code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } UpperCamelCase = F"""{src_lang}-{tgt_lang}""" UpperCamelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=A__ , exist_ok=A__ ) UpperCamelCase = os.path.join(A__ , 'README.md' ) print(F"""Generating {path}""" ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(A__ ) # make sure we are under the root of the project _lowerCamelCase : str = Path(__file__).resolve().parent.parent.parent _lowerCamelCase : Tuple = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowerCamelCase : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
28
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = None class SCREAMING_SNAKE_CASE ( _a , _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 2 @register_to_config def __init__( self : Union[str, Any] , UpperCamelCase__ : float = 0.0_2 , UpperCamelCase__ : float = 1_0_0 , UpperCamelCase__ : float = 1.0_0_7 , UpperCamelCase__ : float = 8_0 , UpperCamelCase__ : float = 0.0_5 , UpperCamelCase__ : float = 5_0 , ): """simple docstring""" UpperCamelCase = sigma_max # setable values UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None # sigma(t_i) def A ( self : str , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[int] = None ): """simple docstring""" return sample def A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase = num_inference_steps UpperCamelCase = np.arange(0 , self.num_inference_steps )[::-1].copy() UpperCamelCase = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) UpperCamelCase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] UpperCamelCase = torch.tensor(UpperCamelCase__ , dtype=torch.floataa , device=UpperCamelCase__ ) def A ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : float , UpperCamelCase__ : Optional[torch.Generator] = None ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCamelCase__ ).to(sample.device ) UpperCamelCase = sigma + gamma * sigma UpperCamelCase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : str , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True , ): """simple docstring""" UpperCamelCase = sample_hat + sigma_hat * model_output UpperCamelCase = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def A ( self : List[Any] , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : bool = True , ): """simple docstring""" UpperCamelCase = sample_prev + sigma_prev * model_output UpperCamelCase = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def A ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str ): """simple docstring""" raise NotImplementedError()
28
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCamelCase_ : int = 4 lowerCamelCase_ : Optional[Any] = 3 class a__ ( __snake_case ): pass def lowerCAmelCase( __lowerCamelCase ): for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase( ): __a = int(os.environ['RANK'] ) __a = int(os.environ['WORLD_SIZE'] ) __a = ArgumentParser() parser.add_argument('--streaming' , type=__lowerCamelCase ) parser.add_argument('--local_rank' , type=__lowerCamelCase ) parser.add_argument('--num_workers' , type=__lowerCamelCase , default=0 ) __a = parser.parse_args() __a = args.streaming __a = args.num_workers __a = {'shards': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCamelCase )]} __a = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: __a = Dataset.from_list(list(__lowerCamelCase ) ) __a = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) __a = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) __a = NUM_SHARDS * NUM_ITEMS_PER_SHARD __a = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __a = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
197
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a__ : def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.414 , time_embedding_act_fn='gelu' , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , thresholding=UpperCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = inputs['prompt'] __a = inputs['generator'] __a = inputs['num_inference_steps'] __a = inputs['output_type'] if "image" in inputs: __a = inputs['image'] else: __a = None if "mask_image" in inputs: __a = inputs['mask_image'] else: __a = None if "original_image" in inputs: __a = inputs['original_image'] else: __a = None __a , __a = pipe.encode_prompt(UpperCAmelCase ) # inputs with prompt converted to embeddings __a = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __a = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) __a = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = inputs['generator'] __a = inputs['num_inference_steps'] __a = inputs['output_type'] # inputs with prompt converted to embeddings __a = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image __a = pipe_loaded(**UpperCAmelCase )[0] __a = np.abs(to_np(UpperCAmelCase ) - to_np(UpperCAmelCase ) ).max() self.assertLess(UpperCAmelCase , 1e-4 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = self.get_dummy_components() __a = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __a = self.get_dummy_inputs(UpperCAmelCase ) __a = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) __a = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __a = self.get_dummy_inputs(UpperCAmelCase ) __a = pipe_loaded(**UpperCAmelCase )[0] __a = np.abs(to_np(UpperCAmelCase ) - to_np(UpperCAmelCase ) ).max() self.assertLess(UpperCAmelCase , 1e-4 )
197
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : List[Any] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = '''mvp''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , __lowercase : List[str]=5_02_67 , __lowercase : Tuple=10_24 , __lowercase : List[str]=12 , __lowercase : List[str]=40_96 , __lowercase : List[str]=16 , __lowercase : Tuple=12 , __lowercase : List[Any]=40_96 , __lowercase : Dict=16 , __lowercase : Any=0.0 , __lowercase : Any=0.0 , __lowercase : Dict="gelu" , __lowercase : int=10_24 , __lowercase : Optional[int]=0.1 , __lowercase : Any=0.0 , __lowercase : Tuple=0.0 , __lowercase : int=0.02 , __lowercase : List[Any]=0.0 , __lowercase : Optional[int]=False , __lowercase : Tuple=True , __lowercase : int=1 , __lowercase : Dict=0 , __lowercase : List[str]=2 , __lowercase : int=True , __lowercase : List[Any]=2 , __lowercase : List[str]=2 , __lowercase : List[str]=False , __lowercase : List[Any]=1_00 , __lowercase : int=8_00 , **__lowercase : Optional[Any] , ): """simple docstring""" snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = classifier_dropout snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True snake_case_ = use_prompt snake_case_ = prompt_length snake_case_ = prompt_mid_dim super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , __lowercase ): snake_case_ = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." )
