizer('''This is me''',return_tensors='''pt''' ) A__ = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) A__ = model.generate(**__lowerCamelCase ) A__ = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) A__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) A__ = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase,__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = '''hf-internal-testing/tiny-random-t5''' A__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) A__ = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) A__ = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
39
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
39
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCamelCase__ ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''perceiver''' def __init__( self : int , lowerCamelCase_ : List[str]=2_56 , lowerCamelCase_ : Optional[int]=12_80 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : str=26 , lowerCamelCase_ : Optional[Any]=8 , lowerCamelCase_ : List[str]=8 , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : List[str]="kv" , lowerCamelCase_ : Optional[Any]=1 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Tuple=0.02 , lowerCamelCase_ : Any=1e-12 , lowerCamelCase_ : str=True , lowerCamelCase_ : List[str]=2_62 , lowerCamelCase_ : List[str]=20_48 , lowerCamelCase_ : Union[str, Any]=56 , lowerCamelCase_ : Union[str, Any]=[3_68, 4_96] , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : Optional[Any]=19_20 , lowerCamelCase_ : Tuple=16 , lowerCamelCase_ : Dict=[1, 16, 2_24, 2_24] , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_latents SCREAMING_SNAKE_CASE : Union[str, Any] = d_latents SCREAMING_SNAKE_CASE : Union[str, Any] = d_model SCREAMING_SNAKE_CASE : str = num_blocks SCREAMING_SNAKE_CASE : Optional[int] = num_self_attends_per_block SCREAMING_SNAKE_CASE : Optional[int] = num_self_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = num_cross_attention_heads SCREAMING_SNAKE_CASE : Dict = qk_channels SCREAMING_SNAKE_CASE : Optional[Any] = v_channels SCREAMING_SNAKE_CASE : Tuple = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE : Union[str, Any] = self_attention_widening_factor SCREAMING_SNAKE_CASE : Optional[int] = cross_attention_widening_factor SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE : Tuple = image_size # flow attributes SCREAMING_SNAKE_CASE : Any = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE : Any = num_frames SCREAMING_SNAKE_CASE : Optional[Any] = audio_samples_per_frame SCREAMING_SNAKE_CASE : Any = samples_per_patch SCREAMING_SNAKE_CASE : Optional[Any] = output_shape class UpperCamelCase__ ( _a ): """simple docstring""" @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("""inputs""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return 1e-4 def lowerCamelCase_ ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple = -1 , lowerCamelCase_ : Tuple = -1 , lowerCamelCase_ : Any = -1 , lowerCamelCase_ : Any = False , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : Dict = 3 , lowerCamelCase_ : List[str] = 40 , lowerCamelCase_ : Optional[Any] = 40 , ): '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Tuple = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Any = preprocessor.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Tuple = [''' '''.join(["""a"""] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : str = dict(preprocessor(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs.pop("""input_ids""" ) return inputs elif isinstance(lowerCamelCase_ , lowerCamelCase_ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Dict = compute_effective_axis_dimension(lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE : str = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = dict(preprocessor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = inputs.pop("""pixel_values""" ) return inputs else: raise ValueError( """Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.""" )
323
from math import factorial lowerCAmelCase_ = {str(digit): factorial(digit) for digit in range(1_0)} def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_UpperCamelCase ) ) def lowerCamelCase_ ( _UpperCamelCase = 60 , _UpperCamelCase = 1_000_000 ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length snake_case_ : Optional[Any] = 0 # the cached sizes of the previous chains snake_case_ : dict[int, int] = {} for start_chain_element in range(1 , _UpperCamelCase ): # The temporary set will contain the elements of the chain snake_case_ : List[str] = set() snake_case_ : List[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. snake_case_ : Any = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_UpperCamelCase ) chain_set_length += 1 snake_case_ : List[Any] = digit_factorial_sum(_UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] snake_case_ : List[str] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
279
0
import torch from torch import nn class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Dict=False ) -> int: super().__init__() lowerCAmelCase__ = n_token lowerCAmelCase__ = d_embed lowerCAmelCase__ = d_proj lowerCAmelCase__ = cutoffs + [n_token] lowerCAmelCase__ = [0] + self.cutoffs lowerCAmelCase__ = div_val lowerCAmelCase__ = self.cutoffs[0] lowerCAmelCase__ = len(self.cutoffs ) - 1 lowerCAmelCase__ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ = nn.ModuleList() lowerCAmelCase__ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCamelCase , __lowerCamelCase ) ) ) else: self.out_projs.append(__lowerCamelCase ) self.out_layers.append(nn.Linear(__lowerCamelCase , __lowerCamelCase ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCamelCase , __lowerCamelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCamelCase , r_idx - l_idx ) ) lowerCAmelCase__ = keep_order def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: if proj is None: lowerCAmelCase__ = nn.functional.linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ = nn.functional.linear(__lowerCamelCase , proj.t().contiguous() ) lowerCAmelCase__ = nn.functional.linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def a ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : int=False ) -> int: if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ = hidden[..., :-1, :].contiguous() lowerCAmelCase__ = labels[..., 1:].contiguous() lowerCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: lowerCAmelCase__ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ = self._compute_logit(__lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ = labels != -100 lowerCAmelCase__ = torch.zeros_like(__lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ = ( -nn.functional.log_softmax(__lowerCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ = nn.functional.log_softmax(__lowerCamelCase , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ = self.out_layers[i].weight lowerCAmelCase__ = self.out_layers[i].bias if i == 0: lowerCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCamelCase ) biases.append(__lowerCamelCase ) lowerCAmelCase__ = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) if labels is None: lowerCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ = torch.zeros_like(__lowerCamelCase , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ = 0 lowerCAmelCase__ = [0] + self.cutoffs for i in range(len(__lowerCamelCase ) - 1 ): lowerCAmelCase__ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ = labels.index_select(0 , __lowerCamelCase ) - l_idx lowerCAmelCase__ = head_logprob.index_select(0 , __lowerCamelCase ) lowerCAmelCase__ = hidden.index_select(0 , __lowerCamelCase ) else: lowerCAmelCase__ = hidden if i == 0: if labels is not None: lowerCAmelCase__ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) lowerCAmelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: if self.n_clusters == 0: lowerCAmelCase__ = self._compute_logit(__lowerCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCamelCase , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ = self.out_layers[i].weight lowerCAmelCase__ = self.out_layers[i].bias if i == 0: lowerCAmelCase__ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCamelCase ) biases.append(__lowerCamelCase ) lowerCAmelCase__ = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) lowerCAmelCase__ = [0] + self.cutoffs for i in range(len(__lowerCamelCase ) - 1 ): lowerCAmelCase__ = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ = self._compute_logit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = nn.functional.log_softmax(__lowerCamelCase , dim=1 ) lowerCAmelCase__ = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ = logprob_i return out
356
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , **lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
221
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = VideoToVideoSDPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} snake_case_ = PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case_ = False # No `output_type`. snake_case_ = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowercase_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) __lowerCamelCase = CLIPTextModel(lowerCamelCase__ ) __lowerCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> str: '''simple docstring''' # 3 frames __lowerCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = VideoToVideoSDPipeline(**lowerCamelCase__ ) __lowerCamelCase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = 'np' __lowerCamelCase = sd_pipe(**lowerCamelCase__ ).frames __lowerCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __lowerCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCamelCase__ , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' pass def lowercase_ ( self ) -> str: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __lowerCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) __lowerCamelCase = torch.randn((1, 10, 3, 1_024, 576) , generator=lowerCamelCase__ ) __lowerCamelCase = video.to('cuda' ) __lowerCamelCase = 'Spiderman is surfing' __lowerCamelCase = pipe(lowerCamelCase__ , video=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=3 , output_type='pt' ).frames __lowerCamelCase = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
90
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } __lowerCamelCase = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , x.transpose() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , transpose(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , transpose(lowerCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ) , np.asarray(transpose(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCamelCase__ , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.reshape(lowerCamelCase__ , (4, 3) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.reshape(lowerCamelCase__ , (12, 5) ) ) ) @require_torch def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , reshape(lowerCamelCase__ , (4, 3) ).numpy() ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , reshape(lowerCamelCase__ , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (4, 3) ) , np.asarray(reshape(lowerCamelCase__ , (4, 3) ) ) ) ) __lowerCamelCase = np.random.randn(3 , 4 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__ , (12, 5) ) , np.asarray(reshape(lowerCamelCase__ , (12, 5) ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.squeeze(lowerCamelCase__ ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.squeeze(lowerCamelCase__ , axis=2 ) ) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , squeeze(lowerCamelCase__ ).numpy() ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , squeeze(lowerCamelCase__ , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = np.random.randn(1 , 3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ) , np.asarray(squeeze(lowerCamelCase__ ) ) ) ) __lowerCamelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ , axis=2 ) , np.asarray(squeeze(lowerCamelCase__ , axis=2 ) ) ) ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.expand_dims(lowerCamelCase__ , axis=1 ) ) ) @require_torch def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , expand_dims(lowerCamelCase__ , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = np.random.randn(3 , 4 ) __lowerCamelCase = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__ , axis=1 ) , np.asarray(expand_dims(lowerCamelCase__ , axis=1 ) ) ) )
90
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 42 lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default='Translation' , init=snake_case_ , repr=snake_case_ ) def __call__( self ) -> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE_( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default='TranslationVariableLanguages' , init=snake_case_ , repr=snake_case_ ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = sorted(set(self.languages ) ) if self.languages else None lowerCamelCase_ = len(self.languages ) if self.languages else None def __call__( self ) -> List[Any]: return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tuple: lowerCamelCase_ = set(self.languages ) if self.languages and set(_A ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(_A ) - lang_set ) )}) are not in valid set ({", ".join(_A )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. lowerCamelCase_ = [] for lang, text in translation_dict.items(): if isinstance(_A , _A ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. lowerCamelCase_ = zip(*sorted(_A ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE_( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
47
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __snake_case = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def a ( __a , __a ) -> Optional[Any]: '''simple docstring''' inspect_dataset(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__ :Tuple = path + '''.py''' assert script_name in os.listdir(__lowerCamelCase ) assert "__pycache__" not in os.listdir(__lowerCamelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def a ( __a , __a ) -> Union[str, Any]: '''simple docstring''' inspect_metric(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__ :List[Any] = path + '''.py''' assert script_name in os.listdir(__lowerCamelCase ) assert "__pycache__" not in os.listdir(__lowerCamelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def a ( __a , __a , __a ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = get_dataset_config_info(__lowerCamelCase , config_name=__lowerCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def a ( __a , __a , __a ) -> Dict: '''simple docstring''' with pytest.raises(__lowerCamelCase ): get_dataset_config_info(__lowerCamelCase , config_name=__lowerCamelCase ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def a ( __a , __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[str] = get_dataset_config_names(__lowerCamelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def a ( __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :int = get_dataset_infos(__lowerCamelCase ) assert list(infos.keys() ) == expected_configs UpperCamelCase__ :Union[str, Any] = expected_configs[0] assert expected_config in infos UpperCamelCase__ :int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def a ( __a , __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :str = get_dataset_infos(__lowerCamelCase ) assert expected_config in infos UpperCamelCase__ :Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def a ( __a , __a , __a ) -> int: '''simple docstring''' with pytest.raises(__lowerCamelCase ): get_dataset_split_names(__lowerCamelCase , config_name=__lowerCamelCase )
97
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Dict[Optional[str], Type[Formatter]] = {} __UpperCamelCase : Dict[Optional[str], str] = {} __UpperCamelCase : Dict[Optional[str], Exception] = {} def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , ) -> Optional[int]: a = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) a = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) a = format_type def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None ) -> List[str]: a = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): a = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: __UpperCamelCase : str = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: __UpperCamelCase : List[str] = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: __UpperCamelCase : List[str] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def __A ( __lowerCamelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __A ( __lowerCamelCase , **__lowerCamelCase ) -> Formatter: a = get_format_type_from_alias(__lowerCamelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowerCamelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
228
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: while a != 0: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = b % a, a return b def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: if gcd(__UpperCAmelCase , __UpperCAmelCase ) != 1: lowerCAmelCase__ : Optional[Any] = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = 1, 0, a lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 1, m while va != 0: lowerCAmelCase__ : Optional[Any] = ua // va lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
212
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _A = """base_with_context""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) lowerCAmelCase__ : int = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : str = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : str = ly_weight["""attention"""] lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowerCAmelCase__ : int = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Any = ly_weight["""attention"""] lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCAmelCase__ : List[Any] = weights[f"""layers_{lyr_num}"""] lowerCAmelCase__ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Tuple = ly_weight["""self_attention"""] lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : List[Any] = ly_weight["""MultiHeadDotProductAttention_0"""] lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowerCAmelCase__ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowerCAmelCase__ : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowerCAmelCase__ : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowerCAmelCase__ : int = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowerCAmelCase__ : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowerCAmelCase__ : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) lowerCAmelCase__ : List[str] = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCAmelCase__ : Optional[int] = jnp.tree_util.tree_map(onp.array , __UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] lowerCAmelCase__ : Dict = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) lowerCAmelCase__ : Tuple = inference.parse_training_gin_file(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Any = inference.InferenceModel(args.checkpoint_path , __UpperCAmelCase ) lowerCAmelCase__ : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) lowerCAmelCase__ : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ : List[str] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowerCAmelCase__ : Optional[int] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCAmelCase__ : Optional[Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : List[str] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCAmelCase ) lowerCAmelCase__ : Any = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) lowerCAmelCase__ : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase , continuous_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase , scheduler=__UpperCAmelCase , melgan=__UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) _A = parser.parse_args() main(args)
212
1
def __A ( __lowerCAmelCase = 1_000 )-> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = 1, 1 _UpperCAmelCase = 2 while True: _UpperCAmelCase = 0 _UpperCAmelCase = fa + fa _UpperCAmelCase , _UpperCAmelCase = fa, f index += 1 for _ in str(__lowerCAmelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
39
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase: List[str] = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = ['pixel_values'] def __init__( self : int, a_ : bool = True, a_ : Optional[Dict[str, int]] = None, a_ : PILImageResampling = PILImageResampling.BILINEAR, a_ : bool = True, a_ : Dict[str, int] = None, a_ : bool = True, a_ : Union[int, float] = 1 / 255, a_ : bool = True, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, **a_ : Dict, ): """simple docstring""" super().__init__(**a_ ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 256} UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : str, a_ : np.ndarray, a_ : Dict[str, int], a_ : PILImageResampling = PILImageResampling.BICUBIC, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : int, ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCamelCase__ = get_resize_output_image_size(a_, size=size["shortest_edge"], default_to_square=a_ ) return resize(a_, size=a_, resample=a_, data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : np.ndarray, a_ : Dict[str, int], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = get_size_dict(a_ ) return center_crop(a_, size=(size["height"], size["width"]), data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : np.ndarray, a_ : float, a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : List[Any] ): """simple docstring""" return rescale(a_, scale=a_, data_format=a_, **a_ ) def lowercase_ ( self : Optional[Any], a_ : np.ndarray, a_ : Union[float, List[float]], a_ : Union[float, List[float]], a_ : Optional[Union[str, ChannelDimension]] = None, **a_ : Any, ): """simple docstring""" return normalize(a_, mean=a_, std=a_, data_format=a_, **a_ ) def lowercase_ ( self : List[Any], a_ : ImageInput, a_ : Optional[bool] = None, a_ : Dict[str, int] = None, a_ : PILImageResampling = None, a_ : bool = None, a_ : Dict[str, int] = None, a_ : Optional[bool] = None, a_ : Optional[float] = None, a_ : Optional[bool] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[float, List[float]]] = None, a_ : Optional[Union[str, TensorType]] = None, a_ : Union[str, ChannelDimension] = ChannelDimension.FIRST, **a_ : str, ): """simple docstring""" UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a_, default_to_square=a_ ) UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(a_ ) UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a_ ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a_, size=a_, resample=a_ ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=a_, size=a_ ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a_, scale=a_ ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a_, mean=a_, std=a_ ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a_, a_ ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a_, tensor_type=a_ )
31
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowercase: Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : float , _UpperCamelCase : int = 1_60_00 ) -> str: '''simple docstring''' UpperCamelCase__ = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav UpperCamelCase__ = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCAmelCase : _lowerCamelCase : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'}) _lowerCamelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _lowerCamelCase : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _lowerCamelCase : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _lowerCamelCase : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _lowerCamelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _lowerCamelCase : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class UpperCAmelCase : _lowerCamelCase : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) _lowerCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _lowerCamelCase : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _lowerCamelCase : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) _lowerCamelCase : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowercase_ ( self : int ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`.", a_, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def SCREAMING_SNAKE_CASE__( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. UpperCamelCase__ = DatasetDict() UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' "Make sure to set `--label_column_name` to the correct text column - one of " F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(_UpperCamelCase : Any ): UpperCamelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCamelCase__ = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_UpperCamelCase : List[Any] ): UpperCamelCase__ = [audio["array"] for audio in batch[data_args.audio_column_name]] UpperCamelCase__ = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) UpperCamelCase__ = {model_input_name: inputs.get(_UpperCamelCase )} UpperCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase__ = raw_datasets["train"].features[data_args.label_column_name].names UpperCamelCase__ , UpperCamelCase__ = {}, {} for i, label in enumerate(_UpperCamelCase ): UpperCamelCase__ = str(_UpperCamelCase ) UpperCamelCase__ = label # Load the accuracy metric from the datasets package UpperCamelCase__ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Any ): UpperCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) UpperCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCamelCase__ = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCamelCase__ = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer UpperCamelCase__ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: UpperCamelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ = last_checkpoint UpperCamelCase__ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ = trainer.evaluate() trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) # Write model card and (optionally) push to hub UpperCamelCase__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
31
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = 'codegen' lowerCAmelCase : Optional[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,_UpperCAmelCase : List[Any]=50400 ,_UpperCAmelCase : Dict=2048 ,_UpperCAmelCase : List[str]=2048 ,_UpperCAmelCase : Union[str, Any]=4096 ,_UpperCAmelCase : List[Any]=28 ,_UpperCAmelCase : int=16 ,_UpperCAmelCase : Optional[Any]=64 ,_UpperCAmelCase : Tuple=None ,_UpperCAmelCase : List[str]="gelu_new" ,_UpperCAmelCase : Union[str, Any]=0.0 ,_UpperCAmelCase : Union[str, Any]=0.0 ,_UpperCAmelCase : Optional[int]=0.0 ,_UpperCAmelCase : Optional[int]=1E-5 ,_UpperCAmelCase : str=0.02 ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Any=50256 ,_UpperCAmelCase : int=50256 ,_UpperCAmelCase : Any=False ,**_UpperCAmelCase : List[str] ,): _a : Optional[Any] = vocab_size _a : Optional[int] = n_ctx _a : Dict = n_positions _a : int = n_embd _a : List[Any] = n_layer _a : Dict = n_head _a : Optional[int] = n_inner _a : Optional[Any] = rotary_dim _a : List[str] = activation_function _a : List[str] = resid_pdrop _a : List[str] = embd_pdrop _a : Union[str, Any] = attn_pdrop _a : List[str] = layer_norm_epsilon _a : Any = initializer_range _a : Any = use_cache _a : Any = bos_token_id _a : Dict = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ,tie_word_embeddings=_UpperCAmelCase ,**_UpperCAmelCase ) class __magic_name__ ( _UpperCamelCase ): def __init__( self : List[str] ,_UpperCAmelCase : PretrainedConfig ,_UpperCAmelCase : str = "default" ,_UpperCAmelCase : List[PatchingSpec] = None ,_UpperCAmelCase : bool = False ,): super().__init__(_UpperCAmelCase ,task=_UpperCAmelCase ,patching_specs=_UpperCAmelCase ,use_past=_UpperCAmelCase ) if not getattr(self._config ,'pad_token_id' ,_UpperCAmelCase ): # TODO: how to do that better? _a : Dict = 0 @property def __lowercase ( self : Tuple ): _a : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase ,direction='inputs' ) _a : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: _a : Any = {0: 'batch', 1: 'sequence'} return common_inputs @property def __lowercase ( self : Dict ): return self._config.n_layer @property def __lowercase ( self : Optional[int] ): return self._config.n_head def __lowercase ( self : int ,_UpperCAmelCase : PreTrainedTokenizer ,_UpperCAmelCase : int = -1 ,_UpperCAmelCase : int = -1 ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : Optional[TensorType] = None ,): _a : List[str] = super(_UpperCAmelCase ,self ).generate_dummy_inputs( _UpperCAmelCase ,batch_size=_UpperCAmelCase ,seq_length=_UpperCAmelCase ,is_pair=_UpperCAmelCase ,framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a : List[Any] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a : Optional[int] = seqlen + 2 _a : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a : Any = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] _a : Optional[Any] = common_inputs['attention_mask'] if self.use_past: _a : str = ordered_inputs['attention_mask'].dtype _a : Dict = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_UpperCAmelCase ,_UpperCAmelCase ,dtype=_UpperCAmelCase )] ,dim=1 ) return ordered_inputs @property def __lowercase ( self : Dict ): return 13
