code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
292
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a ( __a=None , __a=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase : """simple docstring""" _a = field( metadata={'help': 'The csv file to plot.'} , ) _a = field( default=A__ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _a = field( default=A__ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _a = field( default=A__ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _a = field( default=A__ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _a = field( default=A__ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _a = list_field( default=A__ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def a ( __a ) -> Optional[Any]: '''simple docstring''' try: int(__a ) return True except ValueError: return False def a ( __a ) -> Dict: '''simple docstring''' try: float(__a ) return True except ValueError: return False class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = args UpperCamelCase__ :str = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: UpperCamelCase__ :int = csv.DictReader(UpperCamelCase_ ) for row in reader: UpperCamelCase__ :int = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None UpperCamelCase__ :Optional[Any] = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None UpperCamelCase__ :str = float(row['''result'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Any = plt.subplots() UpperCamelCase__ :str = '''Time usage''' if self.args.is_time else '''Memory usage''' UpperCamelCase__ :Tuple = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCamelCase__ :int = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) UpperCamelCase__ :Dict = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) UpperCamelCase__ :List[Any] = self.result_dict[model_name]['''result'''] ((UpperCamelCase__) , (UpperCamelCase__)) :Tuple = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCamelCase__ :int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCamelCase__ :Any = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=UpperCamelCase_ , ) else: UpperCamelCase__ :Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCamelCase__) , (UpperCamelCase__)) :Optional[int] = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) UpperCamelCase__ :Any = np.asarray(UpperCamelCase_ , UpperCamelCase_ )[: len(UpperCamelCase_ )] plt.scatter( UpperCamelCase_ , UpperCamelCase_ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(UpperCamelCase_ , UpperCamelCase_ , '''--''' ) title_str += F''' {label_model_name} vs.''' UpperCamelCase__ :Tuple = title_str[:-4] UpperCamelCase__ :Union[str, Any] = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(UpperCamelCase_ ) plt.xlabel(UpperCamelCase_ ) plt.ylabel(UpperCamelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a ( ) -> str: '''simple docstring''' UpperCamelCase__ :Optional[int] = HfArgumentParser(__a ) UpperCamelCase__ :List[str] = parser.parse_args_into_dataclasses()[0] UpperCamelCase__ :Tuple = Plot(args=__a ) plot.plot() if __name__ == "__main__": main()
219
'''simple docstring''' from __future__ import annotations __snake_case = [True] * 1000001 __snake_case = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): __snake_case = False i += 1 def a ( __a ) -> bool: '''simple docstring''' return seive[n] def a ( __a ) -> bool: '''simple docstring''' return any(digit in '''02468''' for digit in str(__a ) ) def a ( __a = 1000000 ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Any = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__a ) and not contains_an_even_digit(__a ): UpperCamelCase__ :str = str(__a ) UpperCamelCase__ :List[str] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__a ) )] if all(is_prime(__a ) for i in list_nums ): result.append(__a ) return result def a ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F"""{len(find_circular_primes()) = }""")
219
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase (lowercase_: Any ) -> Optional[Any]: A__ : Dict = 384 if "tiny" in model_name: A__ : List[str] = [3, 3, 9, 3] A__ : str = [96, 192, 384, 768] if "small" in model_name: A__ : List[str] = [3, 3, 27, 3] A__ : Union[str, Any] = [96, 192, 384, 768] if "base" in model_name: A__ : List[Any] = [3, 3, 27, 3] A__ : Union[str, Any] = [128, 256, 512, 1024] A__ : Dict = 512 if "large" in model_name: A__ : Optional[Any] = [3, 3, 27, 3] A__ : Union[str, Any] = [192, 384, 768, 1536] A__ : int = 768 if "xlarge" in model_name: A__ : Optional[int] = [3, 3, 27, 3] A__ : Dict = [256, 512, 1024, 2048] A__ : Dict = 1024 # set label information A__ : Optional[Any] = 150 A__ : List[Any] = """huggingface/label-files""" A__ : Dict = """ade20k-id2label.json""" A__ : Dict = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) A__ : Union[str, Any] = {int(lowercase_ ): v for k, v in idalabel.items()} A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : List[str] = ConvNextConfig( depths=lowercase_ , hidden_sizes=lowercase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) A__ : Optional[int] = UperNetConfig( backbone_config=lowercase_ , auxiliary_in_channels=lowercase_ , num_labels=lowercase_ , idalabel=lowercase_ , labelaid=lowercase_ , ) return config def UpperCamelCase (lowercase_: Tuple ) -> Dict: A__ : str = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Any , lowercase_: int ) -> str: A__ : Dict = dct.pop(lowercase_ ) A__ : int = val def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: List[str] , lowercase_: Union[str, Any] ) -> str: A__ : Optional[int] = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } A__ : int = model_name_to_url[model_name] A__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )["""state_dict"""] A__ : str = get_upernet_config(lowercase_ ) A__ : int = UperNetForSemanticSegmentation(lowercase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ : Any = state_dict.pop(lowercase_ ) if "bn" in key: A__ : str = key.replace("""bn""" , """batch_norm""" ) A__ : List[Any] = val # rename keys A__ : Any = create_rename_keys(lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify on image A__ : Union[str, Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A__ : int = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) A__ : Optional[int] = SegformerImageProcessor() A__ : Dict = processor(lowercase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): A__ : List[Any] = model(lowercase_ ) if model_name == "upernet-convnext-tiny": A__ : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": A__ : int = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": A__ : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": A__ : Dict = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": A__ : int = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A_ : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
192
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Union[str, Any] , lowercase_: Optional[Any] ) -> Tuple: # Initialise PyTorch model A__ : str = AlbertConfig.from_json_file(lowercase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) A__ : List[Any] = AlbertForPreTraining(lowercase_ ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
192
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
99
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
99
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 2**power A__ = 0 while n: A__ , A__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
7
"""simple docstring""" from math import isqrt, loga def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = False return [i for i in range(2 , UpperCamelCase_ ) if is_prime[i]] def _lowerCAmelCase ( UpperCamelCase_ = 80_0800 , UpperCamelCase_ = 80_0800 ): __SCREAMING_SNAKE_CASE = degree * loga(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = int(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = calculate_prime_numbers(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
100
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE_ () -> Dict: lowerCamelCase__ : Optional[int] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=UpperCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=UpperCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=UpperCamelCase ) return parser.parse_args() def SCREAMING_SNAKE_CASE_ () -> Dict: lowerCamelCase__ : Any = parse_args() # Import training_script as a module. lowerCamelCase__ : Any = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase__ : Dict = script_fpath.stem lowerCamelCase__ : Tuple = importlib.import_module(UpperCamelCase ) # Patch sys.argv lowerCamelCase__ : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
129
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _A : Union[str, Any] =logging.get_logger(__name__) _A : Optional[Any] ={'''vocab_file''': '''spiece.model'''} _A : Optional[Any] ={ '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 _A : Union[str, Any] ={ '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } _A : int ='''▁''' class _lowercase ( _lowercase ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["""input_ids""", """attention_mask"""] def __init__( self: int , UpperCamelCase__: int , UpperCamelCase__: List[str]="</s>" , UpperCamelCase__: Optional[Any]="<unk>" , UpperCamelCase__: Dict="<pad>" , UpperCamelCase__: List[Any]=100 , UpperCamelCase__: Dict=None , UpperCamelCase__: Optional[Dict[str, Any]] = None , UpperCamelCase__: Union[str, Any]=True , **UpperCamelCase__: Dict , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase__ : Union[str, Any] = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCamelCase__ : Optional[Any] = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) lowerCamelCase__ : Optional[int] = legacy lowerCamelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : Tuple = vocab_file lowerCamelCase__ : Dict = extra_ids lowerCamelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @staticmethod def lowerCamelCase_ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCamelCase__ : Any = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length @property def lowerCamelCase_ ( self: Any ): return self.sp_model.get_piece_size() + self._extra_ids def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : str = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None , UpperCamelCase__: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + [1] return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCamelCase_ ( self: Dict ): return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def lowerCamelCase_ ( self: str ): return [self._convert_token_to_id(UpperCamelCase__ ) for token in self.get_sentinel_tokens()] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[int] ): if len(UpperCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase_ ( self: str , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase_ ( self: int , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : List[str] = self._add_eos_if_not_present(UpperCamelCase__ ) if token_ids_a is None: return token_ids_a else: lowerCamelCase__ : int = self._add_eos_if_not_present(UpperCamelCase__ ) return token_ids_a + token_ids_a def __getstate__( self: List[str] ): lowerCamelCase__ : Optional[int] = self.__dict__.copy() lowerCamelCase__ : Optional[Any] = None return state def __setstate__( self: List[Any] , UpperCamelCase__: Any ): lowerCamelCase__ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase__ : str = {} lowerCamelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: "TextInput" , **UpperCamelCase__: List[str] ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowerCamelCase__ : List[Any] = SPIECE_UNDERLINE + text.replace(UpperCamelCase__ , """ """ ) return super().tokenize(UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: str , **UpperCamelCase__: str ): if not self.legacy: lowerCamelCase__ : List[Any] = text.startswith(UpperCamelCase__ ) if is_first: lowerCamelCase__ : Optional[int] = text[1:] lowerCamelCase__ : int = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(UpperCamelCase__ ): lowerCamelCase__ : str = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Optional[Any] ): if token.startswith("""<extra_id_""" ): lowerCamelCase__ : List[Any] = re.match(R"""<extra_id_(\d+)>""" , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: int ): if index < self.sp_model.get_piece_size(): lowerCamelCase__ : str = self.sp_model.IdToPiece(UpperCamelCase__ ) else: lowerCamelCase__ : Tuple = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCamelCase_ ( self: str , UpperCamelCase__: Tuple ): lowerCamelCase__ : str = [] lowerCamelCase__ : Any = """""" lowerCamelCase__ : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowerCamelCase__ : Dict = True lowerCamelCase__ : str = [] else: current_sub_tokens.append(UpperCamelCase__ ) lowerCamelCase__ : List[str] = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , """wb""" ) as fi: lowerCamelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
129
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
74
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
0
UpperCAmelCase : Any = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.3_5_5_8_1_8, } def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(A__ )}' ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
358
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Dict = StableDiffusionPanoramaPipeline UpperCamelCase : List[Any] = TEXT_TO_IMAGE_PARAMS UpperCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def __A ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCamelCase = DDIMScheduler() torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCamelCase = CLIPTextModel(A ) lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __A ( self , A , A=0 ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> List[Any]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def __A ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = """french fries""" lowerCamelCase = sd_pipe(**A , negative_prompt=A ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A , view_batch_size=2 ) lowerCamelCase = output.images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.get_dummy_components() lowerCamelCase = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=A ) lowerCamelCase = StableDiffusionPanoramaPipeline(**A ) lowerCamelCase = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowerCamelCase = self.get_dummy_inputs(A ) lowerCamelCase = sd_pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self , A=0 ) -> Dict: '''simple docstring''' lowerCamelCase = torch.manual_seed(A ) lowerCamelCase = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = """stabilityai/stable-diffusion-2-base""" lowerCamelCase = DDIMScheduler.from_pretrained(A , subfolder="""scheduler""" ) lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A , scheduler=A , safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = self.get_inputs() lowerCamelCase = pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCamelCase = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=A ) lowerCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = self.get_inputs() lowerCamelCase = pipe(**A ).images lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = 0 def callback_fn(A , A , A ) -> None: lowerCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCamelCase = latents[0, -3:, -3:, -1] lowerCamelCase = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCamelCase = latents[0, -3:, -3:, -1] lowerCamelCase = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCamelCase = False lowerCamelCase = """stabilityai/stable-diffusion-2-base""" lowerCamelCase = DDIMScheduler.from_pretrained(A , subfolder="""scheduler""" ) lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A , scheduler=A , safety_checker=A ) lowerCamelCase = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() lowerCamelCase = self.get_inputs() pipe(**A , callback=A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __A ( self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase = """stabilityai/stable-diffusion-2-base""" lowerCamelCase = DDIMScheduler.from_pretrained(A , subfolder="""scheduler""" ) lowerCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(A , scheduler=A , safety_checker=A ) lowerCamelCase = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase = self.get_inputs() lowerCamelCase = pipe(**A ) lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
66
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
219
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCamelCase : Any = 16 __lowerCamelCase : List[Any] = 32 def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 , __UpperCamelCase : str = "bert-base-cased" ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE__ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" model.eval() SCREAMING_SNAKE_CASE__ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = metric.compute() return eval_metric["accuracy"] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config["""lr"""] SCREAMING_SNAKE_CASE__ = int(config["""num_epochs"""] ) SCREAMING_SNAKE_CASE__ = int(config["""seed"""] ) SCREAMING_SNAKE_CASE__ = int(config["""batch_size"""] ) SCREAMING_SNAKE_CASE__ = args.model_name_or_path set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE__ = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: SCREAMING_SNAKE_CASE__ = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE__ = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE__ = num_epochs if args.partial_train_epoch is not None: SCREAMING_SNAKE_CASE__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) SCREAMING_SNAKE_CASE__ = args.resume_from_checkpoint.split("""epoch_""" )[1] SCREAMING_SNAKE_CASE__ = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break SCREAMING_SNAKE_CASE__ = int(__UpperCamelCase ) + 1 SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) accelerator.print("""resumed checkpoint performance:""" , __UpperCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: SCREAMING_SNAKE_CASE__ = json.load(__UpperCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model SCREAMING_SNAKE_CASE__ = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = outputs.loss SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 SCREAMING_SNAKE_CASE__ = f"""epoch_{epoch}""" SCREAMING_SNAKE_CASE__ = os.path.join(args.output_dir , __UpperCamelCase ) accelerator.save_state(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = evaluation_loop(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = accuracy SCREAMING_SNAKE_CASE__ = lr_scheduler.get_lr()[0] SCREAMING_SNAKE_CASE__ = optimizer.param_groups[0]["""lr"""] SCREAMING_SNAKE_CASE__ = epoch SCREAMING_SNAKE_CASE__ = overall_step accelerator.print(f"""epoch {epoch}:""" , __UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__UpperCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__UpperCamelCase , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=2 , help="""Number of train epochs.""" , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
219
1
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase_ ( __lowerCamelCase : int = 1_50_00_00 ): lowercase_ :int = defaultdict(_a ) lowercase_ :str = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,_a ,2 ): if gcd(_a ,_a ) > 1: continue lowercase_ :Tuple = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_a ,limit + 1 ,_a ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
361
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class a_ ( _lowerCAmelCase ): def __init__( self : List[Any] , **lowercase : Optional[int] ): """simple docstring""" super().__init__(**lowercase ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , "vision" ) self.check_model_type(lowercase ) def __call__( self : Tuple , lowercase : Union[str, "Image.Image", List[Dict[str, Any]]] , lowercase : Union[str, List[str]] = None , **lowercase : str , ): """simple docstring""" if "text_queries" in kwargs: lowercase_ :List[Any] = kwargs.pop("text_queries" ) if isinstance(lowercase , (str, Image.Image) ): lowercase_ :List[str] = {"image": image, "candidate_labels": candidate_labels} else: lowercase_ :Optional[Any] = image lowercase_ :str = super().__call__(lowercase , **lowercase ) return results def lowercase__ ( self : Optional[int] , **lowercase : List[str] ): """simple docstring""" lowercase_ :Tuple = {} if "threshold" in kwargs: lowercase_ :Dict = kwargs["threshold"] if "top_k" in kwargs: lowercase_ :Optional[Any] = kwargs["top_k"] return {}, {}, postprocess_params def lowercase__ ( self : List[Any] , lowercase : Dict ): """simple docstring""" lowercase_ :Any = load_image(inputs["image"] ) lowercase_ :List[str] = inputs["candidate_labels"] if isinstance(lowercase , lowercase ): lowercase_ :Union[str, Any] = candidate_labels.split("," ) lowercase_ :Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase ): lowercase_ :Union[str, Any] = self.tokenizer(lowercase , return_tensors=self.framework ) lowercase_ :Tuple = self.image_processor(lowercase , return_tensors=self.framework ) yield { "is_last": i == len(lowercase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self : List[str] , lowercase : List[str] ): """simple docstring""" lowercase_ :Dict = model_inputs.pop("target_size" ) lowercase_ :str = model_inputs.pop("candidate_label" ) lowercase_ :List[Any] = model_inputs.pop("is_last" ) lowercase_ :Optional[Any] = self.model(**lowercase ) lowercase_ :str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def lowercase__ ( self : Optional[int] , lowercase : List[str] , lowercase : List[str]=0.1 , lowercase : Optional[int]=None ): """simple docstring""" lowercase_ :Dict = [] for model_output in model_outputs: lowercase_ :int = model_output["candidate_label"] lowercase_ :str = BaseModelOutput(lowercase ) lowercase_ :List[Any] = self.image_processor.post_process_object_detection( outputs=lowercase , threshold=lowercase , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): lowercase_ :Optional[int] = outputs["scores"][index].item() lowercase_ :int = self._get_bounding_box(outputs["boxes"][index][0] ) lowercase_ :int = {"score": score, "label": label, "box": box} results.append(lowercase ) lowercase_ :Dict = sorted(lowercase , key=lambda lowercase : x["score"] , reverse=lowercase ) if top_k: lowercase_ :List[str] = results[:top_k] return results def lowercase__ ( self : Union[str, Any] , lowercase : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) lowercase_ , lowercase_ , lowercase_ , lowercase_ :List[str] = box.int().tolist() lowercase_ :List[Any] = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
147
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase : Tuple = logging.get_logger(__name__) class A__ : """simple docstring""" __A : str __A : str = None @staticmethod def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError def __lowercase ( self , lowercase , lowercase , lowercase , **lowercase) -> Optional[int]: '''simple docstring''' raise NotImplementedError def __lowercase ( self , lowercase) -> str: '''simple docstring''' raise NotImplementedError def __lowercase ( self) -> List[str]: '''simple docstring''' if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.') @classmethod def __lowercase ( cls) -> int: '''simple docstring''' return F'`pip install {cls.pip_package or cls.name}`' class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = '''optuna''' @staticmethod def __lowercase ( ) -> Optional[Any]: '''simple docstring''' return is_optuna_available() def __lowercase ( self , lowercase , lowercase , lowercase , **lowercase) -> List[str]: '''simple docstring''' return run_hp_search_optuna(lowercase , lowercase , lowercase , **lowercase) def __lowercase ( self , lowercase) -> int: '''simple docstring''' return default_hp_space_optuna(lowercase) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Any = '''ray''' __A : Optional[int] = '''\'ray[tune]\'''' @staticmethod def __lowercase ( ) -> List[Any]: '''simple docstring''' return is_ray_available() def __lowercase ( self , lowercase , lowercase , lowercase , **lowercase) -> Any: '''simple docstring''' return run_hp_search_ray(lowercase , lowercase , lowercase , **lowercase) def __lowercase ( self , lowercase) -> int: '''simple docstring''' return default_hp_space_ray(lowercase) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Union[str, Any] = '''sigopt''' @staticmethod def __lowercase ( ) -> List[Any]: '''simple docstring''' return is_sigopt_available() def __lowercase ( self , lowercase , lowercase , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' return run_hp_search_sigopt(lowercase , lowercase , lowercase , **lowercase) def __lowercase ( self , lowercase) -> List[Any]: '''simple docstring''' return default_hp_space_sigopt(lowercase) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Optional[Any] = '''wandb''' @staticmethod def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' return is_wandb_available() def __lowercase ( self , lowercase , lowercase , lowercase , **lowercase) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(lowercase , lowercase , lowercase , **lowercase) def __lowercase ( self , lowercase) -> Tuple: '''simple docstring''' return default_hp_space_wandb(lowercase) lowercase : List[str] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def A_ ( ) -> str: a__ : Union[str, Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(A__ ) > 0: a__ : Any = available_backends[0].name if len(A__ ) > 1: logger.info( F'{len(A__ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
99
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
99
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class a__ ( _lowerCAmelCase ): '''simple docstring''' @staticmethod @abstractmethod def __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ) -> Union[str, Any]: raise NotImplementedError() @abstractmethod def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: raise NotImplementedError()
370
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A , A , A ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = to_pil_image(A ) lowerCAmelCase__ , lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(A , lang=A , output_type='''dict''' , config=A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(A ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(A , A , A , A ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A , A , A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = ["pixel_values"] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_55 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = "" , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_value lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size['''height'''], size['''width''']) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ = apply_tesseract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) words_batch.append(lowerCamelCase_ ) boxes_batch.append(lowerCamelCase_ ) if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCAmelCase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase_ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
228
0
def lowerCAmelCase__ ( ): '''simple docstring''' for n in range(1 ,1000000): yield n * (n + 1) // 2 def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[str] = 2 while i * i <= n: lowerCAmelCase__ : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase__ ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(lowerCamelCase_) > 500) if __name__ == "__main__": print(solution())
129
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Any): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer lowerCAmelCase__ : Tuple = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase__ : int = torch.permute(lowerCamelCase_ ,(0, 2, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase_): # linear layer lowerCAmelCase__ : List[Any] = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase__ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCAmelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : int ,lowerCamelCase_ : str): '''simple docstring''' if "metadata" in layer: lowerCAmelCase__ : Optional[Any] = layer.split('''metadata''') lowerCAmelCase__ : int = ''''''.join(split_layer[0])[:-1] lowerCAmelCase__ : Optional[int] = [tuple(('''metadata''' + split_layer[1]).split('''/'''))] elif "kvstore" in layer: lowerCAmelCase__ : Optional[int] = layer.split('''kvstore''') lowerCAmelCase__ : Optional[Any] = ''''''.join(split_layer[0])[:-1] lowerCAmelCase__ : Tuple = [tuple(('''kvstore''' + split_layer[1]).split('''/'''))] else: lowerCAmelCase__ : List[str] = layer.split('''/''') lowerCAmelCase__ : int = '''/'''.join(split_layer[:-1]) lowerCAmelCase__ : List[str] = (split_layer[-1],) if "kvstore/path" in layer: lowerCAmelCase__ : Optional[Any] = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: lowerCAmelCase__ : Dict = '''file''' else: lowerCAmelCase__ : Optional[Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = rename_keys(lowerCamelCase_) lowerCAmelCase__ : List[Any] = {} for k, v in current_block.items(): lowerCAmelCase__ : List[Any] = v lowerCAmelCase__ : Tuple = new_current_block torch.save(lowerCamelCase_ ,lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : str = WEIGHTS_NAME): '''simple docstring''' lowerCAmelCase__ : Optional[int] = convert_file_size_to_int(lowerCamelCase_) lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : List[str] = 0 os.makedirs(lowerCamelCase_ ,exist_ok=lowerCamelCase_) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' ,'''rb''') as fp: lowerCAmelCase__ : str = serialization.msgpack_restore(fp.read())['''optimizer''']['''target'''] lowerCAmelCase__ : int = flatten_dict(lowerCamelCase_ ,sep='''/''') lowerCAmelCase__ : str = {} for layer in checkpoint_info.keys(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = get_key_and_tensorstore_dict( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) if curr_real_layer_name in all_layers: lowerCAmelCase__ : List[Any] = content else: lowerCAmelCase__ : str = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file lowerCAmelCase__ : str = ts.open(unflatten_dict(all_layers[key])).result().read().result() lowerCAmelCase__ : str = torch.tensor(lowerCamelCase_) lowerCAmelCase__ : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype) # use the renaming pattern from the small conversion scripts lowerCAmelCase__ , lowerCAmelCase__ : int = rename_base_flax_keys(tuple(key.split('''/''')) ,lowerCamelCase_) lowerCAmelCase__ : List[str] = '''/'''.join(lowerCamelCase_) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: lowerCAmelCase__ : Union[str, Any] = os.path.join( lowerCamelCase_ ,weights_name.replace('''.bin''' ,f"""-{len(lowerCamelCase_)+1:05d}-of-???.bin""")) rename_and_save_block(lowerCamelCase_ ,lowerCamelCase_) sharded_state_dicts.append(current_block.keys()) del current_block lowerCAmelCase__ : str = {} lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : str = raw_weights.to(getattr(lowerCamelCase_ ,lowerCamelCase_)) current_block_size += weight_size total_size += weight_size # Add the last block lowerCAmelCase__ : List[str] = os.path.join(lowerCamelCase_ ,weights_name.replace('''.bin''' ,f"""-{len(lowerCamelCase_)+1:05d}-of-???.bin""")) rename_and_save_block(lowerCamelCase_ ,lowerCamelCase_) sharded_state_dicts.append(current_block.keys()) # If we only have one shard, we return it if len(lowerCamelCase_) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Tuple = {} for idx, shard in enumerate(lowerCamelCase_): lowerCAmelCase__ : List[str] = weights_name.replace( '''.bin''' ,f"""-{idx+1:05d}-of-{len(lowerCamelCase_):05d}.bin""") # len(sharded_state_dicts):05d} lowerCAmelCase__ : Union[str, Any] = os.path.join(lowerCamelCase_ ,weights_name.replace('''.bin''' ,f"""-{idx+1:05d}-of-???.bin""")) os.rename(lowerCamelCase_ ,os.path.join(lowerCamelCase_ ,lowerCamelCase_)) lowerCAmelCase__ : List[Any] = shard for key in shard: lowerCAmelCase__ : Dict = shard_file # Add the metadata lowerCAmelCase__ : Optional[Any] = {'''total_size''': total_size} lowerCAmelCase__ : Optional[Any] = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(lowerCamelCase_ ,lowerCamelCase_) ,'''w''' ,encoding='''utf-8''') as f: lowerCAmelCase__ : List[Any] = json.dumps(lowerCamelCase_ ,indent=2 ,sort_keys=lowerCamelCase_) + '''\n''' f.write(lowerCamelCase_) return metadata, index if __name__ == "__main__": __snake_case : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size') parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted', type=str, required=False, help='Path to the output pytorch model.', ) __snake_case : Dict =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCAmelCase__ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer lowerCAmelCase__ : Optional[Any] = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''') config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''') lowerCAmelCase__ : Union[str, Any] = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' ,device_map='''auto''') lowerCAmelCase__ : Optional[Any] = TaTokenizer.from_pretrained('''t5-small''') lowerCAmelCase__ : Any = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' lowerCAmelCase__ : Union[str, Any] = tokenizer(lowerCamelCase_ ,return_tensors='''pt''').input_ids lowerCAmelCase__ : Tuple = model.generate(lowerCamelCase_ ,decoder_start_token_id=0) print(tokenizer.decode(out[0]))
129
1
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _lowercase : int = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCamelCase__( unittest.TestCase ): @classmethod def a__( cls : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def a__( cls : str )-> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) UpperCAmelCase = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , repo_id='''test-config''' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase = BertConfig.from_pretrained(F"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def a__( self : Tuple )-> Optional[int]: """simple docstring""" CustomConfig.register_for_auto_class() UpperCAmelCase = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) UpperCAmelCase = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class UpperCamelCase__( unittest.TestCase ): def a__( self : str )-> Optional[int]: """simple docstring""" UpperCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCAmelCase = c.n_embd + 1 # int UpperCAmelCase = c.resid_pdrop + 1.0 # float UpperCAmelCase = not c.scale_attn_weights # bool UpperCAmelCase = c.summary_type + '''foo''' # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(lowercase_ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowercase_ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowercase_ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowercase_ , c.summary_type , '''mismatch for key: summary_type''' ) def a__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = PretrainedConfig() UpperCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowercase_ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) UpperCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase_ , lowercase_ )] if len(lowercase_ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F""" {", ".join(lowercase_ )}.""" ) def a__( self : Dict )-> int: """simple docstring""" with self.assertRaises(lowercase_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowercase_ ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_ ) as mock_head: UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = AutoConfig.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowercase_ ) UpperCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(lowercase_ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCAmelCase = AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCAmelCase = ['''config.42.0.0.json'''] UpperCAmelCase = 768 configuration.save_pretrained(lowercase_ ) shutil.move(os.path.join(lowercase_ , '''config.4.0.0.json''' ) , os.path.join(lowercase_ , '''config.42.0.0.json''' ) ) UpperCAmelCase = AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers UpperCAmelCase = '''v4.0.0''' UpperCAmelCase , UpperCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( lowercase_ , return_unused_kwargs=lowercase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowercase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCAmelCase = '''v3.0.0''' UpperCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
364
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( A : int , A : int , A : int , A : int , A : int , A : int ): '''simple docstring''' if (ksize % 2) == 0: UpperCAmelCase = ksize + 1 UpperCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A ): for x in range(A ): # distance from center UpperCAmelCase = x - ksize // 2 UpperCAmelCase = y - ksize // 2 # degree to radiant UpperCAmelCase = theta / 1_80 * np.pi UpperCAmelCase = np.cos(_theta ) UpperCAmelCase = np.sin(_theta ) # get kernel x UpperCAmelCase = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _lowercase : Tuple = imread("""../image_data/lena.jpg""") # turn image in gray scale value _lowercase : int = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _lowercase : List[str] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _lowercase : List[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _lowercase : Optional[int] = out / out.max() * 255 _lowercase : Optional[int] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
91
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
"""simple docstring""" import re def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(_lowercase, _lowercase ) ) if __name__ == "__main__": __a = "0094702343221" print(is_sri_lankan_phone_number(phone))
66