187
from timeit import timeit lowercase__ : Union[str, Any] = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(_A ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = len(_A ) // 2 snake_case_ = len(_A ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_A ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' if len(_A ) <= 2: return True if s[0] == s[len(_A ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowerCamelCase__ ( _A ): '''simple docstring''' return s == s[::-1] def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = f"all({name}(key) is value for key, value in test_data.items())" snake_case_ = f"from __main__ import test_data, {name}" snake_case_ = 500000 snake_case_ = timeit(stmt=_A , setup=_A , number=_A ) print(f"{name:<35} finished {number:,} runs in {result:.5f} seconds" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
187
1
"""simple docstring""" def _lowerCamelCase(__UpperCamelCase = 100 ) -> str: _lowerCAmelCase =n * (n + 1) * (2 * n + 1) / 6 _lowerCAmelCase =(n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
350
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
341
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a__ : int = logging.get_logger(__name__) a__ : List[str] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) a__ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase_( a__ ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE : Optional[int] = model_type_to_module_name(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a__ , a__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a__ , '''__name__''' , a__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE : Optional[int] = importlib.import_module('''transformers''' ) if hasattr(a__ , a__ ): return getattr(a__ , a__ ) return None def UpperCAmelCase_( a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = get_file_from_repo( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(a__ , encoding='''utf-8''' ) as reader: return json.load(a__ ) class a_ : """simple docstring""" def __init__( self ) ->Union[str, Any]: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_lowerCamelCase ) def __lowerCAmelCase ( cls , _lowerCamelCase , **_lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''config''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''trust_remote_code''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = ImageProcessingMixin.get_image_processor_dict(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = config_dict.get('''image_processor_type''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE : str = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE : Any = config_dict.pop('''feature_extractor_type''' , _lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) SCREAMING_SNAKE_CASE : List[str] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE : Tuple = config_dict['''auto_map''']['''AutoFeatureExtractor'''] SCREAMING_SNAKE_CASE : List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , '''image_processor_type''' , _lowerCamelCase ) if hasattr(_lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE : Tuple = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: SCREAMING_SNAKE_CASE : Optional[int] = image_processor_class_from_name(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = image_processor_auto_map is not None SCREAMING_SNAKE_CASE : List[Any] = image_processor_class is not None or type(_lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE : str = resolve_trust_remote_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE : List[Any] = get_class_from_dynamic_module( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''code_revision''' , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE : Any = IMAGE_PROCESSOR_MAPPING[type(_lowerCamelCase )] return image_processor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( _lowerCamelCase , _lowerCamelCase ) ->Tuple: IMAGE_PROCESSOR_MAPPING.register(_lowerCamelCase , _lowerCamelCase )
313
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType a__ : Any = logging.get_logger(__name__) a__ : Dict = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'imagegpt' __SCREAMING_SNAKE_CASE : Optional[Any] = ['past_key_values'] __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=512 + 1 , _lowerCamelCase=32 * 32 , _lowerCamelCase=512 , _lowerCamelCase=24 , _lowerCamelCase=8 , _lowerCamelCase=None , _lowerCamelCase="quick_gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = n_positions SCREAMING_SNAKE_CASE : Optional[int] = n_embd SCREAMING_SNAKE_CASE : List[Any] = n_layer SCREAMING_SNAKE_CASE : List[Any] = n_head SCREAMING_SNAKE_CASE : int = n_inner SCREAMING_SNAKE_CASE : Dict = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : List[str] = attn_pdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = scale_attn_weights SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : str = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings super().__init__(tie_word_embeddings=_lowerCamelCase , **_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = 3 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , ) ->Mapping[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_images(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = dict(preprocessor(images=_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return inputs
313
1