89
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCamelCase__ , '_dynamo' ): return False return isinstance(UpperCamelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = True ): """simple docstring""" A__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A__ = is_compiled_module(UpperCamelCase__ ) if is_compiled: A__ = model A__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = model.module if not keep_fpaa_wrapper: A__ = getattr(UpperCamelCase__ , 'forward' ) A__ = model.__dict__.pop('_original_forward' , UpperCamelCase__ ) if original_forward is not None: while hasattr(UpperCamelCase__ , '__wrapped__' ): A__ = forward.__wrapped__ if forward == original_forward: break A__ = forward if getattr(UpperCamelCase__ , '_converted_to_transformer_engine' , UpperCamelCase__ ): convert_model(UpperCamelCase__ , to_transformer_engine=UpperCamelCase__ ) if is_compiled: A__ = model A__ = compiled_model return model def UpperCAmelCase ( ): """simple docstring""" PartialState().wait_for_everyone() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCamelCase__ , UpperCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCamelCase__ , UpperCamelCase__ ) @contextmanager def UpperCAmelCase ( **UpperCamelCase__ ): """simple docstring""" for key, value in kwargs.items(): A__ = str(UpperCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if not hasattr(UpperCamelCase__ , '__qualname__' ) and not hasattr(UpperCamelCase__ , '__name__' ): A__ = getattr(UpperCamelCase__ , '__class__' , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCamelCase__ , '__name__' ): return obj.__name__ return str(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for key, value in source.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = destination.setdefault(UpperCamelCase__ , {} ) merge_dicts(UpperCamelCase__ , UpperCamelCase__ ) else: A__ = value return destination def UpperCAmelCase ( UpperCamelCase__ = None ): """simple docstring""" if port is None: A__ = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
221
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase : int =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : List[str] = ['input_features', 'attention_mask'] def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=1_6000 , __lowerCAmelCase=80 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__(feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = num_mel_bins lowercase = do_ceptral_normalize lowercase = normalize_means lowercase = normalize_vars lowercase = True def A__ ( self , __lowerCAmelCase , ): """simple docstring""" lowercase = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase = torch.from_numpy(__lowerCAmelCase ).unsqueeze(0 ) lowercase = ta_kaldi.fbank(__lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def A__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = 0.0 , ): """simple docstring""" if normalize_means: lowercase = x[:input_length].mean(axis=0 ) lowercase = np.subtract(__lowerCAmelCase , __lowerCAmelCase ) if normalize_vars: lowercase = x[:input_length].std(axis=0 ) lowercase = np.divide(__lowerCAmelCase , __lowerCAmelCase ) if input_length < x.shape[0]: lowercase = padding_value # make sure array is in float32 lowercase = x.astype(np.floataa ) return x def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowerCAmelCase , __lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowerCAmelCase , __lowerCAmelCase ) ] def __call__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowercase = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowercase = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): lowercase = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase = [raw_speech] # extract fbank features lowercase = [self._extract_fbank_features(__lowerCAmelCase ) for waveform in raw_speech] # convert into correct format for padding lowercase = BatchFeature({"""input_features""": features} ) lowercase = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) # make sure list is in array format lowercase = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __lowerCAmelCase ): lowercase = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_features] lowercase = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowercase = [np.asarray(__lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase = ( np.array(__lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(__lowerCAmelCase , max_length=__lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase = self.normalize( padded_inputs["""input_features"""] , attention_mask=__lowerCAmelCase ) if return_tensors is not None: lowercase = padded_inputs.convert_to_tensors(__lowerCAmelCase ) return padded_inputs
363
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCAmelCase : Tuple ={ """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Dict = 'mask2former' snake_case__ : Union[str, Any] = ['swin'] snake_case__ : Any = {'hidden_size': 'hidden_dim'} def __init__( self , __lowerCAmelCase = None , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 256 , __lowerCAmelCase = 1024 , __lowerCAmelCase = "relu" , __lowerCAmelCase = 6 , __lowerCAmelCase = 10 , __lowerCAmelCase = 8 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 2048 , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = 4 , __lowerCAmelCase = 255 , __lowerCAmelCase = 100 , __lowerCAmelCase = 0.1 , __lowerCAmelCase = 2.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 5.0 , __lowerCAmelCase = 1_2544 , __lowerCAmelCase = 3.0 , __lowerCAmelCase = 0.7_5 , __lowerCAmelCase = 0.0_2 , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = [4, 8, 16, 32] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowercase = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__lowerCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase = backbone_config.pop("""model_type""" ) lowercase = CONFIG_MAPPING[backbone_model_type] lowercase = config_class.from_dict(__lowerCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) lowercase = backbone_config lowercase = feature_size lowercase = mask_feature_size lowercase = hidden_dim lowercase = encoder_feedforward_dim lowercase = activation_function lowercase = encoder_layers lowercase = decoder_layers lowercase = num_attention_heads lowercase = dropout lowercase = dim_feedforward lowercase = pre_norm lowercase = enforce_input_projection lowercase = common_stride lowercase = ignore_value lowercase = num_queries lowercase = no_object_weight lowercase = class_weight lowercase = mask_weight lowercase = dice_weight lowercase = train_num_points lowercase = oversample_ratio lowercase = importance_sample_ratio lowercase = init_std lowercase = init_xavier_std lowercase = use_auxiliary_loss lowercase = feature_strides lowercase = output_auxiliary_logits lowercase = decoder_layers super().__init__(**__lowerCAmelCase ) @classmethod def A__ ( cls , __lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return cls( backbone_config=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.backbone_config.to_dict() lowercase = self.__class__.model_type return output
32
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""CLIPFeatureExtractor"""] lowerCamelCase__ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
'''simple docstring''' lowerCamelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase : int = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
47
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase : List[Any] = None UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : str = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "camembert-base": 5_1_2, } UpperCamelCase : Optional[int] = "▁" class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = CamembertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
263
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : int = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "distilbert" lowercase = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=512 , __UpperCAmelCase=False , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=768 , __UpperCAmelCase=4 * 768 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = sinusoidal_pos_embds __UpperCamelCase = n_layers __UpperCamelCase = n_heads __UpperCamelCase = dim __UpperCamelCase = hidden_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation __UpperCamelCase = initializer_range __UpperCamelCase = qa_dropout __UpperCamelCase = seq_classif_dropout super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
263
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: def run_func(SCREAMING_SNAKE_CASE_ ): @wraps(SCREAMING_SNAKE_CASE_ ) def run_in_eager_mode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return func(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @wraps(SCREAMING_SNAKE_CASE_ ) @tf.function(experimental_compile=SCREAMING_SNAKE_CASE_ ) def run_in_graph_mode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return func(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> ["tf.Tensor"]: lowerCAmelCase__ : Union[str, Any] = random.Random() lowerCAmelCase__ : Dict = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(SCREAMING_SNAKE_CASE_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class A__ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = "TensorFlow" @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return tf.__version__ def _lowerCamelCase ( self : List[Any] , a : str , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase__ : Union[str, Any] = self._prepare_inference_func(a , a , a ) return self._measure_speed(_inference ) def _lowerCamelCase ( self : Any , a : str , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase__ : Any = self._prepare_train_func(a , a , a ) return self._measure_speed(_train ) def _lowerCamelCase ( self : str , a : str , a : int , a : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a ) lowerCAmelCase__ : Optional[Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase__ : Any = self._prepare_inference_func(a , a , a ) return self._measure_memory(_inference ) def _lowerCamelCase ( self : List[str] , a : str , a : int , a : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a ) lowerCAmelCase__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) lowerCAmelCase__ : int = self._prepare_train_func(a , a , a ) return self._measure_memory(_train ) def _lowerCamelCase ( self : Dict , a : str , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : str = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase__ : List[str] = ( hasattr(a , 'architectures' ) and isinstance(config.architectures , a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase__ : str = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase__ : Union[str, Any] = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase__ : Union[str, Any] = getattr(a , a ) lowerCAmelCase__ : List[str] = model_cls(a ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase__ : str = TF_MODEL_MAPPING[config.__class__](a ) # encoder-decoder has vocab size saved differently lowerCAmelCase__ : Dict = config.vocab_size if hasattr(a , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase__ : Dict = random_input_ids(a , a , a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(a , decoder_input_ids=a , training=a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(a , training=a ) lowerCAmelCase__ : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCamelCase ( self : Optional[int] , a : str , a : int , a : int ): '''simple docstring''' lowerCAmelCase__ : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) lowerCAmelCase__ : Tuple = ( hasattr(a , 'architectures' ) and isinstance(config.architectures , a ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase__ : int = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase__ : Union[str, Any] = __import__('transformers' , fromlist=[model_class] ) lowerCAmelCase__ : Any = getattr(a , a ) lowerCAmelCase__ : Dict = model_cls(a ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: lowerCAmelCase__ : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a ) # encoder-decoder has vocab size saved differently lowerCAmelCase__ : Optional[Any] = config.vocab_size if hasattr(a , 'vocab_size' ) else config.encoder.vocab_size lowerCAmelCase__ : Optional[Any] = random_input_ids(a , a , a ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase__ : Optional[int] = model(a , decoder_input_ids=a , labels=a , training=a )[0] lowerCAmelCase__ : Optional[Any] = tf.gradients(a , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase__ : Union[str, Any] = model(a , labels=a , training=a )[0] lowerCAmelCase__ : Dict = tf.gradients(a , model.trainable_variables ) return gradients lowerCAmelCase__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCamelCase ( self : Dict , a : List[Any] ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(a , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase__ : Any = timeit.repeat( a , repeat=self.args.repeat , number=10 , ) return min(a ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCamelCase ( self : Tuple , a : Callable[[], None] ): '''simple docstring''' logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) lowerCAmelCase__ : List[Any] = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) lowerCAmelCase__ : Union[str, Any] = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() lowerCAmelCase__ : str = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase__ : List[Any] = nvml.nvmlDeviceGetMemoryInfo(a ) lowerCAmelCase__ : Optional[Any] = meminfo.used lowerCAmelCase__ : Optional[int] = Memory(a ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) lowerCAmelCase__ : Optional[int] = None else: lowerCAmelCase__ : Union[str, Any] = measure_peak_memory_cpu(a ) lowerCAmelCase__ : Dict = Memory(a ) if isinstance(a , a ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase__ : Any = stop_memory_tracing(a ) if memory is None: lowerCAmelCase__ : List[str] = summary.total else: lowerCAmelCase__ : Any = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
212
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.array: lowerCAmelCase__ : Dict = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' lowerCAmelCase__ : Optional[Any] = 'f32le' lowerCAmelCase__ : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase__ : List[Any] = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE_ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase__ : List[str] = output_stream[0] lowerCAmelCase__ : str = np.frombuffer(SCREAMING_SNAKE_CASE_ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> Dict: lowerCAmelCase__ : Optional[Any] = F'''{sampling_rate}''' lowerCAmelCase__ : Any = '1' if format_for_conversion == "s16le": lowerCAmelCase__ : Dict = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : List[str] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCAmelCase__ : Tuple = platform.system() if system == "Linux": lowerCAmelCase__ : str = 'alsa' lowerCAmelCase__ : str = 'default' elif system == "Darwin": lowerCAmelCase__ : Any = 'avfoundation' lowerCAmelCase__ : Tuple = ':0' elif system == "Windows": lowerCAmelCase__ : Any = 'dshow' lowerCAmelCase__ : int = 'default' lowerCAmelCase__ : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase__ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase__ : str = _ffmpeg_stream(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for item in iterator: yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "f32le" , ) -> str: if stream_chunk_s is not None: lowerCAmelCase__ : Union[str, Any] = stream_chunk_s else: lowerCAmelCase__ : Tuple = chunk_length_s lowerCAmelCase__ : Any = ffmpeg_microphone(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , format_for_conversion=SCREAMING_SNAKE_CASE_ ) if format_for_conversion == "s16le": lowerCAmelCase__ : Optional[Any] = np.intaa lowerCAmelCase__ : Optional[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ : Optional[Any] = np.floataa lowerCAmelCase__ : Optional[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCAmelCase__ : Dict = chunk_length_s / 6 lowerCAmelCase__ : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ): lowerCAmelCase__ : Dict = [stride_length_s, stride_length_s] lowerCAmelCase__ : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase__ : List[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase__ : Any = datetime.datetime.now() lowerCAmelCase__ : Any = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE_ ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE_ ): # Put everything back in numpy scale lowerCAmelCase__ : Any = np.frombuffer(item['raw'] , dtype=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase__ : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = b'' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCAmelCase__ : List[str] = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE_ ) < chunk_len: lowerCAmelCase__ : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE_ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase__ : Dict = (_stride_left, stride_right) lowerCAmelCase__ : Any = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase__ : Optional[int] = False yield item lowerCAmelCase__ : Optional[int] = stride_left lowerCAmelCase__ : Optional[int] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE_ ) > stride_left: lowerCAmelCase__ : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase__ : Any = False yield item def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : int = 2**24 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE_ ) as ffmpeg_process: while True: lowerCAmelCase__ : List[str] = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
212
1
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = ['''image_processor''', '''tokenizer'''] __lowercase : Dict = '''Pix2StructImageProcessor''' __lowercase : Union[str, Any] = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = False super().__init__(lowerCAmelCase__ , lowerCAmelCase__) def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 2_0_4_8 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""") # Get only text if images is None and not self.image_processor.is_vqa: __SCREAMING_SNAKE_CASE = self.tokenizer __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __SCREAMING_SNAKE_CASE = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , **lowerCAmelCase__) else: # add pixel_values and bbox __SCREAMING_SNAKE_CASE = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ , **lowerCAmelCase__) if text is not None and not self.image_processor.is_vqa: __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if "attention_mask" in text_encoding: __SCREAMING_SNAKE_CASE = text_encoding.pop("""attention_mask""") if "input_ids" in text_encoding: __SCREAMING_SNAKE_CASE = text_encoding.pop("""input_ids""") else: __SCREAMING_SNAKE_CASE = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__) return encoding_image_processor def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__) @property def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
255
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : List[str] = CpmAntTokenizer __lowercase : List[str] = False def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) @tooslow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""") __SCREAMING_SNAKE_CASE = """今天天气真好!""" __SCREAMING_SNAKE_CASE = ["""今天""", """天气""", """真""", """好""", """!"""] __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """今天天气真好!""" __SCREAMING_SNAKE_CASE = [tokenizer.bos_token] + tokens __SCREAMING_SNAKE_CASE = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__)
255
1
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : bool , _UpperCAmelCase : list[int] , _UpperCAmelCase : float ) -> int: """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(_UpperCAmelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , ) def UpperCamelCase_ ( ) -> None: """simple docstring""" _UpperCAmelCase : int = [90, 23, 6, 33, 21, 65, 123, 34_423] _UpperCAmelCase : List[Any] = math.log(len(_UpperCAmelCase ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): super().__init__() _UpperCAmelCase : Optional[int] = nn.ModuleList(A ) def _A ( self : Dict , A : torch.FloatTensor , A : Union[torch.Tensor, float, int] , A : torch.Tensor , A : List[torch.tensor] , A : List[float] , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[torch.Tensor] = None , A : Optional[Dict[str, Any]] = None , A : bool = False , A : bool = True , ): for i, (image, scale, controlnet) in enumerate(zip(A , A , self.nets ) ): _UpperCAmelCase , _UpperCAmelCase : str = controlnet( A , A , A , A , A , A , A , A , A , A , A , ) # merge samples if i == 0: _UpperCAmelCase , _UpperCAmelCase : List[Any] = down_samples, mid_sample else: _UpperCAmelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(A , A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _A ( self : List[str] , A : Union[str, os.PathLike] , A : bool = True , A : Callable = None , A : bool = False , A : Optional[str] = None , ): _UpperCAmelCase : str = 0 _UpperCAmelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( A , is_main_process=A , save_function=A , safe_serialization=A , variant=A , ) idx += 1 _UpperCAmelCase : Tuple = model_path_to_save + F"""_{idx}""" @classmethod def _A ( cls : int , A : Optional[Union[str, os.PathLike]] , **A : Tuple ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _UpperCAmelCase : int = pretrained_model_path while os.path.isdir(A ): _UpperCAmelCase : List[str] = ControlNetModel.from_pretrained(A , **A ) controlnets.append(A ) idx += 1 _UpperCAmelCase : Dict = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(A )} controlnets loaded from {pretrained_model_path}.""" ) if len(A ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(A )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(A )
31
1
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py SCREAMING_SNAKE_CASE : Any = """src/transformers""" SCREAMING_SNAKE_CASE : Dict = """docs/source/en""" SCREAMING_SNAKE_CASE : List[str] = """.""" def lowercase ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple ) ->Optional[Any]: """simple docstring""" with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __snake_case : List[Any] = f.readlines() # Find the start prompt. __snake_case : Dict = 0 while not lines[start_index].startswith(_snake_case ): start_index += 1 start_index += 1 __snake_case : Optional[int] = start_index while not lines[end_index].startswith(_snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | SCREAMING_SNAKE_CASE : Optional[int] = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. SCREAMING_SNAKE_CASE : List[Any] = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowercase ( _snake_case : Any ) ->Optional[int]: """simple docstring""" __snake_case : str = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , _snake_case ) return [m.group(0 ) for m in matches] def lowercase ( _snake_case : Dict , _snake_case : List[str] ) ->List[Any]: """simple docstring""" __snake_case : Optional[int] = 2 if text == '''✅''' or text == '''❌''' else len(_snake_case ) __snake_case : str = (width - text_length) // 2 __snake_case : List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase ( ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __snake_case : Optional[int] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __snake_case : Union[str, Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __snake_case : List[Any] = collections.defaultdict(_snake_case ) __snake_case : List[Any] = collections.defaultdict(_snake_case ) __snake_case : Optional[Any] = collections.defaultdict(_snake_case ) __snake_case : Optional[int] = collections.defaultdict(_snake_case ) __snake_case : Any = collections.defaultdict(_snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(_snake_case ): __snake_case : List[str] = None if attr_name.endswith('''Tokenizer''' ): __snake_case : Tuple = slow_tokenizers __snake_case : Union[str, Any] = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): __snake_case : List[Any] = fast_tokenizers __snake_case : Optional[int] = attr_name[:-13] elif _re_tf_models.match(_snake_case ) is not None: __snake_case : List[Any] = tf_models __snake_case : int = _re_tf_models.match(_snake_case ).groups()[0] elif _re_flax_models.match(_snake_case ) is not None: __snake_case : Tuple = flax_models __snake_case : Optional[int] = _re_flax_models.match(_snake_case ).groups()[0] elif _re_pt_models.match(_snake_case ) is not None: __snake_case : Optional[Any] = pt_models __snake_case : List[Any] = _re_pt_models.match(_snake_case ).groups()[0] if lookup_dict is not None: while len(_snake_case ) > 0: if attr_name in model_name_to_prefix.values(): __snake_case : Optional[int] = True break # Try again after removing the last word in the name __snake_case : Dict = ''''''.join(camel_case_split(_snake_case )[:-1] ) # Let's build that table! __snake_case : int = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __snake_case : List[Any] = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __snake_case : int = [len(_snake_case ) + 2 for c in columns] __snake_case : List[Any] = max([len(_snake_case ) for name in model_names] ) + 2 # Build the table per se __snake_case : Optional[int] = '''|''' + '''|'''.join([_center_text(_snake_case , _snake_case ) for c, w in zip(_snake_case , _snake_case )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" __snake_case : Optional[int] = {True: '''✅''', False: '''❌'''} for name in model_names: __snake_case : Optional[Any] = model_name_to_prefix[name] __snake_case : Optional[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_snake_case , _snake_case ) for l, w in zip(_snake_case , _snake_case )] ) + "|\n" return table def lowercase ( _snake_case : List[str]=False ) ->Dict: """simple docstring""" __snake_case : int = _find_text_in_file( filename=os.path.join(_snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) __snake_case : Optional[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() check_model_table(args.fix_and_overwrite)
361
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
0
from typing import TYPE_CHECKING from ...utils import _LazyModule a__ = {'tokenization_bertweet': ['BertweetTokenizer']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
235
def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : str ) -> list[int]: """simple docstring""" a_ : Any = int(__A ) # Initialize Result a_ : Tuple = [] # Traverse through all denomination for denomination in reversed(__A ): # Find denominations while int(__A ) >= int(__A ): total_value -= int(__A ) answer.append(__A ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Union[str, Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): UpperCAmelCase_ : List[Any] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) UpperCAmelCase_ : str = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase_ : List[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCAmelCase_ : str = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(F'Following is minimal change for {value}: ') UpperCAmelCase_ : Optional[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