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : int ="encoder-decoder" UpperCamelCase__ : List[Any] =True def __init__( self :str , **_lowercase :Any) -> List[Any]: super().__init__(**_lowercase) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ = kwargs.pop('''encoder''') UpperCAmelCase_ = encoder_config.pop('''model_type''') UpperCAmelCase_ = kwargs.pop('''decoder''') UpperCAmelCase_ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = AutoConfig.for_model(_lowercase , **_lowercase) UpperCAmelCase_ = True @classmethod def __a ( cls :int , _lowercase :PretrainedConfig , _lowercase :PretrainedConfig , **_lowercase :str) -> PretrainedConfig: logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') UpperCAmelCase_ = True UpperCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowercase) def __a ( self :List[Any]) -> int: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.encoder.to_dict() UpperCAmelCase_ = self.decoder.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def _snake_case ( snake_case__ : Dict , snake_case__ : bool = True , snake_case__ : float = math.inf , snake_case__ : float = -math.inf , snake_case__ : float = math.inf , snake_case__ : float = -math.inf , snake_case__ : bool = False , snake_case__ : float = 100 , snake_case__ : float = 0.01 , snake_case__ : float = 1 , ): A = False A = search_prob A = start_temperate A = [] A = 0 A = None while not search_end: A = current_state.score() if best_state is None or current_score > best_state.score(): A = current_state scores.append(snake_case__ ) iterations += 1 A = None A = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to A = random.randint(0 , len(snake_case__ ) - 1 ) # picking a random neighbor A = neighbors.pop(snake_case__ ) A = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: A = change * -1 # in case we are finding minimum if change > 0: # improves the solution A = picked_neighbor else: A = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability A = picked_neighbor A = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor A = True else: A = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case__ ) , snake_case__ ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def _snake_case ( snake_case__ : Dict , snake_case__ : List[Any] ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _lowercase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowercase = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) _lowercase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowercase = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def _snake_case ( snake_case__ : Any , snake_case__ : Dict ): return (3 * x**2) - (6 * y) _lowercase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowercase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" ) _lowercase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowercase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F"""{local_min.score()}""" )
74
from __future__ import annotations a : str = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: UpperCAmelCase_: str = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase_: dict[str, str | None] = {} UpperCAmelCase_: int = source_vertex def __snake_case (self ) -> None: UpperCAmelCase_: List[Any] = {self.source_vertex} UpperCAmelCase_: Dict = None UpperCAmelCase_: str = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase_: Any = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = vertex queue.append(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase_: Any = self.parent.get(SCREAMING_SNAKE_CASE_ ) if target_vertex_parent is None: UpperCAmelCase_: Any = ( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) return self.shortest_path(SCREAMING_SNAKE_CASE_ ) + f'->{target_vertex}' if __name__ == "__main__": a : Optional[Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
147
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """bart""" __lowerCAmelCase = ["""past_key_values"""] __lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , lowerCamelCase_ : str=5_0265 , lowerCamelCase_ : Union[str, Any]=1024 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=4096 , lowerCamelCase_ : List[str]=16 , lowerCamelCase_ : int=12 , lowerCamelCase_ : str=4096 , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : Optional[Any]=0.0 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : int=1024 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : List[str]=0.0 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : Any=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : int=3 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Dict=0 , lowerCamelCase_ : List[Any]=2 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=2 , lowerCamelCase_ : List[Any]=2 , **lowerCamelCase_ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = encoder_layerdrop UpperCamelCase = decoder_layerdrop UpperCamelCase = classifier_dropout UpperCamelCase = use_cache UpperCamelCase = encoder_layers UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , lowerCamelCase_ ): UpperCamelCase = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): @property def lowerCamelCase_ ( self : Dict ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase = {0: """batch"""} UpperCamelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} UpperCamelCase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(lowerCamelCase_ ): UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCamelCase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super().outputs else: UpperCamelCase = super(lowerCamelCase_ , self ).outputs if self.use_past: UpperCamelCase , UpperCamelCase = self.num_layers for i in range(lowerCamelCase_ ): UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCamelCase_ ( self : Any , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Generate decoder inputs UpperCamelCase = seq_length if not self.use_past else 1 UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase = dict(**lowerCamelCase_ , **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs["""input_ids"""].shape UpperCamelCase = common_inputs["""decoder_input_ids"""].shape[1] UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = decoder_seq_length + 3 UpperCamelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCamelCase_ , lowerCamelCase_ )] , dim=1 ) UpperCamelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase = min(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = max(lowerCamelCase_ , lowerCamelCase_ ) - min_num_layers UpperCamelCase = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. UpperCamelCase = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCamelCase_ , lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def lowerCamelCase_ ( self : int , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase , UpperCamelCase = self.num_layers UpperCamelCase , UpperCamelCase = self.num_attention_heads UpperCamelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase = common_inputs["""attention_mask"""].dtype UpperCamelCase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) UpperCamelCase = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def lowerCamelCase_ ( self : str , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCamelCase = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase = dict(tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) return common_inputs def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : PreTrainedTokenizer , lowerCamelCase_ : int = -1 , lowerCamelCase_ : int = -1 , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) elif self.task == "causal-lm": UpperCamelCase = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) else: UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) return common_inputs def lowerCamelCase_ ( self : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase = super()._flatten_past_key_values_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: UpperCamelCase = super(lowerCamelCase_ , self )._flatten_past_key_values_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
165
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = XLMRobertaTokenizer __lowerCAmelCase = XLMRobertaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def lowerCamelCase_ ( self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """<pad>""" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCamelCase_ ) , 1002 ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase_ ( self : int ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCamelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def lowerCamelCase_ ( self : Any ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) UpperCamelCase = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) UpperCamelCase = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = """I was born in 92000, and this is falsé.""" UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """Hello World!""" UpperCamelCase = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCamelCase = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
165
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _A ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" a =multiprocessing.Manager() a =manager.list() a =multiprocessing.Process(target=lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _A ( lowercase , lowercase , lowercase ): """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil a =shutil.rmtree a =os.rmdir a =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: a ={} with swallow_io(): with time_limit(lowercase ): exec(lowercase , lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. a =rmtree a =rmdir a =chdir @contextlib.contextmanager def _A ( lowercase ): """simple docstring""" def signal_handler(lowercase , lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , lowercase ) signal.signal(signal.SIGALRM , lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _A ( ): """simple docstring""" a =WriteOnlyStringIO() with contextlib.redirect_stdout(lowercase ): with contextlib.redirect_stderr(lowercase ): with redirect_stdin(lowercase ): yield @contextlib.contextmanager def _A ( ): """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(lowercase ): yield dirname class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" pass class __A ( io.StringIO ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Optional[Any]: raise OSError def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Optional[Any]: raise OSError def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> List[Any]: raise OSError def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> List[str]: return False class __A ( contextlib._RedirectStream ): # type: ignore """simple docstring""" __lowerCAmelCase = "stdin" @contextlib.contextmanager def _A ( lowercase ): """simple docstring""" if root == ".": yield return a =os.getcwd() os.chdir(lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowercase ) def _A ( lowercase=None ): """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins a =None a =None import os a ='''1''' a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None a =None import shutil a =None a =None a =None import subprocess a =None # type: ignore a =None import sys a =None a =None a =None a =None a =None
81
from __future__ import annotations from collections.abc import Iterator class __lowerCAmelCase : def __init__( self :Optional[Any] , __magic_name__ :int ): '''simple docstring''' a = value a = None a = None class __lowerCAmelCase : def __init__( self :str , __magic_name__ :Node ): '''simple docstring''' a = tree def lowerCamelCase__ ( self :str , __magic_name__ :Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self :Tuple ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
228
0
import math def lowerCamelCase_ ( _a : float , _a : float ): '''simple docstring''' if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_a ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
359
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger() @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tensor ,lowerCamelCase_: Tensor ) -> Optional[int]: UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(lowerCamelCase_ ,nn.Convad ) or isinstance(lowerCamelCase_ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCamelCase_ ) def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Dict: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCamelCase_ ) [x.remove() for x in self.handles] return self @property def A__ ( self: List[str] ) -> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda lowerCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class _snake_case : '''simple docstring''' A__ : nn.Module A__ : nn.Module A__ : int = 1 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) A__ : bool = True def __call__( self: Tuple ,lowerCamelCase_: Tensor ) -> Optional[Any]: UpperCAmelCase_ : List[str] = Tracker(self.dest )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : Any = Tracker(self.src )(lowerCamelCase_ ).parametrized UpperCAmelCase_ : int = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.src_skip ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = list(filter(lambda lowerCamelCase_ : type(lowerCamelCase_ ) not in self.dest_skip ,lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(lowerCamelCase_ )} operations while''' F''' destination module has {len(lowerCamelCase_ )}.''' ) for dest_m, src_m in zip(lowerCamelCase_ ,lowerCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class _snake_case ( nn.Module ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: nn.Module ) -> List[str]: super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F'''Unexpected layer name {k}''' UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) UpperCAmelCase_ : Optional[int] = nn.ModuleDict(lowerCamelCase_ ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tensor ) -> List[str]: return get_trunk_forward_outputs( lowerCamelCase_ ,out_feat_keys=lowerCamelCase_ ,feature_blocks=self._feature_blocks ,) class _snake_case ( __snake_case ): '''simple docstring''' def A__ ( self: Dict ,lowerCamelCase_: str ) -> str: UpperCAmelCase_ : str = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCAmelCase_ : str = self.convert_name_to_timm(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = partial(lambda: (timm.create_model(lowerCamelCase_ ,pretrained=lowerCamelCase_ ).eval(), None) ) else: UpperCAmelCase_ : Optional[int] = super().__getitem__(lowerCamelCase_ ) return val class _snake_case ( __snake_case ): '''simple docstring''' def __getitem__( self: Union[str, Any] ,lowerCamelCase_: str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCAmelCase_ : Tuple = RegNetModel else: UpperCAmelCase_ : Union[str, Any] = RegNetForImageClassification return val def lowerCamelCase_ ( _a : str , _a : int , _a : List[Tuple[str, str]] ): '''simple docstring''' for from_key, to_key in keys: UpperCAmelCase_ : int = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def lowerCamelCase_ ( _a : str , _a : Callable[[], nn.Module] , _a : Callable[[], nn.Module] , _a : RegNetConfig , _a : Path , _a : bool = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : str = our_model_func(_a ).eval() UpperCAmelCase_ : List[Any] = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) UpperCAmelCase_ : List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: UpperCAmelCase_ : List[str] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : List[Any] = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] UpperCAmelCase_ : str = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) UpperCAmelCase_ : Union[str, Any] = our_model(_a , output_hidden_states=_a ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Optional[int] = from_model(_a ) UpperCAmelCase_ : List[Any] = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=_a , ) UpperCAmelCase_ : Union[str, Any] = 224 if """seer""" not in name else 384 # we can use the convnext one UpperCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=_a , ) print(F'''Pushed {name}''' ) def lowerCamelCase_ ( _a : Path , _a : str = None , _a : bool = True ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_ : List[Any] = 1000 UpperCAmelCase_ : Any = (1, num_labels) UpperCAmelCase_ : Tuple = """huggingface/label-files""" UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCAmelCase_ : Union[str, Any] = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Union[str, Any] = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) UpperCAmelCase_ : List[Any] = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a : str , _a : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location="""cpu""" ) UpperCAmelCase_ : Union[str, Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[Any] = files["""classy_state_dict"""]["""base_model"""]["""model"""] UpperCAmelCase_ : Optional[Any] = model_state_dict["""trunk"""] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : str = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Tuple = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Dict = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Any = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( _a , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
59
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ = { 'facebook/nllb-large-en-ro': 1_024, 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off UpperCAmelCase_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = ['input_ids', 'attention_mask'] UpperCAmelCase__ : str = NllbTokenizer UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self: Dict , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Any="<s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: List[Any]="</s>" , UpperCamelCase_: Optional[Any]="<s>" , UpperCamelCase_: int="<unk>" , UpperCamelCase_: Union[str, Any]="<pad>" , UpperCamelCase_: Union[str, Any]="<mask>" , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=None , UpperCamelCase_: Dict=None , UpperCamelCase_: Optional[Any]=False , **UpperCamelCase_: int , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __lowerCamelCase = legacy_behaviour super().__init__( vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True __lowerCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __lowerCamelCase = { lang_code: self.convert_tokens_to_ids(UpperCamelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowerCamelCase = src_lang if src_lang is not None else """eng_Latn""" __lowerCamelCase = self.convert_tokens_to_ids(self._src_lang ) __lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase__ ( self: int ): return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): __lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self: Any , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: int ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCamelCase = src_lang __lowerCamelCase = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.convert_tokens_to_ids(UpperCamelCase_ ) __lowerCamelCase = tgt_lang_id return inputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: str = "eng_Latn" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "fra_Latn" , **UpperCamelCase_: Optional[int] , ): __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self: List[str] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = self.convert_tokens_to_ids(UpperCamelCase_ ) if self.legacy_behaviour: __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCamelCase = [self.cur_lang_code] __lowerCamelCase = [self.eos_token_id] __lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: str ): __lowerCamelCase = self.convert_tokens_to_ids(UpperCamelCase_ ) if self.legacy_behaviour: __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCamelCase = [self.cur_lang_code] __lowerCamelCase = [self.eos_token_id] __lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
12
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "openai-gpt" __UpperCamelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , lowercase_ : List[str]=40478 , lowercase_ : List[str]=512 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[Any]=1e-5 , lowercase_ : int=0.02 , lowercase_ : Optional[int]="cls_index" , lowercase_ : Any=True , lowercase_ : List[Any]=None , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=0.1 , **lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = n_positions SCREAMING_SNAKE_CASE_ : Optional[int] = n_embd SCREAMING_SNAKE_CASE_ : Dict = n_layer SCREAMING_SNAKE_CASE_ : Any = n_head SCREAMING_SNAKE_CASE_ : Union[str, Any] = afn SCREAMING_SNAKE_CASE_ : int = resid_pdrop SCREAMING_SNAKE_CASE_ : List[str] = embd_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = attn_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[str] = summary_type SCREAMING_SNAKE_CASE_ : Tuple = summary_use_proj SCREAMING_SNAKE_CASE_ : Union[str, Any] = summary_activation SCREAMING_SNAKE_CASE_ : Any = summary_first_dropout SCREAMING_SNAKE_CASE_ : List[str] = summary_proj_to_labels super().__init__(**lowercase_)
91
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case ={ """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=9_9 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : List[str]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : List[Any]=1_6 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : str=4 , ) -> Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def __UpperCAmelCase ( self : Any ) -> List[Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCAmelCase ( self : Optional[Any] ) -> int: lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : int ) -> int: lowerCAmelCase = FlaxRobertaModelTester(self ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained('roberta-base' , from_pt=UpperCAmelCase__ ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ )
55
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''encoder-decoder''' lowerCamelCase = True def __init__( self , **_lowerCamelCase ) -> Optional[int]: super().__init__(**_lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A_ : Union[str, Any] = kwargs.pop("""encoder""" ) A_ : int = encoder_config.pop("""model_type""" ) A_ : Dict = kwargs.pop("""decoder""" ) A_ : List[str] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig A_ : str = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : Optional[int] = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) A_ : str = True @classmethod def UpperCAmelCase_ ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) -> PretrainedConfig: logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A_ : Optional[Any] = True A_ : Optional[int] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_lowerCamelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: A_ : int = copy.deepcopy(self.__dict__ ) A_ : List[str] = self.encoder.to_dict() A_ : Union[str, Any] = self.decoder.to_dict() A_ : List[str] = self.__class__.model_type return output
344
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
1
from collections import namedtuple __A = namedtuple("from_to", "from_ to") __A = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 264.172), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4226.75), } def lowerCAmelCase_ ( __a , __a , __a ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid \'from_type\' value: {from_type!r} Supported values are:\n""" + ", ".join(_A ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid \'to_type\' value: {to_type!r}. Supported values are:\n""" + ", ".join(_A ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
355
def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" assert x is not None assert y is not None lowerCamelCase__: Any =len(__a ) lowerCamelCase__: int =len(__a ) # declaring the array for storing the dp values lowerCamelCase__: List[Any] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase__: str =1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase__: str =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase__: Any ="" lowerCamelCase__ , lowerCamelCase__: str =m, n while i > 0 and j > 0: lowerCamelCase__: Union[str, Any] =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase__: Any =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
273
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) A_ : List[Any] = logging.getLogger(__name__) @dataclass class lowerCamelCase : lowerCamelCase__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'Whether tp freeze the encoder.'} ) lowerCamelCase__ : bool = field(default=A__ ,metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowerCamelCase__ : Optional[str] = field( default='summarization' ,metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} ,) lowerCamelCase__ : Optional[int] = field( default=1_0_2_4 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowerCamelCase__ : Optional[int] = field( default=1_2_8 ,metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowerCamelCase__ : Optional[int] = field( default=1_4_2 ,metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } ,) lowerCamelCase__ : Optional[int] = field( default=1_4_2 ,metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowerCamelCase__ : Optional[int] = field(default=-1 ,metadata={'help': '# training examples. -1 means use all.'} ) lowerCamelCase__ : Optional[int] = field(default=-1 ,metadata={'help': '# validation examples. -1 means use all.'} ) lowerCamelCase__ : Optional[int] = field(default=-1 ,metadata={'help': '# test examples. -1 means use all.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'Source language id for translation.'} ) lowerCamelCase__ : Optional[str] = field(default=A__ ,metadata={'help': 'Target language id for translation.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': '# num_beams to use for evaluation.'} ) lowerCamelCase__ : bool = field( default=A__ ,metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} ,) def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(snake_case__ , os.path.join(snake_case__ , f"""{split}_results.json""" ) ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses() check_output_dir(snake_case__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , snake_case__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): assert hasattr(snake_case__ , snake_case__ ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=snake_case__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE__ = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE__ = ( dataset_class( snake_case__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE__ = ( dataset_class( snake_case__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE__ = ( dataset_class( snake_case__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE__ = ( build_compute_metrics_fn(data_args.task , snake_case__ ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE__ = SeqaSeqTrainer( model=snake_case__ , args=snake_case__ , data_args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , data_collator=SeqaSeqDataCollator( snake_case__ , snake_case__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case__ , tokenizer=snake_case__ , ) SCREAMING_SNAKE_CASE__ = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) SCREAMING_SNAKE_CASE__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE__ = train_result.metrics SCREAMING_SNAKE_CASE__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE__ = trainer.evaluate(metric_key_prefix="""val""" ) SCREAMING_SNAKE_CASE__ = data_args.n_val SCREAMING_SNAKE_CASE__ = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) SCREAMING_SNAKE_CASE__ = trainer.predict(test_dataset=snake_case__ , metric_key_prefix="""test""" ) SCREAMING_SNAKE_CASE__ = test_output.metrics SCREAMING_SNAKE_CASE__ = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE__ = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , snake_case__ , training_args.output_dir ) all_metrics.update(snake_case__ ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) SCREAMING_SNAKE_CASE__ = lmap(str.strip , snake_case__ ) write_txt_file(snake_case__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(snake_case__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def A ( snake_case__ ): '''simple docstring''' main() if __name__ == "__main__": main()
165
"""simple docstring""" def A ( snake_case__ = 50 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
165
1
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" return EnvironmentCommand() class UpperCamelCase__( __A ): @staticmethod def snake_case__ ( __UpperCAmelCase ) -> Union[str, Any]: A__ = parser.add_parser('env' ) download_parser.set_defaults(func=__UpperCAmelCase ) def snake_case__ ( self ) -> str: A__ = huggingface_hub.__version__ A__ = 'not installed' A__ = 'NA' if is_torch_available(): import torch A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = 'not installed' if is_transformers_available(): import transformers A__ = transformers.__version__ A__ = 'not installed' if is_accelerate_available(): import accelerate A__ = accelerate.__version__ A__ = 'not installed' if is_xformers_available(): import xformers A__ = xformers.__version__ A__ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'''{pt_version} ({pt_cuda_available})''', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def snake_case__ ( __UpperCAmelCase ) -> Any: return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
154
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): lowerCAmelCase__ : str = 'AutoTokenizer' lowerCAmelCase__ : int = ['tokenizer'] lowerCAmelCase__ : int = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> List[str]: super().__init__(__UpperCAmelCase ) A__ = speaker_embeddings @classmethod def snake_case__ ( cls ,__UpperCAmelCase ,__UpperCAmelCase="speaker_embeddings_path.json" ,**__UpperCAmelCase ) -> List[Any]: if speaker_embeddings_dict_path is not None: A__ = get_file_from_repo( __UpperCAmelCase ,__UpperCAmelCase ,subfolder=kwargs.pop('subfolder' ,__UpperCAmelCase ) ,cache_dir=kwargs.pop('cache_dir' ,__UpperCAmelCase ) ,force_download=kwargs.pop('force_download' ,__UpperCAmelCase ) ,proxies=kwargs.pop('proxies' ,__UpperCAmelCase ) ,resume_download=kwargs.pop('resume_download' ,__UpperCAmelCase ) ,local_files_only=kwargs.pop('local_files_only' ,__UpperCAmelCase ) ,use_auth_token=kwargs.pop('use_auth_token' ,__UpperCAmelCase ) ,revision=kwargs.pop('revision' ,__UpperCAmelCase ) ,) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(__UpperCAmelCase ,__UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) A__ = None else: with open(__UpperCAmelCase ) as speaker_embeddings_json: A__ = json.load(__UpperCAmelCase ) else: A__ = None A__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) return cls(tokenizer=__UpperCAmelCase ,speaker_embeddings=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="speaker_embeddings_path.json" ,__UpperCAmelCase="speaker_embeddings" ,__UpperCAmelCase = False ,**__UpperCAmelCase ,) -> Tuple: if self.speaker_embeddings is not None: os.makedirs(os.path.join(__UpperCAmelCase ,__UpperCAmelCase ,'v2' ) ,exist_ok=__UpperCAmelCase ) A__ = {} A__ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A__ = self._load_voice_preset(__UpperCAmelCase ) A__ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,__UpperCAmelCase ,f'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=__UpperCAmelCase ,) A__ = os.path.join(__UpperCAmelCase ,f'''{prompt_key}_{key}.npy''' ) A__ = tmp_dict with open(os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) ,'w' ) as fp: json.dump(__UpperCAmelCase ,__UpperCAmelCase ) super().save_pretrained(__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase = None ,**__UpperCAmelCase ) -> List[Any]: A__ = self.speaker_embeddings[voice_preset] A__ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) A__ = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,__UpperCAmelCase ) ,cache_dir=kwargs.pop('cache_dir' ,__UpperCAmelCase ) ,force_download=kwargs.pop('force_download' ,__UpperCAmelCase ) ,proxies=kwargs.pop('proxies' ,__UpperCAmelCase ) ,resume_download=kwargs.pop('resume_download' ,__UpperCAmelCase ) ,local_files_only=kwargs.pop('local_files_only' ,__UpperCAmelCase ) ,use_auth_token=kwargs.pop('use_auth_token' ,__UpperCAmelCase ) ,revision=kwargs.pop('revision' ,__UpperCAmelCase ) ,) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) A__ = np.load(__UpperCAmelCase ) return voice_preset_dict def snake_case__ ( self ,__UpperCAmelCase = None ) -> Dict: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="pt" ,__UpperCAmelCase=2_56 ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,**__UpperCAmelCase ,) -> Tuple: if voice_preset is not None and not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): if ( isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A__ = self._load_voice_preset(__UpperCAmelCase ) else: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and not voice_preset.endswith('.npz' ): A__ = voice_preset + '.npz' A__ = np.load(__UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(__UpperCAmelCase ,**__UpperCAmelCase ) A__ = BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase ) A__ = self.tokenizer( __UpperCAmelCase ,return_tensors=__UpperCAmelCase ,padding='max_length' ,max_length=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,**__UpperCAmelCase ,) if voice_preset is not None: A__ = voice_preset return encoded_text
154
1
'''simple docstring''' import random from typing import Any def lowerCAmelCase_ ( snake_case_ : list ) -> int: '''simple docstring''' for _ in range(len(__lowerCamelCase ) ): UpperCAmelCase_ = random.randint(0 , len(__lowerCamelCase ) - 1 ) UpperCAmelCase_ = random.randint(0 , len(__lowerCamelCase ) - 1 ) UpperCAmelCase_ = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Tuple =[0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE_: Tuple =['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
1
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "xlm-roberta-xl" def __init__(self , UpperCAmelCase=250880 , UpperCAmelCase=2560 , UpperCAmelCase=36 , UpperCAmelCase=32 , UpperCAmelCase=10240 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=514 , UpperCAmelCase=1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-0_5 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache _snake_case = classifier_dropout class _lowerCAmelCase ( __snake_case ): '''simple docstring''' @property def lowercase (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
270
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a_ : Optional[Any] = logging.getLogger(__name__) @dataclass class snake_case : """simple docstring""" _lowerCamelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Whether tp freeze the encoder."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class snake_case : """simple docstring""" _lowerCamelCase = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) _lowerCamelCase = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) _lowerCamelCase = field( default=10_24 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCamelCase = field( default=1_28 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCamelCase = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) _lowerCamelCase = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _lowerCamelCase = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) _lowerCamelCase = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) _lowerCamelCase = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Source language id for translation."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Target language id for translation."} ) _lowerCamelCase = field(default=lowercase , metadata={"help": "# num_beams to use for evaluation."} ) _lowerCamelCase = field( default=lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , F'''{split}_results.json''' ) ) def __snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): assert hasattr(UpperCAmelCase_ , UpperCAmelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCAmelCase_ , UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCAmelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowerCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCAmelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowerCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCAmelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowerCamelCase_ = SeqaSeqDataset # Get datasets lowerCamelCase_ = ( dataset_class( UpperCAmelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) lowerCamelCase_ = ( dataset_class( UpperCAmelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowerCamelCase_ = ( dataset_class( UpperCAmelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer lowerCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCAmelCase_ ) if training_args.predict_with_generate else None ) lowerCamelCase_ = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , data_args=UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , data_collator=SeqaSeqDataCollator( UpperCAmelCase_ , UpperCAmelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) lowerCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) lowerCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCAmelCase_ , training_args.output_dir ) all_metrics.update(UpperCAmelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) lowerCamelCase_ = data_args.n_val lowerCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCAmelCase_ , training_args.output_dir ) all_metrics.update(UpperCAmelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ = trainer.predict(test_dataset=UpperCAmelCase_ , metric_key_prefix="test" ) lowerCamelCase_ = test_output.metrics lowerCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): lowerCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCAmelCase_ , training_args.output_dir ) all_metrics.update(UpperCAmelCase_ ) if training_args.predict_with_generate: lowerCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) lowerCamelCase_ = lmap(str.strip , UpperCAmelCase_ ) write_txt_file(UpperCAmelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCAmelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def __snake_case ( UpperCAmelCase_ : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
55
'''simple docstring''' import os def __snake_case ( UpperCAmelCase_ : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as in_file: lowerCamelCase_ = in_file.read() lowerCamelCase_ = [[int(UpperCAmelCase_ ) for cell in row.split("," )] for row in data.strip().splitlines()] lowerCamelCase_ = [[0 for cell in row] for row in grid] lowerCamelCase_ = len(grid[0] ) lowerCamelCase_ = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] lowerCamelCase_ = grid[0][0] for i in range(1 , UpperCAmelCase_ ): lowerCamelCase_ = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase_ ): lowerCamelCase_ = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase_ ): for j in range(1 , UpperCAmelCase_ ): lowerCamelCase_ = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
55
1
from __future__ import annotations lowercase : Optional[int] = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowercase : Union[str, Any] = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def A_ ( A__ ) -> list[float]: a__ : Dict = [] a__ : List[str] = len(A__ ) for i in range(A__ ): a__ : float = -1 for j in range(i + 1 , A__ ): if arr[i] < arr[j]: a__ : Tuple = arr[j] break result.append(A__ ) return result def A_ ( A__ ) -> list[float]: a__ : Tuple = [] for i, outer in enumerate(A__ ): a__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: a__ : str = inner break result.append(A__ ) return result def A_ ( A__ ) -> list[float]: a__ : Union[str, Any] = len(A__ ) a__ : list[float] = [] a__ : list[float] = [-1] * arr_size for index in reversed(range(A__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: a__ : Optional[int] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowercase : Any = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
225