'''simple docstring''' import os def __a ( UpperCAmelCase = "matrix.txt" ) ->int: """simple docstring""" with open(os.path.join(os.path.dirname(UpperCAmelCase ) , UpperCAmelCase ) ) as in_file: A = in_file.read() A = [[int(UpperCAmelCase ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] A = [[0 for cell in row] for row in grid] A = len(grid[0] ) A = [[0 for i in range(UpperCAmelCase )] for j in range(UpperCAmelCase )] A = grid[0][0] for i in range(1 , UpperCAmelCase ): A = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase ): A = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase ): for j in range(1 , UpperCAmelCase ): A = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"{solution() = }")
337
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) def __a ( UpperCAmelCase ) ->List[int]: """simple docstring""" if isinstance(UpperCAmelCase , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCAmelCase ) if tensor.shape == tf.TensorShape(UpperCAmelCase ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase )] def __a ( UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) ->tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCAmelCase , name=UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase=-1 ) ->str: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCAmelCase , axes=[axis] , keepdims=UpperCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCAmelCase )[axis] A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) A = tf.reshape(UpperCAmelCase , UpperCAmelCase ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , offset=UpperCAmelCase , scale=UpperCAmelCase , variance_epsilon=UpperCAmelCase , ) return outputs def __a ( UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=-1 ) ->int: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCAmelCase ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase , UpperCAmelCase ) def __a ( UpperCAmelCase ) ->tf.Tensor: """simple docstring""" if not isinstance(UpperCAmelCase , tf.Tensor ): A = tf.convert_to_tensor(UpperCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "input_ids" ) ->None: """simple docstring""" tf.debugging.assert_less( UpperCAmelCase , tf.cast(UpperCAmelCase , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) A = np.asarray(UpperCAmelCase ) A = 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCAmelCase , UpperCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase ): A = chunk_data else: A = data def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if name in group.attrs: A = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __a ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(UpperCAmelCase ): if isinstance(UpperCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase )
337
1
def UpperCamelCase ( __lowercase : Optional[Any] ): '''simple docstring''' if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) A_ : Optional[int] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A_ : Tuple = 1 if upper_limit > 0: A_ : Optional[Any] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 ,upper_limit + 1 ): for j in range(_SCREAMING_SNAKE_CASE ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCAmelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
140
"""simple docstring""" from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCAmelCase__ = datasets.load_iris() lowerCAmelCase__ = np.array(data['''data''']) lowerCAmelCase__ = np.array(data['''target''']) lowerCAmelCase__ = data['''target_names'''] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = train_test_split(X, y) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ): """simple docstring""" UpperCamelCase = zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified UpperCamelCase = [] for data_point in data: UpperCamelCase = euclidean_distance(data_point[0] , _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. UpperCamelCase = [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified UpperCamelCase = Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
153
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 0.9 , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCAmelCase : List[str] = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : int = size __UpperCAmelCase : Optional[int] = crop_pct __UpperCAmelCase : int = resample __UpperCAmelCase : int = do_center_crop __UpperCAmelCase : int = crop_size __UpperCAmelCase : List[Any] = do_rescale __UpperCAmelCase : int = rescale_factor __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: __UpperCAmelCase : Tuple = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCAmelCase : List[Any] = int(size["""height"""] / crop_pct ) else: __UpperCAmelCase : str = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(__UpperCAmelCase ) ) __UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__UpperCAmelCase , size=__UpperCAmelCase , default_to_square=__UpperCAmelCase ) else: if "shortest_edge" in size: __UpperCAmelCase : Tuple = get_resize_output_image_size(__UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: __UpperCAmelCase : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(__UpperCAmelCase ) ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : int = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : Tuple = resample if resample is not None else self.resample __UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Dict = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = size if size is not None else self.size __UpperCAmelCase : Any = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __UpperCAmelCase : int = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Optional[Any] = get_size_dict(__UpperCAmelCase , param_name="""crop_size""" ) __UpperCAmelCase : List[Any] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : Union[str, Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __UpperCAmelCase : int = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , crop_pct=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __UpperCAmelCase : Union[str, Any] = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __UpperCAmelCase : List[str] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[int] = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCAmelCase : Dict = {"""pixel_values""": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
356