32
0
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : Dict = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
243
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''Salesforce/blip-image-captioning-base''' __SCREAMING_SNAKE_CASE = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) __SCREAMING_SNAKE_CASE = '''image_captioner''' __SCREAMING_SNAKE_CASE = AutoModelForVisionaSeq __SCREAMING_SNAKE_CASE = ['''image'''] __SCREAMING_SNAKE_CASE = ['''text'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""vision"""] ) super().__init__(*lowercase , **lowercase ) def __lowerCamelCase ( self , lowercase ) -> Any: return self.pre_processor(images=lowercase , return_tensors="""pt""" ) def __lowerCamelCase ( self , lowercase ) -> Optional[int]: return self.model.generate(**lowercase ) def __lowerCamelCase ( self , lowercase ) -> List[str]: return self.pre_processor.batch_decode(lowercase , skip_special_tokens=lowercase )[0].strip()
243
1
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowerCAmelCase :Tuple = logging.getLogger(__name__) _lowerCAmelCase :List[str] = 50 # max width of layer names _lowerCAmelCase :int = 70 # max width of quantizer names def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : Optional[Any] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=UpperCamelCase__ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=UpperCamelCase__ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=UpperCamelCase__ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=UpperCamelCase__ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=UpperCamelCase__ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=UpperCamelCase__ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): if args.calibrator == "max": _UpperCAmelCase : str = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _UpperCAmelCase : Any = '''histogram''' elif args.calibrator == "mse": _UpperCAmelCase : Optional[int] = '''histogram''' else: raise ValueError(F'Invalid calibrator {args.calibrator}' ) _UpperCAmelCase : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=UpperCamelCase__ ) _UpperCAmelCase : Tuple = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCamelCase__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Union[str, Any]=False ): logger.info('''Configuring Model for Quantization''' ) logger.info(F'using quantization package {pytorch_quantization.__file__}' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCamelCase__ , ['''embeddings'''] , which='''weight''' , _disabled=UpperCamelCase__ ) if args.quant_disable: set_quantizer_by_name(UpperCamelCase__ , [''''''] , _disabled=UpperCamelCase__ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCamelCase__ , args.quant_disable_keyword , _disabled=UpperCamelCase__ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCamelCase__ , [r'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=UpperCamelCase__ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCamelCase__ , [r'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=UpperCamelCase__ ) if args.recalibrate_weights: recalibrate_weights(UpperCamelCase__ ) if args.fuse_qkv: fuse_qkv(UpperCamelCase__ , UpperCamelCase__ ) if args.clip_gelu: clip_gelu(UpperCamelCase__ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : str ): logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'{name:80}: {module}' ) def lowerCamelCase_ (UpperCamelCase__ : Tuple , UpperCamelCase__ : Any ): logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ): def fusea(UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(UpperCamelCase__ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _UpperCAmelCase : Dict = qq._amax.detach().item() _UpperCAmelCase : Tuple = qk._amax.detach().item() _UpperCAmelCase : Optional[int] = qv._amax.detach().item() _UpperCAmelCase : Any = max(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) qq._amax.fill_(UpperCamelCase__ ) qk._amax.fill_(UpperCamelCase__ ) qv._amax.fill_(UpperCamelCase__ ) logger.info(F' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F'FUSE_QKV: {name:{name_width}}' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Dict ): for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _UpperCAmelCase : int = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCamelCase__ ) _UpperCAmelCase : str = mod._input_quantizer._amax.data.detach().item() logger.info(F'CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}' ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): for name, mod in model.named_modules(): if hasattr(UpperCamelCase__ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _UpperCAmelCase : List[Any] = mod.weight.shape[0] _UpperCAmelCase : Dict = mod._weight_quantizer._amax.detach() _UpperCAmelCase : str = torch.ones(UpperCamelCase__ , dtype=amax.dtype , device=amax.device ) * amax print(F'expanding {name} {amax} -> {mod._weight_quantizer._amax}' ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): for name, mod in model.named_modules(): if hasattr(UpperCamelCase__ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _UpperCAmelCase : Union[str, Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _UpperCAmelCase : Dict = set(range(len(mod.weight.size() ) ) ) - axis_set _UpperCAmelCase : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=UpperCamelCase__ , keepdims=UpperCamelCase__ ).detach() logger.info(F'RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}' ) _UpperCAmelCase : Union[str, Any] = amax def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any=25 , UpperCamelCase__ : str=180 , UpperCamelCase__ : Union[str, Any]=None ): if ignore is None: _UpperCAmelCase : Optional[int] = [] elif not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [ignore] _UpperCAmelCase : List[Any] = 0 for name, mod in model.named_modules(): if not hasattr(UpperCamelCase__ , '''weight''' ): continue _UpperCAmelCase : Dict = max(UpperCamelCase__ , len(UpperCamelCase__ ) ) for name, mod in model.named_modules(): _UpperCAmelCase : Any = getattr(UpperCamelCase__ , '''_input_quantizer''' , UpperCamelCase__ ) _UpperCAmelCase : int = getattr(UpperCamelCase__ , '''_weight_quantizer''' , UpperCamelCase__ ) if not hasattr(UpperCamelCase__ , '''weight''' ): continue if type(UpperCamelCase__ ) in ignore: continue if [True for s in ignore if type(UpperCamelCase__ ) is str and s in name]: continue _UpperCAmelCase : str = F'Act:{input_q.extra_repr()}' _UpperCAmelCase : Optional[int] = F'Wgt:{weight_q.extra_repr()}' _UpperCAmelCase : List[Any] = F'{name:{name_width}} {act_str} {wgt_str}' if len(UpperCamelCase__ ) <= line_width: logger.info(UpperCamelCase__ ) else: logger.info(F'{name:{name_width}} {act_str}' ) logger.info(F'{" ":{name_width}} {wgt_str}' ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): _UpperCAmelCase : str = 0 for name, mod in model.named_modules(): if isinstance(UpperCamelCase__ , pytorch_quantization.nn.TensorQuantizer ): print(F'{name:80} {mod}' ) count += 1 print(F'{count} TensorQuantizers found in model' ) def lowerCamelCase_ (UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : str ): _UpperCAmelCase : Tuple = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if quantizer_mod is not None: assert hasattr(UpperCamelCase__ , UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: logger.warning(F'{name} has no {quantizer}' ) def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : List[str]="both" , **UpperCamelCase__ : List[Any] ): _UpperCAmelCase : List[str] = F'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += F' {k}={v}' if which in ["input", "both"]: set_quantizer(UpperCamelCase__ , UpperCamelCase__ , '''_input_quantizer''' , UpperCamelCase__ , UpperCamelCase__ ) if which in ["weight", "both"]: set_quantizer(UpperCamelCase__ , UpperCamelCase__ , '''_weight_quantizer''' , UpperCamelCase__ , UpperCamelCase__ ) logger.info(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , **UpperCamelCase__ : Tuple ): for name, mod in model.named_modules(): if hasattr(UpperCamelCase__ , '''_input_quantizer''' ) or hasattr(UpperCamelCase__ , '''_weight_quantizer''' ): for n in names: if re.search(UpperCamelCase__ , UpperCamelCase__ ): set_quantizers(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(UpperCamelCase__ , UpperCamelCase__ ): _UpperCAmelCase : Optional[Any] = F'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += F' {k}={v}' setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) logger.info(UpperCamelCase__ )
263
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _lowerCAmelCase :str = object() # For specifying empty leaf dict `{}` _lowerCAmelCase :str = object() def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): _UpperCAmelCase : Dict = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): _UpperCAmelCase : str = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def lowerCamelCase_ (UpperCamelCase__ : List[str] ): def replace(UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def lowerCamelCase_ (): return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P('''mp''' , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCamelCase_ (UpperCamelCase__ : str ): _UpperCAmelCase : List[str] = _get_partition_rules() _UpperCAmelCase : List[str] = _replacement_rules(UpperCamelCase__ ) _UpperCAmelCase : List[Any] = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} _UpperCAmelCase : int = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
263
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient UpperCAmelCase__ : int =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase =test_results.split(""" """ ) lowerCamelCase =0 lowerCamelCase =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(a_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowercase ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase ={} lowerCamelCase =None lowerCamelCase =False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""" , a_ ): lowerCamelCase =True lowerCamelCase =line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): lowerCamelCase =line lowerCamelCase =False return failures class __A : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =title lowerCamelCase =doc_test_results["time_spent"].split(""",""" )[0] lowerCamelCase =doc_test_results["success"] lowerCamelCase =doc_test_results["failures"] lowerCamelCase =self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase =doc_test_results @property def _snake_case ( self ): lowerCamelCase =[self._time_spent] lowerCamelCase =0 for time in time_spent: lowerCamelCase =time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase__ ) == 1: lowerCamelCase =[0, 0, time_parts[0]] lowerCamelCase =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds lowerCamelCase =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f"""{int(lowerCAmelCase__ )}h{int(lowerCAmelCase__ )}m{int(lowerCAmelCase__ )}s""" @property def _snake_case ( self ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _snake_case ( self ): return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self ): return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self ): lowerCamelCase =40 lowerCamelCase ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )} lowerCamelCase ="" for category, failures in category_failures.items(): if len(lowerCAmelCase__ ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def _snake_case ( self ): lowerCamelCase =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCAmelCase__ ) @staticmethod def _snake_case ( ): lowerCamelCase =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(lowerCAmelCase__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=lowerCAmelCase__ , ) def _snake_case ( self ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) lowerCamelCase =f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else "All tests passed." lowerCamelCase =client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=lowerCAmelCase__ , ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase ="" for key, value in failures.items(): lowerCamelCase =value[:200] + " [Truncated]" if len(lowerCAmelCase__ ) > 250 else value failures_text += f"""*{key}*\n_{value}_\n\n""" lowerCamelCase =job_name lowerCamelCase ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: lowerCamelCase ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _snake_case ( self ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) lowerCamelCase =self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) lowerCamelCase =sorted(self.doc_test_results.items() , key=lambda UpperCAmelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): lowerCamelCase =f"""*Num failures* :{len(job_result["failed"] )} \n""" lowerCamelCase =job_result["failures"] lowerCamelCase =self.get_reply_blocks(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , text=lowerCAmelCase__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=lowerCAmelCase__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def _lowercase ( ) -> int: lowerCamelCase =os.environ["GITHUB_RUN_ID"] lowerCamelCase =F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" lowerCamelCase =requests.get(a_ ).json() lowerCamelCase ={} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCamelCase =math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(a_ ): lowerCamelCase =requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , a_ ) return {} def _lowercase ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase ={} if os.path.exists(a_ ): lowerCamelCase =os.listdir(a_ ) for file in files: try: with open(os.path.join(a_ , a_ ) , encoding="""utf-8""" ) as f: lowerCamelCase =f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(a_ , a_ )}.""" ) from e return _artifact def _lowercase ( ) -> str: class __A : def __init__( self , UpperCAmelCase_ ): lowerCamelCase =name lowerCamelCase =[] def __str__( self ): return self.name def _snake_case ( self , UpperCAmelCase_ ): self.paths.append({"""name""": self.name, """path""": path} ) lowerCamelCase ={} lowerCamelCase =filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase =directory if artifact_name not in _available_artifacts: lowerCamelCase =Artifact(a_ ) _available_artifacts[artifact_name].add_path(a_ ) return _available_artifacts if __name__ == "__main__": UpperCAmelCase__ : List[Any] =get_job_links() UpperCAmelCase__ : Dict =retrieve_available_artifacts() UpperCAmelCase__ : str =collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' UpperCAmelCase__ : List[str] ={ v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job UpperCAmelCase__ : Any =github_actions_job_links.get('''run_doctests''') UpperCAmelCase__ : Union[str, Any] =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] UpperCAmelCase__ : List[Any] =retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ : Union[str, Any] =handle_test_results(artifact['''stats''']) UpperCAmelCase__ : Optional[int] =failed UpperCAmelCase__ : Union[str, Any] =success UpperCAmelCase__ : List[Any] =time_spent[1:-1] + ''', ''' UpperCAmelCase__ : Union[str, Any] =extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): UpperCAmelCase__ : Union[str, Any] =line.replace('''FAILED ''', '''''') UpperCAmelCase__ : List[Any] =line.split()[0].replace('''\n''', '''''') if "::" in line: UpperCAmelCase__ ,UpperCAmelCase__ : Any =line.split('''::''') else: UpperCAmelCase__ ,UpperCAmelCase__ : str =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): UpperCAmelCase__ : Tuple =docs[file_regex] doc_test_results[category]["failed"].append(test) UpperCAmelCase__ : List[str] =all_failures[test] if test in all_failures else '''N/A''' UpperCAmelCase__ : List[str] =failure break UpperCAmelCase__ : int =Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
367
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _lowercase ( ) -> str: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_UpperCAmelCase ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def _lowercase ( ) -> Union[str, Any]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def _lowercase ( ) -> int: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_UpperCAmelCase ): http_head("""https://huggingface.co""" )
262
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _UpperCamelCase: int = 1.0_5_4_5_7_1_8_1_7e-3_4 # unit of ℏ : J * s _UpperCamelCase: str = 3e8 # unit of c : m * s^-1 def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> dict[str, float]: '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: lowercase : int = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase : str = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase : str = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
255
"""simple docstring""" from __future__ import annotations def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> list[int]: '''simple docstring''' lowercase : Tuple = 0 lowercase : int = len(_UpperCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase : int = i + 1 else: lowercase : List[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
255
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = "focalnet" def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=False , __UpperCAmelCase=[192, 384, 768, 768] , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[3, 3, 3, 3] , __UpperCAmelCase="gelu" , __UpperCAmelCase=4.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=False , __UpperCAmelCase=1E-4 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[str] = embed_dim __UpperCAmelCase : int = use_conv_embed __UpperCAmelCase : Tuple = hidden_sizes __UpperCAmelCase : int = depths __UpperCAmelCase : List[str] = focal_levels __UpperCAmelCase : Dict = focal_windows __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Union[str, Any] = mlp_ratio __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : Tuple = use_layerscale __UpperCAmelCase : str = layerscale_value __UpperCAmelCase : str = use_post_layernorm __UpperCAmelCase : int = use_post_layernorm_in_modulation __UpperCAmelCase : List[Any] = normalize_modulator __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : str = layer_norm_eps __UpperCAmelCase : int = encoder_stride __UpperCAmelCase : int = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
16
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class _A ( metaclass=__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
16
1
"""simple docstring""" import requests def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = {'Content-Type': 'application/json'} UpperCAmelCase = requests.post(snake_case_ , json={'text': message_body} , headers=snake_case_ ) if response.status_code != 200: UpperCAmelCase = ( 'Request to slack returned an error ' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
78
from math import pi def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__ ( A_ ): __a = """timesformer""" def __init__( self : Tuple , _lowerCamelCase : Any=224 , _lowerCamelCase : str=16 , _lowerCamelCase : Tuple=3 , _lowerCamelCase : List[str]=8 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Dict=12 , _lowerCamelCase : List[Any]=12 , _lowerCamelCase : Optional[int]=3072 , _lowerCamelCase : str="gelu" , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : str=0.0_2 , _lowerCamelCase : Any=1e-6 , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple="divided_space_time" , _lowerCamelCase : Optional[Any]=0 , **_lowerCamelCase : List[Any] , ): super().__init__(**_lowerCamelCase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = num_frames _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = qkv_bias _snake_case = attention_type _snake_case = drop_path_rate
40
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase__ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase__ = { 'allenai/led-base-16384': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCAmelCase ( ) -> Union[str, Any]: _snake_case = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def _UpperCAmelCase ( __lowerCamelCase : Any ) -> List[Any]: _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : str , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]="replace" , _lowerCamelCase : Dict="<s>" , _lowerCamelCase : Optional[Any]="</s>" , _lowerCamelCase : Union[str, Any]="</s>" , _lowerCamelCase : str="<s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : Any="<pad>" , _lowerCamelCase : Union[str, Any]="<mask>" , _lowerCamelCase : Optional[int]=False , **_lowerCamelCase : str , ): _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: _snake_case = json.load(_lowerCamelCase ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase , encoding='''utf-8''' ) as merges_handle: _snake_case = merges_handle.read().split('''\n''' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase ( self : Tuple ): return len(self.encoder ) def lowercase ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self : Dict , _lowerCamelCase : str ): if token in self.cache: return self.cache[token] _snake_case = tuple(_lowerCamelCase ) _snake_case = get_pairs(_lowerCamelCase ) if not pairs: return token while True: _snake_case = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(_lowerCamelCase ): try: _snake_case = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(_lowerCamelCase ) _snake_case = new_word if len(_lowerCamelCase ) == 1: break else: _snake_case = get_pairs(_lowerCamelCase ) _snake_case = ''' '''.join(_lowerCamelCase ) _snake_case = word return word def lowercase ( self : str , _lowerCamelCase : Dict ): _snake_case = [] for token in re.findall(self.pat , _lowerCamelCase ): _snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(''' ''' ) ) return bpe_tokens def lowercase ( self : Optional[Any] , _lowerCamelCase : List[str] ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase ( self : Optional[int] , _lowerCamelCase : Dict ): return self.decoder.get(_lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : Union[str, Any] ): _snake_case = ''''''.join(_lowerCamelCase ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) _snake_case = 0 with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _snake_case = token_index writer.write(''' '''.join(_lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase ( self : str , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : Tuple , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def lowercase ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Any , _lowerCamelCase : int , _lowerCamelCase : Any=False , **_lowerCamelCase : List[Any] ): _snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): _snake_case = ''' ''' + text return (text, kwargs) def lowercase ( self : int , _lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[bool] = None , ): _snake_case = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: _snake_case = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _snake_case = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: _snake_case = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _snake_case = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _snake_case = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
40
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = dataset a_ = process a_ = params def __len__( self) ->Union[str, Any]: return len(self.dataset) def __getitem__( self , __UpperCAmelCase) ->Tuple: a_ = self.dataset[i] a_ = self.process(__UpperCAmelCase , **self.params) return processed class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Optional[int]: a_ = loader a_ = infer a_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether a_ = None a_ = loader_batch_size # Internal bookkeeping a_ = None a_ = None def __len__( self) ->Dict: return len(self.loader) def __iter__( self) ->Dict: a_ = iter(self.loader) return self def UpperCAmelCase__ ( self) ->int: if isinstance(self._loader_batch_data , torch.Tensor): # Batch data is simple tensor, just fetch the slice a_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) a_ = {} for k, element in self._loader_batch_data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase): # Convert ModelOutput to tuple first a_ = element.to_tuple() if isinstance(element[0] , torch.Tensor): a_ = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): a_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__UpperCAmelCase , __UpperCAmelCase): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor): a_ = tuple(el[self._loader_batch_index].unsqueeze(0) for el in element) elif isinstance(element[0] , np.ndarray): a_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0) for el in element) continue if element is None: # This can happen for optional data that get passed around a_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a_ = element[self._loader_batch_index].unsqueeze(0) elif isinstance(element[self._loader_batch_index] , np.ndarray): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a_ = np.expand_dims(element[self._loader_batch_index] , 0) else: # This is typically a list, so no need to `unsqueeze`. a_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 a_ = self._loader_batch_data.__class__(__UpperCAmelCase) self._loader_batch_index += 1 return result def UpperCAmelCase__ ( self) ->str: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch a_ = next(self.iterator) a_ = self.infer(__UpperCAmelCase , **self.params) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__UpperCAmelCase , torch.Tensor): a_ = processed else: a_ = list(processed.keys())[0] a_ = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = len(__UpperCAmelCase) else: a_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a_ = observed_batch_size # Setting internal index to unwrap the batch a_ = processed a_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Any: super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __iter__( self) ->Optional[int]: a_ = iter(self.loader) a_ = None return self def UpperCAmelCase__ ( self) ->List[str]: if self.subiterator is None: a_ = self.infer(next(self.iterator) , **self.params) try: # Try to return next item a_ = next(self.subiterator) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators a_ = self.infer(next(self.iterator) , **self.params) a_ = next(self.subiterator) return processed class snake_case ( SCREAMING_SNAKE_CASE_ ): def __iter__( self) ->Union[str, Any]: a_ = iter(self.loader) return self def UpperCAmelCase__ ( self) ->Optional[int]: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. a_ = False a_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: a_ = self.loader_batch_item() a_ = item.pop("is_last") accumulator.append(__UpperCAmelCase) if is_last: return accumulator while not is_last: a_ = self.infer(next(self.iterator) , **self.params) if self.loader_batch_size is not None: if isinstance(__UpperCAmelCase , torch.Tensor): a_ = processed else: a_ = list(processed.keys())[0] a_ = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = len(__UpperCAmelCase) else: a_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a_ = observed_batch_size a_ = processed a_ = 0 while self._loader_batch_index < self.loader_batch_size: a_ = self.loader_batch_item() a_ = item.pop("is_last") accumulator.append(__UpperCAmelCase) if is_last: return accumulator else: a_ = processed a_ = item.pop("is_last") accumulator.append(__UpperCAmelCase) return accumulator class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->Dict: a_ = dataset a_ = key def __len__( self) ->Tuple: return len(self.dataset) def __getitem__( self , __UpperCAmelCase) ->int: return self.dataset[i][self.key] class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Union[str, Any]: a_ = dataset a_ = keya a_ = keya def __len__( self) ->Any: return len(self.dataset) def __getitem__( self , __UpperCAmelCase) ->int: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
243