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def A_ ( A__ ) -> str: a__ : Any = 384 if "tiny" in model_name: a__ : List[Any] = [3, 3, 9, 3] a__ : Optional[Any] = [96, 192, 384, 768] if "small" in model_name: a__ : Union[str, Any] = [3, 3, 27, 3] a__ : List[Any] = [96, 192, 384, 768] if "base" in model_name: a__ : int = [3, 3, 27, 3] a__ : List[str] = [128, 256, 512, 1024] a__ : Optional[int] = 512 if "large" in model_name: a__ : Optional[int] = [3, 3, 27, 3] a__ : Any = [192, 384, 768, 1536] a__ : int = 768 if "xlarge" in model_name: a__ : str = [3, 3, 27, 3] a__ : int = [256, 512, 1024, 2048] a__ : List[str] = 1024 # set label information a__ : int = 150 a__ : List[Any] = 'huggingface/label-files' a__ : str = 'ade20k-id2label.json' a__ : Optional[int] = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) a__ : List[str] = {int(A__ ): v for k, v in idalabel.items()} a__ : Union[str, Any] = {v: k for k, v in idalabel.items()} a__ : List[Any] = ConvNextConfig( depths=A__ , hidden_sizes=A__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) a__ : Optional[int] = UperNetConfig( backbone_config=A__ , auxiliary_in_channels=A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ , ) return config def A_ ( A__ ) -> Tuple: a__ : Optional[int] = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def A_ ( A__ , A__ , A__ ) -> str: a__ : List[str] = dct.pop(A__ ) a__ : int = val def A_ ( A__ , A__ , A__ ) -> str: a__ : Tuple = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } a__ : Dict = model_name_to_url[model_name] a__ : Optional[int] = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['state_dict'] a__ : List[Any] = get_upernet_config(A__ ) a__ : Dict = UperNetForSemanticSegmentation(A__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a__ : Dict = state_dict.pop(A__ ) if "bn" in key: a__ : Optional[int] = key.replace('bn' , 'batch_norm' ) a__ : List[Any] = val # rename keys a__ : Union[str, Any] = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) model.load_state_dict(A__ ) # verify on image a__ : str = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' a__ : int = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) a__ : Union[str, Any] = SegformerImageProcessor() a__ : Union[str, Any] = processor(A__ , return_tensors='pt' ).pixel_values with torch.no_grad(): a__ : Optional[Any] = model(A__ ) if model_name == "upernet-convnext-tiny": a__ : Union[str, Any] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": a__ : int = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": a__ : int = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": a__ : Optional[Any] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": a__ : Optional[int] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(A__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
225
1
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowercase : str = pytest.mark.integration lowercase : str = {"comet"} lowercase : List[Any] = importlib.util.find_spec("fairseq") is not None lowercase : str = {"code_eval"} lowercase : Optional[Any] = os.name == "nt" lowercase : Optional[Any] = {"bertscore", "frugalscore", "perplexity"} lowercase : str = importlib.util.find_spec("transformers") is not None def SCREAMING_SNAKE_CASE__ ( __A ) -> int: @wraps(__A ) def wrapper(self , __A ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , __A ) return wrapper def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: @wraps(__A ) def wrapper(self , __A ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , __A ) return wrapper def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: @wraps(__A ) def wrapper(self , __A ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , __A ) return wrapper def SCREAMING_SNAKE_CASE__ ( ) -> Any: _snake_case = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @local class __UpperCAmelCase ( parameterized.TestCase ): __lowercase = {} __lowercase = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = '[...]' _snake_case = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCAmelCase_ ) ).module_path ) _snake_case = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase_ ) # check parameters _snake_case = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCAmelCase_ , metric_module.__name__ ): with self.use_local_metrics(): try: _snake_case = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = '[...]' _snake_case = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCAmelCase_ ) ).module_path ) # run doctest with self.use_local_metrics(): _snake_case = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase_ ): yield else: yield @contextmanager def lowerCamelCase ( self ): """simple docstring""" def load_local_metric(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): return load_metric(os.path.join('metrics' , lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ ) with patch('datasets.load_metric' ) as mock_load_metric: _snake_case = load_local_metric yield @classmethod def lowerCamelCase ( cls , lowerCAmelCase_ ): """simple docstring""" def wrapper(lowerCAmelCase_ ): _snake_case = contextmanager(lowerCAmelCase_ ) _snake_case = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __UpperCAmelCase ( _lowerCamelCase ): def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _snake_case = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: import torch def bert_cos_score_idf(__A , __A , *__A , **__A ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__A ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _snake_case = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: def load_from_checkpoint(__A ): class __UpperCAmelCase : def lowerCamelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" assert len(lowerCAmelCase_ ) == 2 _snake_case = [0.19, 0.92] return scores, sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _snake_case = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _snake_case = load_from_checkpoint yield def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: _snake_case = load_metric(os.path.join('metrics' , 'seqeval' ) ) _snake_case = 'ERROR' _snake_case = F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(__A , match=re.escape(__A ) ): metric.compute(predictions=[] , references=[] , scheme=__A )
42
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def _lowercase ( self , _A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowercase ( self , _A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
273
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Tuple = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''convbert''' def __init__(self : str , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Dict=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : str=3072 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Tuple=1E-1_2 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Optional[Any]=9 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = embedding_size lowercase__ = head_ratio lowercase__ = conv_kernel_size lowercase__ = num_groups lowercase__ = classifier_dropout class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
146
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=[10, 20, 30, 40] , _UpperCAmelCase : Optional[int]=[2, 2, 3, 2] , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=["stage2", "stage3", "stage4"] , _UpperCAmelCase : List[Any]=[2, 3, 4] , _UpperCAmelCase : Optional[Any]=None , ) -> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_stages lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = out_features lowercase__ = out_indices lowercase__ = scope def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" lowercase__ = ConvNextVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A__ = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : int ) -> List[Any]: """simple docstring""" lowercase__ = ConvNextVaModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCamelCase__ (self : int ) -> str: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = True if model_class.__name__ in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ]: continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_with_labels() lowercase__ = False lowercase__ = True if ( model_class.__name__ in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase ).loss loss.backward() def lowerCamelCase__ (self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[Any] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ConvNextVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> int: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = preprocessor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
146
1
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =order # a_{0} ... a_{k} lowerCamelCase_ =[1.0] + [0.0] * order # b_{0} ... b_{k} lowerCamelCase_ =[1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCamelCase_ =[0.0] * self.order # y[n-1] ... y[n-k] lowerCamelCase_ =[0.0] * self.order def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> None: if len(_SCREAMING_SNAKE_CASE ) < self.order: lowerCamelCase_ =[1.0, *a_coeffs] if len(_SCREAMING_SNAKE_CASE ) != self.order + 1: lowerCamelCase_ =( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_SCREAMING_SNAKE_CASE )}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != self.order + 1: lowerCamelCase_ =( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(_SCREAMING_SNAKE_CASE )}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =a_coeffs lowerCamelCase_ =b_coeffs def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> float: lowerCamelCase_ =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCamelCase_ =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCamelCase_ =self.input_history[:-1] lowerCamelCase_ =self.output_history[:-1] lowerCamelCase_ =sample lowerCamelCase_ =result return result
154
from __future__ import annotations from random import choice def __UpperCamelCase ( _A : str ) ->int: """simple docstring""" return choice(_A ) def __UpperCamelCase ( _A : list[int] , _A : int ) ->int: """simple docstring""" lowerCamelCase_ =random_pivot(_A ) # partition based on pivot # linear time lowerCamelCase_ =[e for e in lst if e < pivot] lowerCamelCase_ =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A , k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
154
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py snake_case_ : List[Any] = 'src/diffusers' # Matches is_xxx_available() snake_case_ : List[str] = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla snake_case_ : Any = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') snake_case_ : Optional[Any] = '\n{0} = None\n' snake_case_ : Tuple = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' snake_case_ : int = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = _re_backend.findall(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None return "_and_".join(UpperCAmelCase_ ) def A__ ( ): with open(os.path.join(UpperCAmelCase_ , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCamelCase : Union[str, Any] = f.readlines() # Get to the point we do the actual imports for type checking _UpperCamelCase : List[str] = 0 _UpperCamelCase : Any = {} # Go through the end of the file while line_index < len(UpperCAmelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCamelCase : Tuple = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 _UpperCamelCase : Tuple = [] # Until we unindent, add backend objects to the list while line_index < len(UpperCAmelCase_ ) and len(lines[line_index] ) > 1: _UpperCamelCase : int = lines[line_index] _UpperCamelCase : str = _re_single_line_import.search(UpperCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCAmelCase_ ) > 0: _UpperCamelCase : Dict = objects else: line_index += 1 return backend_specific_objects def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): if name.isupper(): return DUMMY_CONSTANT.format(UpperCAmelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCAmelCase_ , UpperCAmelCase_ ) else: return DUMMY_CLASS.format(UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( UpperCAmelCase_=None ): if backend_specific_objects is None: _UpperCamelCase : Dict = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCamelCase : Any = {} for backend, objects in backend_specific_objects.items(): _UpperCamelCase : int = '[' + ', '.join(f'"{b}"' for b in backend.split('_and_' ) ) + ']' _UpperCamelCase : Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCAmelCase_ , UpperCAmelCase_ ) for o in objects] ) _UpperCamelCase : Dict = dummy_file return dummy_files def A__ ( UpperCAmelCase_=False ): _UpperCamelCase : List[str] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCamelCase : int = {'torch': 'pt'} # Locate actual dummy modules and read their content. _UpperCamelCase : List[str] = os.path.join(UpperCAmelCase_ , 'utils' ) _UpperCamelCase : str = { backend: os.path.join(UpperCAmelCase_ , f'dummy_{short_names.get(UpperCAmelCase_ , UpperCAmelCase_ )}_objects.py' ) for backend in dummy_files.keys() } _UpperCamelCase : List[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: _UpperCamelCase : Optional[int] = f.read() else: _UpperCamelCase : Optional[Any] = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(UpperCAmelCase_ , UpperCAmelCase_ )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'diffusers.utils.dummy_{short_names.get(UpperCAmelCase_ , UpperCAmelCase_ )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') snake_case_ : Optional[int] = parser.parse_args() check_dummies(args.fix_and_overwrite)
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : List[str] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowercase__ ( lowercase ): lowercase__ = """gptj""" lowercase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any ,lowerCamelCase__ : Optional[Any]=50400 ,lowerCamelCase__ : Tuple=2048 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : int=28 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Optional[Any]=64 ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : List[Any]="gelu_new" ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : Tuple=1E-5 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : str=50256 ,lowerCamelCase__ : Any=50256 ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : Optional[Any] = n_positions _UpperCamelCase : Union[str, Any] = n_embd _UpperCamelCase : Any = n_layer _UpperCamelCase : Optional[int] = n_head _UpperCamelCase : List[str] = n_inner _UpperCamelCase : List[Any] = rotary_dim _UpperCamelCase : int = activation_function _UpperCamelCase : Dict = resid_pdrop _UpperCamelCase : Any = embd_pdrop _UpperCamelCase : Union[str, Any] = attn_pdrop _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : str = use_cache _UpperCamelCase : Union[str, Any] = bos_token_id _UpperCamelCase : Any = eos_token_id super().__init__( bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,tie_word_embeddings=lowerCamelCase__ ,**lowerCamelCase__ ) class lowercase__ ( lowercase ): def __init__( self : Tuple ,lowerCamelCase__ : PretrainedConfig ,lowerCamelCase__ : str = "default" ,lowerCamelCase__ : List[PatchingSpec] = None ,lowerCamelCase__ : bool = False ,): '''simple docstring''' super().__init__(lowerCamelCase__ ,task=lowerCamelCase__ ,patching_specs=lowerCamelCase__ ,use_past=lowerCamelCase__ ) if not getattr(self._config ,'pad_token_id' ,lowerCamelCase__ ): # TODO: how to do that better? _UpperCamelCase : int = 0 @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ ,direction='inputs' ) _UpperCamelCase : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCamelCase : Any = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self._config.n_layer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self._config.n_head def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : PreTrainedTokenizer ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional[TensorType] = None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = super(lowerCamelCase__ ,self ).generate_dummy_inputs( lowerCamelCase__ ,batch_size=lowerCamelCase__ ,seq_length=lowerCamelCase__ ,is_pair=lowerCamelCase__ ,framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Tuple = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCamelCase , _UpperCamelCase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCamelCase : Optional[int] = seqlen + 2 _UpperCamelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCamelCase : Optional[Any] = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] _UpperCamelCase : Union[str, Any] = common_inputs['attention_mask'] if self.use_past: _UpperCamelCase : Any = ordered_inputs['attention_mask'].dtype _UpperCamelCase : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCamelCase__ ,lowerCamelCase__ ,dtype=lowerCamelCase__ )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 13
236
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowercase : """simple docstring""" A__ = None A__ = False A__ = False A__ = False A__ = None A__ = None A__ = False A__ = False A__ = False A__ = True A__ = None A__ = 1 A__ = None A__ = False A__ = None A__ = None def lowerCAmelCase ( self : int ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(SCREAMING_SNAKE_CASE__ ) for k, v in self.__dict__.items()} )
184
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
270
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCamelCase ( _lowerCAmelCase ) -> float: """simple docstring""" return np.dot(_lowerCAmelCase , _lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, *, lowerCamelCase__ = np.inf, lowerCamelCase__ = "linear", lowerCamelCase__ = 0.0, ): A : Optional[Any] = regularization A : List[str] = gamma if kernel == "linear": A : List[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma, (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) A : List[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: A : Any = f'''Unknown kernel: {kernel}''' raise ValueError(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): return np.dot(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): A : int = observations A : Union[str, Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (A ) : Optional[int] = np.shape(lowerCamelCase__ ) def to_minimize(lowerCamelCase__ ) -> float: A : List[Any] = 0 (A ) : Tuple = np.shape(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j] ) ) return 1 / 2 * s - sum(lowerCamelCase__ ) A : str = LinearConstraint(lowerCamelCase__, 0, 0 ) A : Union[str, Any] = Bounds(0, self.regularization ) A : List[str] = minimize( lowerCamelCase__, np.ones(lowerCamelCase__ ), bounds=lowerCamelCase__, constraints=[ly_contraint] ).x A : str = l_star # calculating mean offset of separation plane to points A : Any = 0 for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j] ) A : List[str] = s / n def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], lowerCamelCase__ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
352
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Any = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = "xlm" __lowerCamelCase : Tuple = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self, lowerCamelCase__=3_0145, lowerCamelCase__=2048, lowerCamelCase__=12, lowerCamelCase__=16, lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=1, lowerCamelCase__=True, lowerCamelCase__=512, lowerCamelCase__=2048**-0.5, lowerCamelCase__=1e-12, lowerCamelCase__=0.02, lowerCamelCase__=0, lowerCamelCase__=1, lowerCamelCase__=2, lowerCamelCase__=3, lowerCamelCase__=5, lowerCamelCase__=True, lowerCamelCase__="first", lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__=0.1, lowerCamelCase__=5, lowerCamelCase__=5, lowerCamelCase__=0, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__=0, **lowerCamelCase__, ): A : Dict = vocab_size A : int = emb_dim A : str = n_layers A : Union[str, Any] = n_heads A : Optional[int] = dropout A : Union[str, Any] = attention_dropout A : Optional[Any] = gelu_activation A : Dict = sinusoidal_embeddings A : int = causal A : Optional[Any] = asm A : Any = n_langs A : List[str] = use_lang_emb A : Union[str, Any] = layer_norm_eps A : str = bos_index A : int = eos_index A : Tuple = pad_index A : str = unk_index A : Optional[Any] = mask_index A : Union[str, Any] = is_encoder A : Tuple = max_position_embeddings A : List[str] = embed_init_std A : Tuple = init_std A : Tuple = summary_type A : int = summary_use_proj A : List[Any] = summary_activation A : Optional[Any] = summary_proj_to_labels A : Optional[Any] = summary_first_dropout A : Optional[int] = start_n_top A : Optional[Any] = end_n_top A : List[str] = mask_token_id A : Tuple = lang_id if "n_words" in kwargs: A : List[str] = kwargs["""n_words"""] super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, **lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
115
0
def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : float ) -> float: if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(__UpperCAmelCase ) * abs(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
225
from math import sqrt def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_ ( __UpperCAmelCase : int = 1_00_01 ) -> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 while count != nth and number < 3: number += 1 if is_prime(__UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
225
1
from __future__ import annotations from functools import lru_cache from math import ceil lowercase_ = 1_0_0 lowercase_ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowercase_ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __lowerCamelCase : set[int] = set() __lowerCamelCase : int __lowerCamelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ = 5_000 ): for number_to_partition in range(1 , SCREAMING_SNAKE_CASE__ ): if len(partition(SCREAMING_SNAKE_CASE__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
194
from math import pow def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __lowerCamelCase : Optional[Any] = int(pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __lowerCamelCase , __lowerCamelCase : Optional[Any] = backtrack( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , current_number + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __lowerCamelCase , __lowerCamelCase : Dict = backtrack( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , current_number + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_sum, solutions_count def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10): raise ValueError( 'Invalid input\n' 'needed_sum must be between 1 and 1000, power between 2 and 10.' ) return backtrack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
194
1
from __future__ import annotations class __magic_name__ : def __init__( self : str , lowerCamelCase__ : str , lowerCamelCase__ : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = text, pattern UpperCamelCase__ , UpperCamelCase__ : Optional[int] = len(lowerCamelCase__ ), len(lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase__ ( self : str , lowerCamelCase__ : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase__ ( self : List[Any] ) -> list[int]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = [] for i in range(self.textLen - self.patLen + 1 ): UpperCamelCase__ : Tuple = self.mismatch_in_text(lowerCamelCase__ ) if mismatch_index == -1: positions.append(lowerCamelCase__ ) else: UpperCamelCase__ : Dict = self.match_in_pattern(self.text[mismatch_index] ) UpperCamelCase__ : int = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCamelCase : Any = "ABAABA" __UpperCamelCase : List[str] = "AB" __UpperCamelCase : List[str] = BoyerMooreSearch(text, pattern) __UpperCamelCase : Dict = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
146
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): """simple docstring""" UpperCamelCase__ : List[Any] = LxmertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) UpperCamelCase__ : List[str] = LxmertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCamelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
146
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def snake_case (UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Union[str, Any] = botoa.client('iam' ) UpperCamelCase_: Dict = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=UpperCAmelCase__ , AssumeRolePolicyDocument=json.dumps(UpperCAmelCase__ , indent=2 ) ) UpperCamelCase_: str = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=UpperCAmelCase__ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(UpperCAmelCase__ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def snake_case (UpperCAmelCase__ ) -> Tuple: UpperCamelCase_: Optional[Any] = botoa.client('iam' ) return iam_client.get_role(RoleName=UpperCAmelCase__ )["Role"]["Arn"] def snake_case () -> str: UpperCamelCase_: Tuple = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , UpperCAmelCase__ , ) UpperCamelCase_: int = None if credentials_configuration == 0: UpperCamelCase_: List[str] = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) UpperCamelCase_: str = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) UpperCamelCase_: Union[str, Any] = _ask_field('AWS Access Key ID: ' ) UpperCamelCase_: List[str] = aws_access_key_id UpperCamelCase_: str = _ask_field('AWS Secret Access Key: ' ) UpperCamelCase_: List[str] = aws_secret_access_key UpperCamelCase_: Tuple = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) UpperCamelCase_: Any = aws_region UpperCamelCase_: str = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , UpperCAmelCase__ , ) if role_management == 0: UpperCamelCase_: Dict = _ask_field('Enter your IAM role name: ' ) else: UpperCamelCase_: Dict = 'accelerate_sagemaker_execution_role' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(UpperCAmelCase__ ) UpperCamelCase_: List[str] = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase__ , error_message='Please enter yes or no.' , ) UpperCamelCase_: Optional[int] = None if is_custom_docker_image: UpperCamelCase_: List[str] = _ask_field('Enter your Docker image: ' , lambda UpperCAmelCase__ : str(UpperCAmelCase__ ).lower() ) UpperCamelCase_: Dict = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase__ , error_message='Please enter yes or no.' , ) UpperCamelCase_: Any = None if is_sagemaker_inputs_enabled: UpperCamelCase_: Optional[Any] = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda UpperCAmelCase__ : str(UpperCAmelCase__ ).lower() , ) UpperCamelCase_: Optional[int] = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase__ , error_message='Please enter yes or no.' , ) UpperCamelCase_: str = None if is_sagemaker_metrics_enabled: UpperCamelCase_: Dict = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda UpperCAmelCase__ : str(UpperCAmelCase__ ).lower() , ) UpperCamelCase_: Optional[int] = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) UpperCamelCase_: str = {} UpperCamelCase_: Tuple = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=UpperCAmelCase__ , error_message='Please enter yes or no.' , ) if use_dynamo: UpperCamelCase_: Optional[int] = 'dynamo_' UpperCamelCase_: int = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) UpperCamelCase_: Optional[int] = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase__ , error_message='Please enter yes or no.' , ) if use_custom_options: UpperCamelCase_: Optional[Any] = _ask_options( 'Which mode do you want to use?' , UpperCAmelCase__ , lambda UpperCAmelCase__ : TORCH_DYNAMO_MODES[int(UpperCAmelCase__ )] , default='default' , ) UpperCamelCase_: Optional[int] = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase__ , error_message='Please enter yes or no.' , ) UpperCamelCase_: Tuple = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=UpperCAmelCase__ , error_message='Please enter yes or no.' , ) UpperCamelCase_: int = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: UpperCamelCase_: List[str] = _ask_options( UpperCAmelCase__ , UpperCAmelCase__ , lambda UpperCAmelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(UpperCAmelCase__ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" UpperCamelCase_: Optional[int] = _ask_field(UpperCAmelCase__ , lambda UpperCAmelCase__ : str(UpperCAmelCase__ ).lower() , default='ml.p3.2xlarge' ) UpperCamelCase_: Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): UpperCamelCase_: str = _ask_field( 'How many machines do you want use? [1]: ' , UpperCAmelCase__ , default=1 , ) UpperCamelCase_: Union[str, Any] = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=UpperCAmelCase__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=UpperCAmelCase__ , use_cpu=UpperCAmelCase__ , dynamo_config=UpperCAmelCase__ , eca_instance_type=UpperCAmelCase__ , profile=UpperCAmelCase__ , region=UpperCAmelCase__ , iam_role_name=UpperCAmelCase__ , mixed_precision=UpperCAmelCase__ , num_machines=UpperCAmelCase__ , sagemaker_inputs_file=UpperCAmelCase__ , sagemaker_metrics_file=UpperCAmelCase__ , )
292
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : Dict = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple ='''xglm''' a : List[Any] =['''past_key_values'''] a : Union[str, Any] ={ '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _lowerCamelCase=2_5_6_0_0_8 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=2_4 , _lowerCamelCase=1_6 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Optional[int] = max_position_embeddings UpperCamelCase_: List[str] = d_model UpperCamelCase_: List[Any] = ffn_dim UpperCamelCase_: List[Any] = num_layers UpperCamelCase_: List[Any] = attention_heads UpperCamelCase_: Tuple = activation_function UpperCamelCase_: Tuple = dropout UpperCamelCase_: Tuple = attention_dropout UpperCamelCase_: Optional[Any] = activation_dropout UpperCamelCase_: List[str] = layerdrop UpperCamelCase_: Any = init_std UpperCamelCase_: Any = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_: Union[str, Any] = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
292
1
import qiskit def lowerCamelCase__ ( snake_case_ : int , snake_case_ : int ) -> qiskit.result.counts.Counts: __snake_case = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __snake_case = qiskit.QuantumCircuit(snake_case_ , snake_case_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __snake_case = qiskit.execute(snake_case_ , snake_case_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case_ ) if __name__ == "__main__": snake_case_ = single_qubit_measure(2, 2) print(F'Total count for various states are: {counts}')
24
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : Tuple = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase): _a = '''ernie_m''' _a = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: List[Any] , _lowerCAmelCase: int = 25_00_02 , _lowerCAmelCase: int = 7_68 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 30_72 , _lowerCAmelCase: str = "gelu" , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: int = 5_14 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 1e-0_5 , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: List[str]=0.0 , **_lowerCAmelCase: Tuple , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase :Tuple = vocab_size lowercase :List[str] = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = intermediate_size lowercase :Optional[Any] = hidden_act lowercase :Any = hidden_dropout_prob lowercase :int = attention_probs_dropout_prob lowercase :Dict = max_position_embeddings lowercase :Optional[Any] = initializer_range lowercase :Any = layer_norm_eps lowercase :Union[str, Any] = classifier_dropout lowercase :int = is_decoder lowercase :List[str] = act_dropout
236
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def lowercase ( _snake_case : Callable[[int | float], int | float] , _snake_case : int | float , _snake_case : int | float , _snake_case : int = 100 , ) ->float: """simple docstring""" __snake_case : Optional[int] = x_start __snake_case : int = fnc(_snake_case ) __snake_case : List[str] = 0.0 for _ in range(_snake_case ): # Approximates curve as a sequence of linear lines and sums their length __snake_case : int = (x_end - x_start) / steps + xa __snake_case : Dict = fnc(_snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __snake_case : Tuple = xa __snake_case : Dict = fxa return length if __name__ == "__main__": def lowercase ( _snake_case : List[Any] ) ->Optional[int]: """simple docstring""" return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") SCREAMING_SNAKE_CASE : Union[str, Any] = 10 while i <= 10_0000: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _UpperCAmelCase (UpperCamelCase__ : List[str] ): _A : List[Any] = [] for line in lines: _A : Dict = re.sub(r"#.*" , "" , _UpperCamelCase ) # remove comments if line: filtered_lines.append(_UpperCamelCase ) _A : Optional[Any] = """\n""".join(_UpperCamelCase ) # Make a hash from all this code _A : Tuple = full_str.encode("utf-8" ) return shaaaa(_UpperCamelCase ).hexdigest() # get importable module names and hash for caching lowerCAmelCase__ = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCAmelCase__ = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCAmelCase__ = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCAmelCase__ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
11
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' super().__init__() __UpperCAmelCase : Optional[Any] = nn.Linear(3 , 4 ) __UpperCAmelCase : Optional[int] = nn.BatchNormad(4 ) __UpperCAmelCase : int = nn.Linear(4 , 5 ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(UpperCamelCase ) ) ) class lowerCamelCase__ ( A ): """simple docstring""" def lowerCamelCase__ ( self : str , UpperCamelCase : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class lowerCamelCase__ ( A ): """simple docstring""" def lowerCamelCase__ ( self : Any , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' return output + 1 class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() __UpperCAmelCase : List[str] = ModelHook() add_hook_to_module(UpperCamelCase , UpperCamelCase ) self.assertEqual(test_model._hf_hook , UpperCamelCase ) self.assertTrue(hasattr(UpperCamelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCamelCase ) self.assertFalse(hasattr(UpperCamelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCamelCase , """_old_forward""" ) ) def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = ModelForTest() __UpperCAmelCase : Optional[Any] = ModelHook() add_hook_to_module(UpperCamelCase , UpperCamelCase ) add_hook_to_module(UpperCamelCase , UpperCamelCase , append=UpperCamelCase ) self.assertEqual(isinstance(test_model._hf_hook , UpperCamelCase ) , UpperCamelCase ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(UpperCamelCase , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCamelCase ) self.assertFalse(hasattr(UpperCamelCase , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCamelCase , """_old_forward""" ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ModelForTest() __UpperCAmelCase : str = torch.randn(2 , 3 ) __UpperCAmelCase : List[str] = test_model(x + 1 ) __UpperCAmelCase : Optional[int] = test_model(x + 2 ) __UpperCAmelCase : Optional[Any] = PreForwardHook() add_hook_to_module(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = test_model(UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : Optional[Any] = PreForwardHook() add_hook_to_module(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[int] = test_model(UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Optional[Any] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[str] = test_model(UpperCamelCase ) assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ModelForTest() __UpperCAmelCase : str = torch.randn(2 , 3 ) __UpperCAmelCase : int = test_model(UpperCamelCase ) __UpperCAmelCase : Dict = PostForwardHook() add_hook_to_module(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = test_model(UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __UpperCAmelCase : List[str] = PostForwardHook() add_hook_to_module(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = test_model(UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __UpperCAmelCase : Optional[int] = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : int = test_model(UpperCamelCase ) assert torch.allclose(UpperCamelCase , output + 2 , atol=1e-5 ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : int = ModelForTest() __UpperCAmelCase : str = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[Any] = test_model(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = PostForwardHook() add_hook_to_module(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[int] = test_model(UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __UpperCAmelCase : List[str] = True __UpperCAmelCase : Optional[int] = test_model(UpperCamelCase ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __UpperCAmelCase : List[str] = torch.randn(2 , 3 ) __UpperCAmelCase : Any = model(UpperCamelCase ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCamelCase , AlignDevicesHook(io_same_device=UpperCamelCase ) ) __UpperCAmelCase : int = torch.randn(2 , 3 ).to(0 ) __UpperCAmelCase : Any = model(UpperCamelCase ) self.assertEqual(output.device , torch.device(0 ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __UpperCAmelCase : Union[str, Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[int] = model(UpperCamelCase ) self.assertEqual(output.device , UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __UpperCAmelCase : Union[str, Any] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCamelCase ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCamelCase ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __UpperCAmelCase : str = torch.randn(2 , 3 ) __UpperCAmelCase : Dict = model(UpperCamelCase ) self.assertEqual(output.device , UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __UpperCAmelCase : Optional[int] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(UpperCamelCase , execution_device=UpperCamelCase , offload=UpperCamelCase ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : Any = torch.device(UpperCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , UpperCamelCase ) __UpperCAmelCase : str = torch.randn(2 , 3 ) __UpperCAmelCase : Any = model(UpperCamelCase ) self.assertEqual(output.device , UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCamelCase , execution_device=UpperCamelCase , offload=UpperCamelCase , offload_buffers=UpperCamelCase ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __UpperCAmelCase : List[str] = torch.randn(2 , 3 ) __UpperCAmelCase : Any = model(UpperCamelCase ) self.assertEqual(output.device , UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __UpperCAmelCase : Any = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( UpperCamelCase , execution_device=UpperCamelCase , offload=UpperCamelCase , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __UpperCAmelCase : str = torch.device(UpperCamelCase ) self.assertEqual(model.batchnorm.running_mean.device , UpperCamelCase ) __UpperCAmelCase : Dict = torch.randn(2 , 3 ) __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) self.assertEqual(output.device , UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCamelCase , execution_device=UpperCamelCase , offload=UpperCamelCase , weights_map=model.state_dict() , offload_buffers=UpperCamelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __UpperCAmelCase : int = torch.randn(2 , 3 ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) self.assertEqual(output.device , UpperCamelCase ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCamelCase ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
115