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _A : _SCREAMING_SNAKE_CASE : List[str] _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="Translation" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ) -> Any: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[List] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed _SCREAMING_SNAKE_CASE : ClassVar[str] = "dict" _SCREAMING_SNAKE_CASE : ClassVar[Any] = None _SCREAMING_SNAKE_CASE : str = field(default="TranslationVariableLanguages" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = sorted(set(self.languages ) ) if self.languages else None __UpperCAmelCase : int = len(self.languages ) if self.languages else None def __call__( self ) -> Optional[Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = set(self.languages ) if self.languages and set(__UpperCAmelCase ) - lang_set: raise ValueError( f'Some languages in example ({", ".join(sorted(set(__UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(__UpperCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __UpperCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = zip(*sorted(__UpperCAmelCase ) ) return {"language": languages, "translation": translations} def __A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
16
0
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __lowerCAmelCase : Optional[int] ="""Usage of script: script_name <size_of_canvas:int>""" __lowerCAmelCase : List[Any] =[0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> list[list[bool]]: '''simple docstring''' lowercase = [[False for i in range(lowerCAmelCase__ )] for j in range(lowerCAmelCase__ )] return canvas def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[bool]] ) -> None: '''simple docstring''' for i, row in enumerate(lowerCAmelCase__ ): for j, _ in enumerate(lowerCAmelCase__ ): lowercase = bool(random.getrandbits(1 ) ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[list[bool]] ) -> list[list[bool]]: '''simple docstring''' lowercase = np.array(lowerCAmelCase__ ) lowercase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCAmelCase__ ): for c, pt in enumerate(lowerCAmelCase__ ): lowercase = __judge_point( lowerCAmelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowercase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowercase = current_canvas.tolist() return return_canvas def UpperCAmelCase__ ( lowerCAmelCase__ :bool , lowerCAmelCase__ :list[list[bool]] ) -> bool: '''simple docstring''' lowercase = 0 lowercase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowercase = pt if pt: if alive < 2: lowercase = False elif alive == 2 or alive == 3: lowercase = True elif alive > 3: lowercase = False else: if alive == 3: lowercase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __lowerCAmelCase : Union[str, Any] =int(sys.argv[1]) # main working structure of this module. __lowerCAmelCase : str =create_canvas(canvas_size) seed(c) __lowerCAmelCase , __lowerCAmelCase : Any =plt.subplots() fig.show() __lowerCAmelCase : Optional[int] =ListedColormap(["""w""", """k"""]) try: while True: __lowerCAmelCase : Optional[Any] =run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
197
"""simple docstring""" from scipy.stats import pearsonr import datasets __lowerCAmelCase : List[Any] =""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ __lowerCAmelCase : Optional[int] =""" Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ __lowerCAmelCase : str =""" @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" if return_pvalue: lowercase = pearsonr(__lowerCAmelCase , __lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] )}
197
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Union[str, Any] = get_activation("""swish""" ) self.assertIsInstance(UpperCAmelCase__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Optional[Any] = get_activation("""silu""" ) self.assertIsInstance(UpperCAmelCase__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : Union[str, Any] = get_activation("""mish""" ) self.assertIsInstance(UpperCAmelCase__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = get_activation("""gelu""" ) self.assertIsInstance(UpperCAmelCase__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
361
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : Union[str, Any] =16 _lowercase : Dict =32 def lowerCAmelCase_ ( _lowercase : Accelerator , _lowercase : int = 16 , _lowercase : str = "bert-base-cased") -> Union[str, Any]: """simple docstring""" a__ : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase) a__ : Any = load_dataset("""glue""" , """mrpc""") def tokenize_function(_lowercase : str): # max_length=None => use the model max length (it's actually the default) a__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ : Any = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_lowercase) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(_lowercase : Optional[Any]): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""") return tokenizer.pad(_lowercase , padding="""longest""" , return_tensors="""pt""") # Instantiate dataloaders. a__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) a__ : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Dict) -> int: """simple docstring""" # Initialize accelerator a__ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : Union[str, Any] = config["""lr"""] a__ : List[str] = int(config["""num_epochs"""]) a__ : List[str] = int(config["""seed"""]) a__ : Tuple = int(config["""batch_size"""]) a__ : int = args.model_name_or_path set_seed(_lowercase) a__ , a__ : int = get_dataloaders(_lowercase , _lowercase , _lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase) # Instantiate optimizer a__ : int = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowercase) if accelerator.state.deepspeed_plugin is not None: a__ : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ : List[str] = 1 a__ : List[Any] = (len(_lowercase) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ : Dict = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: a__ : Dict = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : List[Any] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) # We need to keep track of how many total steps we have iterated over a__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly a__ : Optional[int] = 0 # Now we train the model a__ : Tuple = evaluate.load("""glue""" , """mrpc""") a__ : List[Any] = 0 a__ : Tuple = {} for epoch in range(_lowercase , _lowercase): model.train() for step, batch in enumerate(_lowercase): a__ : Union[str, Any] = model(**_lowercase) a__ : Tuple = outputs.loss a__ : Any = loss / gradient_accumulation_steps accelerator.backward(_lowercase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ : int = 0 for step, batch in enumerate(_lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): a__ : str = model(**_lowercase) a__ : Union[str, Any] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times a__ , a__ : Optional[int] = accelerator.gather( (predictions, batch["""labels"""])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase) - 1: a__ : Union[str, Any] = predictions[: len(eval_dataloader.dataset) - samples_seen] a__ : Any = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) a__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase) a__ : Any = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ : List[str] = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""") , """w""") as f: json.dump(_lowercase , _lowercase) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" a__ : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""") parser.add_argument( """--model_name_or_path""" , type=_lowercase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowercase , ) parser.add_argument( """--output_dir""" , type=_lowercase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_lowercase , default=_lowercase , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_lowercase , default=3 , help="""Number of train epochs.""" , ) a__ : Any = parser.parse_args() a__ : Dict = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowercase , _lowercase) if __name__ == "__main__": main()
266
0
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : int = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'{test_file} instead.' ) __magic_name__ : Dict = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) __magic_name__ : Dict = components[:-1] + [test_fn.replace('.py' , '' )] __magic_name__ : List[Any] = '.'.join(lowerCAmelCase ) return test_module_path def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" __magic_name__ : int = get_module_path(lowerCAmelCase ) __magic_name__ : int = importlib.import_module(lowerCAmelCase ) return test_module def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Tuple = [] __magic_name__ : List[str] = get_test_module(lowerCAmelCase ) for attr in dir(lowerCAmelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(lowerCAmelCase , lowerCAmelCase ) ) # sort with class names return sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x.__name__ ) def lowerCamelCase ( lowerCAmelCase : List[str] ): """simple docstring""" __magic_name__ : Optional[Any] = [] __magic_name__ : List[Any] = get_test_module(lowerCAmelCase ) for attr in dir(lowerCAmelCase ): __magic_name__ : int = getattr(lowerCAmelCase , lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __magic_name__ : List[Any] = getattr(lowerCAmelCase , 'all_model_classes' , [] ) if len(lowerCAmelCase ) > 0: test_classes.append(lowerCAmelCase ) # sort with class names return sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x.__name__ ) def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Union[str, Any] = get_test_classes(lowerCAmelCase ) __magic_name__ : Union[str, Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x.__name__ ) def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : Optional[Any] = test_class() if hasattr(lowerCAmelCase , 'setUp' ): test.setUp() __magic_name__ : str = None if hasattr(lowerCAmelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __magic_name__ : str = test.model_tester.__class__ return model_tester def lowerCamelCase ( lowerCAmelCase : str , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : str = get_test_classes(lowerCAmelCase ) __magic_name__ : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCAmelCase ) # sort with class names return sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x.__name__ ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : List[Any] = get_test_classes_for_model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[str] = [] for test_class in test_classes: __magic_name__ : int = get_model_tester_from_test_class(lowerCAmelCase ) if tester_class is not None: tester_classes.append(lowerCAmelCase ) # sort with class names return sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x.__name__ ) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Optional[int] = get_test_classes(lowerCAmelCase ) __magic_name__ : Optional[Any] = {test_class: get_model_tester_from_test_class(lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[Any] = get_model_classes(lowerCAmelCase ) __magic_name__ : Tuple = { model_class: get_test_classes_for_model(lowerCAmelCase , lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : List[Any] = get_model_classes(lowerCAmelCase ) __magic_name__ : Optional[int] = { model_class: get_tester_classes_for_model(lowerCAmelCase , lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ): return o elif isinstance(lowerCAmelCase , lowerCAmelCase ): return o.__name__ elif isinstance(lowerCAmelCase , (list, tuple) ): return [to_json(lowerCAmelCase ) for x in o] elif isinstance(lowerCAmelCase , lowerCAmelCase ): return {to_json(lowerCAmelCase ): to_json(lowerCAmelCase ) for k, v in o.items()} else: return o
331
'''simple docstring''' def lowerCamelCase ( ): """simple docstring""" return 1 def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int = 200 ): """simple docstring""" return two_pound(lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
331
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _UpperCamelCase = parse(importlib.metadata.version('''torch''')) def UpperCamelCase_( snake_case__: Union[str, Version] , snake_case__: str , snake_case__: str ) -> Tuple: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}" ) UpperCAmelCase__ = STR_OPERATION_TO_FUNC[operation] if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ = parse(importlib.metadata.version(snake_case__ ) ) return operation(snake_case__ , parse(snake_case__ ) ) def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Any: return compare_versions(snake_case__ , snake_case__ , snake_case__ )