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , ) ->int: super().__init__() a_ = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase) a_ = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase) a_ = False a_ = nn.Dropout(p=__UpperCAmelCase) a_ = TaConfig( vocab_size=__UpperCAmelCase , d_model=__UpperCAmelCase , num_heads=__UpperCAmelCase , d_kv=__UpperCAmelCase , d_ff=__UpperCAmelCase , dropout_rate=__UpperCAmelCase , feed_forward_proj=__UpperCAmelCase , is_decoder=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , ) a_ = nn.ModuleList() for lyr_num in range(__UpperCAmelCase): a_ = TaBlock(__UpperCAmelCase) self.encoders.append(__UpperCAmelCase) a_ = TaLayerNorm(__UpperCAmelCase) a_ = nn.Dropout(p=__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Union[str, Any]: a_ = self.token_embedder(__UpperCAmelCase) a_ = encoder_input_tokens.shape[1] a_ = torch.arange(__UpperCAmelCase , device=encoder_input_tokens.device) x += self.position_encoding(__UpperCAmelCase) a_ = self.dropout_pre(__UpperCAmelCase) # inverted the attention mask a_ = encoder_input_tokens.size() a_ = self.get_extended_attention_mask(__UpperCAmelCase , __UpperCAmelCase) for lyr in self.encoders: a_ = lyr(__UpperCAmelCase , __UpperCAmelCase)[0] a_ = self.layer_norm(__UpperCAmelCase) return self.dropout_post(__UpperCAmelCase), encoder_inputs_mask
243
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self , a__ , a__=13 , a__=32 , a__=3 , a__=4 , a__=[10, 20, 30, 40] , a__=[2, 2, 3, 2] , a__=True , a__=True , a__=37 , a__="gelu" , a__=10 , a__=0.0_2 , a__=["stage2", "stage3", "stage4"] , a__=[2, 3, 4] , a__=None , ): _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Optional[Any] = num_stages _lowerCAmelCase : int = hidden_sizes _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : Any = is_training _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Optional[Any] = num_labels _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : Optional[int] = out_features _lowerCAmelCase : Tuple = out_indices _lowerCAmelCase : str = scope def __A ( self ): _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def __A ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : int = ConvNextVaModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = ConvNextVaForImageClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ ): _lowerCAmelCase : Any = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCAmelCase : List[str] = None _lowerCAmelCase : int = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict def __A ( self ): _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : int = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _UpperCamelCase : Optional[Any] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : List[Any] = False def __A ( self ): _lowerCAmelCase : Optional[Any] = ConvNextVaModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __A ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __A ( self ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __A ( self ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __A ( self ): pass def __A ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : Tuple = True if model_class.__name__ in [ *get_values(a__ ), *get_values(a__ ), ]: continue _lowerCAmelCase : Optional[Any] = model_class(a__ ) model.to(a__ ) model.train() _lowerCAmelCase : str = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Optional[int] = model(**a__ ).loss loss.backward() def __A ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : int = False _lowerCAmelCase : List[Any] = True if ( model_class.__name__ in [*get_values(a__ ), *get_values(a__ )] or not model_class.supports_gradient_checkpointing ): continue _lowerCAmelCase : Tuple = model_class(a__ ) model.to(a__ ) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : Dict = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _lowerCAmelCase : Optional[int] = model(**a__ ).loss loss.backward() def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(a__ ) _lowerCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def __A ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): def check_hidden_states_output(a__ , a__ , a__ ): _lowerCAmelCase : Tuple = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : List[str] = True check_hidden_states_output(a__ , a__ , a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __A ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = ConvNextVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def __A ( self ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : str = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a__ ) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : Dict = preprocessor(images=a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**a__ ) # verify the logits _lowerCAmelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) _lowerCAmelCase : int = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
126
"""simple docstring""" from manim import * class __A ( SCREAMING_SNAKE_CASE_ ): def __A ( self ): _lowerCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) _lowerCAmelCase : List[Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _lowerCAmelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Optional[Any] = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Dict = Text("""CPU""" , font_size=24 ) _lowerCAmelCase : str = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _lowerCAmelCase : Dict = [mem.copy() for i in range(4 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : Tuple = Text("""GPU""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _lowerCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : List[str] = Text("""Model""" , font_size=24 ) _lowerCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _lowerCAmelCase : Tuple = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _lowerCAmelCase : List[str] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _lowerCAmelCase : Any = [mem.copy() for i in range(6 )] _lowerCAmelCase : List[str] = VGroup(*a__ ).arrange(a__ , buff=0 ) _lowerCAmelCase : int = Text("""Loaded Checkpoint""" , font_size=24 ) _lowerCAmelCase : Optional[int] = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _lowerCAmelCase : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCAmelCase : List[str] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _lowerCAmelCase : int = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _lowerCAmelCase : List[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _lowerCAmelCase : int = [] _lowerCAmelCase : List[Any] = [] for i, rect in enumerate(a__ ): _lowerCAmelCase : Tuple = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _lowerCAmelCase : Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
126
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _UpperCAmelCase : Any =logging.get_logger(__name__) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *__lowercase , **__lowercase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
262
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : dict ): """simple docstring""" lowercase_ : Optional[int] = set() # edges = list of graph's edges lowercase_ : Union[str, Any] = get_edges(__SCREAMING_SNAKE_CASE ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowercase_ , lowercase_ : Dict = edges.pop() chosen_vertices.add(__SCREAMING_SNAKE_CASE ) chosen_vertices.add(__SCREAMING_SNAKE_CASE ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__SCREAMING_SNAKE_CASE ) return chosen_vertices def snake_case_ ( __SCREAMING_SNAKE_CASE : dict ): """simple docstring""" lowercase_ : str = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
264
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''vit''' def __init__( self , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=30_72 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-1_2 , __SCREAMING_SNAKE_CASE=2_24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=16 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : Dict = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Any = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Union[str, Any] = image_size lowercase_ : Tuple = patch_size lowercase_ : Tuple = num_channels lowercase_ : Union[str, Any] = qkv_bias lowercase_ : List[Any] = encoder_stride class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = version.parse('''1.11''' ) @property def _snake_case ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): """simple docstring""" return 1E-4
264
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class __A ( A_ ,A_ ): '''simple docstring''' lowerCAmelCase : Any = "focalnet" def __init__( self : Any ,_snake_case : Optional[int]=224 ,_snake_case : Tuple=4 ,_snake_case : Optional[Any]=3 ,_snake_case : Optional[Any]=96 ,_snake_case : List[Any]=False ,_snake_case : Optional[int]=[192, 384, 768, 768] ,_snake_case : Optional[Any]=[2, 2, 6, 2] ,_snake_case : Optional[int]=[2, 2, 2, 2] ,_snake_case : List[str]=[3, 3, 3, 3] ,_snake_case : List[str]="gelu" ,_snake_case : Dict=4.0 ,_snake_case : str=0.0 ,_snake_case : Any=0.1 ,_snake_case : Dict=False ,_snake_case : List[Any]=1e-4 ,_snake_case : Dict=False ,_snake_case : Optional[int]=False ,_snake_case : Optional[Any]=False ,_snake_case : Dict=0.02 ,_snake_case : Optional[int]=1e-5 ,_snake_case : Optional[int]=32 ,_snake_case : Any=None ,_snake_case : List[Any]=None ,**_snake_case : List[Any] ,) -> Tuple: """simple docstring""" super().__init__(**_snake_case ) lowercase__ : Optional[Any] = image_size lowercase__ : str = patch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = embed_dim lowercase__ : List[str] = use_conv_embed lowercase__ : Optional[Any] = hidden_sizes lowercase__ : Dict = depths lowercase__ : List[Any] = focal_levels lowercase__ : Tuple = focal_windows lowercase__ : str = hidden_act lowercase__ : Tuple = mlp_ratio lowercase__ : Tuple = hidden_dropout_prob lowercase__ : str = drop_path_rate lowercase__ : str = use_layerscale lowercase__ : List[Any] = layerscale_value lowercase__ : Optional[Any] = use_post_layernorm lowercase__ : str = use_post_layernorm_in_modulation lowercase__ : Dict = normalize_modulator lowercase__ : Dict = initializer_range lowercase__ : Union[str, Any] = layer_norm_eps lowercase__ : Any = encoder_stride lowercase__ : int = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowercase__ , lowercase__ : Tuple = get_aligned_output_features_output_indices( out_features=_snake_case ,out_indices=_snake_case ,stage_names=self.stage_names )
16
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" debug_launcher(test_script.main ) def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" debug_launcher(test_ops.main )
16
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A__ = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''',safety_checker=__lowerCamelCase,cache_dir=__lowerCamelCase ) A__ = [t[-1] for t in os.walk(os.path.join(__lowerCamelCase,os.listdir(__lowerCamelCase )[0],'''snapshots''' ) )] A__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''',safety_checker=__lowerCamelCase ) A__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A__ = jax.random.PRNGKey(0 ) A__ = 4 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(__lowerCamelCase ) # shard inputs and rng A__ = replicate(__lowerCamelCase ) A__ = jax.random.split(__lowerCamelCase,__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipeline(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,jit=__lowerCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(__lowerCamelCase,dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 A__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowerCamelCase ) == num_samples def UpperCamelCase ( self ): A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''',revision='''flax''',safety_checker=__lowerCamelCase ) A__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(__lowerCamelCase ) # shard inputs and rng A__ = replicate(__lowerCamelCase ) A__ = jax.random.split(__lowerCamelCase,__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipeline(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,jit=__lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(__lowerCamelCase,dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def UpperCamelCase ( self ): A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''',revision='''bf16''',dtype=jnp.bfloataa,safety_checker=__lowerCamelCase ) A__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(__lowerCamelCase ) # shard inputs and rng A__ = replicate(__lowerCamelCase ) A__ = jax.random.split(__lowerCamelCase,__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipeline(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,jit=__lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__lowerCamelCase,dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCamelCase ( self ): A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''',revision='''bf16''',dtype=jnp.bfloataa ) A__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(__lowerCamelCase ) # shard inputs and rng A__ = replicate(__lowerCamelCase ) A__ = jax.random.split(__lowerCamelCase,__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipeline(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,jit=__lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__lowerCamelCase,dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def UpperCamelCase ( self ): A__ = FlaxDDIMScheduler( beta_start=0.00085,beta_end=0.012,beta_schedule='''scaled_linear''',set_alpha_to_one=__lowerCamelCase,steps_offset=1,) A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''',revision='''bf16''',dtype=jnp.bfloataa,scheduler=__lowerCamelCase,safety_checker=__lowerCamelCase,) A__ = scheduler.create_state() A__ = scheduler_state A__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(__lowerCamelCase ) # shard inputs and rng A__ = replicate(__lowerCamelCase ) A__ = jax.random.split(__lowerCamelCase,__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipeline(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,jit=__lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:],dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(__lowerCamelCase,dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def UpperCamelCase ( self ): A__ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A__ = jax.device_count() A__ = num_samples * [prompt] A__ = jax.random.split(jax.random.PRNGKey(0 ),__lowerCamelCase ) A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''',revision='''bf16''',dtype=jnp.bfloataa,safety_checker=__lowerCamelCase,) A__ = replicate(__lowerCamelCase ) A__ = pipeline.prepare_inputs(__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipeline(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,jit=__lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A__ = images[2, 0, 256, 10:17, 1] # With memory efficient attention A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''',revision='''bf16''',dtype=jnp.bfloataa,safety_checker=__lowerCamelCase,use_memory_efficient_attention=__lowerCamelCase,) A__ = replicate(__lowerCamelCase ) A__ = pipeline.prepare_inputs(__lowerCamelCase ) A__ = shard(__lowerCamelCase ) A__ = pipeline(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,jit=__lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A__ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
363
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE = '''Pix2StructImageProcessor''' __SCREAMING_SNAKE_CASE = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self,__lowerCamelCase,__lowerCamelCase ): A__ = False super().__init__(__lowerCamelCase,__lowerCamelCase ) def __call__( self,__lowerCamelCase=None,__lowerCamelCase = None,__lowerCamelCase = True,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = 2048,__lowerCamelCase = 0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,**__lowerCamelCase,): if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: A__ = self.tokenizer A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,**__lowerCamelCase ) else: # add pixel_values and bbox A__ = self.image_processor( __lowerCamelCase,return_tensors=__lowerCamelCase,max_patches=__lowerCamelCase,header_text=__lowerCamelCase,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: A__ = self.tokenizer( text=__lowerCamelCase,add_special_tokens=__lowerCamelCase,padding=__lowerCamelCase,truncation=__lowerCamelCase,max_length=__lowerCamelCase,stride=__lowerCamelCase,pad_to_multiple_of=__lowerCamelCase,return_attention_mask=__lowerCamelCase,return_overflowing_tokens=__lowerCamelCase,return_special_tokens_mask=__lowerCamelCase,return_offsets_mapping=__lowerCamelCase,return_token_type_ids=__lowerCamelCase,return_length=__lowerCamelCase,verbose=__lowerCamelCase,return_tensors=__lowerCamelCase,**__lowerCamelCase,) if "attention_mask" in text_encoding: A__ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: A__ = text_encoding.pop('''input_ids''' ) else: A__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.batch_decode(*__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return self.tokenizer.decode(*__lowerCamelCase,**__lowerCamelCase ) @property def UpperCamelCase ( self ): A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowercase = logging.getLogger(__name__) @dataclass class _A : """simple docstring""" UpperCAmelCase : str UpperCAmelCase : List[str] UpperCAmelCase : Optional[List[str]] @dataclass class _A : """simple docstring""" UpperCAmelCase : List[int] UpperCAmelCase : List[int] UpperCAmelCase : Optional[List[int]] = None UpperCAmelCase : Optional[List[int]] = None class _A ( _a ): """simple docstring""" UpperCAmelCase : Dict = """train""" UpperCAmelCase : Any = """dev""" UpperCAmelCase : Tuple = """test""" class _A : """simple docstring""" @staticmethod def __snake_case ( __UpperCAmelCase : str , __UpperCAmelCase : Union[Split, str]): raise NotImplementedError @staticmethod def __snake_case ( __UpperCAmelCase : str): raise NotImplementedError @staticmethod def __snake_case ( __UpperCAmelCase : List[InputExample] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : str="[CLS]" , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : List[Any]=-100 , __UpperCAmelCase : Any=0 , __UpperCAmelCase : Union[str, Any]=True , ): a : str = {label: i for i, label in enumerate(__UpperCAmelCase)} a : Optional[Any] = [] for ex_index, example in enumerate(__UpperCAmelCase): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" , __UpperCAmelCase , len(__UpperCAmelCase)) a : str = [] a : int = [] for word, label in zip(example.words , example.labels): a : Tuple = tokenizer.tokenize(__UpperCAmelCase) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(__UpperCAmelCase) > 0: tokens.extend(__UpperCAmelCase) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__UpperCAmelCase) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. a : Dict = tokenizer.num_special_tokens_to_add() if len(__UpperCAmelCase) > max_seq_length - special_tokens_count: a : Dict = tokens[: (max_seq_length - special_tokens_count)] a : str = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] a : Union[str, Any] = [sequence_a_segment_id] * len(__UpperCAmelCase) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: a : List[str] = [cls_token] + tokens a : Tuple = [pad_token_label_id] + label_ids a : List[Any] = [cls_token_segment_id] + segment_ids a : str = tokenizer.convert_tokens_to_ids(__UpperCAmelCase) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. a : int = [1 if mask_padding_with_zero else 0] * len(__UpperCAmelCase) # Zero-pad up to the sequence length. a : str = max_seq_length - len(__UpperCAmelCase) if pad_on_left: a : Union[str, Any] = ([pad_token] * padding_length) + input_ids a : Tuple = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask a : Optional[Any] = ([pad_token_segment_id] * padding_length) + segment_ids a : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(__UpperCAmelCase) == max_seq_length assert len(__UpperCAmelCase) == max_seq_length assert len(__UpperCAmelCase) == max_seq_length assert len(__UpperCAmelCase) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" , example.guid) logger.info("tokens: %s" , " ".join([str(__UpperCAmelCase) for x in tokens])) logger.info("input_ids: %s" , " ".join([str(__UpperCAmelCase) for x in input_ids])) logger.info("input_mask: %s" , " ".join([str(__UpperCAmelCase) for x in input_mask])) logger.info("segment_ids: %s" , " ".join([str(__UpperCAmelCase) for x in segment_ids])) logger.info("label_ids: %s" , " ".join([str(__UpperCAmelCase) for x in label_ids])) if "token_type_ids" not in tokenizer.model_input_names: a : Optional[Any] = None features.append( InputFeatures( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , label_ids=__UpperCAmelCase)) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _A ( _a ): """simple docstring""" UpperCAmelCase : List[InputFeatures] UpperCAmelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : Optional[Any] , __UpperCAmelCase : TokenClassificationTask , __UpperCAmelCase : str , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : int=False , __UpperCAmelCase : Split = Split.train , ): # Load data features from cache or dataset file a : int = os.path.join( __UpperCAmelCase , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(__UpperCAmelCase)) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a : Dict = cached_features_file + ".lock" with FileLock(__UpperCAmelCase): if os.path.exists(__UpperCAmelCase) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''') a : Optional[int] = torch.load(__UpperCAmelCase) else: logger.info(f'''Creating features from dataset file at {data_dir}''') a : Tuple = token_classification_task.read_examples_from_file(__UpperCAmelCase , __UpperCAmelCase) # TODO clean up all this to leverage built-in features of tokenizers a : Any = token_classification_task.convert_examples_to_features( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , cls_token_at_end=bool(model_type in ["xlnet"]) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == "left") , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'''Saving features into cached file {cached_features_file}''') torch.save(self.features , __UpperCAmelCase) def __len__( self : int): return len(self.features) def __getitem__( self : str , __UpperCAmelCase : Tuple): return self.features[i] if is_tf_available(): import tensorflow as tf class _A : """simple docstring""" UpperCAmelCase : List[InputFeatures] UpperCAmelCase : int = -1_0_0 def __init__( self : str , __UpperCAmelCase : TokenClassificationTask , __UpperCAmelCase : str , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Split = Split.train , ): a : Optional[Any] = token_classification_task.read_examples_from_file(__UpperCAmelCase , __UpperCAmelCase) # TODO clean up all this to leverage built-in features of tokenizers a : Tuple = token_classification_task.convert_examples_to_features( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , cls_token_at_end=bool(model_type in ["xlnet"]) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == "left") , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: a : List[Any] = tf.data.Dataset.from_generator( __UpperCAmelCase , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([None]), ) , ) else: a : Tuple = tf.data.Dataset.from_generator( __UpperCAmelCase , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([None]), ) , ) def __snake_case ( self : Optional[Any]): a : str = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) return self.dataset def __len__( self : Optional[Any]): return len(self.features) def __getitem__( self : str , __UpperCAmelCase : Dict): return self.features[i]
40
"""simple docstring""" def lowercase ( A_ )-> str: '''simple docstring''' if isinstance(A_ , A_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(A_ , A_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" a : Optional[Any] = False if num < 0: a : Tuple = True a : str = -num a : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A_ ) for e in binary ) return "0b" + "".join(str(A_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCAmelCase = "true" def _snake_case ( A , A=82 , A=16 ) -> int: set_seed(42 ) lowerCAmelCase__ = RegressionModel() lowerCAmelCase__ = deepcopy(A__ ) lowerCAmelCase__ = RegressionDataset(length=A__ ) lowerCAmelCase__ = DataLoader(A__ , batch_size=A__ ) model.to(accelerator.device ) lowerCAmelCase__ = accelerator.prepare(A__ , A__ ) return model, ddp_model, dataloader def _snake_case ( A , A=False ) -> List[Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) lowerCAmelCase__ = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A ): lowerCAmelCase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A__ , max_length=A__ ) return outputs with accelerator.main_process_first(): lowerCAmelCase__ = dataset.map( A__ , batched=A__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) lowerCAmelCase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A ): if use_longest: return tokenizer.pad(A__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(A__ , shuffle=A__ , collate_fn=A__ , batch_size=16 ) def _snake_case ( A , A ) -> str: lowerCAmelCase__ = Accelerator(dispatch_batches=A__ , split_batches=A__ ) lowerCAmelCase__ = get_dataloader(A__ , not dispatch_batches ) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A__ ) lowerCAmelCase__ = accelerator.prepare(A__ , A__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _snake_case ( A , A , A ) -> Tuple: lowerCAmelCase__ = [] for batch in dataloader: lowerCAmelCase__ = batch.values() with torch.no_grad(): lowerCAmelCase__ = model(A__ ) lowerCAmelCase__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCAmelCase__ = [], [] for logit, targ in logits_and_targets: logits.append(A__ ) targs.append(A__ ) lowerCAmelCase__ = torch.cat(A__ ), torch.cat(A__ ) return logits, targs def _snake_case ( A , A=82 , A=False , A=False , A=16 ) -> Union[str, Any]: lowerCAmelCase__ = get_basic_setup(A__ , A__ , A__ ) lowerCAmelCase__ = generate_predictions(A__ , A__ , A__ ) assert ( len(A__ ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A__ )}""" def _snake_case ( A = False , A = False ) -> Any: lowerCAmelCase__ = evaluate.load('''glue''' , '''mrpc''' ) lowerCAmelCase__ = get_mrpc_setup(A__ , A__ ) # First do baseline lowerCAmelCase__ = setup["""no"""] model.to(A__ ) model.eval() for batch in dataloader: batch.to(A__ ) with torch.inference_mode(): lowerCAmelCase__ = model(**A__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A__ , references=batch['''labels'''] ) lowerCAmelCase__ = metric.compute() # Then do distributed lowerCAmelCase__ = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCAmelCase__ = model(**A__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ = batch["""labels"""] lowerCAmelCase__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A__ , references=A__ ) lowerCAmelCase__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def _snake_case ( ) -> int: lowerCAmelCase__ = Accelerator(split_batches=A__ , dispatch_batches=A__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(A__ , A__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCAmelCase__ = Accelerator(split_batches=A__ , dispatch_batches=A__ ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(A__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) lowerCAmelCase__ = Accelerator() test_torch_metrics(A__ , 512 ) accelerator.state._reset_state() def _snake_case ( A ) -> Tuple: main() if __name__ == "__main__": main()
351
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = CLIPTokenizer lowercase__ : List[str] = CLIPTokenizerFast lowercase__ : Dict = True lowercase__ : Any = {} lowercase__ : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self ) -> Any: super().setUp() # fmt: off lowerCAmelCase__ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCAmelCase__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] lowerCAmelCase__ = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = '''lower newer''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase__ = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase__ = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase__ = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ = F"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = F""" {text}""" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().test_tokenization_python_rust_equals() def __SCREAMING_SNAKE_CASE ( self ) -> Any: # CLIP always lower cases letters pass
228
0