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } UpperCAmelCase__ : Union[str, Any] = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(_A ) , _A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_A ) , x.transpose() ) ) UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase__ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) UpperCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) UpperCAmelCase__ : List[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) UpperCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : List[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) UpperCAmelCase__ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ) , np.asarray(transpose(_A ) ) ) ) UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Optional[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , np.asarray(transpose(_A , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.reshape(_A , (4, 3) ) ) ) UpperCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.reshape(_A , (12, 5) ) ) ) @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase__ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) UpperCAmelCase__ : int = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase__ : List[str] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) UpperCAmelCase__ : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = np.random.randn(3 , 4 ) UpperCAmelCase__ : Any = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.asarray(reshape(_A , (4, 3) ) ) ) ) UpperCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase__ : Optional[Any] = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.asarray(reshape(_A , (12, 5) ) ) ) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_A ) , np.squeeze(_A ) ) ) UpperCAmelCase__ : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.squeeze(_A , axis=2 ) ) ) @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(1 , 3 , 4 ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) UpperCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase__ : int = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = np.random.randn(1 , 3 , 4 ) UpperCAmelCase__ : List[str] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) UpperCAmelCase__ : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase__ : int = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase__ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ) , np.asarray(squeeze(_A ) ) ) ) UpperCAmelCase__ : Any = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase__ : Any = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.asarray(squeeze(_A , axis=2 ) ) ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.expand_dims(_A , axis=1 ) ) ) @require_torch def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase__ : Optional[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase__ : Tuple = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = np.random.randn(3 , 4 ) UpperCAmelCase__ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.asarray(expand_dims(_A , axis=1 ) ) ) )
350
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = 9 _UpperCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCamelCase = kruskal(__snake_case, __snake_case ) _UpperCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__snake_case ) == sorted(__snake_case )
194
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case ) -> float: """simple docstring""" _UpperCamelCase = sorted(numsa + numsa ) _UpperCamelCase , _UpperCamelCase = divmod(len(__snake_case ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _a = [float(x) for x in input("""Enter the elements of first array: """).split()] _a = [float(x) for x in input("""Enter the elements of second array: """).split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
194
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCamelCase : List[str] ={ '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple =['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] =[ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCamelCase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase : str =logging.get_logger(__name__) @add_end_docstrings(A__ ) class __a ( A__ ): def __init__( self : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , **SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : List[Any] = {} if "candidate_labels" in kwargs: UpperCamelCase__ : Optional[Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase__ : int = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ): '''simple docstring''' UpperCamelCase__ : Dict = load_image(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCamelCase__ : Any = candidate_labels UpperCamelCase__ : Dict = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] UpperCamelCase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [text_inputs] return inputs def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = model_inputs.pop("candidate_labels" ) UpperCamelCase__ : List[str] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = text_inputs[0] else: # Batching case. UpperCamelCase__ : Union[str, Any] = text_inputs[0][0] UpperCamelCase__ : Any = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = model_outputs.pop("candidate_labels" ) UpperCamelCase__ : int = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase__ : Dict = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCamelCase__ : Optional[Any] = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[Any] = [scores] elif self.framework == "tf": UpperCamelCase__ : Optional[Any] = stable_softmax(SCREAMING_SNAKE_CASE , axis=-1 ) UpperCamelCase__ : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) UpperCamelCase__ : Optional[int] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
196
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: Union[str, Any]=None , **UpperCamelCase_: Tuple ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , _a ) __lowerCamelCase = kwargs.get("""latest_model_name""" , _a ) def __call__( self: Optional[Any] , **UpperCamelCase_: int ): __lowerCamelCase = {k: np.array(_a ) for k, v in kwargs.items()} return self.model.run(_a , _a ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(_a , providers=[provider] , sess_options=_a ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] = None , **UpperCamelCase_: str ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(_a ).joinpath(_a ) try: shutil.copyfile(_a , _a ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(_a ) if src_path.exists(): __lowerCamelCase = Path(_a ).joinpath(_a ) try: shutil.copyfile(_a , _a ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , **UpperCamelCase_: Any , ): if os.path.isfile(_a ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(_a , exist_ok=_a ) # saving model weights/files self._save_pretrained(_a , **_a ) @classmethod def lowerCAmelCase__ ( cls: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: Any = None , UpperCamelCase_: str = None , UpperCamelCase_: str = False , UpperCamelCase_: List[Any] = None , UpperCamelCase_: Tuple = None , UpperCamelCase_: Any = None , UpperCamelCase_: Union[str, Any] = None , **UpperCamelCase_: Any , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_a ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(_a , _a ) , provider=_a , sess_options=_a ) __lowerCamelCase = Path(_a ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=_a , filename=_a , use_auth_token=_a , revision=_a , cache_dir=_a , force_download=_a , ) __lowerCamelCase = Path(_a ).parent __lowerCamelCase = Path(_a ).name __lowerCamelCase = OnnxRuntimeModel.load_model(_a , provider=_a , sess_options=_a ) return cls(model=_a , **_a ) @classmethod def lowerCAmelCase__ ( cls: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: int = True , UpperCamelCase_: Any = None , UpperCamelCase_: int = None , **UpperCamelCase_: List[str] , ): __lowerCamelCase = None if len(str(_a ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=_a , revision=_a , cache_dir=_a , force_download=_a , use_auth_token=_a , **_a , )
12
"""simple docstring""" def a__ ( snake_case__ ) -> list: if len(snake_case__ ) < 2: return collection def circle_sort_util(snake_case__ , snake_case__ , snake_case__ ) -> bool: lowerCamelCase = False if low == high: return swapped lowerCamelCase = low lowerCamelCase = high while left < right: if collection[left] > collection[right]: lowerCamelCase , lowerCamelCase = ( collection[right], collection[left], ) lowerCamelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowerCamelCase , lowerCamelCase = ( collection[right + 1], collection[left], ) lowerCamelCase = True lowerCamelCase = low + int((high - low) / 2 ) lowerCamelCase = circle_sort_util(snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase = circle_sort_util(snake_case__ , mid + 1 , snake_case__ ) return swapped or left_swap or right_swap lowerCamelCase = True while is_not_sorted is True: lowerCamelCase = circle_sort_util(snake_case__ , 0 , len(snake_case__ ) - 1 ) return collection if __name__ == "__main__": lowerCAmelCase : Tuple = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
291
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase_ : Dict = TypeVar('''_T''') class __lowerCAmelCase ( Generic[_T] ): def __init__(self , lowerCAmelCase__ = None ): _UpperCAmelCase : list[_T] = list(iterable or [] ) _UpperCAmelCase : list[_T] = [] def __len__(self ): return len(self._stacka ) + len(self._stacka ) def __repr__(self ): return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def snake_case_ (self , lowerCAmelCase__ ): self._stacka.append(lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : List[Any] = self._stacka.pop _UpperCAmelCase : Optional[Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
170
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ : Tuple = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ : Tuple = { '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class __lowerCAmelCase ( __a ): snake_case : Optional[Any] = VOCAB_FILES_NAMES snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case : str = ["""input_ids""", """attention_mask"""] snake_case : List[str] = RobertaTokenizer def __init__(self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase__ ) != add_prefix_space: _UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , pre_tok_state.pop("""type""" ) ) _UpperCAmelCase : Any = add_prefix_space _UpperCAmelCase : List[Any] = pre_tok_class(**lowerCAmelCase__ ) _UpperCAmelCase : Dict = add_prefix_space _UpperCAmelCase : int = """post_processor""" _UpperCAmelCase : Any = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: _UpperCAmelCase : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase : Any = tuple(state["""sep"""] ) if "cls" in state: _UpperCAmelCase : Tuple = tuple(state["""cls"""] ) _UpperCAmelCase : Dict = False if state.get("""add_prefix_space""" , lowerCAmelCase__ ) != add_prefix_space: _UpperCAmelCase : List[str] = add_prefix_space _UpperCAmelCase : Dict = True if state.get("""trim_offsets""" , lowerCAmelCase__ ) != trim_offsets: _UpperCAmelCase : Tuple = trim_offsets _UpperCAmelCase : List[str] = True if changes_to_apply: _UpperCAmelCase : Dict = getattr(lowerCAmelCase__ , state.pop("""type""" ) ) _UpperCAmelCase : Optional[Any] = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property def snake_case_ (self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value _UpperCAmelCase : int = value def snake_case_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , *lowerCAmelCase__ , **lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : Union[str, Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ = None ): _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
170
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'vit_msn' def __init__(self : Union[str, Any] , a__ : Optional[Any]=768 , a__ : Optional[Any]=12 , a__ : Optional[int]=12 , a__ : Optional[int]=3072 , a__ : Union[str, Any]="gelu" , a__ : str=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : List[Any]=1E-06 , a__ : Optional[int]=224 , a__ : str=16 , a__ : Optional[Any]=3 , a__ : int=True , **a__ : List[Any] , ): """simple docstring""" super().__init__(**a__ ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = qkv_bias
24
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
362
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class lowerCamelCase__ ( _a ): _lowerCAmelCase = 42 class lowerCamelCase__ ( _a ): def __init__( self : Optional[Any] , _a : PriorTransformer , _a : CLIPVisionModel , _a : CLIPImageProcessor , _a : HeunDiscreteScheduler , _a : ShapERenderer , ): super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def _lowerCamelCase ( self : Tuple , _a : Tuple , _a : Tuple , _a : Any , _a : Any , _a : List[str] , _a : Any ): if latents is None: a__: Any =randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) a__: List[str] =latents.to(_a ) a__: int =latents * scheduler.init_noise_sigma return latents def _lowerCamelCase ( self : Dict , _a : str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) a__: List[Any] =torch.device(F"cuda:{gpu_id}" ) a__: List[Any] =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def _lowerCamelCase ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowerCamelCase ( self : Any , _a : List[str] , _a : Optional[int] , _a : Union[str, Any] , _a : List[str] , ): if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): a__: Optional[int] =torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): a__: Optional[Any] =self.image_processor(_a , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) a__: int =image.to(dtype=self.image_encoder.dtype , device=_a ) a__: str =self.image_encoder(_a )["last_hidden_state"] a__: Tuple =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 a__: Optional[Any] =image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: a__: Union[str, Any] =torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__: int =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self : List[Any] , _a : Union[PIL.Image.Image, List[PIL.Image.Image]] , _a : int = 1 , _a : int = 2_5 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[torch.FloatTensor] = None , _a : float = 4.0 , _a : int = 6_4 , _a : Optional[str] = "pil" , _a : bool = True , ): if isinstance(_a , PIL.Image.Image ): a__: List[str] =1 elif isinstance(_a , torch.Tensor ): a__: List[Any] =image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): a__: int =len(_a ) else: raise ValueError( F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}" ) a__: Optional[int] =self._execution_device a__: Optional[int] =batch_size * num_images_per_prompt a__: Any =guidance_scale > 1.0 a__: int =self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) a__: int =self.scheduler.timesteps a__: str =self.prior.config.num_embeddings a__: Dict =self.prior.config.embedding_dim a__: Dict =self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim a__: int =latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance a__: Union[str, Any] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__: Tuple =self.scheduler.scale_model_input(_a , _a ) a__: Tuple =self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance a__ , a__: List[str] =noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: a__ , a__: Union[str, Any] =noise_pred.chunk(2 ) a__: Union[str, Any] =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) a__: Any =self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) a__: List[str] =[] for i, latent in enumerate(_a ): print() a__: Any =self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_a ) a__: Tuple =torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}" ) a__: Dict =images.cpu().numpy() if output_type == "pil": a__: Optional[int] =[self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
42
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ : Any = logging.get_logger(__name__) A__ : List[str] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ): _a = '''dinat''' _a = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[int] , A_ : Union[str, Any]=4 , A_ : Optional[Any]=3 , A_ : int=6_4 , A_ : Optional[int]=[3, 4, 6, 5] , A_ : str=[2, 4, 8, 1_6] , A_ : List[str]=7 , A_ : Any=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , A_ : Any=3.0 , A_ : Optional[Any]=True , A_ : Dict=0.0 , A_ : Tuple=0.0 , A_ : Tuple=0.1 , A_ : List[str]="gelu" , A_ : Optional[int]=0.02 , A_ : Dict=1e-5 , A_ : List[Any]=0.0 , A_ : List[str]=None , A_ : Union[str, Any]=None , **A_ : Optional[int] , ): super().__init__(**A_) lowerCAmelCase_ : Optional[Any] = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[Any] = embed_dim lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : List[Any] = len(A_) lowerCAmelCase_ : Union[str, Any] = num_heads lowerCAmelCase_ : Dict = kernel_size lowerCAmelCase_ : str = dilations lowerCAmelCase_ : Optional[Any] = mlp_ratio lowerCAmelCase_ : List[Any] = qkv_bias lowerCAmelCase_ : int = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : int = drop_path_rate lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : Tuple = int(embed_dim * 2 ** (len(A_) - 1)) lowerCAmelCase_ : Union[str, Any] = layer_scale_init_value lowerCAmelCase_ : Dict = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(A_) + 1)] lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names)
103
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(number**0.5 ) return number == sq * sq def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def A__ ( __lowerCamelCase = 35 ): SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = Fraction(0 ) SCREAMING_SNAKE_CASE_ = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ = x_den * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 SCREAMING_SNAKE_CASE_ = x_num * y_num SCREAMING_SNAKE_CASE_ = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 SCREAMING_SNAKE_CASE_ = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = int(sqrt(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = gcd(__lowerCamelCase, __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ = add_three( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase, __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCAmelCase = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __UpperCAmelCase = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def __lowerCamelCase ( __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): a__: Any =SavedModel() a__: Optional[Any] =[] with open(os.path.join(__magic_name__ , "utils" , "tf_ops" , "onnx.json" ) ) as f: a__: List[str] =json.load(__magic_name__ )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__magic_name__ )] ) with open(__magic_name__ , "rb" ) as f: saved_model.ParseFromString(f.read() ) a__: Tuple =set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want a__: List[Any] =sorted(__magic_name__ ) a__: List[str] =[] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__magic_name__ ) if strict and len(__magic_name__ ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__magic_name__ ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*__magic_name__ , sep="\n" ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) __UpperCAmelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
42
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class lowerCamelCase__ ( _a ): _lowerCAmelCase = 42 class lowerCamelCase__ ( _a ): def __init__( self : Optional[Any] , _a : PriorTransformer , _a : CLIPVisionModel , _a : CLIPImageProcessor , _a : HeunDiscreteScheduler , _a : ShapERenderer , ): super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def _lowerCamelCase ( self : Tuple , _a : Tuple , _a : Tuple , _a : Any , _a : Any , _a : List[str] , _a : Any ): if latents is None: a__: Any =randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) a__: List[str] =latents.to(_a ) a__: int =latents * scheduler.init_noise_sigma return latents def _lowerCamelCase ( self : Dict , _a : str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) a__: List[Any] =torch.device(F"cuda:{gpu_id}" ) a__: List[Any] =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def _lowerCamelCase ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowerCamelCase ( self : Any , _a : List[str] , _a : Optional[int] , _a : Union[str, Any] , _a : List[str] , ): if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): a__: Optional[int] =torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): a__: Optional[Any] =self.image_processor(_a , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) a__: int =image.to(dtype=self.image_encoder.dtype , device=_a ) a__: str =self.image_encoder(_a )["last_hidden_state"] a__: Tuple =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 a__: Optional[Any] =image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: a__: Union[str, Any] =torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__: int =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self : List[Any] , _a : Union[PIL.Image.Image, List[PIL.Image.Image]] , _a : int = 1 , _a : int = 2_5 , _a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _a : Optional[torch.FloatTensor] = None , _a : float = 4.0 , _a : int = 6_4 , _a : Optional[str] = "pil" , _a : bool = True , ): if isinstance(_a , PIL.Image.Image ): a__: List[str] =1 elif isinstance(_a , torch.Tensor ): a__: List[Any] =image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): a__: int =len(_a ) else: raise ValueError( F"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}" ) a__: Optional[int] =self._execution_device a__: Optional[int] =batch_size * num_images_per_prompt a__: Any =guidance_scale > 1.0 a__: int =self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) a__: int =self.scheduler.timesteps a__: str =self.prior.config.num_embeddings a__: Dict =self.prior.config.embedding_dim a__: Dict =self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim a__: int =latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance a__: Union[str, Any] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__: Tuple =self.scheduler.scale_model_input(_a , _a ) a__: Tuple =self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance a__ , a__: List[str] =noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: a__ , a__: Union[str, Any] =noise_pred.chunk(2 ) a__: Union[str, Any] =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) a__: Any =self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) a__: List[str] =[] for i, latent in enumerate(_a ): print() a__: Any =self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4_0_9_6 , n_coarse_samples=6_4 , n_fine_samples=1_2_8 , ) images.append(_a ) a__: Tuple =torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F"Only the output types `pil` and `np` are supported not output_type={output_type}" ) a__: Dict =images.cpu().numpy() if output_type == "pil": a__: Optional[int] =[self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
42
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCamelCase__ : Optional[Any] = get_logger(__name__) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : List[Any] = None ): SCREAMING_SNAKE_CASE_ = ( os.path.join(lowerCAmelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) SCREAMING_SNAKE_CASE_ = Extractor def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Union[str, Any] ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" SCREAMING_SNAKE_CASE_ = os.path.abspath(lowerCAmelCase__ ) return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase__ ) ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): return force_extract or ( not os.path.isfile(lowerCAmelCase__ ) and not (os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ )) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict = False ): SCREAMING_SNAKE_CASE_ = self.extractor.infer_extractor_format(lowerCAmelCase__ ) if not extractor_format: return input_path SCREAMING_SNAKE_CASE_ = self._get_output_path(lowerCAmelCase__ ) if self._do_extract(lowerCAmelCase__ , lowerCAmelCase__ ): self.extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return output_path class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' @classmethod @abstractmethod def lowerCAmelCase_ ( cls : Dict , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : List[str] ): ... @staticmethod @abstractmethod def lowerCAmelCase_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): ... class lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' lowercase_ = [] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ): with open(lowerCAmelCase__ , 'rb' ) as f: return f.read(lowerCAmelCase__ ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] = b"" ): if not magic_number: SCREAMING_SNAKE_CASE_ = max(len(lowerCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) try: SCREAMING_SNAKE_CASE_ = cls.read_magic_number(lowerCAmelCase__ , lowerCAmelCase__ ) except OSError: return False return any(magic_number.startswith(lowerCAmelCase__ ) for cls_magic_number in cls.magic_numbers ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' @classmethod def lowerCAmelCase_ ( cls : List[Any] , _lowerCAmelCase : Any , **_lowerCAmelCase : int ): return tarfile.is_tarfile(lowerCAmelCase__ ) @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str ): def resolved(_lowerCAmelCase : int ) -> str: return os.path.realpath(os.path.abspath(lowerCAmelCase__ ) ) def badpath(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ).startswith(lowerCAmelCase__ ) def badlink(_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ) -> bool: # Links are interpreted relative to the directory containing the link SCREAMING_SNAKE_CASE_ = resolved(os.path.join(lowerCAmelCase__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = resolved(lowerCAmelCase__ ) for finfo in members: if badpath(finfo.name , lowerCAmelCase__ ): logger.error(F"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(lowerCAmelCase__ , lowerCAmelCase__ ): logger.error(F"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(lowerCAmelCase__ , lowerCAmelCase__ ): logger.error(F"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = tarfile.open(lowerCAmelCase__ ) tar_file.extractall(lowerCAmelCase__ , members=TarExtractor.safemembers(lowerCAmelCase__ , lowerCAmelCase__ ) ) tar_file.close() class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [b'\x1F\x8B'] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): with gzip.open(lowerCAmelCase__ , 'rb' ) as gzip_file: with open(lowerCAmelCase__ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] = b"" ): if super().is_extractable(lowerCAmelCase__ , magic_number=lowerCAmelCase__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCAmelCase__ , 'rb' ) as fp: SCREAMING_SNAKE_CASE_ = _EndRecData(lowerCAmelCase__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: SCREAMING_SNAKE_CASE_ = fp.read(lowerCAmelCase__ ) # CD is where we expect it to be if len(lowerCAmelCase__ ) == sizeCentralDir: SCREAMING_SNAKE_CASE_ = struct.unpack(lowerCAmelCase__ , lowerCAmelCase__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] ): os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with zipfile.ZipFile(lowerCAmelCase__ , 'r' ) as zip_file: zip_file.extractall(lowerCAmelCase__ ) zip_file.close() class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ): with lzma.open(lowerCAmelCase__ ) as compressed_file: with open(lowerCAmelCase__ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ): if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = rarfile.RarFile(lowerCAmelCase__ ) rf.extractall(lowerCAmelCase__ ) rf.close() class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [b'\x28\xb5\x2F\xFD'] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd SCREAMING_SNAKE_CASE_ = zstd.ZstdDecompressor() with open(lowerCAmelCase__ , 'rb' ) as ifh, open(lowerCAmelCase__ , 'wb' ) as ofh: dctx.copy_stream(lowerCAmelCase__ , lowerCAmelCase__ ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [b'\x42\x5A\x68'] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): with bza.open(lowerCAmelCase__ , 'rb' ) as compressed_file: with open(lowerCAmelCase__ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] ): if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with pyazr.SevenZipFile(lowerCAmelCase__ , 'r' ) as archive: archive.extractall(lowerCAmelCase__ ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = [b'\x04\x22\x4D\x18'] @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ): if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(lowerCAmelCase__ , 'rb' ) as compressed_file: with open(lowerCAmelCase__ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) class lowerCamelCase_ : '''simple docstring''' lowercase_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase_ ( cls : Dict ): return max( len(lowerCAmelCase__ ) for extractor in cls.extractors.values() if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ): try: return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase__ , magic_number_length=lowerCAmelCase__ ) except OSError: return b"" @classmethod def lowerCAmelCase_ ( cls : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any = False ): warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ = cls.infer_extractor_format(lowerCAmelCase__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase_ ( cls : Dict , _lowerCAmelCase : Tuple ): # <Added version="2.4.0"/> SCREAMING_SNAKE_CASE_ = cls._get_magic_number_max_length() SCREAMING_SNAKE_CASE_ = cls._read_magic_number(lowerCAmelCase__ , lowerCAmelCase__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCAmelCase__ , magic_number=lowerCAmelCase__ ): return extractor_format @classmethod def lowerCAmelCase_ ( cls : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : List[Any] = "deprecated" , ): os.makedirs(os.path.dirname(lowerCAmelCase__ ) , exist_ok=lowerCAmelCase__ ) # Prevent parallel extractions SCREAMING_SNAKE_CASE_ = str(Path(lowerCAmelCase__ ).with_suffix('.lock' ) ) with FileLock(lowerCAmelCase__ ): shutil.rmtree(lowerCAmelCase__ , ignore_errors=lowerCAmelCase__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ = extractor if extractor != 'deprecated' else extractor_format else: SCREAMING_SNAKE_CASE_ = cls.extractors[extractor_format] return extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=lowerCAmelCase__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCAmelCase__ ): return extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ )
225
def snake_case_ ( snake_case , snake_case ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
196
0
import math import flax.linen as nn import jax.numpy as jnp def UpperCamelCase ( snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : float = 1 , snake_case__ : float = 1 , snake_case__ : float = 1.0E4 , snake_case__ : bool = False , snake_case__ : float = 1.0 , ) -> int: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" UpperCamelCase : int = float(embedding_dim // 2 ) UpperCamelCase : Union[str, Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCamelCase : List[str] = min_timescale * jnp.exp(jnp.arange(snake_case__ , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCamelCase : Any = jnp.expand_dims(snake_case__ , 1 ) * jnp.expand_dims(snake_case__ , 0 ) # scale embeddings UpperCamelCase : Tuple = scale * emb if flip_sin_to_cos: UpperCamelCase : str = jnp.concatenate([jnp.cos(snake_case__ ), jnp.sin(snake_case__ )] , axis=1 ) else: UpperCamelCase : str = jnp.concatenate([jnp.sin(snake_case__ ), jnp.cos(snake_case__ )] , axis=1 ) UpperCamelCase : List[Any] = jnp.reshape(snake_case__ , [jnp.shape(snake_case__ )[0], embedding_dim] ) return signal class lowerCAmelCase_ ( nn.Module ): UpperCAmelCase__ : int = 32 UpperCAmelCase__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : List[str] = nn.Dense(self.time_embed_dim, dtype=self.dtype, name='linear_1' )(a__ ) UpperCamelCase : Optional[int] = nn.silu(a__ ) UpperCamelCase : Any = nn.Dense(self.time_embed_dim, dtype=self.dtype, name='linear_2' )(a__ ) return temb class lowerCAmelCase_ ( nn.Module ): UpperCAmelCase__ : int = 32 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 1 @nn.compact def __call__( self, SCREAMING_SNAKE_CASE_ ) -> Any: return get_sinusoidal_embeddings( a__, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )
354
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCamelCase ( snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Tuple: # load base model UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCamelCase : Union[str, Any] = load_file(snake_case__ ) UpperCamelCase : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCamelCase : Optional[Any] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) UpperCamelCase : Optional[Any] = pipeline.text_encoder else: UpperCamelCase : Tuple = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) UpperCamelCase : List[str] = pipeline.unet # find the target layer UpperCamelCase : Optional[Any] = layer_infos.pop(0 ) while len(snake_case__ ) > -1: try: UpperCamelCase : Dict = curr_layer.__getattr__(snake_case__ ) if len(snake_case__ ) > 0: UpperCamelCase : Dict = layer_infos.pop(0 ) elif len(snake_case__ ) == 0: break except Exception: if len(snake_case__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCamelCase : Tuple = layer_infos.pop(0 ) UpperCamelCase : List[Any] = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(snake_case__ ) else: pair_keys.append(snake_case__ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCamelCase : Dict = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCamelCase : Union[str, Any] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__ ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCamelCase : Dict = state_dict[pair_keys[0]].to(torch.floataa ) UpperCamelCase : List[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__ ) # update visited list for item in pair_keys: visited.append(snake_case__ ) return pipeline if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.base_model_path __UpperCAmelCase = args.checkpoint_path __UpperCAmelCase = args.dump_path __UpperCAmelCase = args.lora_prefix_unet __UpperCAmelCase = args.lora_prefix_text_encoder __UpperCAmelCase = args.alpha __UpperCAmelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
103
0
_lowercase : Optional[Any] =[sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" a__ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowercase : list[bool | None] =[None] * 1000_0000 _lowercase : Tuple =True _lowercase : int =False def lowerCAmelCase_ ( _lowercase : int) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore a__ : Optional[Any] = chain(next_number(_lowercase)) a__ : Dict = number_chain while number < 1000_0000: a__ : Any = number_chain number *= 10 return number_chain def lowerCAmelCase_ ( _lowercase : int = 1000_0000) -> int: """simple docstring""" for i in range(1 , _lowercase): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(_lowercase) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
170
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowercase : int =logging.get_logger(__name__) class snake_case__ : """simple docstring""" def __init__( self , __lowercase = None , __lowercase = None , __lowercase=None , __lowercase=None ) -> List[Any]: """simple docstring""" if not conversation_id: a__ : Dict = uuid.uuida() if past_user_inputs is None: a__ : List[str] = [] if generated_responses is None: a__ : List[str] = [] a__ : uuid.UUID = conversation_id a__ : List[str] = past_user_inputs a__ : List[str] = generated_responses a__ : Optional[str] = text def __eq__( self , __lowercase ) -> Optional[int]: """simple docstring""" if not isinstance(__lowercase , __lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = False ) -> str: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) a__ : int = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: a__ : str = text def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) a__ : Union[str, Any] = None def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" self.generated_responses.append(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> int: """simple docstring""" a__ : Optional[int] = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): a__ : Dict = """user""" if is_user else """bot""" output += F'''{name} >> {text} \n''' return output @add_end_docstrings( A__ , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> Dict: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) if self.tokenizer.pad_token_id is None: a__ : Optional[Any] = self.tokenizer.eos_token def SCREAMING_SNAKE_CASE__( self , __lowercase=None , __lowercase=None , __lowercase=None , **__lowercase ) -> int: """simple docstring""" a__ : Dict = {} a__ : List[str] = {} a__ : Optional[int] = {} if min_length_for_response is not None: a__ : List[str] = min_length_for_response if minimum_tokens is not None: a__ : str = minimum_tokens if "max_length" in generate_kwargs: a__ : str = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: a__ : int = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __lowercase , __lowercase=0 , **__lowercase ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = super().__call__(__lowercase , num_workers=__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ) and len(__lowercase ) == 1: return outputs[0] return outputs def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=3_2 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__lowercase , __lowercase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): a__ : Dict = self.tokenizer._build_conversation_input_ids(__lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version a__ : Dict = self._legacy_parse_and_tokenize(__lowercase ) if self.framework == "pt": a__ : Tuple = torch.LongTensor([input_ids] ) elif self.framework == "tf": a__ : List[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=1_0 , **__lowercase ) -> Any: """simple docstring""" a__ : List[str] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) a__ : Tuple = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) a__ : Tuple = max_length - minimum_tokens a__ : Dict = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: a__ : Optional[int] = model_inputs["""attention_mask"""][:, -trim:] a__ : str = model_inputs.pop("""conversation""" ) a__ : str = max_length a__ : Dict = self.model.generate(**__lowercase , **__lowercase ) if self.model.config.is_encoder_decoder: a__ : Optional[int] = 1 else: a__ : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=True ) -> str: """simple docstring""" a__ : int = model_outputs["""output_ids"""] a__ : Union[str, Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase , ) a__ : List[str] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(__lowercase ) return conversation def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Dict: """simple docstring""" a__ : Any = self.tokenizer.eos_token_id a__ : Any = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) ) if len(__lowercase ) > self.tokenizer.model_max_length: a__ : Dict = input_ids[-self.tokenizer.model_max_length :] return input_ids
170
1