335
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def UpperCamelCase_( snake_case__: Optional[Any] , snake_case__: Optional[int] , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Tuple , snake_case__: Dict , snake_case__: Any ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase__ = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase__ = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def UpperCamelCase_( snake_case__: Any ) -> Tuple: UpperCAmelCase__ = [] UpperCAmelCase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): UpperCAmelCase__ = Pipe() UpperCAmelCase__ = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase__ = temp_rs UpperCAmelCase__ = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): UpperCAmelCase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) UpperCAmelCase__ = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
335
1
import os def __lowercase ( _UpperCamelCase = "matrix.txt" ) ->int: """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCamelCase ), _UpperCamelCase ) ) as in_file: lowercase : List[Any] = in_file.read() lowercase : str = [[int(_UpperCamelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] lowercase : Union[str, Any] = [[0 for cell in row] for row in grid] lowercase : Any = len(grid[0] ) lowercase : Dict = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] lowercase : str = grid[0][0] for i in range(1, _UpperCamelCase ): lowercase : str = grid[0][i] + dp[0][i - 1] for i in range(1, _UpperCamelCase ): lowercase : List[Any] = grid[i][0] + dp[i - 1][0] for i in range(1, _UpperCamelCase ): for j in range(1, _UpperCamelCase ): lowercase : Tuple = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
337
from __future__ import annotations def __lowercase ( _UpperCamelCase ) ->float: """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(_UpperCamelCase ) / len(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
337
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _snake_case = logging.get_logger(__name__) def _A ( __magic_name__ ): lowercase__ = R"\w+[.]\d+" lowercase__ = re.findall(__magic_name__ , __magic_name__ ) for pat in pats: lowercase__ = key.replace(__magic_name__ , "_".join(pat.split("." ) ) ) return key def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowercase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _A ( __magic_name__ , __magic_name__ , __magic_name__=42 ): # Step 1: Convert pytorch tensor to numpy lowercase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase__ = flax_model.init_weights(PRNGKey(__magic_name__ ) ) lowercase__ = flatten_dict(__magic_name__ ) lowercase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ = rename_key(__magic_name__ ) lowercase__ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowercase__ , lowercase__ = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase__ = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
201
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _snake_case = logging.getLogger(__name__) @dataclass class lowerCAmelCase : __lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Whether tp freeze the encoder.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class lowerCAmelCase : __lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __lowerCamelCase = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __lowerCamelCase = field( default=1_024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __lowerCamelCase = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __lowerCamelCase = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __lowerCamelCase = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Source language id for translation.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': 'Target language id for translation.'} ) __lowerCamelCase = field(default=lowercase_ , metadata={'help': '# num_beams to use for evaluation.'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(__magic_name__ , os.path.join(__magic_name__ , f'''{split}_results.json''' ) ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() check_output_dir(__magic_name__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(__magic_name__ , __magic_name__ , __magic_name__ ): assert hasattr(__magic_name__ , __magic_name__ ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(__magic_name__ , __magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=__magic_name__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__magic_name__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__magic_name__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__magic_name__ , __magic_name__ ): lowercase__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__magic_name__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase__ = SeqaSeqDataset # Get datasets lowercase__ = ( dataset_class( __magic_name__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) lowercase__ = ( dataset_class( __magic_name__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase__ = ( dataset_class( __magic_name__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase__ = ( build_compute_metrics_fn(data_args.task , __magic_name__ ) if training_args.predict_with_generate else None ) lowercase__ = SeqaSeqTrainer( model=__magic_name__ , args=__magic_name__ , data_args=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , data_collator=SeqaSeqDataCollator( __magic_name__ , __magic_name__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__magic_name__ , tokenizer=__magic_name__ , ) lowercase__ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) lowercase__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase__ = train_result.metrics lowercase__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate(metric_key_prefix="val" ) lowercase__ = data_args.n_val lowercase__ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) if training_args.do_predict: logger.info("*** Predict ***" ) lowercase__ = trainer.predict(test_dataset=__magic_name__ , metric_key_prefix="test" ) lowercase__ = test_output.metrics lowercase__ = data_args.n_test if trainer.is_world_process_zero(): lowercase__ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , __magic_name__ , training_args.output_dir ) all_metrics.update(__magic_name__ ) if training_args.predict_with_generate: lowercase__ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) lowercase__ = lmap(str.strip , __magic_name__ ) write_txt_file(__magic_name__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(__magic_name__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def _A ( __magic_name__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