"""simple docstring""" from __future__ import annotations lowerCAmelCase = 8.988E9 # units = N * m^s * C^-2 def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , snake_case_ : float ) ->dict[str, float]: lowerCamelCase__ : Dict =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: lowerCamelCase__ : str =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCamelCase__ : Dict =abs(snake_case_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCamelCase__ : Optional[int] =abs(snake_case_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCamelCase__ : Optional[Any] =(COULOMBS_CONSTANT * charge_product / abs(snake_case_ )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
126
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ lowerCAmelCase = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ lowerCAmelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def UpperCAmelCase__ ( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Optional[Any]="binary" , lowerCamelCase_ :int=None , lowerCamelCase_ :List[Any]="warn" , ): """simple docstring""" lowerCamelCase__ : List[str] =recall_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ , zero_division=lowerCamelCase_ , ) return {"recall": float(lowerCamelCase_ ) if score.size == 1 else score}
126
1
'''simple docstring''' from ... import PretrainedConfig __a = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase_ : Optional[Any] = '''nezha''' def __init__( self : Any , lowerCAmelCase__ : Optional[int]=2_1_1_2_8 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : str=1_2 , lowerCAmelCase__ : int=3_0_7_2 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Any=1e-12 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Tuple = max_relative_position _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : int = classifier_dropout _UpperCAmelCase : Any = use_cache
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowercase ( _a ): snake_case_ : List[str] = 384 if "tiny" in model_name: snake_case_ : List[str] = [3, 3, 9, 3] snake_case_ : str = [96, 192, 384, 768] if "small" in model_name: snake_case_ : List[Any] = [3, 3, 27, 3] snake_case_ : List[Any] = [96, 192, 384, 768] if "base" in model_name: snake_case_ : Any = [3, 3, 27, 3] snake_case_ : Dict = [128, 256, 512, 1_024] snake_case_ : Any = 512 if "large" in model_name: snake_case_ : str = [3, 3, 27, 3] snake_case_ : Tuple = [192, 384, 768, 1_536] snake_case_ : List[str] = 768 if "xlarge" in model_name: snake_case_ : Optional[Any] = [3, 3, 27, 3] snake_case_ : List[str] = [256, 512, 1_024, 2_048] snake_case_ : Tuple = 1_024 # set label information snake_case_ : Dict = 150 snake_case_ : int = '''huggingface/label-files''' snake_case_ : Union[str, Any] = '''ade20k-id2label.json''' snake_case_ : Optional[Any] = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : int = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} snake_case_ : Any = ConvNextConfig( depths=_a , hidden_sizes=_a , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) snake_case_ : Optional[int] = UperNetConfig( backbone_config=_a , auxiliary_in_channels=_a , num_labels=_a , idalabel=_a , labelaid=_a , ) return config def __lowercase ( _a ): snake_case_ : Optional[int] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.{j}.gamma", f"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.weight", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.bias", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.weight", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.bias", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((f"backbone.downsample_layers.{i}.0.weight", f"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.0.bias", f"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.weight", f"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.bias", f"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __lowercase ( _a , _a , _a ): snake_case_ : Optional[int] = dct.pop(_a ) snake_case_ : Any = val def __lowercase ( _a , _a , _a ): snake_case_ : int = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } snake_case_ : Optional[Any] = model_name_to_url[model_name] snake_case_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )['''state_dict'''] snake_case_ : List[Any] = get_upernet_config(_a ) snake_case_ : List[str] = UperNetForSemanticSegmentation(_a ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case_ : List[Any] = state_dict.pop(_a ) if "bn" in key: snake_case_ : List[str] = key.replace('''bn''' , '''batch_norm''' ) snake_case_ : List[str] = val # rename keys snake_case_ : Dict = create_rename_keys(_a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) model.load_state_dict(_a ) # verify on image snake_case_ : Tuple = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' snake_case_ : int = Image.open(requests.get(_a , stream=_a ).raw ).convert('''RGB''' ) snake_case_ : Union[str, Any] = SegformerImageProcessor() snake_case_ : Any = processor(_a , return_tensors='''pt''' ).pixel_values with torch.no_grad(): snake_case_ : Optional[Any] = model(_a ) if model_name == "upernet-convnext-tiny": snake_case_ : Tuple = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": snake_case_ : Dict = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": snake_case_ : Union[str, Any] = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": snake_case_ : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": snake_case_ : Any = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _a , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_a ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
264
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[Any] = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[Any] = """gpt_neox""" def __init__( self : List[str] , lowercase_ : str=50432 , lowercase_ : List[Any]=6144 , lowercase_ : List[Any]=44 , lowercase_ : Union[str, Any]=64 , lowercase_ : List[str]=24576 , lowercase_ : List[Any]="gelu" , lowercase_ : str=0.25 , lowercase_ : Optional[int]=10000 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : int=0.1 , lowercase_ : Tuple=2048 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[str]=1E-5 , lowercase_ : str=True , lowercase_ : str=0 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[str]=False , lowercase_ : Optional[int]=True , lowercase_ : List[Any]=None , **lowercase_ : Optional[int] , ): super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) snake_case_ : List[str] = vocab_size snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : str = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : List[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : str = rotary_pct snake_case_ : Dict = rotary_emb_base snake_case_ : Optional[int] = attention_dropout snake_case_ : Tuple = hidden_dropout snake_case_ : Tuple = classifier_dropout snake_case_ : List[str] = initializer_range snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Any = use_cache snake_case_ : Optional[int] = tie_word_embeddings snake_case_ : Any = use_parallel_residual snake_case_ : Union[str, Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _snake_case ( self : Optional[int] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) snake_case_ : Any = self.rope_scaling.get('''type''' , lowercase_ ) snake_case_ : Union[str, Any] = self.rope_scaling.get('''factor''' , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
264
1
def _A ( __magic_name__ = 100_0000 ): lowercase__ = limit + 1 lowercase__ = [0] * limit for first_term in range(1 , __magic_name__ ): for n in range(__magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase__ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
201
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _A ( __magic_name__ ): lowercase__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = StableDiffusionLatentUpscalePipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCamelCase = frozenset([] ) __lowerCamelCase = True @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = 1 lowercase__ = 4 lowercase__ = (16, 16) lowercase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image def UpperCAmelCase ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=_lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=_lowercase , only_cross_attention=_lowercase , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) lowercase__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) lowercase__ = EulerDiscreteScheduler(prediction_type="sample" ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) lowercase__ = CLIPTextModel(_lowercase ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase ( self :Dict , _lowercase :Union[str, Any] , _lowercase :int=0 ): '''simple docstring''' if str(_lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(_lowercase ) else: lowercase__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase__ = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe(**_lowercase ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) lowercase__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def UpperCAmelCase ( self :Any ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = 2 lowercase__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase__ = getattr(_lowercase , scheduler_enum.name ) lowercase__ = scheduler_cls.from_config(pipe.scheduler.config ) lowercase__ = pipe(**_lowercase )[0] outputs.append(_lowercase ) assert check_same_shape(_lowercase ) @require_torch_gpu @slow class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "a photo of an astronaut high resolution, unreal engine, ultra realistic" lowercase__ = pipe(_lowercase , generator=_lowercase , output_type="latent" ).images lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
201
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Any = ['''sentencepiece'''] def __init__( self : Optional[Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : List[Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : List[str] = ['''sentencepiece'''] def __init__( self : List[str] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : str = ['''sentencepiece'''] def __init__( self : int , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : int ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : str = ['''sentencepiece'''] def __init__( self : Any , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Any ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Any = ['''sentencepiece'''] def __init__( self : List[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : List[str] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : Any , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Any = ['''sentencepiece'''] def __init__( self : Optional[int] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : Tuple , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Dict = ['''sentencepiece'''] def __init__( self : int , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : int = ['''sentencepiece'''] def __init__( self : Optional[int] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : int = ['''sentencepiece'''] def __init__( self : Optional[Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : int = ['''sentencepiece'''] def __init__( self : Any , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : int ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : str , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Any = ['''sentencepiece'''] def __init__( self : Optional[int] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : int = ['''sentencepiece'''] def __init__( self : int , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Any ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Dict = ['''sentencepiece'''] def __init__( self : Optional[Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : int = ['''sentencepiece'''] def __init__( self : Union[str, Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Tuple ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ['''sentencepiece'''] def __init__( self : Dict , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : int = ['''sentencepiece'''] def __init__( self : int , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : str = ['''sentencepiece'''] def __init__( self : int , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ['''sentencepiece'''] def __init__( self : Any , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : str ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : Dict , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[Any] = ['''sentencepiece'''] def __init__( self : Dict , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Tuple = ['''sentencepiece'''] def __init__( self : Optional[int] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Tuple = ['''sentencepiece'''] def __init__( self : Optional[int] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''sentencepiece'''] def __init__( self : Union[str, Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[str] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Dict = ['''sentencepiece'''] def __init__( self : Union[str, Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] ) class UpperCAmelCase ( metaclass=snake_case__ ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ['''sentencepiece'''] def __init__( self : Any , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" requires_backends(self , ['''sentencepiece'''] )
121
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
0
import qiskit def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> qiskit.result.counts.Counts: """simple docstring""" _snake_case = qiskit.Aer.get_backend('''aer_simulator''' ) _snake_case = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator _snake_case = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": __A = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
351
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class lowercase_ ( __lowercase ): def __init__( self : Optional[Any] , *A__ : List[Any] , **A__ : int ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A__ , ) super().__init__(*A__ , **A__ )
278
0
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ : str , lowercase__ : list[str] | None = None , lowercase__ : dict[str, float] | None = None , lowercase__ : bool = False , ) -> tuple[int, float, str]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = cipher_alphabet or [chr(lowercase__ ) for i in range(9_7 , 1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCAmelCase_ :Optional[Any] = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary lowerCAmelCase_ :List[str] = frequencies_dict if not case_sensitive: lowerCAmelCase_ :Optional[Any] = ciphertext.lower() # Chi squared statistic values lowerCAmelCase_ :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(lowercase__ ) ): lowerCAmelCase_ :Tuple = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCAmelCase_ :Any = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCAmelCase_ :Optional[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCAmelCase_ :List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase_ :Tuple = decrypted_with_shift.lower().count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase_ :List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase_ :Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase_ :List[Any] = decrypted_with_shift.count(lowercase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase_ :str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase_ :Tuple = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCAmelCase_ :Dict = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCAmelCase_ :int = min( lowercase__ , key=lowercase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) :Union[str, Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
84
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = ShapEImgaImgPipeline UpperCamelCase__ = ['''image'''] UpperCamelCase__ = ['''image'''] UpperCamelCase__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase__ = False @property def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Any ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self :str ): '''simple docstring''' return 8 @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a = CLIPVisionModel(__magic_name__ ) return model @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = CLIPImageProcessor( crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) a = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } a = PriorTransformer(**__magic_name__ ) return model @property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' torch.manual_seed(0 ) a = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__magic_name__ ) return model def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_image_processor a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) a = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str , __magic_name__ :Tuple=0 ): '''simple docstring''' a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self :int ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = pipe(**self.get_dummy_inputs(__magic_name__ ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = torch_device == """cpu""" a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = 1 a = 2 a = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) a = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = torch.Generator(device=__magic_name__ ).manual_seed(0 ) a = pipe( __magic_name__ , generator=__magic_name__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
228
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def __lowerCAmelCase ( a__ ) -> List[Any]: __a = split_dict._to_yaml_list() assert len(__a ) == len(__a ) __a = SplitDict._from_yaml_list(__a ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __a = None # the split name of split_dict takes over the name of the split info object __a = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=__a ), SplitInfo(dataset_name='''my_dataset''' )] ) def __lowerCAmelCase ( a__ ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files __a = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
350
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
"""simple docstring""" from ... import PretrainedConfig _a = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __UpperCAmelCase : Optional[Any] = "nezha" def __init__( self : Tuple, UpperCAmelCase__ : List[Any]=2_1_1_2_8, UpperCAmelCase__ : Tuple=7_6_8, UpperCAmelCase__ : List[str]=1_2, UpperCAmelCase__ : List[Any]=1_2, UpperCAmelCase__ : str=3_0_7_2, UpperCAmelCase__ : str="gelu", UpperCAmelCase__ : Dict=0.1, UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : List[str]=5_1_2, UpperCAmelCase__ : List[Any]=6_4, UpperCAmelCase__ : Optional[int]=2, UpperCAmelCase__ : str=0.02, UpperCAmelCase__ : Optional[int]=1E-12, UpperCAmelCase__ : int=0.1, UpperCAmelCase__ : str=0, UpperCAmelCase__ : Optional[Any]=2, UpperCAmelCase__ : List[Any]=3, UpperCAmelCase__ : str=True, **UpperCAmelCase__ : int, ): super().__init__(pad_token_id=UpperCAmelCase__, bos_token_id=UpperCAmelCase__, eos_token_id=UpperCAmelCase__, **UpperCAmelCase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = max_relative_position __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = classifier_dropout __lowercase = use_cache
17
"""simple docstring""" def _A ( UpperCamelCase_ : Any) -> List[str]: '''simple docstring''' __lowercase ,__lowercase = [], [] while len(UpperCamelCase_) > 1: __lowercase ,__lowercase = min(UpperCamelCase_), max(UpperCamelCase_) start.append(UpperCamelCase_) end.append(UpperCamelCase_) collection.remove(UpperCamelCase_) collection.remove(UpperCamelCase_) end.reverse() return start + collection + end if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
1
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def lowercase () -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) SCREAMING_SNAKE_CASE = input('Enter the value of the root node: ' ).strip().lower() SCREAMING_SNAKE_CASE = queue.Queue() SCREAMING_SNAKE_CASE = TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): SCREAMING_SNAKE_CASE = q.get() SCREAMING_SNAKE_CASE = F'Enter the left node of {node_found.data}: ' SCREAMING_SNAKE_CASE = input(SCREAMING_SNAKE_CASE_ ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE = TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = left_node q.put(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = F'Enter the right node of {node_found.data}: ' SCREAMING_SNAKE_CASE = input(SCREAMING_SNAKE_CASE_ ).strip().lower() or 'n' if check == "n": return tree_node SCREAMING_SNAKE_CASE = TreeNode(int(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = right_node q.put(SCREAMING_SNAKE_CASE_ ) raise def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE = queue.Queue() q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): SCREAMING_SNAKE_CASE = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE = queue.Queue() q.put(SCREAMING_SNAKE_CASE_ ) while not q.empty(): SCREAMING_SNAKE_CASE = [] while not q.empty(): SCREAMING_SNAKE_CASE = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE = n.right def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = n.left SCREAMING_SNAKE_CASE = stack.pop() print(n.data , end=',' ) SCREAMING_SNAKE_CASE = n.right def lowercase (SCREAMING_SNAKE_CASE_ : TreeNode ) -> None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not node: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] SCREAMING_SNAKE_CASE = node stacka.append(SCREAMING_SNAKE_CASE_ ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowercase (SCREAMING_SNAKE_CASE_ : str = "" , SCREAMING_SNAKE_CASE_ : int=50 , SCREAMING_SNAKE_CASE_ : Tuple="*" ) -> str: if not s: return "\n" + width * char SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(width - len(SCREAMING_SNAKE_CASE_ ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) __UpperCamelCase = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
38
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image"""] SCREAMING_SNAKE_CASE_ : Optional[int] = ["""image"""] SCREAMING_SNAKE_CASE_ : Any = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : Any = False @property def __A ( self ) -> Tuple: return 32 @property def __A ( self ) -> Optional[int]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self ) -> Union[str, Any]: return 8 @property def __A ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE = CLIPVisionModel(lowerCAmelCase__ ) return model @property def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def __A ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } SCREAMING_SNAKE_CASE = PriorTransformer(**lowerCAmelCase__ ) return model @property def __A ( self ) -> List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**lowerCAmelCase__ ) return model def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_image_encoder SCREAMING_SNAKE_CASE = self.dummy_image_processor SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Union[str, Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
38
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] ) -> Dict: UpperCamelCase__ : str = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowercase__ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : Optional[Any] = StableDiffusionLatentUpscalePipeline a : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } a : str = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} a : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a : Optional[Any] = frozenset([] ) a : Dict = True @property def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : List[Any] = 4 UpperCamelCase__ : List[Any] = (16, 16) UpperCamelCase__ : Dict = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(__magic_name__ ) return image def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = UNetaDConditionModel( act_fn='''gelu''', attention_head_dim=8, norm_num_groups=__magic_name__, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=160, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ), in_channels=8, mid_block_type=__magic_name__, only_cross_attention=__magic_name__, out_channels=5, resnet_time_scale_shift='''scale_shift''', time_embedding_type='''fourier''', timestep_post_act='''gelu''', up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D'''), ) UpperCamelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) UpperCamelCase__ : Dict = EulerDiscreteScheduler(prediction_type='''sample''' ) UpperCamelCase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='''quick_gelu''', projection_dim=512, ) UpperCamelCase__ : Optional[int] = CLIPTextModel(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ : Dict = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase__ ( self, __magic_name__, __magic_name__=0 ) -> Dict: """simple docstring""" if str(__magic_name__ ).startswith('''mps''' ): UpperCamelCase__ : Optional[int] = torch.manual_seed(__magic_name__ ) else: UpperCamelCase__ : Any = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) UpperCamelCase__ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] = '''cpu''' UpperCamelCase__ : List[str] = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Any = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : str = pipe(**__magic_name__ ).images UpperCamelCase__ : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 256, 256, 3) ) UpperCamelCase__ : int = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) UpperCamelCase__ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__, 1E-3 ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Dict = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] UpperCamelCase__ : Tuple = self.get_dummy_components() UpperCamelCase__ : str = self.pipeline_class(**__magic_name__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) UpperCamelCase__ : Dict = self.get_dummy_inputs(__magic_name__ ) UpperCamelCase__ : List[str] = 2 UpperCamelCase__ : str = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue UpperCamelCase__ : Any = getattr(__magic_name__, scheduler_enum.name ) UpperCamelCase__ : List[Any] = scheduler_cls.from_config(pipe.scheduler.config ) UpperCamelCase__ : str = pipe(**__magic_name__ )[0] outputs.append(__magic_name__ ) assert check_same_shape(__magic_name__ ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[int] = torch.manual_seed(33 ) UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''', torch_dtype=torch.floataa ) pipe.to('''cuda''' ) UpperCamelCase__ : List[str] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCamelCase__ : str = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' UpperCamelCase__ : str = pipe(__magic_name__, generator=__magic_name__, output_type='''latent''' ).images UpperCamelCase__ : Optional[Any] = upscaler( prompt=__magic_name__, image=__magic_name__, num_inference_steps=20, guidance_scale=0, generator=__magic_name__, output_type='''np''', ).images[0] UpperCamelCase__ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = torch.manual_seed(33 ) UpperCamelCase__ : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''', torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCamelCase__ : Union[str, Any] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' UpperCamelCase__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) UpperCamelCase__ : List[Any] = upscaler( prompt=__magic_name__, image=__magic_name__, num_inference_steps=20, guidance_scale=0, generator=__magic_name__, output_type='''np''', ).images[0] UpperCamelCase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
201
def lowerCAmelCase_ ( __UpperCAmelCase: int = 100_0000 ) -> int: UpperCamelCase__ : str = limit + 1 UpperCamelCase__ : List[str] = [0] * limit for first_term in range(1 , __UpperCAmelCase ): for n in range(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCamelCase__ : Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
201