import os import numpy import onnx def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = a.name A_ = b.name A_ = """""" A_ = """""" A_ = a == b A_ = name_a A_ = name_b return res def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase ,_lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g ,_lowerCamelCase ,_lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g ,_lowerCamelCase ,_lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g ,_lowerCamelCase ,_lowerCamelCase ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = list(model.graph.initializer ) A_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A_ = inits[i].name A_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph ,_lowerCamelCase ,_lowerCamelCase ) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = os.path.dirname(_lowerCamelCase ) A_ = os.path.basename(_lowerCamelCase ) A_ = onnx.load(os.path.join(_lowerCamelCase ,_lowerCamelCase ) ) A_ = list(model.graph.initializer ) A_ = set() A_ = {} A_ = [] A_ = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 ,len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] ,inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) A_ = inits[j].data_type A_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " ,_lowerCamelCase ) total_reduced_size += mem_size A_ = inits[i].name A_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: A_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " ,total_reduced_size / 1024 / 1024 / 1024 ,"GB" ) A_ = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) A_ = """optimized_""" + model_file_name A_ = os.path.join(_lowerCamelCase ,_lowerCamelCase ) onnx.save(_lowerCamelCase ,_lowerCamelCase ) return new_model
363
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase__ = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowerCAmelCase__ = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase__ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase__ = sorted(arg_to_scheduler.keys()) lowerCAmelCase__ = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="base" , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> int: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__lowerCamelCase) _A : Tuple = 0 _A : Union[str, Any] = Path(self.hparams.output_dir) _A : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _A : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=__lowerCamelCase , **__lowerCamelCase , ) else: _A : PretrainedConfig = config _A : Optional[int] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , __lowerCamelCase , __lowerCamelCase): assert hasattr(self.config , __lowerCamelCase), F"model config doesn't have a `{p}` attribute" setattr(self.config , __lowerCamelCase , getattr(self.hparams , __lowerCamelCase)) if tokenizer is None: _A : Dict = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__lowerCamelCase , ) else: _A : PreTrainedTokenizer = tokenizer _A : List[Any] = MODEL_MODES[mode] if model is None: _A : Optional[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path) , config=self.config , cache_dir=__lowerCamelCase , ) else: _A : Any = model def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Union[str, Any]: _A : List[str] = self.model_type.from_pretrained(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: _A : Tuple = arg_to_scheduler[self.hparams.lr_scheduler] _A : int = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) _A : Union[str, Any] = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model _A : Optional[int] = ["bias", "LayerNorm.weight"] _A : int = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: _A : Optional[int] = Adafactor( __lowerCamelCase , lr=self.hparams.learning_rate , scale_parameter=__lowerCamelCase , relative_step=__lowerCamelCase) else: _A : List[Any] = AdamW( __lowerCamelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) _A : Union[str, Any] = optimizer _A : Optional[Any] = self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Dict: return self.validation_step(__lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: return self.validation_end(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : int = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores _A : Union[str, Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: if stage == "test": _A : Tuple = len(self.test_dataloader().dataset) else: _A : List[str] = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=__lowerCamelCase) _A : List[str] = len(self.train_dataloader().dataset) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = False) -> Any: raise NotImplementedError("You must implement this for your task") def _lowerCamelCase ( self) -> Any: return self.train_loader def _lowerCamelCase ( self) -> List[Any]: return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=__lowerCamelCase) def _lowerCamelCase ( self) -> List[Any]: return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> int: return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( __lowerCamelCase , list(filter(__lowerCamelCase , self.hparams.model_name_or_path.split("/"))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def _lowerCamelCase ( self , __lowerCamelCase) -> None: _A : int = self.output_dir.joinpath("best_tfmr") _A : Optional[int] = self.step_count self.model.save_pretrained(__lowerCamelCase) self.tokenizer.save_pretrained(__lowerCamelCase) @staticmethod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase) -> List[str]: parser.add_argument( "--model_name_or_path" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=__lowerCamelCase , help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name" , default=__lowerCamelCase , type=__lowerCamelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(__lowerCamelCase).parent / "test_run" / "cache") , type=__lowerCamelCase , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=__lowerCamelCase , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=__lowerCamelCase , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=__lowerCamelCase , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=__lowerCamelCase , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=__lowerCamelCase , help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler" , default="linear" , choices=__lowerCamelCase , metavar=__lowerCamelCase , type=__lowerCamelCase , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=__lowerCamelCase , help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon" , default=1e-8 , type=__lowerCamelCase , help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps" , default=0 , type=__lowerCamelCase , help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers" , default=4 , type=__lowerCamelCase , help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=__lowerCamelCase) parser.add_argument("--train_batch_size" , default=3_2 , type=__lowerCamelCase) parser.add_argument("--eval_batch_size" , default=3_2 , type=__lowerCamelCase) parser.add_argument("--adafactor" , action="store_true") class lowerCAmelCase__ ( pl.Callback): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__lowerCamelCase) class lowerCAmelCase__ ( pl.Callback): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Any: _A : int = trainer.lr_schedulers[0]["scheduler"] _A : Union[str, Any] = {F"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(__lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Optional[Any]: rank_zero_info("***** Validation results *****") _A : Union[str, Any] = trainer.callback_metrics # Log results for key in sorted(__lowerCamelCase): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__lowerCamelCase , str(metrics[key]))) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[str]: rank_zero_info("***** Test results *****") _A : int = trainer.callback_metrics # Log and save results to file _A : List[Any] = os.path.join(pl_module.hparams.output_dir , "test_results.txt") with open(__lowerCamelCase , "w") as writer: for key in sorted(__lowerCamelCase): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__lowerCamelCase , str(metrics[key]))) writer.write("{} = {}\n".format(__lowerCamelCase , str(metrics[key]))) def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(UpperCamelCase__ ).parent / "test_run" / "model_checkpoints" ) , type=UpperCamelCase__ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=UpperCamelCase__ , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=UpperCamelCase__ ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=UpperCamelCase__ , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=UpperCamelCase__ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=UpperCamelCase__ , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(UpperCamelCase__ ).parent / "test_run" / "dummy-train-data" ) , type=UpperCamelCase__ , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def _UpperCAmelCase (UpperCamelCase__ : BaseTransformer , UpperCamelCase__ : argparse.Namespace , UpperCamelCase__ : str=None , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=[] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : Union[str, Any] , ): pl.seed_everything(args.seed ) # init model _A : str = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=UpperCamelCase__ ) # add custom checkpoints if checkpoint_callback is None: _A : Optional[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(UpperCamelCase__ ) if logging_callback is None: _A : List[Any] = LoggingCallback() _A : int = {} if args.fpaa: _A : int = 16 if args.gpus > 1: _A : str = "auto" _A : Optional[int] = "ddp" _A : List[str] = args.accumulate_grad_batches _A : str = None _A : Union[str, Any] = "auto" _A : List[str] = pl.Trainer.from_argparse_args( UpperCamelCase__ , weights_summary=UpperCamelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=UpperCamelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **UpperCamelCase__ , ) if args.do_train: trainer.fit(UpperCamelCase__ ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
11
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase : List[str] = logging.get_logger("transformers.models.speecht5") def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Dict: hf_model.apply_weight_norm() _snake_case = checkpoint['input_conv.weight_g'] _snake_case = checkpoint['input_conv.weight_v'] _snake_case = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _snake_case = checkpoint[F'upsamples.{i}.1.weight_g'] _snake_case = checkpoint[F'upsamples.{i}.1.weight_v'] _snake_case = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] _snake_case = checkpoint['output_conv.1.weight_g'] _snake_case = checkpoint['output_conv.1.weight_v'] _snake_case = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=None , __A=None , ) -> List[Any]: if config_path is not None: _snake_case = SpeechTaHifiGanConfig.from_pretrained(__A ) else: _snake_case = SpeechTaHifiGanConfig() _snake_case = SpeechTaHifiGan(__A ) _snake_case = torch.load(__A ) load_weights(orig_checkpoint['model']['generator'] , __A , __A ) _snake_case = np.load(__A ) _snake_case = stats[0].reshape(-1 ) _snake_case = stats[1].reshape(-1 ) _snake_case = torch.from_numpy(__A ).float() _snake_case = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__A ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase : List[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
42
0
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ("foo.json",)]) def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = GenerationConfig.from_pretrained(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _SCREAMING_SNAKE_CASE) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = AutoConfig.from_pretrained("gpt2") __lowerCAmelCase : Optional[int] = GenerationConfig.from_model_config(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = GenerationConfig() __lowerCAmelCase : Union[str, Any] = { "max_new_tokens": 1024, "foo": "bar", } __lowerCAmelCase : Any = copy.deepcopy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = generation_config.update(**_SCREAMING_SNAKE_CASE) # update_kwargs was not modified (no side effects) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_SCREAMING_SNAKE_CASE , {"foo": "bar"}) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = GenerationConfig() __lowerCAmelCase : str = "bar" with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir: generation_config.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = GenerationConfig.from_pretrained(_SCREAMING_SNAKE_CASE) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar") __lowerCAmelCase : int = GenerationConfig.from_model_config(_SCREAMING_SNAKE_CASE) assert not hasattr(_SCREAMING_SNAKE_CASE , "foo") # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , _SCREAMING_SNAKE_CASE) self.assertEqual(default_config.num_beams , 1) __lowerCAmelCase : List[str] = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , _SCREAMING_SNAKE_CASE) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = GenerationConfig.from_pretrained(_SCREAMING_SNAKE_CASE , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , _SCREAMING_SNAKE_CASE) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class A__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls: Any) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE) @classmethod def _SCREAMING_SNAKE_CASE ( cls: str) -> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-generation-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org") except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token) __lowerCAmelCase : List[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="test-generation-config" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token) __lowerCAmelCase : Optional[Any] = GenerationConfig.from_pretrained(F"""{USER}/test-generation-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token) __lowerCAmelCase : Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="valid_org/test-generation-config-org" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token) __lowerCAmelCase : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE))
360
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __snake_case : Tuple = logging.get_logger(__name__) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def _lowercase ( __snake_case ,__snake_case ,__snake_case = None ) -> Tuple: __lowerCAmelCase : Tuple = tesseract_config if tesseract_config is not None else "" # apply OCR __lowerCAmelCase : List[str] = to_pil_image(__snake_case ) __lowerCAmelCase , __lowerCAmelCase : Optional[int] = pil_image.size __lowerCAmelCase : str = pytesseract.image_to_data(__snake_case ,lang=__snake_case ,output_type="dict" ,config=__snake_case ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __lowerCAmelCase : List[str] = [idx for idx, word in enumerate(__snake_case ) if not word.strip()] __lowerCAmelCase : Any = [word for idx, word in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : Any = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : List[Any] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : List[Any] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __lowerCAmelCase : List[str] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase : List[Any] = [] for x, y, w, h in zip(__snake_case ,__snake_case ,__snake_case ,__snake_case ): __lowerCAmelCase : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(__snake_case ) # finally, normalize the bounding boxes __lowerCAmelCase : Optional[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__snake_case ,__snake_case ,__snake_case ) ) assert len(__snake_case ) == len(__snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "" , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = size if size is not None else {"height": 224, "width": 224} __lowerCAmelCase : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : Union[str, Any] = resample __lowerCAmelCase : Dict = apply_ocr __lowerCAmelCase : Dict = ocr_lang __lowerCAmelCase : List[str] = tesseract_config def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: Any , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""") __lowerCAmelCase : Dict = (size["height"], size["width"]) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[str] , ) -> PIL.Image.Image: """simple docstring""" __lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Optional[int] = size if size is not None else self.size __lowerCAmelCase : int = get_size_dict(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = resample if resample is not None else self.resample __lowerCAmelCase : Any = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase : Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase : str = make_list_of_images(_SCREAMING_SNAKE_CASE) if not valid_images(_SCREAMING_SNAKE_CASE): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") # All transformations expect numpy arrays. __lowerCAmelCase : List[str] = [to_numpy_array(_SCREAMING_SNAKE_CASE) for image in images] if apply_ocr: requires_backends(self , "pytesseract") __lowerCAmelCase : Tuple = [] __lowerCAmelCase : Optional[int] = [] for image in images: __lowerCAmelCase , __lowerCAmelCase : Any = apply_tesseract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) words_batch.append(_SCREAMING_SNAKE_CASE) boxes_batch.append(_SCREAMING_SNAKE_CASE) if do_resize: __lowerCAmelCase : Optional[int] = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowerCAmelCase : List[str] = [flip_channel_order(_SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : str = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for image in images] __lowerCAmelCase : int = BatchFeature(data={"pixel_values": images} , tensor_type=_SCREAMING_SNAKE_CASE) if apply_ocr: __lowerCAmelCase : Optional[int] = words_batch __lowerCAmelCase : Optional[int] = boxes_batch return data
58
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowercase : str = None lowercase : str = logging.get_logger(__name__) lowercase : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase : Optional[int] = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } lowercase : str = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } lowercase : Optional[Any] = "▁" class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase = AlbertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = ( AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ , normalized=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token ) super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
42
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase : List[str] = logging.get_logger("transformers.models.speecht5") def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Dict: hf_model.apply_weight_norm() _snake_case = checkpoint['input_conv.weight_g'] _snake_case = checkpoint['input_conv.weight_v'] _snake_case = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _snake_case = checkpoint[F'upsamples.{i}.1.weight_g'] _snake_case = checkpoint[F'upsamples.{i}.1.weight_v'] _snake_case = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] _snake_case = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] _snake_case = checkpoint['output_conv.1.weight_g'] _snake_case = checkpoint['output_conv.1.weight_v'] _snake_case = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=None , __A=None , ) -> List[Any]: if config_path is not None: _snake_case = SpeechTaHifiGanConfig.from_pretrained(__A ) else: _snake_case = SpeechTaHifiGanConfig() _snake_case = SpeechTaHifiGan(__A ) _snake_case = torch.load(__A ) load_weights(orig_checkpoint['model']['generator'] , __A , __A ) _snake_case = np.load(__A ) _snake_case = stats[0].reshape(-1 ) _snake_case = stats[1].reshape(-1 ) _snake_case = torch.from_numpy(__A ).float() _snake_case = torch.from_numpy(__A ).float() model.save_pretrained(__A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(__A ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowercase : List[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
42
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case__ : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class A_ : lowerCAmelCase__ = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCAmelCase__ = field( default=__a , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase__ = field( default=__a , metadata={"""help""": """The column name of the images in the files."""} ) lowerCAmelCase__ = field(default=__a , metadata={"""help""": """A folder containing the training data."""} ) lowerCAmelCase__ = field(default=__a , metadata={"""help""": """A folder containing the validation data."""} ) lowerCAmelCase__ = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowerCAmelCase__ = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _lowerCAmelCase (self :Dict )-> List[str]: __A = {} if self.train_dir is not None: __A = self.train_dir if self.validation_dir is not None: __A = self.validation_dir __A = data_files if data_files else None @dataclass class A_ : lowerCAmelCase__ = field( default=__a , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) lowerCAmelCase__ = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) lowerCAmelCase__ = field( default=__a , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) lowerCAmelCase__ = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowerCAmelCase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCAmelCase__ = field(default=__a , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCAmelCase__ = field( default=__a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCAmelCase__ = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) lowerCAmelCase__ = field( default=__a , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class A_ ( __a ): lowerCAmelCase__ = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def _a ( lowerCamelCase: Union[str, Any] ) -> List[str]: '''simple docstring''' __A = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def _a ( ) -> Optional[int]: '''simple docstring''' __A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , lowerCamelCase , lowerCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __A = training_args.get_process_log_level() logger.setLevel(lowerCamelCase ) transformers.utils.logging.set_verbosity(lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __A = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCamelCase ) and data_args.train_val_split > 0.0: __A = ds['''train'''].train_test_split(data_args.train_val_split ) __A = split['''train'''] __A = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __A = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCamelCase ) elif model_args.model_name_or_path: __A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: __A = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCamelCase ) elif model_args.model_name_or_path: __A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: __A = ViTImageProcessor() # create model if model_args.model_name_or_path: __A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __A = ViTMAEForPreTraining(lowerCamelCase ) if training_args.do_train: __A = ds['''train'''].column_names else: __A = ds['''validation'''].column_names if data_args.image_column_name is not None: __A = data_args.image_column_name elif "image" in column_names: __A = '''image''' elif "img" in column_names: __A = '''img''' else: __A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __A = image_processor.size['''shortest_edge'''] else: __A = (image_processor.size['''height'''], image_processor.size['''width''']) __A = Compose( [ Lambda(lambda lowerCamelCase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowerCamelCase: str ): __A = [transforms(lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __A = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __A = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCamelCase ) # Compute absolute learning rate __A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer __A = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: __A = None if training_args.resume_from_checkpoint is not None: __A = training_args.resume_from_checkpoint elif last_checkpoint is not None: __A = last_checkpoint __A = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __A = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCamelCase ) trainer.save_metrics('''eval''' , lowerCamelCase ) # Write model card and (optionally) push to hub __A = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase ) else: trainer.create_model_card(**lowerCamelCase ) def _a ( lowerCamelCase: Union[str, Any] ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
360
from __future__ import annotations from math import pi, sqrt def _a ( lowerCamelCase: float , lowerCamelCase: float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
250
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Dict = LEDTokenizer lowerCAmelCase : List[str] = LEDTokenizerFast lowerCAmelCase : List[Any] = True def __lowercase ( self : List[str] ): super().setUp() _a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _a : Tuple = dict(zip(_UpperCAmelCase ,range(len(_UpperCAmelCase ) ) ) ) _a : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _a : Tuple = {'unk_token': '<unk>'} _a : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _a : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def __lowercase ( self : List[Any] ,**_UpperCAmelCase : List[Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Dict ,**_UpperCAmelCase : str ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Any ,_UpperCAmelCase : Any ): return "lower newer", "lower newer" @cached_property def __lowercase ( self : str ): return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __lowercase ( self : Optional[Any] ): return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __lowercase ( self : List[str] ): _a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _a : Optional[Any] = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : List[Any] = tokenizer(_UpperCAmelCase ,max_length=len(_UpperCAmelCase ) ,padding=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _a : int = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase ,_UpperCAmelCase ) @require_torch def __lowercase ( self : Union[str, Any] ): _a : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : int = tokenizer(_UpperCAmelCase ,padding=_UpperCAmelCase ,return_tensors='pt' ) self.assertIn('input_ids' ,_UpperCAmelCase ) self.assertIn('attention_mask' ,_UpperCAmelCase ) self.assertNotIn('labels' ,_UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' ,_UpperCAmelCase ) @require_torch def __lowercase ( self : str ): _a : List[Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Dict = tokenizer(text_target=_UpperCAmelCase ,max_length=32 ,padding='max_length' ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) @require_torch def __lowercase ( self : int ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Any = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] ,padding=_UpperCAmelCase ,truncation=_UpperCAmelCase ,return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase ,_UpperCAmelCase ) self.assertEqual(batch.input_ids.shape ,(2, 5122) ) @require_torch def __lowercase ( self : List[str] ): _a : int = ['A long paragraph for summarization.'] _a : int = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Dict = tokenizer(_UpperCAmelCase ,return_tensors='pt' ) _a : List[str] = tokenizer(text_target=_UpperCAmelCase ,return_tensors='pt' ) _a : List[Any] = inputs['input_ids'] _a : Tuple = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowercase ( self : Union[str, Any] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _a : Optional[Any] = ['Summary of the text.', 'Another summary.'] _a : int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _a : List[Any] = tokenizer(_UpperCAmelCase ,padding=_UpperCAmelCase ) _a : int = [[0] * len(_UpperCAmelCase ) for x in encoded_output['input_ids']] _a : List[Any] = tokenizer.pad(_UpperCAmelCase ) self.assertSequenceEqual(outputs['global_attention_mask'] ,_UpperCAmelCase ) def __lowercase ( self : List[str] ): pass def __lowercase ( self : int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _a : Dict = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : int = self.tokenizer_class.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) _a : Optional[Any] = 'A, <mask> AllenNLP sentence.' _a : int = tokenizer_r.encode_plus(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ) _a : List[Any] = tokenizer_p.encode_plus(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,return_token_type_ids=_UpperCAmelCase ) self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _a : Any = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _a : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
89
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Optional[Any] = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A__ : Dict = logging.get_logger(__name__) class __snake_case ( UpperCamelCase_ ): _a = '''mask2former''' _a = ['''swin'''] _a = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Any , A_ : Optional[Dict] = None , A_ : int = 2_5_6 , A_ : int = 2_5_6 , A_ : int = 2_5_6 , A_ : int = 1_0_2_4 , A_ : str = "relu" , A_ : int = 6 , A_ : int = 1_0 , A_ : int = 8 , A_ : float = 0.0 , A_ : int = 2_0_4_8 , A_ : bool = False , A_ : bool = False , A_ : int = 4 , A_ : int = 2_5_5 , A_ : int = 1_0_0 , A_ : float = 0.1 , A_ : float = 2.0 , A_ : float = 5.0 , A_ : float = 5.0 , A_ : int = 1_2_5_4_4 , A_ : float = 3.0 , A_ : float = 0.75 , A_ : float = 0.02 , A_ : float = 1.0 , A_ : bool = True , A_ : List[int] = [4, 8, 1_6, 3_2] , A_ : bool = None , **A_ : Dict , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') lowerCAmelCase_ : int = CONFIG_MAPPING['''swin''']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=A_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(A_ , A_): lowerCAmelCase_ : List[Any] = backbone_config.pop('''model_type''') lowerCAmelCase_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : List[Any] = config_class.from_dict(A_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported)}""") lowerCAmelCase_ : List[Any] = backbone_config lowerCAmelCase_ : str = feature_size lowerCAmelCase_ : Optional[Any] = mask_feature_size lowerCAmelCase_ : int = hidden_dim lowerCAmelCase_ : int = encoder_feedforward_dim lowerCAmelCase_ : Optional[int] = activation_function lowerCAmelCase_ : Any = encoder_layers lowerCAmelCase_ : Optional[Any] = decoder_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : List[str] = dim_feedforward lowerCAmelCase_ : Optional[Any] = pre_norm lowerCAmelCase_ : List[str] = enforce_input_projection lowerCAmelCase_ : Tuple = common_stride lowerCAmelCase_ : Optional[Any] = ignore_value lowerCAmelCase_ : Optional[Any] = num_queries lowerCAmelCase_ : int = no_object_weight lowerCAmelCase_ : Tuple = class_weight lowerCAmelCase_ : int = mask_weight lowerCAmelCase_ : Dict = dice_weight lowerCAmelCase_ : str = train_num_points lowerCAmelCase_ : Dict = oversample_ratio lowerCAmelCase_ : Tuple = importance_sample_ratio lowerCAmelCase_ : List[str] = init_std lowerCAmelCase_ : List[str] = init_xavier_std lowerCAmelCase_ : Optional[Any] = use_auxiliary_loss lowerCAmelCase_ : List[Any] = feature_strides lowerCAmelCase_ : int = output_auxiliary_logits lowerCAmelCase_ : Optional[Any] = decoder_layers super().__init__(**A_) @classmethod def UpperCAmelCase__ ( cls : List[str] , A_ : PretrainedConfig , **A_ : List[Any]): return cls( backbone_config=A_ , **A_ , ) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : str = copy.deepcopy(self.__dict__) lowerCAmelCase_ : Dict = self.backbone_config.to_dict() lowerCAmelCase_ : Optional[int] = self.__class__.model_type return output
103
0
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): def update_area_of_max_square(__lowerCamelCase : int , __lowerCamelCase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case : List[Any] = update_area_of_max_square(__lowerCamelCase , col + 1 ) snake_case : int = update_area_of_max_square(row + 1 , col + 1 ) snake_case : Union[str, Any] = update_area_of_max_square(row + 1 , __lowerCamelCase ) if mat[row][col]: snake_case : Optional[Any] = 1 + min([right, diagonal, down] ) snake_case : List[Any] = max(largest_square_area[0] , __lowerCamelCase ) return sub_problem_sol else: return 0 snake_case : Union[str, Any] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): def update_area_of_max_square_using_dp_array( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case : Optional[Any] = update_area_of_max_square_using_dp_array(__lowerCamelCase , col + 1 , __lowerCamelCase ) snake_case : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __lowerCamelCase ) snake_case : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , __lowerCamelCase , __lowerCamelCase ) if mat[row][col]: snake_case : Union[str, Any] = 1 + min([right, diagonal, down] ) snake_case : Dict = max(largest_square_area[0] , __lowerCamelCase ) snake_case : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 snake_case : Any = [0] snake_case : Optional[Any] = [[-1] * cols for _ in range(__lowerCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , __lowerCamelCase ) return largest_square_area[0] def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): snake_case : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case : Optional[int] = dp_array[row][col + 1] snake_case : Any = dp_array[row + 1][col + 1] snake_case : Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: snake_case : Tuple = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : Tuple = max(dp_array[row][col] , __lowerCamelCase ) else: snake_case : int = 0 return largest_square_area def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[list[int]] ): snake_case : Optional[Any] = [0] * (cols + 1) snake_case : Any = [0] * (cols + 1) snake_case : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case : Dict = current_row[col + 1] snake_case : List[str] = next_row[col + 1] snake_case : Optional[int] = next_row[col] if mat[row][col] == 1: snake_case : Optional[Any] = 1 + min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case : List[str] = max(current_row[col] , __lowerCamelCase ) else: snake_case : str = 0 snake_case : List[str] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
10
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCamelCase = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __lowerCamelCase = { """facebook/xglm-564M""": 20_48, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__(self : str , snake_case__ : Optional[Any] , snake_case__ : List[str]="<s>" , snake_case__ : Tuple="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Any="<s>" , snake_case__ : str="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Any , ) -> None: '''simple docstring''' snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case : Optional[int] = 7 snake_case : List[str] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] snake_case : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} snake_case : Tuple = len(self.sp_model ) snake_case : Any = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(snake_case__ ) snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = self.__dict__.copy() snake_case : str = None snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self : Dict , snake_case__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : List[str] = {} snake_case : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE (self : int ) -> Tuple: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : List[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Tuple ) -> int: '''simple docstring''' snake_case : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
10
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False): SCREAMING_SNAKE_CASE_: Any = scheduler SCREAMING_SNAKE_CASE_: List[str] = optimizers if isinstance(lowerCAmelCase__ , (list, tuple)) else [optimizers] SCREAMING_SNAKE_CASE_: str = split_batches SCREAMING_SNAKE_CASE_: Optional[Any] = step_with_optimizer SCREAMING_SNAKE_CASE_: Dict = GradientState() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : List[Any]): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE_: Union[str, Any] = AcceleratorState().num_processes for _ in range(lowerCAmelCase__): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps"): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__) else: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): return self.scheduler.get_last_lr() def _SCREAMING_SNAKE_CASE ( self : Dict): return self.scheduler.state_dict() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[Any]): self.scheduler.load_state_dict(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.scheduler.get_lr() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Optional[int]): return self.scheduler.print_lr(*lowerCAmelCase__ , **lowerCAmelCase__)
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] for step in range(a__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(a__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , a__ ) _UpperCAmelCase = torch.load(a__ ) scheduler.load_state_dict(a__ ) return lrs @require_torch class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) _UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCAmelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , ) for _ in range(1000 ): _UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __a ( unittest.TestCase ): _a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None _a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _a : List[Any] = 10 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _UpperCAmelCase , _UpperCAmelCase = data _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListAlmostEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule _UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' ) class __a : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = fn def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
329
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Dict = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) UpperCAmelCase_ : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) UpperCAmelCase_ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def __UpperCAmelCase ( self ) -> Any: print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase_ : Dict = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ) -> int: print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase_ : Dict = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Tuple = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ) -> Tuple: print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase_ : Dict = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = Accelerator() __UpperCAmelCase = (accelerator.state.process_index + 2, 10) __UpperCAmelCase = torch.randint(0, 10, shape).to(accelerator.device) __UpperCAmelCase = '' __UpperCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __UpperCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __UpperCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
145