201
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') __lowercase : str = logging.getLogger(__name__) @dataclass class __UpperCamelCase : A_ = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) A_ = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) A_ = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A_ = field( default=A_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) A_ = field( default=A_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) A_ = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A_ = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) A_ = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) A_ = field( default=A_ , metadata={"help": "A csv or a json file containing the training data."} ) A_ = field( default=A_ , metadata={"help": "A csv or a json file containing the validation data."} ) A_ = field(default=A_ , metadata={"help": "A csv or a json file containing the test data."} ) def __UpperCAmelCase ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a : List[str] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a : Optional[int] = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __UpperCamelCase : A_ = field( default=A_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A_ = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A_ = field( default=A_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A_ = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A_ = field( default=A_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) A_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A_ = field( default=A_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCamelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a : Optional[Any] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a : Tuple = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) datasets.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __a : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a : str = data_args.train_file.split('.' )[-1] __a : Tuple = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a : Dict = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a : Union[str, Any] = load_dataset('csv' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a : Optional[Any] = load_dataset('json' , data_files=__lowerCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a : int = raw_datasets['''train'''].features['''label'''].names __a : List[Any] = len(__lowerCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a : List[Any] = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__lowerCamelCase , ) __a : Any = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a : str = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a : List[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. __a : Any = {'''Refused''': 0, '''Entailed''': 1} __a : str = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __a : str = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_SCREAMING_SNAKE_CASE : Optional[int] ): # Tokenize the texts def _convert_table_text_to_pandas(_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Dict = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a : List[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a : Tuple = examples['''statement'''] __a : str = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a : Dict = tokenizer(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ) __a : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a : List[Any] = raw_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a : str = raw_datasets['''train'''] if data_args.max_train_samples is not None: __a : Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a : Any = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: __a : Optional[int] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a : Optional[Any] = raw_datasets['''test'''] if data_args.max_predict_samples is not None: __a : str = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__lowerCamelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = p.predictions[0] if isinstance(p.predictions , __lowerCamelCase ) else p.predictions __a : Dict = np.argmax(__lowerCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a : List[str] = default_data_collator elif training_args.fpaa: __a : Any = DataCollatorWithPadding(__lowerCamelCase , pad_to_multiple_of=8 ) else: __a : List[Any] = None # Initialize our Trainer __a : Union[str, Any] = Trainer( model=__lowerCamelCase , args=__lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCamelCase , tokenizer=__lowerCamelCase , data_collator=__lowerCamelCase , ) # Training if training_args.do_train: __a : Dict = None if training_args.resume_from_checkpoint is not None: __a : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a : int = last_checkpoint __a : List[str] = trainer.train(resume_from_checkpoint=__lowerCamelCase ) __a : List[str] = train_result.metrics __a : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCamelCase ) ) __a : Any = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , __lowerCamelCase ) trainer.save_metrics('train' , __lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a : Union[str, Any] = trainer.evaluate(eval_dataset=__lowerCamelCase ) __a : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCamelCase ) __a : Tuple = min(__lowerCamelCase , len(__lowerCamelCase ) ) trainer.log_metrics('eval' , __lowerCamelCase ) trainer.save_metrics('eval' , __lowerCamelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a : Tuple = predict_dataset.remove_columns('label' ) __a : str = trainer.predict(__lowerCamelCase , metric_key_prefix='predict' ).predictions __a : Tuple = np.argmax(__lowerCamelCase , axis=1 ) __a : List[Any] = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(__lowerCamelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(__lowerCamelCase ): __a : Optional[Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) __a : Dict = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