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : int = logging.get_logger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE_ = 1_28 elif "12-12" in model_name: SCREAMING_SNAKE_CASE_ = 12 SCREAMING_SNAKE_CASE_ = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE_ = 14 SCREAMING_SNAKE_CASE_ = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 16 else: raise ValueError('Model not supported' ) SCREAMING_SNAKE_CASE_ = 'huggingface/label-files' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE_ = 35 SCREAMING_SNAKE_CASE_ = 'speech-commands-v2-id2label.json' else: SCREAMING_SNAKE_CASE_ = 5_27 SCREAMING_SNAKE_CASE_ = 'audioset-id2label.json' SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: if "module.v" in name: SCREAMING_SNAKE_CASE_ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: SCREAMING_SNAKE_CASE_ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: SCREAMING_SNAKE_CASE_ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE_ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE_ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE_ = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE_ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE_ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE_ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Dict: for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: SCREAMING_SNAKE_CASE_ = key.split('.' ) SCREAMING_SNAKE_CASE_ = int(key_split[3] ) SCREAMING_SNAKE_CASE_ = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE_ = val[:dim, :] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ = val[:dim] SCREAMING_SNAKE_CASE_ = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ = val[-dim:] else: SCREAMING_SNAKE_CASE_ = val return orig_state_dict def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> str: SCREAMING_SNAKE_CASE_ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) @torch.no_grad() def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any]=False ) -> Dict: SCREAMING_SNAKE_CASE_ = get_audio_spectrogram_transformer_config(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict SCREAMING_SNAKE_CASE_ = model_name_to_url[model_name] SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='cpu' ) # remove some keys remove_keys(__UpperCAmelCase ) # rename some keys SCREAMING_SNAKE_CASE_ = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) # load 🤗 model SCREAMING_SNAKE_CASE_ = ASTForAudioClassification(__UpperCAmelCase ) model.eval() model.load_state_dict(__UpperCAmelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE_ = -4.2_6_7_7_3_9_3 if 'speech-commands' not in model_name else -6.8_4_5_9_7_8 SCREAMING_SNAKE_CASE_ = 4.5_6_8_9_9_7_4 if 'speech-commands' not in model_name else 5.5_6_5_4_5_2_6 SCREAMING_SNAKE_CASE_ = 10_24 if 'speech-commands' not in model_name else 1_28 SCREAMING_SNAKE_CASE_ = ASTFeatureExtractor(mean=__UpperCAmelCase , std=__UpperCAmelCase , max_length=__UpperCAmelCase ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE_ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) SCREAMING_SNAKE_CASE_ = dataset[0]['audio']['array'] else: SCREAMING_SNAKE_CASE_ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torchaudio.load(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE_ = feature_extractor(__UpperCAmelCase , sampling_rate=1_60_00 , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE_ = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE_ = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE_ = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE_ = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE_ = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE_ = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE_ = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE_ = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f"MIT/{model_name}" ) feature_extractor.push_to_hub(f"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCamelCase__ : Tuple = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
210
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ : str = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : Optional[int] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = AutoConfig.for_model('roberta' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , 'fake-roberta' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertEqual(type(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('model' , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('bert' , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self : Optional[int] ): with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self : int ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowerCAmelCase_ ( self : Union[str, Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowerCAmelCase_ ( self : Any ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "new-model" try: AutoConfig.register('new-model' , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
210
1
'''simple docstring''' import re import string import numpy as np import datasets lowerCAmelCase__ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCAmelCase__ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCAmelCase__ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,reference_urls=[] ,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : Any=None ,lowercase__ : List[Any]=False ,lowercase__ : Optional[Any]=False ,lowercase__ : int=False ,): if regexes_to_ignore is not None: for s in regexes_to_ignore: __lowercase = np.array([re.sub(lowercase__ ,'''''' ,lowercase__ ) for x in predictions] ) __lowercase = np.array([re.sub(lowercase__ ,'''''' ,lowercase__ ) for x in references] ) else: __lowercase = np.asarray(lowercase__ ) __lowercase = np.asarray(lowercase__ ) if ignore_case: __lowercase = np.char.lower(lowercase__ ) __lowercase = np.char.lower(lowercase__ ) if ignore_punctuation: __lowercase = string.punctuation.maketrans('''''' ,'''''' ,string.punctuation ) __lowercase = np.char.translate(lowercase__ ,table=lowercase__ ) __lowercase = np.char.translate(lowercase__ ,table=lowercase__ ) if ignore_numbers: __lowercase = string.digits.maketrans('''''' ,'''''' ,string.digits ) __lowercase = np.char.translate(lowercase__ ,table=lowercase__ ) __lowercase = np.char.translate(lowercase__ ,table=lowercase__ ) __lowercase = predictions == references return {"exact_match": np.mean(lowercase__ ) * 1_0_0}
104
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _A ): lowerCAmelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] lowerCAmelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase_ = [4, 4, 4, 4] lowerCAmelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] else: lowerCAmelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase_ = 96 elif "small" in model_name: lowerCAmelCase_ = 96 elif "base" in model_name: lowerCAmelCase_ = 128 elif "large" in model_name: lowerCAmelCase_ = 192 elif "xlarge" in model_name: lowerCAmelCase_ = 256 elif "huge" in model_name: lowerCAmelCase_ = 352 # set label information lowerCAmelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCAmelCase_ = '''imagenet-22k-id2label.json''' else: lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = FocalNetConfig( embed_dim=_A , depths=_A , focal_levels=_A , focal_windows=_A , use_conv_embed=_A , idalabel=_A , labelaid=_A , use_post_layernorm=_A , use_layerscale=_A , ) return config def __UpperCamelCase ( _A ): if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCAmelCase_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCAmelCase_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCAmelCase_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: lowerCAmelCase_ = '''focalnet.''' + name return name def __UpperCamelCase ( _A , _A , _A=False ): # fmt: off lowerCAmelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCAmelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _A ) lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) lowerCAmelCase_ = val lowerCAmelCase_ = get_focalnet_config(_A ) lowerCAmelCase_ = FocalNetForImageClassification(_A ) model.eval() # load state dict model.load_state_dict(_A ) # verify conversion lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = BitImageProcessor( do_resize=_A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_A , crop_size=224 , do_normalize=_A , image_mean=_A , image_std=_A , ) lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) lowerCAmelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase_ = image_transforms(_A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _A , atol=1E-4 ) lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase_ = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase_ = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCAmelCase_ = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase_ = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCAmelCase_ = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase_ = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart snake_case_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } snake_case_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def _lowerCAmelCase ( ): UpperCAmelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCAmelCase = bs[:] UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 UpperCAmelCase = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char return pairs class A_ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['input_ids', 'attention_mask'] def __init__( self :List[Any] , lowercase_ :List[str] , lowercase_ :Union[str, Any] , lowercase_ :str="replace" , lowercase_ :str="<s>" , lowercase_ :Tuple="</s>" , lowercase_ :Dict="</s>" , lowercase_ :Union[str, Any]="<s>" , lowercase_ :Dict="<unk>" , lowercase_ :List[Any]="<pad>" , lowercase_ :str="<mask>" , lowercase_ :Tuple=False , **lowercase_ :Tuple , ) -> List[str]: UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase = json.load(lowercase_ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} UpperCAmelCase = errors # how to handle errors in decoding UpperCAmelCase = bytes_to_unicode() UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding='utf-8' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {} UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCAmelCase__ ( self :Optional[Any] ) -> Any: return len(self.encoder ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[Any] ) -> Any: if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = get_pairs(lowercase_ ) if not pairs: return token while True: UpperCAmelCase = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(lowercase_ ): try: UpperCAmelCase = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = new_word if len(lowercase_ ) == 1: break else: UpperCAmelCase = get_pairs(lowercase_ ) UpperCAmelCase = ' '.join(lowercase_ ) UpperCAmelCase = word return word def UpperCAmelCase__ ( self :str , lowercase_ :Dict ) -> int: UpperCAmelCase = [] for token in re.findall(self.pat , lowercase_ ): UpperCAmelCase = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(' ' ) ) return bpe_tokens def UpperCAmelCase__ ( self :Any , lowercase_ :int ) -> Dict: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Dict ) -> Dict: return self.decoder.get(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :Any ) -> Optional[int]: UpperCAmelCase = ''.join(lowercase_ ) UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCAmelCase__ ( self :List[str] , lowercase_ :Dict , lowercase_ :Union[str, Any] = None ) -> Optional[int]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) UpperCAmelCase = 0 with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase = token_index writer.write(' '.join(lowercase_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :str , lowercase_ :Dict = None ) -> List[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self :Any , lowercase_ :str , lowercase_ :Dict = None , lowercase_ :Union[str, Any] = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase__ ( self :int , lowercase_ :List[str] , lowercase_ :List[str] = None ) -> Any: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self :int , lowercase_ :str , lowercase_ :Dict=False , **lowercase_ :Optional[int] ) -> str: UpperCAmelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): UpperCAmelCase = ' ' + text return (text, kwargs)
356
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
0
from __future__ import annotations class _lowerCamelCase: def __init__( self, lowerCamelCase=None) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = data _lowercase : List[str] = None def __repr__( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = [] _lowercase : Dict = self while temp: string_rep.append(F'''{temp.data}''') _lowercase : int = temp.next return "->".join(lowerCamelCase) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : List[str] = Node(elements_list[0] ) for i in range(1 , len(lowerCamelCase_ ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : str = current.next return head def UpperCamelCase_( lowerCamelCase_ ) -> None: if head_node is not None and isinstance(lowerCamelCase_ , lowerCamelCase_ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCamelCase_( ) -> Dict: from doctest import testmod testmod() _lowercase : str = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCamelCase_ ) print('Elements in Reverse:' ) print_reverse(lowerCamelCase_ ) if __name__ == "__main__": main()
21
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self : int , A : Tuple , A : int=3 , A : List[str]=32 , A : Dict=3 , A : Any=10 , A : Dict=[10, 20, 30, 40] , A : Optional[Any]=[1, 1, 2, 1] , A : Union[str, Any]=True , A : Optional[Any]=True , A : Any="relu" , A : Optional[Any]=3 , A : Tuple=None , ) -> Dict: lowercase_ : str = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : int = num_channels lowercase_ : int = embeddings_size lowercase_ : str = hidden_sizes lowercase_ : List[str] = depths lowercase_ : Dict = is_training lowercase_ : int = use_labels lowercase_ : Any = hidden_act lowercase_ : List[Any] = num_labels lowercase_ : Tuple = scope lowercase_ : Optional[Any] = len(A ) def A ( self : str ) -> Tuple: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Union[str, Any] = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Optional[int] = self.get_config() return config, pixel_values, labels def A ( self : Dict ) -> int: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A ( self : str , A : Tuple , A : str , A : str ) -> str: lowercase_ : str = TFResNetModel(config=A ) lowercase_ : Union[str, Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : Any , A : int , A : List[Any] , A : Optional[Any] ) -> Optional[Any]: lowercase_ : Tuple = self.num_labels lowercase_ : Union[str, Any] = TFResNetForImageClassification(A ) lowercase_ : Tuple = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Dict = config_and_inputs lowercase_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Any = False def A ( self : Union[str, Any] ) -> List[Any]: lowercase_ : int = TFResNetModelTester(self ) lowercase_ : str = ConfigTester(self , config_class=A , has_text_modality=A ) def A ( self : Dict ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Dict ) -> List[Any]: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def A ( self : Any ) -> Any: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def A ( self : List[str] ) -> Optional[Any]: pass def A ( self : str ) -> Tuple: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : int = model_class(A ) lowercase_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : str = [*signature.parameters.keys()] lowercase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def A ( self : List[str] ) -> Tuple: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : List[Any] ) -> List[str]: def check_hidden_states_output(A : Union[str, Any] , A : int , A : List[Any] ): lowercase_ : int = model_class(A ) lowercase_ : Optional[Any] = model(**self._prepare_for_class(A , A ) ) lowercase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Any = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ : List[str] = layer_type lowercase_ : Tuple = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[Any] = True check_hidden_states_output(A , A , A ) def A ( self : Optional[int] ) -> Tuple: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def A ( self : List[str] ) -> Optional[int]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = TFResNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Any ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Any ) -> Optional[int]: lowercase_ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : List[str] = image_processor(images=A , return_tensors='''tf''' ) # forward pass lowercase_ : Tuple = model(**A ) # verify the logits lowercase_ : Optional[int] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowercase_ : Optional[Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A , atol=1e-4 ) )
33
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: List[str] , lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: List[str] = WavaVecaForSequenceClassification.from_pretrained(lowercase__ , config=lowercase__ ) UpperCAmelCase_: Tuple = downstream_dict['projector.weight'] UpperCAmelCase_: List[str] = downstream_dict['projector.bias'] UpperCAmelCase_: Dict = downstream_dict['model.post_net.linear.weight'] UpperCAmelCase_: int = downstream_dict['model.post_net.linear.bias'] return model def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: str , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowercase__ , config=lowercase__ ) UpperCAmelCase_: Any = downstream_dict['model.linear.weight'] UpperCAmelCase_: str = downstream_dict['model.linear.bias'] return model def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: Dict = WavaVecaForXVector.from_pretrained(lowercase__ , config=lowercase__ ) UpperCAmelCase_: str = downstream_dict['connector.weight'] UpperCAmelCase_: Dict = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_: Optional[Any] = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] UpperCAmelCase_: Dict = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] UpperCAmelCase_: Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCAmelCase_: Dict = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCAmelCase_: str = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCAmelCase_: Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCAmelCase_: Tuple = downstream_dict['objective.W'] return model @torch.no_grad() def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Tuple ): """simple docstring""" UpperCAmelCase_: Optional[Any] = torch.load(lowercase__ , map_location="""cpu""" ) UpperCAmelCase_: List[Any] = checkpoint['Downstream'] UpperCAmelCase_: List[str] = WavaVecaConfig.from_pretrained(lowercase__ ) UpperCAmelCase_: Dict = WavaVecaFeatureExtractor.from_pretrained( lowercase__ , return_attention_mask=lowercase__ , do_normalize=lowercase__ ) UpperCAmelCase_: Union[str, Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): UpperCAmelCase_: Optional[int] = convert_classification(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith("""ForAudioFrameClassification""" ): UpperCAmelCase_: str = convert_diarization(lowercase__ , lowercase__ , lowercase__ ) elif arch.endswith("""ForXVector""" ): UpperCAmelCase_: List[Any] = convert_xvector(lowercase__ , lowercase__ , lowercase__ ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_: Dict = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a : Union[str, Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
362
from __future__ import annotations def lowerCAmelCase_ (lowerCAmelCase__: list[float] ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = 0.00 UpperCAmelCase_: List[str] = 0 for resistor in resistors: if resistor <= 0: UpperCAmelCase_: Dict = F'Resistor at index {index} has a negative or zero value!' raise ValueError(lowerCAmelCase__ ) first_sum += 1 / float(lowerCAmelCase__ ) index += 1 return 1 / first_sum def lowerCAmelCase_ (lowerCAmelCase__: list[float] ): """simple docstring""" UpperCAmelCase_: Any = 0.00 UpperCAmelCase_: int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCAmelCase_: int = F'Resistor at index {index} has a negative value!' raise ValueError(lowerCAmelCase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
82
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] UpperCamelCase :List[Any] = grid[0] for row_n in range(1 , len(__magic_name__ ) ): UpperCamelCase :List[str] = grid[row_n] UpperCamelCase :List[Any] = fill_row(__magic_name__ , __magic_name__ ) UpperCamelCase :Tuple = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list , __magic_name__ : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(__magic_name__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
38
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(__magic_name__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) UpperCamelCase :int = QuantumRegister(__magic_name__ , """qr""" ) UpperCamelCase :str = ClassicalRegister(__magic_name__ , """cr""" ) UpperCamelCase :str = QuantumCircuit(__magic_name__ , __magic_name__ ) UpperCamelCase :List[Any] = number_of_qubits for i in range(__magic_name__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__magic_name__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __magic_name__ , __magic_name__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__magic_name__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__magic_name__ , __magic_name__ ) # simulate with 10000 shots UpperCamelCase :str = Aer.get_backend("""qasm_simulator""" ) UpperCamelCase :Dict = execute(__magic_name__ , __magic_name__ , shots=1_0000 ) return job.result().get_counts(__magic_name__ ) if __name__ == "__main__": print( F'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
38
1
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'AutoImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Tuple =self.image_processor def __call__( self : Dict , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A__ : Dict =self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if images is not None: A__ : Union[str, Any] =self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: A__ : Union[str, Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : str , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : List[str] ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
136
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __snake_case : Any = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
136
1
import random from typing import Any def UpperCAmelCase ( lowercase ): """simple docstring""" for _ in range(len(lowercase ) ): __lowercase = random.randint(0 , len(lowercase ) - 1 ) __lowercase = random.randint(0 , len(lowercase ) - 1 ) __lowercase , __lowercase = data[b], data[a] return data if __name__ == "__main__": __a : Optional[Any] = [0, 1, 2, 3, 4, 5, 6, 7] __a : str = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
210
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : Optional[int] = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''vivit''' def __init__( self , lowerCAmelCase__=2_24 , lowerCAmelCase__=32 , lowerCAmelCase__=[2, 16, 16] , lowerCAmelCase__=3 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu_fast" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-06 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> int: '''simple docstring''' __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = num_frames __lowercase = tubelet_size __lowercase = num_channels __lowercase = qkv_bias super().__init__(**lowerCAmelCase__ )
210
1
'''simple docstring''' def a_ ( lowerCamelCase : int ): if not head: return True # split the list to two parts lowerCAmelCase , lowerCAmelCase = head.next, head while fast and fast.next: lowerCAmelCase = fast.next.next lowerCAmelCase = slow.next lowerCAmelCase = slow.next lowerCAmelCase = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase = None while second: lowerCAmelCase = second.next lowerCAmelCase = node lowerCAmelCase = second lowerCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase = node.next lowerCAmelCase = head.next return True def a_ ( lowerCamelCase : Dict ): if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase = lowerCAmelCase = lowerCAmelCase = head while fast and fast.next: lowerCAmelCase , lowerCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase = [slow.val] while slow.next: lowerCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase = cur.next return True def a_ ( lowerCamelCase : List[str] ): if not head or not head.next: return True lowerCAmelCase = {} lowerCAmelCase = 0 while head: if head.val in d: d[head.val].append(lowerCamelCase ) else: lowerCAmelCase = [pos] lowerCAmelCase = head.next pos += 1 lowerCAmelCase = pos - 1 lowerCAmelCase = 0 for v in d.values(): if len(lowerCamelCase ) % 2 != 0: middle += 1 else: lowerCAmelCase = 0 for i in range(0 , len(lowerCamelCase ) ): if v[i] + v[len(lowerCamelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
55
'''simple docstring''' import requests from bsa import BeautifulSoup def a_ ( lowerCamelCase : str = "AAPL" ): lowerCAmelCase = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase ).text , 'html.parser' ) lowerCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
55
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A , A ) -> int: """simple docstring""" while second != 0: lowercase__ = first & second first ^= second lowercase__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = int(input('Enter the first number: ').strip()) lowerCamelCase : List[str] = int(input('Enter the second number: ').strip()) print(f"""{add(first, second) = }""")
2
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ = { '''facebook/bart-base''': 1_0_2_4, '''facebook/bart-large''': 1_0_2_4, '''facebook/bart-large-mnli''': 1_0_2_4, '''facebook/bart-large-cnn''': 1_0_2_4, '''facebook/bart-large-xsum''': 1_0_2_4, '''yjernite/bart_eli5''': 1_0_2_4, } @lru_cache() def a__ ( ) -> List[Any]: UpperCAmelCase__ : int = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase__ : Optional[int] = bs[:] UpperCAmelCase__ : List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase__ ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Any = [chr(lowerCAmelCase__ ) for n in cs] return dict(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : str = set() UpperCAmelCase__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Optional[int] = char return pairs class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , _A : Optional[int] , _A : List[Any] , _A : int="replace" , _A : List[Any]="<s>" , _A : List[Any]="</s>" , _A : List[Any]="</s>" , _A : Optional[int]="<s>" , _A : List[str]="<unk>" , _A : List[str]="<pad>" , _A : Union[str, Any]="<mask>" , _A : Any=False , **_A : Dict , ): '''simple docstring''' UpperCAmelCase__ : Dict = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else bos_token UpperCAmelCase__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else eos_token UpperCAmelCase__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else sep_token UpperCAmelCase__ : Tuple = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else cls_token UpperCAmelCase__ : int = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else unk_token UpperCAmelCase__ : Optional[Any] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : Optional[Any] = json.load(_A ) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[str] = errors # how to handle errors in decoding UpperCAmelCase__ : str = bytes_to_unicode() UpperCAmelCase__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase__ : str = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : List[Any] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def lowercase_ ( self : int ): '''simple docstring''' return len(self.encoder ) def lowercase_ ( self : Tuple ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : List[Any] , _A : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(_A ) UpperCAmelCase__ : Dict = get_pairs(_A ) if not pairs: return token while True: UpperCAmelCase__ : Optional[Any] = min(_A , key=lambda _A : self.bpe_ranks.get(_A , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : str = bigram UpperCAmelCase__ : int = [] UpperCAmelCase__ : Tuple = 0 while i < len(_A ): try: UpperCAmelCase__ : Optional[int] = word.index(_A , _A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Tuple = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Optional[Any] = tuple(_A ) UpperCAmelCase__ : List[Any] = new_word if len(_A ) == 1: break else: UpperCAmelCase__ : Union[str, Any] = get_pairs(_A ) UpperCAmelCase__ : Optional[Any] = ''' '''.join(_A ) UpperCAmelCase__ : List[Any] = word return word def lowercase_ ( self : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for token in re.findall(self.pat , _A ): UpperCAmelCase__ : str = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(''' ''' ) ) return bpe_tokens def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : int , _A : List[str] ): '''simple docstring''' return self.decoder.get(_A ) def lowercase_ ( self : Tuple , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Any = ''''''.join(_A ) UpperCAmelCase__ : List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase_ ( self : int , _A : str , _A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Tuple = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Any = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) UpperCAmelCase__ : Union[str, Any] = 0 with open(_A , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase__ : List[str] = token_index writer.write(''' '''.join(_A ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def lowercase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : List[str] = [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : Optional[Any] , _A : Any , _A : Dict=False , **_A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Tuple = ''' ''' + text return (text, kwargs)