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[str, Any] = '''umt5''' _snake_case : Union[str, Any] = ['''past_key_values'''] def __init__( self , _UpperCamelCase=2_5_0_1_1_2 , _UpperCamelCase=5_1_2 , _UpperCamelCase=6_4 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=8 , _UpperCamelCase=None , _UpperCamelCase=6 , _UpperCamelCase=3_2 , _UpperCamelCase=1_2_8 , _UpperCamelCase=0.1 , _UpperCamelCase=1E-6 , _UpperCamelCase=1.0 , _UpperCamelCase="gated-gelu" , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="T5Tokenizer" , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=0 , **_UpperCamelCase , ) -> List[Any]: super().__init__( is_encoder_decoder=_UpperCamelCase , tokenizer_class=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[str] = d_model UpperCAmelCase_ : Any = d_kv UpperCAmelCase_ : Optional[int] = d_ff UpperCAmelCase_ : List[Any] = num_layers UpperCAmelCase_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Optional[int] = relative_attention_num_buckets UpperCAmelCase_ : Dict = relative_attention_max_distance UpperCAmelCase_ : Tuple = dropout_rate UpperCAmelCase_ : Union[str, Any] = layer_norm_epsilon UpperCAmelCase_ : Optional[int] = initializer_factor UpperCAmelCase_ : List[str] = feed_forward_proj UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[Any] = self.feed_forward_proj.split('-' ) UpperCAmelCase_ : List[Any] = act_info[-1] UpperCAmelCase_ : Union[str, Any] = act_info[0] == 'gated' if len(_UpperCamelCase ) > 1 and act_info[0] != "gated" or len(_UpperCamelCase ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCAmelCase_ : Optional[int] = 'gelu_new' @property def __UpperCAmelCase ( self ) -> int: return self.d_model @property def __UpperCAmelCase ( self ) -> Any: return self.num_heads @property def __UpperCAmelCase ( self ) -> List[Any]: return self.num_layers class lowerCamelCase (_snake_case ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : str = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCAmelCase_ : Optional[int] = 'past_encoder_sequence + sequence' UpperCAmelCase_ : str = {0: 'batch'} UpperCAmelCase_ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCAmelCase_ : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} UpperCAmelCase_ : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCAmelCase ( self ) -> int: return 1_3 @property def __UpperCAmelCase ( self ) -> float: return 5E-4
145
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _UpperCAmelCase : str = """bert-base-cased""" _UpperCAmelCase : Optional[Any] = """google/pegasus-xsum""" _UpperCAmelCase : Optional[Any] = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] _UpperCAmelCase : Dict = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] _UpperCAmelCase : Any = """patrickvonplaten/t5-tiny-random""" _UpperCAmelCase : List[Any] = """sshleifer/bart-tiny-random""" _UpperCAmelCase : Optional[Any] = """sshleifer/tiny-mbart""" _UpperCAmelCase : List[Any] = """sshleifer/tiny-marian-en-de""" def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = '\n'.join(__lowerCamelCase ) Path(__lowerCamelCase ).open('w' ).writelines(__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCamelCase , F"""{split}.source""" ) , __lowerCamelCase ) _dump_articles(os.path.join(__lowerCamelCase , F"""{split}.target""" ) , __lowerCamelCase ) return tmp_dir class lowerCAmelCase ( snake_case_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A_ ( self : Union[str, Any] , UpperCAmelCase : Dict ) -> str: lowerCamelCase__ : str = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : Any = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase__ : Any = max(len(tokenizer.encode(UpperCAmelCase ) ) for a in ARTICLES ) lowerCamelCase__ : Union[str, Any] = max(len(tokenizer.encode(UpperCAmelCase ) ) for a in SUMMARIES ) lowerCamelCase__ : int = 4 lowerCamelCase__ : Optional[int] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCamelCase__ , lowerCamelCase__ : Tuple = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. lowerCamelCase__ : Tuple = SeqaSeqDataset( UpperCAmelCase , data_dir=UpperCAmelCase , type_path='train' , max_source_length=UpperCAmelCase , max_target_length=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , ) lowerCamelCase__ : List[str] = DataLoader(UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(UpperCAmelCase , UpperCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCamelCase__ : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A_ ( self : List[Any] , UpperCAmelCase : int ) -> Optional[Any]: lowerCamelCase__ : str = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : List[str] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase__ : int = max(len(tokenizer.encode(UpperCAmelCase ) ) for a in ARTICLES ) lowerCamelCase__ : Optional[int] = max(len(tokenizer.encode(UpperCAmelCase ) ) for a in SUMMARIES ) lowerCamelCase__ : Optional[Any] = 4 lowerCamelCase__ : Optional[int] = LegacySeqaSeqDataset( UpperCAmelCase , data_dir=UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=UpperCAmelCase , ) lowerCamelCase__ : Dict = DataLoader(UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A_ ( self : List[Any] ) -> Dict: lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) lowerCamelCase__ : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCamelCase__ : int = tmp_dir.joinpath('train.source' ).open().readlines() lowerCamelCase__ : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(UpperCAmelCase , UpperCAmelCase , 128 , UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = {x.name for x in tmp_dir.iterdir()} lowerCamelCase__ : Any = {x.name for x in save_dir.iterdir()} lowerCamelCase__ : Union[str, Any] = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(UpperCAmelCase ) < len(UpperCAmelCase ) assert len(UpperCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(UpperCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def A_ ( self : Optional[int] ) -> List[str]: if not FAIRSEQ_AVAILABLE: return lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = self._get_dataset(max_len=64 ) lowerCamelCase__ : Union[str, Any] = 64 lowerCamelCase__ : int = ds.make_dynamic_sampler(UpperCAmelCase , required_batch_size_multiple=UpperCAmelCase ) lowerCamelCase__ : Tuple = [len(UpperCAmelCase ) for x in batch_sampler] assert len(set(UpperCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(UpperCAmelCase ) == len(UpperCAmelCase ) # no dropped or added examples lowerCamelCase__ : str = DataLoader(UpperCAmelCase , batch_sampler=UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase__ : Tuple = [] lowerCamelCase__ : Optional[Any] = [] for batch in data_loader: lowerCamelCase__ : Optional[int] = batch['input_ids'].shape lowerCamelCase__ : List[str] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCamelCase__ : Optional[Any] = np.product(batch['input_ids'].shape ) num_src_per_batch.append(UpperCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(UpperCAmelCase ) assert num_src_per_batch[0] == max(UpperCAmelCase ) if failures: raise AssertionError(F"""too many tokens in {len(UpperCAmelCase )} batches""" ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = self._get_dataset(max_len=512 ) lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : Optional[int] = ds.make_sortish_sampler(UpperCAmelCase , shuffle=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = DataLoader(UpperCAmelCase , batch_size=UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase__ : List[str] = DataLoader(UpperCAmelCase , batch_size=UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=UpperCAmelCase ) lowerCamelCase__ : Tuple = tokenizer.pad_token_id def count_pad_tokens(UpperCAmelCase : Any , UpperCAmelCase : List[Any]="input_ids" ): return [batch[k].eq(UpperCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(UpperCAmelCase , k='labels' ) ) < sum(count_pad_tokens(UpperCAmelCase , k='labels' ) ) assert sum(count_pad_tokens(UpperCAmelCase ) ) < sum(count_pad_tokens(UpperCAmelCase ) ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) def A_ ( self : Dict , UpperCAmelCase : List[Any]=1000 , UpperCAmelCase : str=128 ) -> Union[str, Any]: if os.getenv('USE_REAL_DATA' , UpperCAmelCase ): lowerCamelCase__ : Dict = 'examples/seq2seq/wmt_en_ro' lowerCamelCase__ : Optional[int] = max_len * 2 * 64 if not Path(UpperCAmelCase ).joinpath('train.len' ).exists(): save_len_file(UpperCAmelCase , UpperCAmelCase ) else: lowerCamelCase__ : Union[str, Any] = 'examples/seq2seq/test_data/wmt_en_ro' lowerCamelCase__ : List[str] = max_len * 4 save_len_file(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : str = SeqaSeqDataset( UpperCAmelCase , data_dir=UpperCAmelCase , type_path='train' , max_source_length=UpperCAmelCase , max_target_length=UpperCAmelCase , n_obs=UpperCAmelCase , ) return ds, max_tokens, tokenizer def A_ ( self : Union[str, Any] ) -> Dict: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = self._get_dataset() lowerCamelCase__ : List[Any] = set(DistributedSortishSampler(UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=UpperCAmelCase ) ) lowerCamelCase__ : Tuple = set(DistributedSortishSampler(UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=UpperCAmelCase ) ) assert idsa.intersection(UpperCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A_ ( self : Optional[int] , UpperCAmelCase : Tuple ) -> Optional[Any]: lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(UpperCAmelCase , use_fast=UpperCAmelCase ) if tok_name == MBART_TINY: lowerCamelCase__ : Dict = SeqaSeqDataset( UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) lowerCamelCase__ : Any = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCamelCase__ : Tuple = SeqaSeqDataset( UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) lowerCamelCase__ : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(UpperCAmelCase ) == 1 if tok_name == BART_TINY else len(UpperCAmelCase ) == 0
50
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def lowerCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) ->Tuple: if got_ver is None or want_ver is None: raise ValueError( F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' F' reinstalling {pkg}.' ) if not ops[op](version.parse(__lowerCamelCase ) , version.parse(__lowerCamelCase ) ): raise ImportError( F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) ->None: _SCREAMING_SNAKE_CASE = F'\n{hint}' if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , __lowerCamelCase ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = requirement, None, None else: _SCREAMING_SNAKE_CASE = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , __lowerCamelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" F' got {requirement}' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = match[0] _SCREAMING_SNAKE_CASE = want_full.split(""",""" ) # there could be multiple requirements _SCREAMING_SNAKE_CASE = {} for w in want_range: _SCREAMING_SNAKE_CASE = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , __lowerCamelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" F' but got {requirement}' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = match[0] _SCREAMING_SNAKE_CASE = want_ver if op not in ops: raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": _SCREAMING_SNAKE_CASE = """.""".join([str(__lowerCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return # check if any version is installed try: _SCREAMING_SNAKE_CASE = importlib.metadata.version(__lowerCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase ( __lowerCamelCase : Union[str, Any] ) ->str: _SCREAMING_SNAKE_CASE = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(__lowerCamelCase , __lowerCamelCase )
58
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : Optional[Any] = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowerCamelCase__ : Optional[Any] = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : List[str] = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowerCamelCase__ : Optional[int] = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowerCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCamelCase__ : int = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase_, variant=lowerCamelCase_ ) )
316
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : Any = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : int = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : str = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Union[str, Any] = c.n_embd + 1 # int lowerCamelCase__ : Optional[Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : str = not c.scale_attn_weights # bool lowerCamelCase__ : Any = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = PretrainedConfig() lowerCamelCase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : str = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = mock.Mock() lowerCamelCase__ : str = 5_0_0 lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ : Any = HTTPError lowerCamelCase__ : str = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Dict = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Tuple = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : Optional[Any] = ['config.42.0.0.json'] lowerCamelCase__ : List[Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : str = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Dict = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : str = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Optional[Any] = 'v3.0.0' lowerCamelCase__ : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
316
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str]=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = "" else: __lowerCAmelCase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE_ : str ): __lowerCAmelCase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = val def _a ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 10_00 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 3_84 __lowerCAmelCase = 15_36 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load("facebookresearch/dino:main" , SCREAMING_SNAKE_CASE_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(SCREAMING_SNAKE_CASE_ , add_pooling_layer=SCREAMING_SNAKE_CASE_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] __lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ ) if base_model: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: __lowerCAmelCase = original_model(SCREAMING_SNAKE_CASE_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) UpperCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
92
'''simple docstring''' def _A ( snake_case , snake_case ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.2_5) = }''') print(F'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
250
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[str] = "table-transformer" __snake_case : Any = ["past_key_values"] __snake_case : Optional[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : List[str] ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : Optional[int]=3 ,lowerCamelCase__ : Optional[int]=100 ,lowerCamelCase__ : Optional[int]=6 ,lowerCamelCase__ : Optional[int]=2048 ,lowerCamelCase__ : List[str]=8 ,lowerCamelCase__ : List[str]=6 ,lowerCamelCase__ : Dict=2048 ,lowerCamelCase__ : int=8 ,lowerCamelCase__ : Dict=0.0 ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Optional[Any]="relu" ,lowerCamelCase__ : int=256 ,lowerCamelCase__ : List[str]=0.1 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : int=0.0 ,lowerCamelCase__ : List[str]=0.02 ,lowerCamelCase__ : int=1.0 ,lowerCamelCase__ : str=False ,lowerCamelCase__ : Any="sine" ,lowerCamelCase__ : Union[str, Any]="resnet50" ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : Optional[int]=1 ,lowerCamelCase__ : Tuple=5 ,lowerCamelCase__ : Optional[Any]=2 ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : Union[str, Any]=5 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Optional[int]=0.1 ,**lowerCamelCase__ : List[Any] ,) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase__ ) # set timm attributes to None SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = None, None, None SCREAMING_SNAKE_CASE = use_timm_backbone SCREAMING_SNAKE_CASE = backbone_config SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = init_xavier_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = auxiliary_loss SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = backbone SCREAMING_SNAKE_CASE = use_pretrained_backbone SCREAMING_SNAKE_CASE = dilation # Hungarian matcher SCREAMING_SNAKE_CASE = class_cost SCREAMING_SNAKE_CASE = bbox_cost SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE = mask_loss_coefficient SCREAMING_SNAKE_CASE = dice_loss_coefficient SCREAMING_SNAKE_CASE = bbox_loss_coefficient SCREAMING_SNAKE_CASE = giou_loss_coefficient SCREAMING_SNAKE_CASE = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase__ ,**lowerCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: '''simple docstring''' return self.d_model class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : int = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> float: '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' return 12
193
def __lowercase ( _SCREAMING_SNAKE_CASE = 50 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
193
1
def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" def update_area_of_max_square(__a , __a ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCamelCase__: Union[str, Any] =update_area_of_max_square(__a , col + 1 ) lowerCamelCase__: Dict =update_area_of_max_square(row + 1 , col + 1 ) lowerCamelCase__: List[str] =update_area_of_max_square(row + 1 , __a ) if mat[row][col]: lowerCamelCase__: Tuple =1 + min([right, diagonal, down] ) lowerCamelCase__: str =max(largest_square_area[0] , __a ) return sub_problem_sol else: return 0 lowerCamelCase__: Dict =[0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __a , __a , __a ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCamelCase__: str =update_area_of_max_square_using_dp_array(__a , col + 1 , __a ) lowerCamelCase__: str =update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __a ) lowerCamelCase__: Dict =update_area_of_max_square_using_dp_array(row + 1 , __a , __a ) if mat[row][col]: lowerCamelCase__: List[Any] =1 + min([right, diagonal, down] ) lowerCamelCase__: Optional[int] =max(largest_square_area[0] , __a ) lowerCamelCase__: Tuple =sub_problem_sol return sub_problem_sol else: return 0 lowerCamelCase__: Union[str, Any] =[0] lowerCamelCase__: Optional[int] =[[-1] * cols for _ in range(__a )] update_area_of_max_square_using_dp_array(0 , 0 , __a ) return largest_square_area[0] def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =[[0] * (cols + 1) for _ in range(rows + 1 )] lowerCamelCase__: Tuple =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__: int =dp_array[row][col + 1] lowerCamelCase__: Union[str, Any] =dp_array[row + 1][col + 1] lowerCamelCase__: Any =dp_array[row + 1][col] if mat[row][col] == 1: lowerCamelCase__: str =1 + min(__a , __a , __a ) lowerCamelCase__: Tuple =max(dp_array[row][col] , __a ) else: lowerCamelCase__: Tuple =0 return largest_square_area def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: Union[str, Any] =[0] * (cols + 1) lowerCamelCase__: Dict =[0] * (cols + 1) lowerCamelCase__: List[Any] =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__: Optional[int] =current_row[col + 1] lowerCamelCase__: int =next_row[col + 1] lowerCamelCase__: Optional[int] =next_row[col] if mat[row][col] == 1: lowerCamelCase__: Dict =1 + min(__a , __a , __a ) lowerCamelCase__: Dict =max(current_row[col] , __a ) else: lowerCamelCase__: Tuple =0 lowerCamelCase__: List[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =GPTSwaTokenizer UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Tuple =False def __a ( self :str) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = GPTSwaTokenizer(_lowercase , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , _lowercase :int) -> str: UpperCAmelCase_ = '''This is a test''' UpperCAmelCase_ = '''This is a test''' return input_text, output_text def __a ( self :Optional[Any]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :int) -> int: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(_lowercase) , 2000) def __a ( self :Union[str, Any]) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 2000) def __a ( self :Dict) -> str: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , [465, 287, 265, 631, 842]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def __a ( self :str) -> Any: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowercase , _lowercase): self.assertListEqual(tokenizer.encode_fast(_lowercase) , _lowercase) # Test that decode_fast returns the input text for text, token_ids in zip(_lowercase , _lowercase): self.assertEqual(tokenizer.decode_fast(_lowercase) , _lowercase) @slow def __a ( self :Optional[Any]) -> Optional[int]: UpperCAmelCase_ = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase_ = {'''input_ids''': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_lowercase , )
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
'''simple docstring''' import math def __UpperCAmelCase ( a_: list, a_: int ): _UpperCAmelCase : Tuple = len(a_ ) _UpperCAmelCase : Tuple = int(math.floor(math.sqrt(a_ ) ) ) _UpperCAmelCase : Union[str, Any] = 0 while arr[min(a_, a_ ) - 1] < x: _UpperCAmelCase : str = step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : Any = prev + 1 if prev == min(a_, a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] __a = int(input('Enter the number to be searched:\n')) __a = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'Number {x} is at index {res}')
145
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : List[Any] = self.delimiter if self.column_names is not None: _UpperCAmelCase : Union[str, Any] = self.column_names @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : Tuple = CsvConfig def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Tuple = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
145
1
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCAmelCase (__UpperCamelCase : List[Any]=3_2 , __UpperCamelCase : List[Any]=1_0 , __UpperCamelCase : List[str]=1_0_0 , __UpperCamelCase : Optional[int]=1_0_2_6 , __UpperCamelCase : Dict=True , __UpperCamelCase : Union[str, Any]="data/tokenized_stories_train_wikitext103.jbl" , __UpperCamelCase : Any="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set __UpperCamelCase : Any =generate_datasets( _lowercase , _lowercase , number=_lowercase , min_len=1_0_2_6 , trim=_lowercase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __UpperCamelCase : Optional[Any] =torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model __UpperCamelCase : int =load_gpta('''gpt2''' ).to(_lowercase ) print('''computing perplexity on objective set''' ) __UpperCamelCase : Dict =compute_perplexity(_lowercase , _lowercase , _lowercase ).item() print('''perplexity on objective set:''' , _lowercase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : Any=1_5 , __UpperCamelCase : List[str]=1_2_8 , __UpperCamelCase : Dict=1_0_0 , __UpperCamelCase : int="igf_model.pt" , ): """simple docstring""" set_seed(4_2 ) # Load pre-trained model __UpperCamelCase : int =GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model __UpperCamelCase : Tuple =SecondaryLearner(_lowercase ) # Train secondary learner __UpperCamelCase : Union[str, Any] =train_secondary_learner( _lowercase , _lowercase , max_epochs=_lowercase , batch_size=_lowercase , eval_freq=1_0_0 , igf_model_path=_lowercase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCAmelCase (__UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : str=1_0_0_0 , __UpperCamelCase : Optional[int]=1_6 , __UpperCamelCase : List[str]=1.0 , __UpperCamelCase : str=recopy_gpta , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=1_0 , __UpperCamelCase : List[str]="gpt2_finetuned.pt" , ): """simple docstring""" __UpperCamelCase : Union[str, Any] =torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) __UpperCamelCase : Optional[int] =RandomSampler(_lowercase ) __UpperCamelCase : str =DataLoader(_lowercase , sampler=_lowercase ) __UpperCamelCase : str =max_steps // (len(_lowercase )) + 1 __UpperCamelCase : Dict =0 __UpperCamelCase : List[str] =torch.zeros((1, context_len) , dtype=torch.long , device=_lowercase ) __UpperCamelCase : Optional[Any] =recopy_model(_lowercase , _lowercase , _lowercase ) model.train() if secondary_learner is not None: secondary_learner.to(_lowercase ) secondary_learner.eval() __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =0 __UpperCamelCase : Any =[] __UpperCamelCase : List[Any] =[] # Compute the performance of the transformer model at the beginning __UpperCamelCase : str =compute_perplexity(_lowercase , _lowercase , _lowercase ) test_perps.append(_lowercase ) print('''Test perplexity, step''' , _lowercase , ''':''' , _lowercase ) for epoch in range(int(_lowercase ) ): for step, example in enumerate(_lowercase ): torch.cuda.empty_cache() __UpperCamelCase : Optional[int] =random.randint(0 , example.size(2 ) - context_len - 1 ) __UpperCamelCase : List[str] =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __UpperCamelCase : Tuple =model(_lowercase , labels=_lowercase ) __UpperCamelCase : Union[str, Any] =True if secondary_learner is not None: __UpperCamelCase : Optional[int] =secondary_learner.forward( torch.tensor(_lowercase , dtype=torch.long , device=_lowercase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_lowercase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 1_0: __UpperCamelCase : List[str] =-1 if predicted_q < threshold: __UpperCamelCase : Tuple =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __UpperCamelCase : Union[str, Any] =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __UpperCamelCase : Dict =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __UpperCamelCase : Tuple =compute_perplexity(_lowercase , _lowercase , _lowercase ) test_perps.append(_lowercase ) print('''Test perplexity, step''' , _lowercase , ''':''' , _lowercase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 6_0: break if max_steps > 0 and global_step > 6_0: break # save finetuned transformer model torch.save(model.state_dict() , _lowercase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCAmelCase (): """simple docstring""" __UpperCamelCase : Tuple =argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=_lowercase , default=_lowercase , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=_lowercase , default=_lowercase , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=_lowercase , type=_lowercase , required=_lowercase , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=_lowercase , type=_lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=_lowercase , default=_lowercase , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=3_2 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_0_0 , type=_lowercase , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_0_0 , type=_lowercase , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_0_0_0 , type=_lowercase , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_2_8 , type=_lowercase , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=1_6 , type=_lowercase , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=1_0 , type=_lowercase , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_0_0 , type=_lowercase , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_0_2_6 , type=_lowercase , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=1_5 , type=_lowercase , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=_lowercase , type=_lowercase , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=_lowercase , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=_lowercase , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=_lowercase , type=_lowercase , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=3_2 , max_steps=1_0 , size_objective_set=1_0_0 , min_len=1_0_2_6 , trim=_lowercase , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner __UpperCamelCase : Any =joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner __UpperCamelCase : int =training_secondary_learner( _lowercase , secondary_learner_max_epochs=1_5 , secondary_learner_batch_size=1_2_8 , eval_freq=1_0_0 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model __UpperCamelCase : Optional[int] =GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(4_2 ) # Generate train and test data to train and evaluate gpt2 model __UpperCamelCase : List[str] =generate_datasets( context_len=3_2 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_0_0 , min_len=1_0_2_6 , trim=_lowercase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowercase , _lowercase , _lowercase , context_len=3_2 , max_steps=1_0_0_0 , batch_size=1_6 , threshold=1.0 , recopy_model=_lowercase , secondary_learner=_lowercase , eval_interval=1_0 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertFalse(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertFalse(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) )
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """align_text_model""" def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int]=3_0_5_2_2 , UpperCamelCase__ : List[str]=7_6_8 , UpperCamelCase__ : Optional[int]=1_2 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : List[Any]=3_0_7_2 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : List[Any]=5_1_2 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : List[Any]=1e-12 , UpperCamelCase__ : str=0 , UpperCamelCase__ : List[Any]="absolute" , UpperCamelCase__ : Any=True , **UpperCamelCase__ : Optional[int] , )-> str: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = vocab_size __lowerCAmelCase: int = hidden_size __lowerCAmelCase: Optional[Any] = num_hidden_layers __lowerCAmelCase: Any = num_attention_heads __lowerCAmelCase: Optional[int] = hidden_act __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: Optional[int] = attention_probs_dropout_prob __lowerCAmelCase: int = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: Dict = initializer_range __lowerCAmelCase: int = layer_norm_eps __lowerCAmelCase: Optional[Any] = position_embedding_type __lowerCAmelCase: Tuple = use_cache __lowerCAmelCase: Tuple = pad_token_id @classmethod def lowercase_ ( cls : Tuple , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : List[Any])-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": __lowerCAmelCase: Dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """align_vision_model""" def __init__( self : List[str] , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 6_0_0 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 3.1 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , UpperCamelCase__ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , UpperCamelCase__ : List[int] = [] , UpperCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ : float = 0.25 , UpperCamelCase__ : str = "swish" , UpperCamelCase__ : int = 2_5_6_0 , UpperCamelCase__ : str = "mean" , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 0.001 , UpperCamelCase__ : float = 0.99 , UpperCamelCase__ : float = 0.2 , **UpperCamelCase__ : Tuple , )-> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = num_channels __lowerCAmelCase: Any = image_size __lowerCAmelCase: Any = width_coefficient __lowerCAmelCase: List[Any] = depth_coefficient __lowerCAmelCase: Optional[int] = depth_divisor __lowerCAmelCase: List[Any] = kernel_sizes __lowerCAmelCase: Dict = in_channels __lowerCAmelCase: Optional[int] = out_channels __lowerCAmelCase: Optional[int] = depthwise_padding __lowerCAmelCase: Optional[int] = strides __lowerCAmelCase: Optional[int] = num_block_repeats __lowerCAmelCase: str = expand_ratios __lowerCAmelCase: Union[str, Any] = squeeze_expansion_ratio __lowerCAmelCase: Optional[Any] = hidden_act __lowerCAmelCase: Union[str, Any] = hidden_dim __lowerCAmelCase: List[str] = pooling_type __lowerCAmelCase: int = initializer_range __lowerCAmelCase: Any = batch_norm_eps __lowerCAmelCase: int = batch_norm_momentum __lowerCAmelCase: Union[str, Any] = drop_connect_rate __lowerCAmelCase: int = sum(UpperCamelCase__) * 4 @classmethod def lowercase_ ( cls : str , UpperCamelCase__ : Union[str, os.PathLike] , **UpperCamelCase__ : List[Any])-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": __lowerCAmelCase: int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Any = """align""" SCREAMING_SNAKE_CASE_ : Any = True def __init__( self : str , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Union[str, Any]=6_4_0 , UpperCamelCase__ : Dict=1.0 , UpperCamelCase__ : Optional[Any]=0.02 , **UpperCamelCase__ : Optional[int] , )-> str: '''simple docstring''' super().__init__(**UpperCamelCase__) if text_config is None: __lowerCAmelCase: Tuple = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values.") if vision_config is None: __lowerCAmelCase: Tuple = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.") __lowerCAmelCase: int = AlignTextConfig(**UpperCamelCase__) __lowerCAmelCase: str = AlignVisionConfig(**UpperCamelCase__) __lowerCAmelCase: Optional[int] = projection_dim __lowerCAmelCase: Dict = temperature_init_value __lowerCAmelCase: Any = initializer_range @classmethod def lowercase_ ( cls : Tuple , UpperCamelCase__ : AlignTextConfig , UpperCamelCase__ : AlignVisionConfig , **UpperCamelCase__ : Optional[int])-> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__) def lowercase_ ( self : List[Any])-> Any: '''simple docstring''' __lowerCAmelCase: Tuple = copy.deepcopy(self.__dict__) __lowerCAmelCase: Optional[int] = self.text_config.to_dict() __lowerCAmelCase: str = self.vision_config.to_dict() __lowerCAmelCase: Optional[Any] = self.__class__.model_type return output
108
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: __lowerCAmelCase: Dict = original_name.split("." )[0] __lowerCAmelCase: Any = key.split("." ) __lowerCAmelCase: Union[str, Any] = int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 2] ) __lowerCAmelCase: List[Any] = int(key_list[key_list.index(__SCREAMING_SNAKE_CASE ) - 1] ) __lowerCAmelCase: List[str] = orig_block_num - offset __lowerCAmelCase: Tuple = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def a__ ( __SCREAMING_SNAKE_CASE ) -> int: __lowerCAmelCase: List[Any] = OrderedDict() __lowerCAmelCase , __lowerCAmelCase: Optional[int] = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __lowerCAmelCase: Dict = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __lowerCAmelCase: int = key[: key.find("proj" )] __lowerCAmelCase: Dict = key.replace(__SCREAMING_SNAKE_CASE , F"patch_embeddings.{total_embed_found}." ) __lowerCAmelCase: Optional[int] = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __lowerCAmelCase: int = "poolformer.encoder." + key if "mlp.fc1" in key: __lowerCAmelCase: Optional[Any] = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __lowerCAmelCase: Dict = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __lowerCAmelCase: Dict = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: __lowerCAmelCase: Dict = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: __lowerCAmelCase: Optional[int] = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __lowerCAmelCase: Any = replace_key_with_offset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __lowerCAmelCase: int = key.replace("head" , "classifier" ) __lowerCAmelCase: Tuple = value return new_state_dict def a__ ( ) -> Tuple: __lowerCAmelCase: Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase: int = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: __lowerCAmelCase: Any = PoolFormerConfig() # set attributes based on model_name __lowerCAmelCase: Any = "huggingface/label-files" __lowerCAmelCase: int = model_name[-3:] __lowerCAmelCase: List[Any] = 1_0_0_0 __lowerCAmelCase: Tuple = "imagenet-1k-id2label.json" __lowerCAmelCase: str = (1, 1_0_0_0) # set config attributes __lowerCAmelCase: Dict = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase: List[str] = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowerCAmelCase: Any = idalabel __lowerCAmelCase: Any = {v: k for k, v in idalabel.items()} if size == "s12": __lowerCAmelCase: Dict = [2, 2, 6, 2] __lowerCAmelCase: str = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase: Optional[Any] = 4.0 __lowerCAmelCase: Union[str, Any] = 0.9 elif size == "s24": __lowerCAmelCase: Tuple = [4, 4, 1_2, 4] __lowerCAmelCase: List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase: Tuple = 4.0 __lowerCAmelCase: Optional[int] = 0.9 elif size == "s36": __lowerCAmelCase: int = [6, 6, 1_8, 6] __lowerCAmelCase: int = [6_4, 1_2_8, 3_2_0, 5_1_2] __lowerCAmelCase: List[str] = 4.0 __lowerCAmelCase: Dict = 1E-6 __lowerCAmelCase: List[Any] = 0.9 elif size == "m36": __lowerCAmelCase: Dict = [6, 6, 1_8, 6] __lowerCAmelCase: Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] __lowerCAmelCase: str = 4.0 __lowerCAmelCase: Union[str, Any] = 1E-6 __lowerCAmelCase: Union[str, Any] = 0.95 elif size == "m48": __lowerCAmelCase: str = [8, 8, 2_4, 8] __lowerCAmelCase: Optional[int] = [9_6, 1_9_2, 3_8_4, 7_6_8] __lowerCAmelCase: str = 4.0 __lowerCAmelCase: int = 1E-6 __lowerCAmelCase: str = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor __lowerCAmelCase: Union[str, Any] = PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) # Prepare image __lowerCAmelCase: int = prepare_img() __lowerCAmelCase: Tuple = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict __lowerCAmelCase: Optional[int] = torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys __lowerCAmelCase: Any = rename_keys(__SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict __lowerCAmelCase: str = PoolFormerForImageClassification(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.eval() # Define image processor __lowerCAmelCase: Any = PoolFormerImageProcessor(crop_pct=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __lowerCAmelCase: int = model(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = outputs.logits # define expected logit slices for different models if size == "s12": __lowerCAmelCase: List[str] = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __lowerCAmelCase: Optional[int] = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __lowerCAmelCase: List[str] = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __lowerCAmelCase: Union[str, Any] = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __lowerCAmelCase: List[str] = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
108
1
from collections.abc import Callable class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase = None ): # Stores actual heap items. A__ = [] # Stores indexes of each item for supporting updates and deletion. A__ = {} # Stores current size of heap. A__ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. A__ = key or (lambda __lowerCamelCase : x) def UpperCamelCase ( self,__lowerCamelCase ): return int((i - 1) / 2 ) if i > 0 else None def UpperCamelCase ( self,__lowerCamelCase ): A__ = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCamelCase ( self,__lowerCamelCase ): A__ = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ , A__ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. A__ , A__ = self.arr[j], self.arr[i] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): return self.arr[i][1] < self.arr[j][1] def UpperCamelCase ( self,__lowerCamelCase ): A__ = self._left(__lowerCamelCase ) A__ = self._right(__lowerCamelCase ) A__ = i if left is not None and not self._cmp(__lowerCamelCase,__lowerCamelCase ): A__ = left if right is not None and not self._cmp(__lowerCamelCase,__lowerCamelCase ): A__ = right return valid_parent def UpperCamelCase ( self,__lowerCamelCase ): A__ = self._parent(__lowerCamelCase ) while parent is not None and not self._cmp(__lowerCamelCase,__lowerCamelCase ): self._swap(__lowerCamelCase,__lowerCamelCase ) A__ , A__ = parent, self._parent(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = self._get_valid_parent(__lowerCamelCase ) while valid_parent != index: self._swap(__lowerCamelCase,__lowerCamelCase ) A__ , A__ = valid_parent, self._get_valid_parent(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): if item not in self.pos_map: return A__ = self.pos_map[item] A__ = [item, self.key(__lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__lowerCamelCase ) self._heapify_down(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): if item not in self.pos_map: return A__ = self.pos_map[item] del self.pos_map[item] A__ = self.arr[self.size - 1] A__ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__lowerCamelCase ) self._heapify_down(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__lowerCamelCase )] ) else: A__ = [item, self.key(__lowerCamelCase )] A__ = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCamelCase ( self ): return self.arr[0] if self.size else None def UpperCamelCase ( self ): A__ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase__( )->None: pass if __name__ == "__main__": import doctest doctest.testmod()
193
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__: Union[str, Any] = logging.get_logger(__name__) a__: Union[str, Any] = {'vocab_file': 'spiece.model'} a__: Tuple = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } a__: Any = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE = [] def __init__( self,__lowerCamelCase,__lowerCamelCase="<unk>",__lowerCamelCase="<s>",__lowerCamelCase="</s>",__lowerCamelCase="<pad>",__lowerCamelCase="[SEP]",__lowerCamelCase="[MASK]",__lowerCamelCase="[CLS]",__lowerCamelCase = None,**__lowerCamelCase,): A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else bos_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else eos_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else unk_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else pad_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else cls_token A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(__lowerCamelCase,lstrip=__lowerCamelCase,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase,__lowerCamelCase ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase,eos_token=__lowerCamelCase,unk_token=__lowerCamelCase,pad_token=__lowerCamelCase,sep_token=__lowerCamelCase,mask_token=__lowerCamelCase,cls_token=__lowerCamelCase,sp_model_kwargs=self.sp_model_kwargs,**__lowerCamelCase,) A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def UpperCamelCase ( self ): return self.sp_model.get_piece_size() def UpperCamelCase ( self ): A__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A__ = self.__dict__.copy() A__ = None return state def __setstate__( self,__lowerCamelCase ): A__ = d # for backward compatibility if not hasattr(self,'''sp_model_kwargs''' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self,__lowerCamelCase ): return self.sp_model.encode(__lowerCamelCase,out_type=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): return self.sp_model.piece_to_id(__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase ): A__ = self.sp_model.IdToPiece(__lowerCamelCase ) return token def UpperCamelCase ( self,__lowerCamelCase ): A__ = [] A__ = '''''' A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token A__ = True A__ = [] else: current_sub_tokens.append(__lowerCamelCase ) A__ = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = False,__lowerCamelCase = None,__lowerCamelCase = True,**__lowerCamelCase,): A__ = kwargs.pop('''use_source_tokenizer''',__lowerCamelCase ) A__ = self.convert_ids_to_tokens(__lowerCamelCase,skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ = [] A__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) A__ = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: A__ = re.sub(r''' (\[(MASK|SEP)\])''',r'''\1''',''' '''.join(__lowerCamelCase ) ) else: A__ = ''''''.join(__lowerCamelCase ) A__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ = os.path.join( __lowerCamelCase,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase,'''wb''' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase,token_ids_a=__lowerCamelCase,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
193
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ : Tuple = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ : int = json.load(f) @require_torch class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self , A ) -> Tuple: '''simple docstring''' return FSMTTokenizer.from_pretrained(UpperCamelCase__ ) def lowerCAmelCase_ ( self , A ) -> Tuple: '''simple docstring''' a = FSMTForConditionalGeneration.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 2_6.0], ["ru-en", 2_2.0], ["en-de", 2_2.0], ["de-en", 2_9.0], ] ) @slow def lowerCAmelCase_ ( self , A , A ) -> Optional[int]: '''simple docstring''' a = F'''facebook/wmt19-{pair}''' a = self.get_tokenizer(UpperCamelCase__ ) a = self.get_model(UpperCamelCase__ ) a = bleu_data[pair]["src"] a = bleu_data[pair]["tgt"] a = tokenizer(UpperCamelCase__ , return_tensors="pt" , truncation=UpperCamelCase__ , padding="longest" ).to(UpperCamelCase__ ) a = model.generate( input_ids=batch.input_ids , num_beams=8 , ) a = tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) a = calculate_bleu(UpperCamelCase__ , UpperCamelCase__ ) print(UpperCamelCase__ ) self.assertGreaterEqual(scores["bleu"] , UpperCamelCase__ )
369
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a__ : def __init__( self , A , A=2 , A=32 , A=16 , A=3 , A=True , A=True , A=32 , A=4 , A=[0, 1, 2, 3] , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=0.0_2 , A=3 , A=[1, 384, 24, 24] , A=True , A=None , ) -> Any: '''simple docstring''' a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = backbone_out_indices a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = num_labels a = backbone_featmap_shape a = scope a = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=A , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase_ ( self , A , A , A ) -> str: '''simple docstring''' a = DPTModel(config=A ) model.to(A ) model.eval() a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Optional[int]: '''simple docstring''' a = self.num_labels a = DPTForDepthEstimation(A ) model.to(A ) model.eval() a = model(A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self , A , A , A ) -> Dict: '''simple docstring''' a = self.num_labels a = DPTForSemanticSegmentation(A ) model.to(A ) model.eval() a = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a : Union[str, Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a : Optional[int] = False a : List[Any] = False a : int = False def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = DPTModelTester(self ) a = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*A ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True if model_class in get_values(A ): continue a = model_class(A ) model.to(A ) model.train() a = self._prepare_for_class(A , A , return_labels=A ) a = model(**A ).loss loss.backward() def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = False a = True if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue a = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() a = self._prepare_for_class(A , A , return_labels=A ) a = model(**A ).loss loss.backward() def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = _config_zero_init(A ) for model_class in self.all_model_classes: a = model_class(config=A ) # Skip the check for the backbone a = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' pass @slow def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a = DPTModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() a = "add" with self.assertRaises(A ): a = DPTForDepthEstimation(A ) def SCREAMING_SNAKE_CASE ( ) -> str: a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) a = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(A ) a = prepare_img() a = image_processor(images=A , return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): a = model(**A ) a = outputs.predicted_depth # verify the predicted depth a = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , A ) a = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , A , atol=1e-4 ) )
180
0
"""simple docstring""" from collections.abc import Callable def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : float = a UpperCAmelCase_ : float = b if function(_a ) == 0: # one of the a or b is a root for the function return a elif function(_a ) == 0: return b elif ( function(_a ) * function(_a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: UpperCAmelCase_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_a ) == 0: return mid elif function(_a ) * function(_a ) < 0: UpperCAmelCase_ : Tuple = mid else: UpperCAmelCase_ : Tuple = mid UpperCAmelCase_ : Optional[Any] = start + (end - start) / 2.0 return mid def snake_case ( A__ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
268
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow UpperCAmelCase =False class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ,lowerCamelCase_=3_2 ) -> Union[str, Any]: set_seed(0 ) A = UNetaDModel(sample_size=lowerCamelCase_ ,in_channels=3 ,out_channels=3 ) A = torch.optim.SGD(model.parameters() ,lr=0.00_01 ) return model, optimizer @slow def UpperCamelCase__ ( self ) -> List[Any]: A = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable A = DDPMScheduler( num_train_timesteps=1_0_0_0 ,beta_start=0.00_01 ,beta_end=0.02 ,beta_schedule="""linear""" ,clip_sample=lowerCamelCase_ ,) A = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_start=0.00_01 ,beta_end=0.02 ,beta_schedule="""linear""" ,clip_sample=lowerCamelCase_ ,) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) A = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 ,1 ).to(lowerCamelCase_ ) for _ in range(4 )] A = [torch.randn((4, 3, 3_2, 3_2) ).to(lowerCamelCase_ ) for _ in range(4 )] A = [torch.randint(0 ,1_0_0_0 ,(4,) ).long().to(lowerCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler A , A = self.get_model_optimizer(resolution=3_2 ) model.train().to(lowerCamelCase_ ) for i in range(4 ): optimizer.zero_grad() A = ddpm_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] ) A = model(lowerCamelCase_ ,timesteps[i] ).sample A = torch.nn.functional.mse_loss(lowerCamelCase_ ,noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM A , A = self.get_model_optimizer(resolution=3_2 ) model.train().to(lowerCamelCase_ ) for i in range(4 ): optimizer.zero_grad() A = ddim_scheduler.add_noise(clean_images[i] ,noise[i] ,timesteps[i] ) A = model(lowerCamelCase_ ,timesteps[i] ).sample A = torch.nn.functional.mse_loss(lowerCamelCase_ ,noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1E-5 ) ) self.assertTrue(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1E-5 ) )
77
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''distilbert''' _lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self ,lowerCamelCase_=3_0_5_2_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=False ,lowerCamelCase_=6 ,lowerCamelCase_=1_2 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=4 * 7_6_8 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.02 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.2 ,lowerCamelCase_=0 ,**lowerCamelCase_ ,) -> Dict: A = vocab_size A = max_position_embeddings A = sinusoidal_pos_embds A = n_layers A = n_heads A = dim A = hidden_dim A = dropout A = attention_dropout A = activation A = initializer_range A = qa_dropout A = seq_classif_dropout super().__init__(**lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
77
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a_ ( ): '''simple docstring''' print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def a_ ( _lowerCAmelCase : int ): '''simple docstring''' print('Generating prime p...' ) lowercase__ : Dict = rabinMiller.generate_large_prime(_lowerCAmelCase ) print('Generating prime q...' ) lowercase__ : List[str] = rabinMiller.generate_large_prime(_lowerCAmelCase ) lowercase__ : Tuple = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowercase__ : Dict = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_lowerCAmelCase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowercase__ : Tuple = cryptoMath.find_mod_inverse(_lowerCAmelCase , (p - 1) * (q - 1) ) lowercase__ : Dict = (n, e) lowercase__ : str = (n, d) return (public_key, private_key) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowercase__ , lowercase__ : int = generate_key(_lowerCAmelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
77
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "upernet" def __init__( self , a__=None , a__=512 , a__=0.0_2 , a__=[1, 2, 3, 6] , a__=True , a__=0.4 , a__=384 , a__=256 , a__=1 , a__=False , a__=255 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(a__ , a__ ): snake_case_ = backbone_config.get("model_type" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(a__ ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
85
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return 1 if input_a == input_a else 0 def UpperCAmelCase__ ( ) -> None: '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
355
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[Any] =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' lowercase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'encoder.deit.blocks.{i}.norm1.weight', f'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm1.bias', f'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.weight', f'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.attn.proj.bias', f'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.norm2.weight', f'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.norm2.bias', f'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.weight', f'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc1.bias', f'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (f'encoder.deit.blocks.{i}.mlp.fc2.weight', f'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'encoder.deit.blocks.{i}.mlp.fc2.bias', f'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) lowercase = state_dict.pop(f'encoder.deit.blocks.{i}.attn.qkv.weight' ) lowercase = in_proj_weight[ : encoder_config.hidden_size, : ] lowercase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] lowercase = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = dct.pop(lowerCAmelCase__ ) lowercase = val def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' if "handwritten" in checkpoint_url: lowercase = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = ViTConfig(image_size=3_8_4 , qkv_bias=lowerCAmelCase__ ) lowercase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: lowercase = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder lowercase = 1_0_2_4 lowercase = 4_0_9_6 lowercase = 2_4 lowercase = 1_6 lowercase = 1_0_2_4 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: lowercase = False lowercase = """relu""" lowercase = 1_0_2_4 lowercase = True lowercase = False lowercase = False # load HuggingFace model lowercase = ViTModel(lowerCAmelCase__ , add_pooling_layer=lowerCAmelCase__ ) lowercase = TrOCRForCausalLM(lowerCAmelCase__ ) lowercase = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" , check_hash=lowerCAmelCase__ )["""model"""] lowercase = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowerCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: lowercase = val else: lowercase = val # load state dict model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image lowercase = ViTImageProcessor(size=encoder_config.image_size ) lowercase = RobertaTokenizer.from_pretrained("""roberta-large""" ) lowercase = TrOCRProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = processor(images=prepare_img(lowerCAmelCase__ ) , return_tensors="""pt""" ).pixel_values # verify logits lowercase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) lowercase = model(pixel_values=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) lowercase = outputs.logits lowercase = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: lowercase = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: lowercase = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: lowercase = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: lowercase = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , lowerCAmelCase__ , atol=1e-3 ), "First elements of logits not as expected" Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __lowerCAmelCase : Dict =parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
32
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=() , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Tuple="no" , SCREAMING_SNAKE_CASE : Dict="29500" ): '''simple docstring''' lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[int] = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): lowerCAmelCase : int = True elif "IPython" in sys.modules: lowerCAmelCase : List[str] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: lowerCAmelCase : str = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: lowerCAmelCase : Optional[Any] = 8 lowerCAmelCase : Any = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="TPU" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="127.0.01" , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="MULTI_GPU" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCAmelCase : Tuple = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict=() , SCREAMING_SNAKE_CASE : Any=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): lowerCAmelCase : Optional[Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE ) start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="fork" )
108
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] ="data2vec-vision" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=[3, 5, 7, 11] , snake_case__=[1, 2, 3, 6] , snake_case__=True , snake_case__=0.4 , snake_case__=256 , snake_case__=1 , snake_case__=False , snake_case__=255 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : int = initializer_range lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Union[str, Any] = use_mask_token lowerCAmelCase : str = use_absolute_position_embeddings lowerCAmelCase : Any = use_relative_position_bias lowerCAmelCase : List[str] = use_shared_relative_position_bias lowerCAmelCase : str = layer_scale_init_value lowerCAmelCase : Union[str, Any] = drop_path_rate lowerCAmelCase : Any = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase : Optional[int] = out_indices lowerCAmelCase : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase : str = use_auxiliary_head lowerCAmelCase : int = auxiliary_loss_weight lowerCAmelCase : Tuple = auxiliary_channels lowerCAmelCase : List[str] = auxiliary_num_convs lowerCAmelCase : Tuple = auxiliary_concat_input lowerCAmelCase : List[str] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
108
1
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class snake_case__ ( unittest.TestCase ): def A_ ( self : List[str] ) -> int: '''simple docstring''' __snake_case : Dict = get_activation('swish' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = get_activation('silu' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = get_activation('mish' ) self.assertIsInstance(__a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def A_ ( self : List[str] ) -> List[str]: '''simple docstring''' __snake_case : Tuple = get_activation('gelu' ) self.assertIsInstance(__a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ : int = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : str = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "pegasus" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __A=5_0265 , __A=1024 , __A=12 , __A=4096 , __A=16 , __A=12 , __A=4096 , __A=16 , __A=0.0 , __A=0.0 , __A=True , __A=True , __A="gelu" , __A=1024 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.02 , __A=0 , __A=False , __A=0 , __A=1 , __A=1 , **__A , ) -> Union[str, Any]: a =vocab_size a =max_position_embeddings a =d_model a =encoder_ffn_dim a =encoder_layers a =encoder_attention_heads a =decoder_ffn_dim a =decoder_layers a =decoder_attention_heads a =dropout a =attention_dropout a =activation_dropout a =activation_function a =init_std a =encoder_layerdrop a =decoder_layerdrop a =use_cache a =encoder_layers a =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self.d_model
81
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case ( snake_case__ :int , snake_case__ :List[str] , snake_case__ :Union[str, Any]) -> str: # Initialise PyTorch model _A = AlbertConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') _A = AlbertForPreTraining(snake_case__) # Load weights from tf checkpoint load_tf_weights_in_albert(snake_case__ , snake_case__ , snake_case__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , snake_case__) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
180
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase (a__ ): '''simple docstring''' _snake_case : Optional[Any] = '''new-model''' if is_tf_available(): class lowerCamelCase (a__ ): '''simple docstring''' _snake_case : List[Any] = NewModelConfig @require_tf class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : str = "bert-base-cased" UpperCAmelCase_ : str = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Any = TFAutoModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = "bert-base-cased" UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> Any: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[str] = TFAutoModelForCausalLM.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained(_UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> Tuple: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = TFAutoModelWithLMHead.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[str]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(_UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = TFAutoModelForSequenceClassification.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow def __UpperCAmelCase ( self ) -> List[str]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_probability def __UpperCAmelCase ( self ) -> Optional[int]: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : str = TFAutoModelForTableQuestionAnswering.from_pretrained( _UpperCamelCase , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = TFAutoModelWithLMHead.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCamelCase ) , 1_4_4_1_0 ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : List[str] = TFAutoModelWithLMHead.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCamelCase ) , 1_4_4_1_0 ) def __UpperCAmelCase ( self ) -> Optional[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel UpperCAmelCase_ : str = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = copy.deepcopy(model.config ) UpperCAmelCase_ : Optional[int] = ["FunnelBaseModel"] UpperCAmelCase_ : Dict = TFAutoModel.from_config(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Dict = TFAutoModel.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: try: AutoConfig.register('new-model' , _UpperCamelCase ) UpperCAmelCase_ : List[str] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_UpperCamelCase ): auto_class.register(_UpperCamelCase , _UpperCamelCase ) auto_class.register(_UpperCamelCase , _UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCamelCase ): auto_class.register(_UpperCamelCase , _UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase_ : Optional[int] = BertModelTester(self ).get_config() UpperCAmelCase_ : List[Any] = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase_ : List[Any] = auto_class.from_config(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : List[str] = auto_class.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __UpperCAmelCase ( self ) -> List[str]: with self.assertRaisesRegex( _UpperCamelCase , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase_ : List[Any] = TFAutoModel.from_pretrained('bert-base' ) def __UpperCAmelCase ( self ) -> Dict: with self.assertRaisesRegex( _UpperCamelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase_ : Dict = TFAutoModel.from_pretrained(_UpperCamelCase , revision='aaaaaa' ) def __UpperCAmelCase ( self ) -> List[Any]: with self.assertRaisesRegex( _UpperCamelCase , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): UpperCAmelCase_ : Any = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __UpperCAmelCase ( self ) -> Any: with self.assertRaisesRegex(_UpperCamelCase , 'Use `from_pt=True` to load this model' ): UpperCAmelCase_ : int = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def __UpperCAmelCase ( self ) -> List[str]: # Make sure we have cached the model. UpperCAmelCase_ : List[Any] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: UpperCAmelCase_ : List[Any] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase_ : Any = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: UpperCAmelCase_ : List[str] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
370
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __UpperCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __UpperCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' def remove_articles(__snake_case : Tuple ): UpperCAmelCase_ : Optional[int] = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__snake_case , ' ' , __snake_case ) def white_space_fix(__snake_case : int ): return " ".join(text.split() ) def remove_punc(__snake_case : int ): UpperCAmelCase_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = [any(compute_exact(__snake_case , __snake_case ) for ref in refs ) for pred, refs in zip(__snake_case , __snake_case )] return (sum(__snake_case ) / len(__snake_case )) * 100 def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_ : str = Counter(__snake_case ) UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : int = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_ : Any = scount * numref UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : Dict = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_ : int = ccount * numref # KEEP UpperCAmelCase_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_ : Any = keepgramcounter_rep & rgramcounter UpperCAmelCase_ : Union[str, Any] = sgramcounter_rep & rgramcounter UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Optional[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : List[str] = keeptmpscorea / len(__snake_case ) if len(__snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_ : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_ : Optional[int] = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_ : Dict = delgramcounter_rep - rgramcounter UpperCAmelCase_ : Optional[Any] = sgramcounter_rep - rgramcounter UpperCAmelCase_ : str = 0 UpperCAmelCase_ : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = deltmpscorea / len(__snake_case ) # ADDITION UpperCAmelCase_ : Tuple = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : Union[str, Any] = set(__snake_case ) & set(__snake_case ) UpperCAmelCase_ : Dict = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Any = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = addtmpscore / len(__snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Optional[int] = addtmpscore / len(__snake_case ) UpperCAmelCase_ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = len(__snake_case ) UpperCAmelCase_ : List[str] = ssent.split(' ' ) UpperCAmelCase_ : Union[str, Any] = csent.split(' ' ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Tuple = [] for rsent in rsents: UpperCAmelCase_ : List[Any] = rsent.split(' ' ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = [] ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Tuple = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : str = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Optional[int] = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : Tuple = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : List[str] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_ : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase__ ( __snake_case : List[Any] , __snake_case : bool = True , __snake_case : str = "13a" , __snake_case : bool = True ): '''simple docstring''' if lowercase: UpperCAmelCase_ : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_ : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__snake_case )()(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__snake_case ) elif tokenizer == "moses": UpperCAmelCase_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(__snake_case , return_str=__snake_case , escape=__snake_case ) elif tokenizer == "penn": UpperCAmelCase_ : Dict = sacremoses.MosesTokenizer().penn_tokenize(__snake_case , return_str=__snake_case ) else: UpperCAmelCase_ : int = sentence if not return_str: UpperCAmelCase_ : Any = normalized_sent.split() return normalized_sent def lowercase__ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict ): '''simple docstring''' if not (len(__snake_case ) == len(__snake_case ) == len(__snake_case )): raise ValueError('Sources length must match predictions and references lengths.' ) UpperCAmelCase_ : Tuple = 0 for src, pred, refs in zip(__snake_case , __snake_case , __snake_case ): sari_score += SARIsent(normalize(__snake_case ) , normalize(__snake_case ) , [normalize(__snake_case ) for sent in refs] ) UpperCAmelCase_ : Any = sari_score / len(__snake_case ) return 100 * sari_score def lowercase__ ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : str="exp" , __snake_case : Any=None , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=False , __snake_case : List[str]=False , ): '''simple docstring''' UpperCAmelCase_ : int = len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase_ : Dict = [[refs[i] for refs in references] for i in range(__snake_case )] UpperCAmelCase_ : str = sacrebleu.corpus_bleu( __snake_case , __snake_case , smooth_method=__snake_case , smooth_value=__snake_case , force=__snake_case , lowercase=__snake_case , use_effective_order=__snake_case , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : List[Any] = {} result.update({'sari': compute_sari(sources=_UpperCamelCase , predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'exact': compute_em(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) return result
145
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> None: warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , a , ) super().__init__(*a , **a )
77
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase_ ( _a): lowerCamelCase__ : Dict = ["image_processor", "tokenizer"] lowerCamelCase__ : Dict = "BlipImageProcessor" lowerCamelCase__ : Union[str, Any] = "AutoTokenizer" def __init__( self , a , a , a ) -> Optional[int]: super().__init__(a , a ) # add QFormer tokenizer lowercase__ : Dict = qformer_tokenizer def __call__( self , a = None , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = False , a = False , a = False , a = False , a = False , a = True , a = None , **a , ) -> BatchFeature: if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) lowercase__ : List[Any] = BatchFeature() if text is not None: lowercase__ : Optional[int] = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) encoding.update(a ) lowercase__ : Optional[int] = self.qformer_tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) lowercase__ : List[str] = qformer_text_encoding.pop('input_ids' ) lowercase__ : Any = qformer_text_encoding.pop('attention_mask' ) if images is not None: lowercase__ : List[Any] = self.image_processor(a , return_tensors=a ) encoding.update(a ) return encoding def _UpperCAmelCase ( self , *a , **a ) -> List[str]: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> Tuple: return self.tokenizer.decode(*a , **a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = self.tokenizer.model_input_names lowercase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _UpperCAmelCase ( self , a , **a ) -> Optional[int]: if os.path.isfile(a ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(a , exist_ok=a ) lowercase__ : int = os.path.join(a , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(a ) return super().save_pretrained(a , **a ) @classmethod def _UpperCAmelCase ( cls , a , **a ) -> str: lowercase__ : str = AutoTokenizer.from_pretrained(a , subfolder='qformer_tokenizer' ) lowercase__ : int = cls._get_arguments_from_pretrained(a , **a ) args.append(a ) return cls(*a )
77
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _a ( a :Tuple ) -> int: a = tmp_path / '''file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :int ) -> List[str]: a = tmp_path / '''malformed_file.csv''' a = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Dict , a :int ) -> List[str]: a = tmp_path / '''csv_with_image.csv''' a = textwrap.dedent( F"""\ image {image_file} """ ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :List[Any] ) -> Dict: a = tmp_path / '''csv_with_label.csv''' a = textwrap.dedent( '''\ label good bad good ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) @pytest.fixture def _a ( a :Tuple ) -> Any: a = tmp_path / '''csv_with_int_list.csv''' a = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(a , '''w''' ) as f: f.write(a ) return str(a ) def _a ( a :Dict , a :int , a :Union[str, Any] ) -> List[Any]: a = Csv() a = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(a , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a ) in record.message for record in caplog.records ) @require_pil def _a ( a :Dict ) -> Any: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1] a = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) a = csv._generate_tables([[csv_file_with_image]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() a = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _a ( a :Any ) -> Tuple: with open(a , encoding='''utf-8''' ) as f: a = f.read().splitlines()[1:] a = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) a = csv._generate_tables([[csv_file_with_label]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() a = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(a ) for label in labels] def _a ( a :Union[str, Any] ) -> Optional[Any]: a = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a : [int(a ) for i in x.split()]} ) a = csv._generate_tables([[csv_file_with_int_list]] ) a = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) a = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
26
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
1
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A__ = logging.get_logger(__name__) A__ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) A__ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A__ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) A__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) A__ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) A__ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) A__ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) A__ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) A__ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) A__ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) A__ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) A__ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) A__ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) A__ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) A__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class a ( _BaseAutoModelClass ): __lowerCAmelCase : List[Any] = FLAX_MODEL_MAPPING A__ = auto_class_update(FlaxAutoModel) class a ( _BaseAutoModelClass ): __lowerCAmelCase : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING A__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class a ( _BaseAutoModelClass ): __lowerCAmelCase : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class a ( _BaseAutoModelClass ): __lowerCAmelCase : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING A__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class a ( _BaseAutoModelClass ): __lowerCAmelCase : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class a ( _BaseAutoModelClass ): __lowerCAmelCase : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class a ( _BaseAutoModelClass ): __lowerCAmelCase : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class a ( _BaseAutoModelClass ): __lowerCAmelCase : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class a ( _BaseAutoModelClass ): __lowerCAmelCase : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class a ( _BaseAutoModelClass ): __lowerCAmelCase : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class a ( _BaseAutoModelClass ): __lowerCAmelCase : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class a ( _BaseAutoModelClass ): __lowerCAmelCase : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class a ( _BaseAutoModelClass ): __lowerCAmelCase : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
230
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Optional[int] = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCAmelCase_ : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''mask2former''' snake_case__ : Any = ['''swin'''] snake_case__ : str = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 1_0_2_4 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 6 , SCREAMING_SNAKE_CASE__ : int = 1_0 , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 2_0_4_8 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 2_5_5 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 2.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : int = 1_2_5_4_4 , SCREAMING_SNAKE_CASE__ : float = 3.0 , SCREAMING_SNAKE_CASE__ : float = 0.75 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 1_6, 3_2] , SCREAMING_SNAKE_CASE__ : bool = None , **SCREAMING_SNAKE_CASE__ : int , ) -> List[Any]: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) a_ : Dict = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Any = backbone_config.pop('model_type' ) a_ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] a_ : List[str] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) a_ : Dict = backbone_config a_ : List[str] = feature_size a_ : List[str] = mask_feature_size a_ : int = hidden_dim a_ : Dict = encoder_feedforward_dim a_ : str = activation_function a_ : List[str] = encoder_layers a_ : List[str] = decoder_layers a_ : Dict = num_attention_heads a_ : str = dropout a_ : Tuple = dim_feedforward a_ : List[str] = pre_norm a_ : Optional[int] = enforce_input_projection a_ : Any = common_stride a_ : Optional[int] = ignore_value a_ : int = num_queries a_ : Tuple = no_object_weight a_ : Dict = class_weight a_ : Optional[int] = mask_weight a_ : Optional[int] = dice_weight a_ : str = train_num_points a_ : List[str] = oversample_ratio a_ : List[Any] = importance_sample_ratio a_ : Any = init_std a_ : Union[str, Any] = init_xavier_std a_ : Union[str, Any] = use_auxiliary_loss a_ : Dict = feature_strides a_ : List[str] = output_auxiliary_logits a_ : Dict = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict[str, any]: a_ : Optional[int] = copy.deepcopy(self.__dict__ ) a_ : List[Any] = self.backbone_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output