181
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase :Dict = logging.get_logger(__name__) __UpperCAmelCase :List[str] = "▁" __UpperCAmelCase :Any = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase :List[Any] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } __UpperCAmelCase :Tuple = { "facebook/mbart-large-50-one-to-many-mmt": 1_0_2_4, } # fmt: off __UpperCAmelCase :List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Any = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : Dict , snake_case : Dict , snake_case : List[Any]=None , snake_case : Tuple=None , snake_case : int="</s>" , snake_case : Tuple="</s>" , snake_case : Any="<s>" , snake_case : Tuple="<unk>" , snake_case : Any="<pad>" , snake_case : str="<mask>" , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : str = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token __UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCAmelCase : List[Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case , tgt_lang=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) __UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) __UpperCAmelCase : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCAmelCase : Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : str = len(self.sp_model ) __UpperCAmelCase : Dict = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case ) } __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} __UpperCAmelCase : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCAmelCase : Dict = src_lang if src_lang is not None else '''en_XX''' __UpperCAmelCase : str = self.lang_code_to_id[self._src_lang] __UpperCAmelCase : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__ ( self : str ) -> int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self : Optional[Any] ) -> str: return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Optional[Any] , snake_case : str ) -> None: __UpperCAmelCase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ) -> Dict: __UpperCAmelCase : Tuple = self.__dict__.copy() __UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self : Dict , snake_case : Dict ) -> None: __UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : int ) -> Dict: __UpperCAmelCase : List[str] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : Union[str, Any] , snake_case : str ) -> List[str]: return self.sp_model.encode(snake_case , out_type=snake_case ) def lowerCamelCase__ ( self : List[Any] , snake_case : str ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : Union[str, Any] = self.sp_model.PieceToId(snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : Optional[Any] , snake_case : int ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[Any] ) -> Tuple: __UpperCAmelCase : str = [] __UpperCAmelCase : str = '''''' __UpperCAmelCase : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case ) + token __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : Optional[int] = [] else: current_sub_tokens.append(snake_case ) __UpperCAmelCase : List[Any] = False out_string += self.sp_model.decode(snake_case ) return out_string.strip() def lowerCamelCase__ ( self : List[str] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : List[str] = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , '''wb''' ) as fi: __UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,) def lowerCamelCase__ ( self : List[str] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) __UpperCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) __UpperCAmelCase : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case )) + suffix_ones return prefix_ones + ([0] * len(snake_case )) + ([0] * len(snake_case )) + suffix_ones def lowerCamelCase__ ( self : Tuple , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : List[str] , snake_case : Optional[Any] , snake_case : str , snake_case : Optional[str] , snake_case : Optional[str] , **snake_case : int ) -> str: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __UpperCAmelCase : Tuple = src_lang __UpperCAmelCase : Any = self(snake_case , add_special_tokens=snake_case , return_tensors=snake_case , **snake_case ) __UpperCAmelCase : Tuple = self.convert_tokens_to_ids(snake_case ) __UpperCAmelCase : List[Any] = tgt_lang_id return inputs def lowerCamelCase__ ( self : Union[str, Any] , snake_case : List[str] , snake_case : str = "en_XX" , snake_case : Optional[List[str]] = None , snake_case : str = "ro_RO" , **snake_case : int , ) -> BatchEncoding: __UpperCAmelCase : List[Any] = src_lang __UpperCAmelCase : str = tgt_lang return super().prepare_seqaseq_batch(snake_case , snake_case , **snake_case ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : Any ) -> str: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Union[str, Any] , snake_case : str ) -> None: __UpperCAmelCase : Optional[Any] = self.lang_code_to_id[src_lang] __UpperCAmelCase : List[Any] = [self.cur_lang_code_id] __UpperCAmelCase : Any = [self.eos_token_id] def lowerCamelCase__ ( self : int , snake_case : str ) -> None: __UpperCAmelCase : Union[str, Any] = self.lang_code_to_id[tgt_lang] __UpperCAmelCase : str = [self.cur_lang_code_id] __UpperCAmelCase : Any = [self.eos_token_id]
371
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __UpperCAmelCase :Tuple = "Create a default config file for Accelerate with only a few flags set." def _a ( _lowercase : List[Any]="no" , _lowercase : str = default_json_config_file , _lowercase : bool = False ): '''simple docstring''' __UpperCAmelCase : Dict = Path(_lowercase ) path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __UpperCAmelCase : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __UpperCAmelCase : int = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): __UpperCAmelCase : Optional[Any] = torch.cuda.device_count() __UpperCAmelCase : List[str] = num_gpus __UpperCAmelCase : int = False if num_gpus > 1: __UpperCAmelCase : Any = '''MULTI_GPU''' else: __UpperCAmelCase : int = '''NO''' elif is_xpu_available() and use_xpu: __UpperCAmelCase : List[Any] = torch.xpu.device_count() __UpperCAmelCase : List[Any] = num_xpus __UpperCAmelCase : Optional[int] = False if num_xpus > 1: __UpperCAmelCase : Any = '''MULTI_XPU''' else: __UpperCAmelCase : Optional[Any] = '''NO''' elif is_npu_available(): __UpperCAmelCase : Dict = torch.npu.device_count() __UpperCAmelCase : Any = num_npus __UpperCAmelCase : Any = False if num_npus > 1: __UpperCAmelCase : Dict = '''MULTI_NPU''' else: __UpperCAmelCase : Optional[int] = '''NO''' else: __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Tuple = '''NO''' __UpperCAmelCase : List[Any] = ClusterConfig(**_lowercase ) config.to_json_file(_lowercase ) return path def _a ( _lowercase : Union[str, Any] , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = parser.add_parser('''default''' , parents=_lowercase , help=_lowercase , formatter_class=_lowercase ) parser.add_argument( '''--config_file''' , default=_lowercase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_lowercase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_lowercase ) return parser def _a ( _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
240
0
def lowerCAmelCase_ ( __a , __a ) -> list: """simple docstring""" lowerCamelCase__: int =word.split() def justify(__a , __a , __a ) -> str: lowerCamelCase__: Tuple =max_width - width lowerCamelCase__: str =len(__a ) if len(__a ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCamelCase__: List[Any] =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCamelCase__: str =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCamelCase__: str =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__a ): num_spaces_between_words_list[i] += 1 lowerCamelCase__: Union[str, Any] =[] for i in range(__a ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__a ) lowerCamelCase__: int =[] lowerCamelCase__: list[str] =[] lowerCamelCase__: Any =0 for word in words: if width + len(__a ) + len(__a ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__a ) width += len(__a ) else: # justify the line and add it to result answer.append(justify(__a , __a , __a ) ) # reset new line and new width lowerCamelCase__ , lowerCamelCase__: int =[word], len(__a ) lowerCamelCase__: str =max_width - width - len(__a ) answer.append(" ".join(__a ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
10
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ = TypeVar("""T""") A__ = TypeVar("""U""") class __lowerCAmelCase ( Generic[T, U] ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_snake_case ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def snake_case ( self , _snake_case ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class __lowerCAmelCase ( Generic[T, U] ): __lowerCamelCase = {} def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _snake_case ): """simple docstring""" return key in self.cache def snake_case ( self , _snake_case ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_snake_case ) @classmethod def snake_case ( cls , _snake_case = 128 ): """simple docstring""" def cache_decorator_inner(_snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_snake_case ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , _snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case , """cache_info""" , _snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
82
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Dict = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : Optional[int] = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } SCREAMING_SNAKE_CASE__ : str = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowerCAmelCase__ ( __lowercase ): a__ : Tuple = VOCAB_FILES_NAMES a__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = PRETRAINED_INIT_CONFIGURATION a__ : Dict = ["""input_ids""", """attention_mask"""] a__ : List[Any] = DistilBertTokenizer def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Any="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Tuple="[PAD]" , SCREAMING_SNAKE_CASE__ : Dict="[CLS]" , SCREAMING_SNAKE_CASE__ : Tuple="[MASK]" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=None ) -> Dict: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): a__ : Dict = """xmod""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_05_22 , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[str]=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=("en_XX",) , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : int , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout __lowerCamelCase = pre_norm __lowerCamelCase = adapter_reduction_factor __lowerCamelCase = adapter_layer_norm __lowerCamelCase = adapter_reuse_layer_norm __lowerCamelCase = ln_before_adapter __lowerCamelCase = list(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = default_language class lowerCAmelCase__ ( __lowercase ): @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
339
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowercase_ = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowercase_ = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowercase_ = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowercase_ = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowercase_ = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowercase_ = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowercase_ = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowercase_ = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowercase_ = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowercase_ = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowercase_ = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowercase_ = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowercase_ = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowercase_ = key.replace("""text_projection""" , """flava.text_projection""" ) lowercase_ = key.replace("""image_projection""" , """flava.image_projection""" ) lowercase_ = value.float() for key, value in codebook_state_dict.items(): lowercase_ = value return upgrade @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> int: '''simple docstring''' if config_path is not None: lowercase_ = FlavaConfig.from_pretrained(__lowerCAmelCase ) else: lowercase_ = FlavaConfig() lowercase_ = FlavaForPreTraining(__lowerCAmelCase ).eval() lowercase_ = convert_dalle_checkpoint(__lowerCAmelCase , __lowerCAmelCase , save_checkpoint=__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ): lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" ) else: lowercase_ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" ) lowercase_ = upgrade_state_dict(__lowerCAmelCase , __lowerCAmelCase ) hf_model.load_state_dict(__lowerCAmelCase ) lowercase_ = hf_model.state_dict() lowercase_ = count_parameters(__lowerCAmelCase ) lowercase_ = count_parameters(__lowerCAmelCase ) + count_parameters(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCAmelCase : List[Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
136
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np UpperCAmelCase : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) UpperCAmelCase : Optional[Any] = None def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' lowercase_ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__lowerCAmelCase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__lowerCAmelCase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' def remove_articles(__lowerCAmelCase ): return ARTICLES_REGEX.sub(""" """ , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): lowercase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = get_tokens(__lowerCAmelCase ) lowercase_ = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) lowercase_ = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = 1.0 * num_same / len(__lowerCAmelCase ) lowercase_ = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = {} lowercase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase_ = qa["""id"""] lowercase_ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase_ = [""""""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue lowercase_ = preds[qid] # Take max over all gold answers lowercase_ = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) lowercase_ = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = {} for qid, s in scores.items(): lowercase_ = na_probs[qid] > na_prob_thresh if pred_na: lowercase_ = float(not qid_to_has_ans[qid] ) else: lowercase_ = s return new_scores def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> List[str]: '''simple docstring''' if not qid_list: lowercase_ = len(__lowerCAmelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: lowercase_ = len(__lowerCAmelCase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' for k in new_eval: lowercase_ = new_eval[k] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' plt.step(__lowerCAmelCase , __lowerCAmelCase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[Any]: '''simple docstring''' lowercase_ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) lowercase_ = 0.0 lowercase_ = 1.0 lowercase_ = 0.0 lowercase_ = [1.0] lowercase_ = [0.0] lowercase_ = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase_ = true_pos / float(i + 1 ) lowercase_ = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) lowercase_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) lowercase_ = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} lowercase_ = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_exact""" ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_f1""" ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """pr_oracle""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: '''simple docstring''' if not qid_list: return lowercase_ = [na_probs[k] for k in qid_list] lowercase_ = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase_ = num_no_ans lowercase_ = cur_score lowercase_ = 0.0 lowercase_ = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase_ = scores[qid] else: if preds[qid]: lowercase_ = -1 else: lowercase_ = 0 cur_score += diff if cur_score > best_score: lowercase_ = cur_score lowercase_ = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ , lowercase_ = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ , lowercase_ = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase_ = best_exact lowercase_ = exact_thresh lowercase_ = best_fa lowercase_ = fa_thresh def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' with open(OPTS.data_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) lowercase_ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase_ = json.load(__lowerCAmelCase ) else: lowercase_ = {k: 0.0 for k in preds} lowercase_ = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False lowercase_ = [k for k, v in qid_to_has_ans.items() if v] lowercase_ = [k for k, v in qid_to_has_ans.items() if not v] lowercase_ , lowercase_ = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) lowercase_ = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """HasAns""" ) if no_ans_qids: lowercase_ = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
136
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _UpperCamelCase (a__ :int , a__ :List[str] ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = torch.permute(_SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_SCREAMING_SNAKE_CASE ): # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def _UpperCamelCase (a__ :Tuple , a__ :List[str] , a__ :Tuple ): if "metadata" in layer: UpperCamelCase__ = layer.split("""metadata""" ) UpperCamelCase__ = "".join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: UpperCamelCase__ = layer.split("""kvstore""" ) UpperCamelCase__ = "".join(split_layer[0] )[:-1] UpperCamelCase__ = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: UpperCamelCase__ = layer.split("""/""" ) UpperCamelCase__ = "/".join(split_layer[:-1] ) UpperCamelCase__ = (split_layer[-1],) if "kvstore/path" in layer: UpperCamelCase__ = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCamelCase__ = "file" else: UpperCamelCase__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _UpperCamelCase (a__ :str , a__ :List[str] ): UpperCamelCase__ = rename_keys(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = {} for k, v in current_block.items(): UpperCamelCase__ = v UpperCamelCase__ = new_current_block torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _UpperCamelCase (a__ :List[str] , a__ :List[Any] , a__ :Any , a__ :Optional[int] , a__ :str = WEIGHTS_NAME ): UpperCamelCase__ = convert_file_size_to_int(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = 0 os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: UpperCamelCase__ = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] UpperCamelCase__ = flatten_dict(_SCREAMING_SNAKE_CASE , sep="""/""" ) UpperCamelCase__ = {} for layer in checkpoint_info.keys(): UpperCamelCase__ = get_key_and_tensorstore_dict( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: UpperCamelCase__ = content else: UpperCamelCase__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCamelCase__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCamelCase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) UpperCamelCase__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCamelCase__ = rename_base_flax_keys(tuple(key.split("""/""" ) ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase__ = "/".join(_SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCamelCase__ = os.path.join( _SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCamelCase__ = {} UpperCamelCase__ = 0 UpperCamelCase__ = raw_weights.to(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCamelCase__ = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCamelCase__ = {} UpperCamelCase__ = {} for idx, shard in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase__ = weights_name.replace( """.bin""" , f"""-{idx+1:05d}-of-{len(_SCREAMING_SNAKE_CASE ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCamelCase__ = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(""".bin""" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ = shard for key in shard: UpperCamelCase__ = shard_file # Add the metadata UpperCamelCase__ = {"total_size": total_size} UpperCamelCase__ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase__ = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" f.write(_SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCamelCase__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _UpperCamelCase (): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCamelCase__ = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) UpperCamelCase__ = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) UpperCamelCase__ = TaTokenizer.from_pretrained("""t5-small""" ) UpperCamelCase__ = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." UpperCamelCase__ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids UpperCamelCase__ = model.generate(_SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : str = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys a_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' a_ : Any = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
55
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowercase : Tuple = 2_5_6_0_4_7 _lowercase : Union[str, Any] = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = NllbTokenizer _a = NllbTokenizerFast _a = True _a = True _a = {} def snake_case ( self : Union[str, Any] )-> int: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : Any =NllbTokenizer(lowerCamelCase, keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : Tuple )-> List[Any]: lowerCamelCase__ : Union[str, Any] =NllbTokenizer(lowerCamelCase, keep_accents=lowerCamelCase ) lowerCamelCase__ : Any =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) lowerCamelCase__ : Union[str, Any] =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) lowerCamelCase__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) lowerCamelCase__ : str =tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) def snake_case ( self : Tuple )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =(self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ : List[str] =self.rust_tokenizer_class.from_pretrained(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Any =self.tokenizer_class.from_pretrained(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Any =tempfile.mkdtemp() lowerCamelCase__ : Dict =tokenizer_r.save_pretrained(lowerCamelCase ) lowerCamelCase__ : str =tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCamelCase__ : List[str] =tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase, lowerCamelCase ) # Checks everything loads correctly in the same way lowerCamelCase__ : Tuple =tokenizer_r.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[int] =tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase, lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=True lowerCamelCase__ : Optional[int] =tempfile.mkdtemp() lowerCamelCase__ : Optional[int] =tokenizer_r.save_pretrained(lowerCamelCase, legacy_format=lowerCamelCase ) lowerCamelCase__ : Optional[Any] =tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase, lowerCamelCase ) # Checks everything loads correctly in the same way lowerCamelCase__ : Dict =tokenizer_r.from_pretrained(lowerCamelCase ) lowerCamelCase__ : str =tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase, lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) # Save tokenizer rust, legacy_format=False lowerCamelCase__ : Optional[int] =tempfile.mkdtemp() lowerCamelCase__ : Optional[Any] =tokenizer_r.save_pretrained(lowerCamelCase, legacy_format=lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =tokenizer_p.save_pretrained(lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase__ : Any =tokenizer_r.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =tokenizer_p.from_pretrained(lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase, lowerCamelCase ) ) shutil.rmtree(lowerCamelCase ) @require_torch def snake_case ( self : Tuple )-> int: if not self.test_seqaseq: return lowerCamelCase__ : Tuple =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. lowerCamelCase__ : Optional[int] =[ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ : Optional[Any] =[ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowerCamelCase__ : Dict =tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase, tgt_texts=lowerCamelCase, max_length=3, max_target_length=10, return_tensors='''pt''', src_lang='''eng_Latn''', tgt_lang='''ron_Latn''', ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 10 ) # max_target_length will default to max_length if not specified lowerCamelCase__ : Union[str, Any] =tokenizer.prepare_seqaseq_batch( lowerCamelCase, tgt_texts=lowerCamelCase, max_length=3, return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 3 ) lowerCamelCase__ : Any =tokenizer.prepare_seqaseq_batch( src_texts=lowerCamelCase, max_length=3, max_target_length=10, return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3 ) self.assertNotIn('''decoder_input_ids''', lowerCamelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def snake_case ( self : Tuple )-> Union[str, Any]: pass def snake_case ( self : Any )-> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase__ : List[str] =[AddedToken('''<special>''', lstrip=lowerCamelCase )] lowerCamelCase__ : int =self.rust_tokenizer_class.from_pretrained( lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : List[Any] =tokenizer_r.encode('''Hey this is a <special> token''' ) lowerCamelCase__ : str =tokenizer_r.encode('''<special>''', add_special_tokens=lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCamelCase__ : Tuple =self.rust_tokenizer_class.from_pretrained( lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase, ) lowerCamelCase__ : Optional[Any] =self.tokenizer_class.from_pretrained( lowerCamelCase, additional_special_tokens=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : str =tokenizer_p.encode('''Hey this is a <special> token''' ) lowerCamelCase__ : List[Any] =tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(lowerCamelCase, lowerCamelCase ) self.assertEqual(lowerCamelCase, lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' _a = 'facebook/nllb-200-distilled-600M' _a = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _a = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _a = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def snake_case ( cls : int )-> int: lowerCamelCase__ : NllbTokenizer =NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang='''eng_Latn''', tgt_lang='''ron_Latn''' ) lowerCamelCase__ : Optional[Any] =1 return cls def snake_case ( self : Any )-> Any: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''], 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''], 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''], 25_6057 ) def snake_case ( self : Any )-> Any: lowerCamelCase__ : Any =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> Optional[Any]: self.assertIn(lowerCamelCase, self.tokenizer.all_special_ids ) # fmt: off lowerCamelCase__ : Tuple =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on lowerCamelCase__ : Any =self.tokenizer.decode(lowerCamelCase, skip_special_tokens=lowerCamelCase ) lowerCamelCase__ : Dict =self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase, lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token, lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> str: lowerCamelCase__ : Optional[Any] =['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0], lowerCamelCase ) lowerCamelCase__ : Dict =10 lowerCamelCase__ : int =self.tokenizer(lowerCamelCase, max_length=lowerCamelCase, truncation=lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1], 2 ) self.assertEqual(ids[0], lowerCamelCase ) self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) def snake_case ( self : Dict )-> Dict: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ), [25_6203, 3] ) def snake_case ( self : List[str] )-> List[str]: lowerCamelCase__ : Union[str, Any] =tempfile.mkdtemp() lowerCamelCase__ : int =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =NllbTokenizer.from_pretrained(lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, lowerCamelCase ) @require_torch def snake_case ( self : int )-> Dict: lowerCamelCase__ : List[Any] =self.tokenizer( self.src_text, text_target=self.tgt_text, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=len(self.expected_src_tokens ), return_tensors='''pt''', ) lowerCamelCase__ : Optional[int] =shift_tokens_right( batch['''labels'''], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(lowerCamelCase, lowerCamelCase ) self.assertEqual((2, 15), batch.input_ids.shape ) self.assertEqual((2, 15), batch.attention_mask.shape ) lowerCamelCase__ : Optional[int] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, lowerCamelCase ) self.assertEqual(lowerCamelCase, batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def snake_case ( self : Tuple )-> Optional[int]: lowerCamelCase__ : List[Any] =self.tokenizer(self.src_text, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=3, return_tensors='''pt''' ) lowerCamelCase__ : Any =self.tokenizer( text_target=self.tgt_text, padding=lowerCamelCase, truncation=lowerCamelCase, max_length=10, return_tensors='''pt''' ) lowerCamelCase__ : Tuple =targets['''input_ids'''] lowerCamelCase__ : Dict =shift_tokens_right( lowerCamelCase, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def snake_case ( self : List[str] )-> List[Any]: lowerCamelCase__ : int =self.tokenizer._build_translation_inputs( '''A test''', return_tensors='''pt''', src_lang='''eng_Latn''', tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(lowerCamelCase ), { # A, test, EOS, en_XX '''input_ids''': [[25_6047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_6057, }, ) @require_torch def snake_case ( self : str )-> Any: lowerCamelCase__ : Optional[Any] =True lowerCamelCase__ : Any =self.tokenizer( '''UN Chief says there is no military solution in Syria''', src_lang='''eng_Latn''', tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids, [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) lowerCamelCase__ : Optional[int] =False lowerCamelCase__ : Optional[Any] =self.tokenizer( '''UN Chief says there is no military solution in Syria''', src_lang='''eng_Latn''', tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids, [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