32
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class A ( snake_case_ ,snake_case_ ,unittest.TestCase ): lowercase_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase_ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict=False ) -> Optional[Any]: """simple docstring""" _a = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): _a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class A ( snake_case_ ): def __init__( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=13 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=99 , lowerCAmelCase_ : int=32 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : Tuple=37 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : Optional[int]=16 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Any=None , ) -> int: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope _a = embedding_size def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> int: """simple docstring""" _a = TFMobileBertModel(config=lowerCAmelCase_ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = model(lowerCAmelCase_ ) _a = [input_ids, input_mask] _a = model(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ) -> Union[str, Any]: """simple docstring""" _a = TFMobileBertForMaskedLM(config=lowerCAmelCase_ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" _a = TFMobileBertForNextSentencePrediction(config=lowerCAmelCase_ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Tuple: """simple docstring""" _a = TFMobileBertForPreTraining(config=lowerCAmelCase_ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = model(lowerCAmelCase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" _a = self.num_labels _a = TFMobileBertForSequenceClassification(config=lowerCAmelCase_ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ) -> List[str]: """simple docstring""" _a = self.num_choices _a = TFMobileBertForMultipleChoice(config=lowerCAmelCase_ ) _a = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) _a = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] ) -> Optional[int]: """simple docstring""" _a = self.num_labels _a = TFMobileBertForTokenClassification(config=lowerCAmelCase_ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ) -> List[str]: """simple docstring""" _a = TFMobileBertForQuestionAnswering(config=lowerCAmelCase_ ) _a = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _a = self.prepare_config_and_inputs() ( _a ) = config_and_inputs _a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _a = TFMobileBertModelTest.TFMobileBertModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase_ ) @slow def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: _a = TFMobileBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _a = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _a = tf.constant([[0, 1, 2, 3, 4, 5]] ) _a = model(lowerCAmelCase_ )[0] _a = [1, 6, 3_05_22] self.assertEqual(output.shape , lowerCAmelCase_ ) _a = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 )
356
'''simple docstring''' def snake_case_ (UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def snake_case_ (UpperCamelCase : Any , UpperCamelCase : str=0 ): '''simple docstring''' return sorted(UpperCamelCase , key=lambda UpperCamelCase : x[column] ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any]=float('''inf''' ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCamelCase ): _a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _a = current_dis return min_dis def snake_case_ (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[str]=float('''inf''' ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , UpperCamelCase ): for j in range(max(0 , i - 6 ) , UpperCamelCase ): _a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _a = current_dis return min_dis def snake_case_ (UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : int ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(UpperCamelCase , UpperCamelCase ) # recursion _a = points_counts // 2 _a = closest_pair_of_points_sqr( UpperCamelCase , points_sorted_on_y[:mid] , UpperCamelCase ) _a = closest_pair_of_points_sqr( UpperCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) _a = min(UpperCamelCase , UpperCamelCase ) _a = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCamelCase ) _a = dis_between_closest_in_strip( UpperCamelCase , len(UpperCamelCase ) , UpperCamelCase ) return min(UpperCamelCase , UpperCamelCase ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' _a = column_based_sort(UpperCamelCase , column=0 ) _a = column_based_sort(UpperCamelCase , column=1 ) return ( closest_pair_of_points_sqr( UpperCamelCase , UpperCamelCase , UpperCamelCase ) ) ** 0.5 if __name__ == "__main__": _snake_case : int = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
179
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = get_activation('''swish''' ) self.assertIsInstance(__UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" a = get_activation('''silu''' ) self.assertIsInstance(__UpperCAmelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = get_activation('''mish''' ) self.assertIsInstance(__UpperCAmelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = get_activation('''gelu''' ) self.assertIsInstance(__UpperCAmelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase : str = logging.getLogger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf_8""" ) as f: lowercase : str = csv.reader(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = [] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Optional[int] = [] for dataset in encoded_datasets: lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowercase : Union[str, Any] = np.zeros((n_batch, 2) , dtype=np.intaa ) lowercase : Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowercase : Optional[int] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowercase : int = with_conta lowercase : Dict = with_conta lowercase : Dict = len(SCREAMING_SNAKE_CASE__ ) - 1 lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) - 1 lowercase : Dict = with_conta lowercase : List[Any] = with_conta lowercase : Tuple = mc_label lowercase : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _snake_case( ) -> int: lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=SCREAMING_SNAKE_CASE__ , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=SCREAMING_SNAKE_CASE__ , default="""""" ) parser.add_argument("""--eval_dataset""" , type=SCREAMING_SNAKE_CASE__ , default="""""" ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument("""--num_train_epochs""" , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument("""--train_batch_size""" , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument("""--eval_batch_size""" , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=SCREAMING_SNAKE_CASE__ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=SCREAMING_SNAKE_CASE__ , default=6.2_5e-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=SCREAMING_SNAKE_CASE__ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=SCREAMING_SNAKE_CASE__ , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=SCREAMING_SNAKE_CASE__ , default=0.01 ) parser.add_argument("""--lm_coef""" , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument("""--n_valid""" , type=SCREAMING_SNAKE_CASE__ , default=374 ) parser.add_argument("""--server_ip""" , type=SCREAMING_SNAKE_CASE__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=SCREAMING_SNAKE_CASE__ , default="""""" , help="""Can be used for distant debugging.""" ) lowercase : Any = parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowercase : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase : List[str] = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowercase : str = ["""_start_""", """_delimiter_""", """_classify_"""] lowercase : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info("""Encoding dataset...""" ) lowercase : Tuple = load_rocstories_dataset(args.train_dataset ) lowercase : Dict = load_rocstories_dataset(args.eval_dataset ) lowercase : List[str] = (train_dataset, eval_dataset) lowercase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer lowercase : str = model.config.n_positions // 2 - 2 lowercase : List[Any] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowercase : List[Any] = min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowercase : List[str] = pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Any = tensor_datasets[0], tensor_datasets[1] lowercase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = RandomSampler(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) lowercase : List[Any] = TensorDataset(*SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = SequentialSampler(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowercase : Any = args.max_steps lowercase : Tuple = args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: lowercase : str = len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs lowercase : str = list(model.named_parameters() ) lowercase : str = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] lowercase : str = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] lowercase : List[Any] = AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) lowercase : Optional[Any] = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: lowercase , lowercase , lowercase : List[Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): lowercase : int = 0 lowercase : Tuple = 0 lowercase : str = tqdm(SCREAMING_SNAKE_CASE__ , desc="""Training""" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) lowercase , lowercase , lowercase , lowercase : str = batch lowercase : Any = model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowercase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowercase : int = """Training loss: {:.2e} lr: {:.2e}""".format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowercase : Tuple = model.module if hasattr(SCREAMING_SNAKE_CASE__ , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowercase : Tuple = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowercase : int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowercase : int = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() lowercase , lowercase : int = 0, 0 lowercase , lowercase : List[str] = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc="""Evaluating""" ): lowercase : Any = tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) lowercase , lowercase , lowercase , lowercase : int = batch with torch.no_grad(): lowercase , lowercase , lowercase , lowercase : Optional[Any] = model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = mc_logits.detach().cpu().numpy() lowercase : List[Any] = mc_labels.to("""cpu""" ).numpy() lowercase : str = accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowercase : Tuple = eval_loss / nb_eval_steps lowercase : Dict = eval_accuracy / nb_eval_examples lowercase : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowercase : Optional[int] = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} lowercase : Union[str, Any] = os.path.join(args.output_dir , """eval_results.txt""" ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
285
from bisect import bisect from itertools import accumulate def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Dict = sorted(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , key=lambda SCREAMING_SNAKE_CASE__ : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[Any] = [i[0] for i in r], [i[1] for i in r] lowercase : Any = list(accumulate(SCREAMING_SNAKE_CASE__ ) ) lowercase : int = bisect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
285
1
"""simple docstring""" import os _a = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def __a ( __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[str] = 0 while index < len(__lowerCamelCase ) - 1: UpperCAmelCase_ : Tuple = SYMBOLS[numerals[index]] UpperCAmelCase_ : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = num // 1000 numerals += m_count * "M" num %= 1000 UpperCAmelCase_ : Any = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCAmelCase_ : str = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __a ( __lowerCamelCase = "/p089_roman.txt" ): UpperCAmelCase_ : int = 0 with open(os.path.dirname(__lowerCamelCase ) + roman_numerals_filename ) as filea: UpperCAmelCase_ : Optional[Any] = filea.readlines() for line in lines: UpperCAmelCase_ : Tuple = line.strip() UpperCAmelCase_ : Optional[Any] = parse_roman_numerals(__lowerCamelCase ) UpperCAmelCase_ : Tuple = generate_roman_numerals(__lowerCamelCase ) savings += len(__lowerCamelCase ) - len(__lowerCamelCase ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
61
'''simple docstring''' def __UpperCAmelCase ( a_: str, a_: str ): if len(a_ ) != len(a_ ): raise ValueError("String lengths must match!" ) _UpperCAmelCase : Dict = 0 for chara, chara in zip(a_, a_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
145
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): __a = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: __a = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) snake_case__ : Any = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case__ : List[Any] = numpy_to_pil(_SCREAMING_SNAKE_CASE ) return images def __snake_case( _lowerCAmelCase ) -> Any: if images.ndim == 3: snake_case__ : Dict = images[None, ...] snake_case__ : Optional[Any] = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images snake_case__ : int = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: snake_case__ : int = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for image in images] return pil_images
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "markuplm" def __init__( self : List[Any] , snake_case_ : List[Any]=30_522 , snake_case_ : Tuple=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : str=12 , snake_case_ : Optional[Any]=3_072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : str=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Dict=512 , snake_case_ : Tuple=2 , snake_case_ : List[str]=0.02 , snake_case_ : int=1E-1_2 , snake_case_ : Any=0 , snake_case_ : Any=0 , snake_case_ : str=2 , snake_case_ : Optional[int]=256 , snake_case_ : Optional[int]=1_024 , snake_case_ : str=216 , snake_case_ : List[str]=1_001 , snake_case_ : Optional[Any]=32 , snake_case_ : int=50 , snake_case_ : Tuple="absolute" , snake_case_ : Tuple=True , snake_case_ : int=None , **snake_case_ : str , ): super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : List[Any] = position_embedding_type snake_case__ : Any = use_cache snake_case__ : Union[str, Any] = classifier_dropout # additional properties snake_case__ : List[str] = max_depth snake_case__ : int = max_xpath_tag_unit_embeddings snake_case__ : Tuple = max_xpath_subs_unit_embeddings snake_case__ : Dict = tag_pad_id snake_case__ : Union[str, Any] = subs_pad_id snake_case__ : Tuple = xpath_unit_hidden_size
43
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = 'Hello world! cécé herlolip' def __UpperCamelCase ( lowercase__ : str , lowercase__ : str , lowercase__ : bool ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = FairseqRobertaModel.from_pretrained(lowercase__ ) roberta.eval() # disable dropout lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.sentence_encoder lowerCAmelCase_ : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCAmelCase_ : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowercase__ ) lowerCAmelCase_ : Any = XLMRobertaXLForSequenceClassification(lowercase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowercase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ : List[str] = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase_ : Dict = roberta_sent_encoder.embed_positions.weight lowerCAmelCase_ : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase_ : Optional[int] = roberta_sent_encoder.layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ : BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase_ : RobertaAttention = layer.attention lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.weight lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase_ : Tuple = roberta_layer.self_attn.k_proj.weight lowerCAmelCase_ : Dict = roberta_layer.self_attn.k_proj.bias lowerCAmelCase_ : List[str] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase_ : int = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase_ : List[str] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase_ : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase_ : Tuple = roberta_layer.final_layer_norm.weight lowerCAmelCase_ : Dict = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : List[str] = roberta_layer.fca.weight lowerCAmelCase_ : Optional[int] = roberta_layer.fca.bias # output lowerCAmelCase_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : Dict = roberta_layer.fca.weight lowerCAmelCase_ : Any = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase_ : Any = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase_ : List[str] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ : Optional[int] = roberta.model.encoder.lm_head.weight lowerCAmelCase_ : int = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ : torch.Tensor = roberta.encode(lowercase__ ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase_ : str = model(lowercase__ )[0] if classification_head: lowerCAmelCase_ : str = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowercase__ ) ) else: lowerCAmelCase_ : Any = roberta.model(lowercase__ )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 lowerCAmelCase_ : Optional[int] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowercase__ ).mkdir(parents=lowercase__ , exist_ok=lowercase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCAmelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
28
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__( self ): '''simple docstring''' __A : Union[str, Any] = 1 __A : Any = 3 __A : List[str] = (32, 32) __A : List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : List[Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__lowerCamelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Any = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def UpperCamelCase__( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A : int = self.dummy_cond_unet_upscale __A : Union[str, Any] = DDPMScheduler() __A : Dict = DDIMScheduler(prediction_type='''v_prediction''' ) __A : int = self.dummy_vae __A : int = self.dummy_text_encoder __A : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : Any = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __A : Dict = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : str = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : List[str] = '''A painting of a squirrel eating a burger''' __A : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : List[str] = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images __A : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : str = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=__lowerCamelCase , )[0] __A : Tuple = image[0, -3:, -3:, -1] __A : int = image_from_tuple[0, -3:, -3:, -1] __A : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __A : str = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __A : Dict = self.dummy_cond_unet_upscale __A : List[str] = DDPMScheduler() __A : str = DDIMScheduler(prediction_type='''v_prediction''' ) __A : Optional[int] = self.dummy_vae __A : Optional[Any] = self.dummy_text_encoder __A : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : int = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __A : Any = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : Any = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Any = '''A painting of a squirrel eating a burger''' __A : Any = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images assert image.shape[0] == 2 __A : Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : Any = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __A : Union[str, Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.dummy_cond_unet_upscale __A : int = DDPMScheduler() __A : List[Any] = DDIMScheduler(prediction_type='''v_prediction''' ) __A : Optional[Any] = self.dummy_vae __A : List[str] = self.dummy_text_encoder __A : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __A : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : int = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __A : Union[str, Any] = unet.half() __A : Optional[int] = text_encoder.half() # make sure here that pndm scheduler skips prk __A : Optional[int] = StableDiffusionUpscalePipeline( unet=__lowerCamelCase , low_res_scheduler=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , max_noise_level=350 , ) __A : Union[str, Any] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Union[str, Any] = '''A painting of a squirrel eating a burger''' __A : Optional[Any] = torch.manual_seed(0 ) __A : Tuple = sd_pipe( [prompt] , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''np''' , ).images __A : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __A : str = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __A : Union[str, Any] = '''a cat sitting on a park bench''' __A : Union[str, Any] = torch.manual_seed(0 ) __A : Optional[Any] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type='''np''' , ) __A : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __A : Optional[int] = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() __A : Dict = '''a cat sitting on a park bench''' __A : Any = torch.manual_seed(0 ) __A : Optional[int] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , output_type='''np''' , ) __A : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase__( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __A : List[str] = '''stabilityai/stable-diffusion-x4-upscaler''' __A : Dict = StableDiffusionUpscalePipeline.from_pretrained( __lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __A : Tuple = '''a cat sitting on a park bench''' __A : Tuple = torch.manual_seed(0 ) __A : List[str] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , output_type='''np''' , ) __A : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
179
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class __snake_case: '''simple docstring''' def __init__( self ) -> str: lowerCAmelCase = {} def __snake_case ( self , A_ ) -> None: lowerCAmelCase = {} def __snake_case ( self , A_ , A_ , A_ ) -> None: if nodea not in self.connections: self.add_node(A_ ) if nodea not in self.connections: self.add_node(A_ ) lowerCAmelCase = probability def __snake_case ( self ) -> list[str]: return list(self.connections ) def __snake_case ( self , A_ ) -> str: lowerCAmelCase = 0 lowerCAmelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[tuple[str, str, float]] , _SCREAMING_SNAKE_CASE : int ) -> dict[str, int]: """simple docstring""" lowerCAmelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = Counter(graph.get_nodes() ) lowerCAmelCase = start for _ in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = graph.transition(_SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
187
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> List[str]: lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowerCAmelCase = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(A_ ) from datasets import load_dataset lowerCAmelCase = load_dataset("""nielsr/rvlcdip-demo""" ) lowerCAmelCase = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowerCAmelCase = image_processor(A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**A_ ) lowerCAmelCase = outputs.logits lowerCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , A_ ) lowerCAmelCase = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=A_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
187
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCAmelCase = pytest.mark.integration lowerCAmelCase = {'comet'} lowerCAmelCase = importlib.util.find_spec('fairseq') is not None lowerCAmelCase = {'code_eval'} lowerCAmelCase = os.name == 'nt' lowerCAmelCase = {'bertscore', 'frugalscore', 'perplexity'} lowerCAmelCase = importlib.util.find_spec('transformers') is not None def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @wraps(lowerCAmelCase_ ) def wrapper(self , SCREAMING_SNAKE_CASE ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @wraps(lowerCAmelCase_ ) def wrapper(self , SCREAMING_SNAKE_CASE ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @wraps(lowerCAmelCase_ ) def wrapper(self , SCREAMING_SNAKE_CASE ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , lowerCAmelCase_ ) return wrapper def _a ( ): """simple docstring""" lowercase__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @local class _a ( parameterized.TestCase ): _lowercase : int = {} _lowercase : Any = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: str ) -> Optional[int]: """simple docstring""" lowercase__ = '''[...]''' lowercase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , lowerCAmelCase_ ) ).module_path ) lowercase__ = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase_ ) # check parameters lowercase__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCAmelCase_ , metric_module.__name__ ): with self.use_local_metrics(): try: lowercase__ = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple ) -> List[str]: """simple docstring""" lowercase__ = '''[...]''' lowercase__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , lowerCAmelCase_ ) ).module_path ) # run doctest with self.use_local_metrics(): lowercase__ = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase_ ( self: str , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] ) -> int: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase_ ): yield else: yield @contextmanager def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" def load_local_metric(UpperCamelCase_: Any , *UpperCamelCase_: str , **UpperCamelCase_: List[str] ): return load_metric(os.path.join('''metrics''' , lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ ) with patch('''datasets.load_metric''' ) as mock_load_metric: lowercase__ = load_local_metric yield @classmethod def lowerCamelCase_ ( cls: List[str] , UpperCamelCase_: List[Any] ) -> List[str]: """simple docstring""" def wrapper(UpperCamelCase_: str ): lowercase__ = contextmanager(lowerCAmelCase_ ) lowercase__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class _a ( _UpperCamelCase ): def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: lowercase__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCAmelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: lowercase__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def load_from_checkpoint(SCREAMING_SNAKE_CASE ): class _a : def lowerCamelCase_ ( self: Any , UpperCamelCase_: Any , *UpperCamelCase_: Any , **UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" assert len(lowerCAmelCase_ ) == 2 lowercase__ = [0.19, 0.92] return scores, sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: lowercase__ = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: lowercase__ = load_from_checkpoint yield def _a ( ): """simple docstring""" lowercase__ = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) lowercase__ = '''ERROR''' lowercase__ = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(lowerCAmelCase_ , match=re.escape(lowerCAmelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCAmelCase_ )
110
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
284
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) UpperCAmelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase_ = model_type_to_module_name(__lowerCAmelCase ) lowercase_ = importlib.import_module(F'''.{module_name}''' , """transformers.models""" ) try: return getattr(__lowerCAmelCase , __lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__lowerCAmelCase , """__name__""" , __lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase_ = importlib.import_module("""transformers""" ) if hasattr(__lowerCAmelCase , __lowerCAmelCase ): return getattr(__lowerCAmelCase , __lowerCAmelCase ) return None def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , **__lowerCAmelCase , ) -> str: '''simple docstring''' lowercase_ = get_file_from_repo( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(__lowerCAmelCase , encoding="""utf-8""" ) as reader: return json.load(__lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int]): """simple docstring""" raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""") @classmethod @replace_list_option_in_docstrings(lowerCAmelCase_) def _UpperCAmelCase ( cls : Any , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = kwargs.pop("""config""" , lowerCAmelCase_) lowercase_ = kwargs.pop("""trust_remote_code""" , lowerCAmelCase_) lowercase_ = True lowercase_ , lowercase_ = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = config_dict.get("""image_processor_type""" , lowerCAmelCase_) lowercase_ = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {}): lowercase_ = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowercase_ = config_dict.pop("""feature_extractor_type""" , lowerCAmelCase_) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""") lowercase_ = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""") if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {}): lowercase_ = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] lowercase_ = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""") logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""") # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_) # It could be in `config.image_processor_type`` lowercase_ = getattr(lowerCAmelCase_ , """image_processor_type""" , lowerCAmelCase_) if hasattr(lowerCAmelCase_ , """auto_map""") and "AutoImageProcessor" in config.auto_map: lowercase_ = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: lowercase_ = image_processor_class_from_name(lowerCAmelCase_) lowercase_ = image_processor_auto_map is not None lowercase_ = image_processor_class is not None or type(lowerCAmelCase_) in IMAGE_PROCESSOR_MAPPING lowercase_ = resolve_trust_remote_code( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) if has_remote_code and trust_remote_code: lowercase_ = get_class_from_dynamic_module( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = kwargs.pop("""code_revision""" , lowerCAmelCase_) if os.path.isdir(lowerCAmelCase_): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCAmelCase_) in IMAGE_PROCESSOR_MAPPING: lowercase_ = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase_)] return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}''') @staticmethod def _UpperCAmelCase ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase_ , lowerCAmelCase_)
313
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def A_ ( _lowercase, _lowercase=False ): '''simple docstring''' snake_case_ :List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case_ :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def A_ ( _lowercase, _lowercase, _lowercase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ :Any = """""" else: snake_case_ :str = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ :str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case_ :Any = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ :Dict = in_proj_weight[ : config.hidden_size, : ] snake_case_ :int = in_proj_bias[: config.hidden_size] snake_case_ :str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ :str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ :Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case_ :Union[str, Any] = in_proj_bias[-config.hidden_size :] def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' snake_case_ :int = dct.pop(_lowercase ) snake_case_ :Tuple = val def A_ ( ): '''simple docstring''' snake_case_ :Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ :Union[str, Any] = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ) return im @torch.no_grad() def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case_ :Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case_ :int = 1000 snake_case_ :Optional[int] = """huggingface/label-files""" snake_case_ :List[Any] = """imagenet-1k-id2label.json""" snake_case_ :str = json.load(open(hf_hub_download(_lowercase, _lowercase, repo_type="""dataset""" ), """r""" ) ) snake_case_ :Dict = {int(_lowercase ): v for k, v in idalabel.items()} snake_case_ :Optional[Any] = idalabel snake_case_ :Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case_ :Any = int(deit_name[-6:-4] ) snake_case_ :Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case_ :Tuple = 192 snake_case_ :Optional[int] = 768 snake_case_ :Tuple = 12 snake_case_ :Tuple = 3 elif deit_name[9:].startswith("""small""" ): snake_case_ :List[Any] = 384 snake_case_ :Dict = 1536 snake_case_ :Optional[int] = 12 snake_case_ :str = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case_ :int = 1024 snake_case_ :List[Any] = 4096 snake_case_ :Any = 24 snake_case_ :Optional[int] = 16 # load original model from timm snake_case_ :int = timm.create_model(_lowercase, pretrained=_lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ :Any = timm_model.state_dict() snake_case_ :Optional[Any] = create_rename_keys(_lowercase, _lowercase ) for src, dest in rename_keys: rename_key(_lowercase, _lowercase, _lowercase ) read_in_q_k_v(_lowercase, _lowercase, _lowercase ) # load HuggingFace model snake_case_ :Union[str, Any] = DeiTForImageClassificationWithTeacher(_lowercase ).eval() model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case_ :Optional[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case_ :Any = DeiTImageProcessor(size=_lowercase, crop_size=config.image_size ) snake_case_ :List[str] = image_processor(images=prepare_img(), return_tensors="""pt""" ) snake_case_ :Optional[Any] = encoding["""pixel_values"""] snake_case_ :Optional[Any] = model(_lowercase ) snake_case_ :Dict = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase, outputs.logits, atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
66
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """ctrl""" a__ : Dict = ["""past_key_values"""] a__ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=246_534 , __lowercase=256 , __lowercase=1_280 , __lowercase=8_192 , __lowercase=48 , __lowercase=16 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-6 , __lowercase=0.02 , __lowercase=True , **__lowercase , ) -> List[Any]: __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :Optional[Any] = n_positions __UpperCamelCase :Dict = n_embd __UpperCamelCase :Dict = n_layer __UpperCamelCase :List[Any] = n_head __UpperCamelCase :int = dff __UpperCamelCase :Union[str, Any] = resid_pdrop __UpperCamelCase :Optional[int] = embd_pdrop __UpperCamelCase :List[Any] = layer_norm_epsilon __UpperCamelCase :Dict = initializer_range __UpperCamelCase :Any = use_cache super().__init__(**__lowercase)
43
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=False , ) -> int: _a = size if size is not None else {'''height''': 20, '''width''': 20} _a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_center_crop _a = crop_size _a = do_normalize _a = image_mean _a = image_std _a = do_reduce_labels def _UpperCAmelCase ( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def A_ ( ): """simple docstring""" _a = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) _a = Image.open(dataset[0]['''file'''] ) _a = Image.open(dataset[1]['''file'''] ) return image, map def A_ ( ): """simple docstring""" _a = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) _a = Image.open(ds[0]['''file'''] ) _a = Image.open(ds[1]['''file'''] ) _a = Image.open(ds[2]['''file'''] ) _a = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = BeitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Optional[int]: _a = BeitImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase ) _a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> int: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> Optional[int]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) _a = [] for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _a = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched _a = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) _a , _a = prepare_semantic_single_inputs() _a = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) _a , _a = prepare_semantic_batch_inputs() _a = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def _UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _a , _a = prepare_semantic_single_inputs() _a = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) _a = True _a = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
364
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 500000 __snake_case ,__snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def A_ ( _lowerCAmelCase : datasets.Dataset, **_lowerCAmelCase : Dict ): """simple docstring""" _a = dataset.map(**_lowerCAmelCase ) @get_duration def A_ ( _lowerCAmelCase : datasets.Dataset, **_lowerCAmelCase : Dict ): """simple docstring""" _a = dataset.filter(**_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _a = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) _a = generate_example_dataset( os.path.join(_lowerCAmelCase, '''dataset.arrow''' ), _lowerCAmelCase, num_examples=_lowerCAmelCase ) _a = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=_lowerCAmelCase ) def tokenize(_lowerCAmelCase : Union[str, Any] ): return tokenizer(examples['''text'''] ) _a = map(_lowerCAmelCase ) _a = map(_lowerCAmelCase, batched=_lowerCAmelCase ) _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''numpy''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''pandas''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): _a = map(_lowerCAmelCase, function=lambda _lowerCAmelCase : None, batched=_lowerCAmelCase ) _a = map(_lowerCAmelCase, function=_lowerCAmelCase, batched=_lowerCAmelCase ) _a = filter(_lowerCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_lowerCAmelCase, '''wb''' ) as f: f.write(json.dumps(_lowerCAmelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
153
0