355
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowercase : Tuple = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Dict: lowerCamelCase__ : str =VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : Dict =torch.manual_seed(0 ) lowerCamelCase__ : str =pipe( image=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''', ).images lowerCamelCase__ : Dict =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : List[Any] =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
272
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Dict = logging.get_logger(__name__) def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : str = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' try: lowercase__ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__lowerCAmelCase ) ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a ( lowerCamelCase_ , lowerCamelCase_ = "student" , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ , ): '''simple docstring''' lowercase__ = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F"""teacher must be a model or string got type {type(__lowerCAmelCase )}""" lowercase__ = teacher.config.to_diff_dict() try: lowercase__ , lowercase__ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowercase__ = teacher_e if d is None: lowercase__ = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): lowercase__ , lowercase__ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowercase__ , lowercase__ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowercase__ = teacher_e if d is None: lowercase__ = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights lowercase__ = teacher.config_class(**__lowerCAmelCase ) lowercase__ = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowercase__ = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowercase__ , lowercase__ = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowercase__ = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: lowercase__ = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) lowercase__ = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
207
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed snake_case : List[Any] = logging.getLogger(__name__) def __lowercase ( __lowerCAmelCase : str=2 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : int = 1_0 , __lowerCAmelCase : int = 2 ): def get_dataset(__lowerCAmelCase : Dict ): a__ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) a__ = get_dataset(__lowerCAmelCase ) a__ = get_dataset(__lowerCAmelCase ) a__ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) a__ = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=None ): a__ = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: a__ , a__ = batch a__ = model(__lowerCAmelCase ) a__ = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class snake_case_ (nn.Module ): def __init__( self :Any ) -> Union[str, Any]: super().__init__() a__ = nn.Parameter(torch.randn(1 ) ) a__ = nn.Parameter(torch.randn(1 ) ) def lowerCamelCase__( self :List[str] ,__snake_case :Union[str, Any] ) -> str: return x * self.a + self.b class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(total_limit=1 ,project_dir=__snake_case ,automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def lowerCamelCase__( self :List[Any] ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() # Train baseline a__ = Accelerator() a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial a__ = os.path.join(__snake_case ,'initial' ) accelerator.save_state(__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() a__ = train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() # Train partially set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = Accelerator() a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) accelerator.load_state(__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) a__ = train(2 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save everything a__ = os.path.join(__snake_case ,'checkpoint' ) accelerator.save_state(__snake_case ) # Load everything back in and make sure all states work accelerator.load_state(__snake_case ) test_rands += train(1 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :str ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() a__ = train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() # Train partially set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=__snake_case ) a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ) accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) a__ = train(2 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_1' ) ) test_rands += train(1 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) ((a__) , (a__)) = model.a.item(), model.b.item() a__ = optimizer.state_dict() self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) self.assertEqual(__snake_case ,__snake_case ) def lowerCamelCase__( self :Union[str, Any] ) -> List[str]: a__ = torch.tensor([1, 2, 3] ) a__ = torch.tensor([2, 3, 4] ) a__ = DummyModel() a__ = torch.optim.Adam(net.parameters() ) a__ = Accelerator() with self.assertRaises(__snake_case ) as ve: accelerator.register_for_checkpointing(__snake_case ,__snake_case ,__snake_case ,__snake_case ) a__ = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def lowerCamelCase__( self :List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) a__ = torch.optim.lr_scheduler.StepLR(__snake_case ,step_size=1 ,gamma=0.99 ) a__ , a__ = dummy_dataloaders() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ , a__ , a__ , a__ , a__ = accelerator.prepare( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # Save initial accelerator.save_state() a__ = scheduler.state_dict() train(3 ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) self.assertNotEqual(__snake_case ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) self.assertEqual(__snake_case ,scheduler.state_dict() ) def lowerCamelCase__( self :Optional[int] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) a__ = DummyModel() a__ = ProjectConfiguration(automatic_checkpoint_naming=__snake_case ,total_limit=2 ) # Train baseline a__ = Accelerator(project_dir=__snake_case ,project_config=__snake_case ) a__ = accelerator.prepare(__snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(__snake_case ,'checkpoints' ,'checkpoint_10' ) ) ) @require_cuda def lowerCamelCase__( self :Dict ) -> str: a__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(__snake_case ,env=os.environ.copy() ) if __name__ == "__main__": snake_case : Tuple = '''/tmp/accelerate/state_checkpointing''' snake_case : str = DummyModel() snake_case : List[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) snake_case : Union[str, Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) snake_case , snake_case : str = dummy_dataloaders() snake_case : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline snake_case : Dict = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) snake_case , snake_case , snake_case , snake_case , snake_case : List[str] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) snake_case , snake_case : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: snake_case : Any = group['''params'''][0].device break assert param_device.type == accelerator.device.type snake_case : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: snake_case : int = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: snake_case : Optional[int] = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
240
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : List[Any] ={ "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _lowercase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase_ ( _lowercase : List[str]) -> Union[str, Any]: """simple docstring""" a__ : List[str] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : List[Any]) -> Optional[Any]: """simple docstring""" a__ , a__ : Union[str, Any] = emb.weight.shape a__ : str = nn.Linear(_lowercase , _lowercase , bias=_lowercase) a__ : Any = emb.weight.data return lin_layer def lowerCAmelCase_ ( _lowercase : int , _lowercase : int=None) -> List[Any]: """simple docstring""" a__ : List[str] = {} for old_key in state_dict.keys(): a__ : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: a__ : Dict = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''') else: a__ : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""") if "gate" in key: a__ : Tuple = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""") if "fc2" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc2.""" , """.ffn.fc2.""") if "fc1" and "experts" not in key: a__ : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""") if ".encoder_attn." in key: a__ : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""") if "encoder_attn_layer_norm" in key: a__ : Optional[Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""") if "final_layer_norm" in key: a__ : List[str] = key.replace("""final_layer_norm""" , """ff_layer_norm""") a__ : str = state_dict[old_key] return new_dict def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Dict , _lowercase : str = WEIGHTS_NAME) -> Tuple: """simple docstring""" a__ : Tuple = [] a__ : Optional[Any] = 0 os.makedirs(_lowercase , exist_ok=_lowercase) for expert in range(_lowercase): a__ : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_lowercase): a__ : List[str] = torch.load(_lowercase)["""model"""] remove_ignore_keys_(_lowercase) a__ : Tuple = rename_fairseq_keys(_lowercase , _lowercase) a__ : str = os.path.join( _lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) torch.save(_lowercase , _lowercase) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(_lowercase)[0]].dtype) # Add the last block a__ : int = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{len(_lowercase)+1:05d}-of-???.bin''')) a__ : Union[str, Any] = torch.load(switch_checkpoint_path + """-shared.pt""")["""model"""] remove_ignore_keys_(_lowercase) a__ : List[str] = rename_fairseq_keys(_lowercase , _lowercase) a__ : int = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_lowercase) == 1: a__ : Optional[int] = os.path.join(_lowercase , _lowercase) torch.save(_lowercase , _lowercase) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_lowercase , _lowercase) # Otherwise, let's build the index a__ : List[str] = {} for idx, shard in enumerate(_lowercase): a__ : Union[str, Any] = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowercase):05d}.bin''') a__ : List[str] = os.path.join(_lowercase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_lowercase , os.path.join(_lowercase , _lowercase)) for key in shard: a__ : Tuple = shard_file # Add the metadata a__ : Tuple = {"""total_size""": total_size} a__ : Optional[Any] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_lowercase , _lowercase) , """w""" , encoding="""utf-8""") as f: a__ : Dict = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase) + """\n""" f.write(_lowercase) return metadata, index if __name__ == "__main__": _lowercase : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) _lowercase : Tuple =parser.parse_args() _lowercase , _lowercase : List[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowercase : int =NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowercase : List[str] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
266
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } UpperCAmelCase__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = DistilBertTokenizer def __init__( self : Any , A : List[Any]=None , A : Tuple=None , A : List[Any]=True , A : Union[str, Any]="[UNK]" , A : Optional[Any]="[SEP]" , A : str="[PAD]" , A : Any="[CLS]" , A : Optional[int]="[MASK]" , A : Any=True , A : List[Any]=None , **A : int , ) -> List[str]: """simple docstring""" super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , A) != do_lower_case or normalizer_state.get('strip_accents' , A) != strip_accents or normalizer_state.get('handle_chinese_chars' , A) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(A , normalizer_state.pop('type')) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**A) _UpperCAmelCase = do_lower_case def _lowerCamelCase ( self : Optional[Any] , A : Optional[int] , A : Optional[Any]=None) -> Dict: """simple docstring""" _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : str , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(A , name=A) return tuple(A)
339
def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = credit_card_number _UpperCAmelCase = 0 _UpperCAmelCase = len(_UpperCAmelCase ) - 2 for i in range(_UpperCAmelCase , -1 , -2 ): # double the value of every second digit _UpperCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 _UpperCAmelCase = cc_number[:i] + str(_UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def A ( _UpperCAmelCase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(_UpperCAmelCase ) <= 16: print(F"{error_message} of its length." ) return False if not validate_initial_digits(_UpperCAmelCase ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(_UpperCAmelCase ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
339
1
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase ): """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_lowerCamelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : int = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["CLIPFeatureExtractor"] A_ : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' UpperCAmelCase__ = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def lowerCAmelCase_ ( __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = 1_000 UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = num_labels UpperCAmelCase__ = json.load(open(cached_download(hf_hub_url(__A, __A, repo_type="dataset" ) ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = UpperCAmelCase__ = CvtConfig(num_labels=__A, idalabel=__A, labelaid=__A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/", 1 )[-1][4:6] == "13": UpperCAmelCase__ = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/", 1 )[-1][4:6] == "21": UpperCAmelCase__ = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase__ = [2, 2, 20] UpperCAmelCase__ = [3, 12, 16] UpperCAmelCase__ = [192, 768, 1_024] UpperCAmelCase__ = CvtForImageClassification(__A ) UpperCAmelCase__ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) UpperCAmelCase__ = image_size UpperCAmelCase__ = torch.load(__A, map_location=torch.device("cpu" ) ) UpperCAmelCase__ = OrderedDict() UpperCAmelCase__ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase__ = list_of_state_dict + cls_token(__A ) UpperCAmelCase__ = list_of_state_dict + embeddings(__A ) for cnt in range(config.depth[idx] ): UpperCAmelCase__ = list_of_state_dict + attention(__A, __A ) UpperCAmelCase__ = list_of_state_dict + final() for gg in list_of_state_dict: print(__A ) for i in range(len(__A ) ): UpperCAmelCase__ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__A ) model.save_pretrained(__A ) image_processor.save_pretrained(__A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
65
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Any = [] lowercase__ : Optional[int] = [] lowercase__ : Tuple = [] for rt in rc.restypes: lowercase__ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) lowercase__ : str = {name: i for i, name in enumerate(_lowerCamelCase)} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types]) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14) restype_atomaa_to_atomaa_list.append([0] * 37) restype_atomaa_mask_list.append([0.0] * 14) lowercase__ : Union[str, Any] = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : str = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : List[str] = torch.tensor( _lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) lowercase__ : str = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ : Dict = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = restype_atomaa_mask[protein_aatype] lowercase__ : List[Any] = residx_atomaa_mask lowercase__ : Optional[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ : str = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ : Optional[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): lowercase__ : Tuple = rc.restype_atoa[restype_letter] lowercase__ : List[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ : Optional[int] = rc.atom_order[atom_name] lowercase__ : Tuple = 1 lowercase__ : Dict = restype_atomaa_mask[protein_aatype] lowercase__ : Any = residx_atomaa_mask return protein def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Tuple = tree_map(lambda _lowerCamelCase: torch.tensor(_lowerCamelCase , device=batch["aatype"].device) , _lowerCamelCase , np.ndarray) lowercase__ : List[str] = tensor_tree_map(lambda _lowerCamelCase: np.array(_lowerCamelCase) , make_atomaa_masks(_lowerCamelCase)) return out
87
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _UpperCAmelCase = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } _UpperCAmelCase = { """camembert-base""": 512, } _UpperCAmelCase = """▁""" class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=["<s>NOTUSED", "</s>NOTUSED"] , lowercase = None , **lowercase , ): """simple docstring""" A_ : List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) A_ : Optional[Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A_ : Union[str, Any] = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} A_ : str = len(self.fairseq_tokens_to_ids ) A_ : Optional[Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : int = [self.cls_token_id] A_ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) + [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self ): """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowercase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = [] A_ : List[Any] = '' A_ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token A_ : Optional[int] = True A_ : Dict = [] else: current_sub_tokens.append(lowercase ) A_ : Dict = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def __getstate__( self ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : str = None return state def __setstate__( self , lowercase ): """simple docstring""" A_ : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A_ : List[str] = {} A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" if not os.path.isdir(lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ : Dict = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , 'wb' ) as fi: A_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
192
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": _UpperCAmelCase = """hopper-medium-v2""" _UpperCAmelCase = gym.make(env_name) _UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) _UpperCAmelCase = env.reset() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1000 _UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = env.step(denorm_actions) _UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
192
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> None: _a = generate_pascal_triangle(_A ) for row_idx in range(_A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def _lowerCamelCase ( lowercase : int ) -> list[list[int]]: if not isinstance(_A , _A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _a = [] for current_row_idx in range(_A ): _a = populate_current_row(_A , _A ) triangle.append(_A ) return triangle def _lowerCamelCase ( lowercase : list[list[int]] , lowercase : int ) -> list[int]: _a = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _a , _a = 1, 1 for current_col_idx in range(1 , _A ): calculate_current_element( _A , _A , _A , _A ) return current_row def _lowerCamelCase ( lowercase : list[list[int]] , lowercase : list[int] , lowercase : int , lowercase : int , ) -> None: _a = triangle[current_row_idx - 1][current_col_idx - 1] _a = triangle[current_row_idx - 1][current_col_idx] _a = above_to_left_elt + above_to_right_elt def _lowerCamelCase ( lowercase : int ) -> list[list[int]]: if not isinstance(_A , _A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _a = [[1]] for row_index in range(1 , _A ): _a = [0] + result[-1] + [0] _a = row_index + 1 # Calculate the number of distinct elements in a row _a = sum(divmod(_A , 2 ) ) _a = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _a = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _a = row_first_half + row_second_half result.append(_A ) return result def _lowerCamelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase : Callable , lowercase : int ) -> None: _a = F'{func.__name__}({value})' _a = timeit(F'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_A , _A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
63
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def snake_case__ ( _A: str ) -> str: '''simple docstring''' if not sentence: return "" lowerCAmelCase = dict(zip(_A , _A ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
272
0
from typing import Any import numpy as np def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" return np.array_equal(__snake_case, matrix.conjugate().T ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" _UpperCamelCase = v.conjugate().T _UpperCamelCase = v_star.dot(__snake_case ) assert isinstance(__snake_case, np.ndarray ) return (v_star_dot.dot(__snake_case )) / (v_star.dot(__snake_case )) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _UpperCamelCase = np.array([[1], [2], [3]] ) assert is_hermitian(__snake_case ), F'''{a} is not hermitian.''' print(rayleigh_quotient(__snake_case, __snake_case ) ) _UpperCamelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__snake_case ), F'''{a} is not hermitian.''' assert rayleigh_quotient(__snake_case, __snake_case ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
359
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'bert' def __init__( self , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=2 , __a=0.02 , __a=1e-12 , __a=0 , __a="absolute" , __a=True , __a=None , **__a , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__a , **__a) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout class _UpperCAmelCase( lowerCamelCase ): @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
100
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowercase_ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
266
"""simple docstring""" import re def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''' , str_ )] def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" try: __A = split_input(__UpperCamelCase ) if upper: __A = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __A = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return to_simple_case(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: __A = to_simple_case(__UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return to_complex_case(__UpperCamelCase , __UpperCamelCase , '''_''' ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return to_complex_case(__UpperCamelCase , __UpperCamelCase , '''-''' ) if __name__ == "__main__": __import__('doctest').testmod()
266
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCAmelCase_ = HfApi() UpperCAmelCase_ = {} # fmt: off UpperCAmelCase_ = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) UpperCAmelCase_ = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) UpperCAmelCase_ = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) UpperCAmelCase_ = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) UpperCAmelCase_ = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) UpperCAmelCase_ = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) UpperCAmelCase_ = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) UpperCAmelCase_ = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) UpperCAmelCase_ = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) UpperCAmelCase_ = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) UpperCAmelCase_ = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) UpperCAmelCase_ = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) UpperCAmelCase_ = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) UpperCAmelCase_ = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) UpperCAmelCase_ = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on UpperCAmelCase_ = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCAmelCase_ = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): UpperCAmelCase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: UpperCAmelCase_ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCAmelCase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCAmelCase_ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCAmelCase_ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
358
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
0