27
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Union[str, Any]=13 ,_snake_case : Any=32 ,_snake_case : int=2 ,_snake_case : str=3 ,_snake_case : Optional[Any]=16 ,_snake_case : List[Any]=[1, 2, 1] ,_snake_case : Dict=[2, 2, 4] ,_snake_case : List[Any]=2 ,_snake_case : Any=2.0 ,_snake_case : Optional[int]=True ,_snake_case : Optional[int]=0.0 ,_snake_case : Union[str, Any]=0.0 ,_snake_case : str=0.1 ,_snake_case : List[Any]="gelu" ,_snake_case : Tuple=False ,_snake_case : Optional[int]=True ,_snake_case : str=0.02 ,_snake_case : List[str]=1e-5 ,_snake_case : int=True ,_snake_case : Dict=None ,_snake_case : str=True ,_snake_case : List[Any]=10 ,_snake_case : Any=8 ,) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = image_size lowercase__ : Dict = patch_size lowercase__ : int = num_channels lowercase__ : Any = embed_dim lowercase__ : int = depths lowercase__ : Dict = num_heads lowercase__ : List[Any] = window_size lowercase__ : int = mlp_ratio lowercase__ : Optional[int] = qkv_bias lowercase__ : str = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Dict = drop_path_rate lowercase__ : int = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Tuple = patch_norm lowercase__ : Tuple = layer_norm_eps lowercase__ : Optional[Any] = initializer_range lowercase__ : int = is_training lowercase__ : Optional[int] = scope lowercase__ : str = use_labels lowercase__ : Dict = type_sequence_label_size lowercase__ : Union[str, Any] = encoder_stride def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Any = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ) lowercase__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[str] ,_snake_case : Optional[Any] ,_snake_case : int ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Tuple = model(_snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ : Optional[int] = 1 lowercase__ : List[Any] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : str ,_snake_case : str ,_snake_case : str ,_snake_case : Tuple ) -> Any: """simple docstring""" lowercase__ : Tuple = self.type_sequence_label_size lowercase__ : Dict = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : str = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase : Optional[int] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Any = False def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = SwinvaModelTester(self ) lowercase__ : List[str] = ConfigTester(self ,config_class=_snake_case ,embed_dim=37 ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowercase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case ,nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = True for model_class in self.all_model_classes: lowercase__ : Optional[int] = True lowercase__ : str = False lowercase__ : Union[str, Any] = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Dict = outputs.attentions lowercase__ : Any = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ) ,_snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : List[Any] = True lowercase__ : Optional[Any] = config.window_size**2 lowercase__ : Any = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : List[str] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) lowercase__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine lowercase__ : Optional[int] = True lowercase__ : Tuple = True lowercase__ : Optional[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) if hasattr(self.model_tester ,'''num_hidden_states_types''' ): lowercase__ : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowercase__ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(_snake_case ) ) lowercase__ : Optional[int] = outputs.attentions self.assertEqual(len(_snake_case ) ,_snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def UpperCAmelCase ( self : List[str] ,_snake_case : int ,_snake_case : List[str] ,_snake_case : Optional[int] ,_snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : Optional[int] = outputs.hidden_states lowercase__ : List[Any] = getattr( self.model_tester ,'''expected_num_hidden_layers''' ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) ,_snake_case ) # Swinv2 has a different seq_length lowercase__ : Dict = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) lowercase__ : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ) ,_snake_case ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = reshaped_hidden_states[0].shape lowercase__ : int = ( reshaped_hidden_states[0].view(_snake_case ,_snake_case ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCAmelCase ( self : Tuple ) -> int: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ : List[str] = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ : str = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True self.check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ,(padded_height, padded_width) ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Tuple = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: lowercase__ : Optional[int] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @require_vision @require_torch class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowercase__ : str = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _snake_case ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Dict = image_processor(images=_snake_case ,return_tensors='''pt''' ).to(_snake_case ) # forward pass with torch.no_grad(): lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits lowercase__ : str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Dict = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_snake_case ,atol=1e-4 ) )
16
0
lowerCamelCase_ = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
14
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class a_ : '''simple docstring''' __a: int __a: int class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = [[] for _ in range(lowercase_ )] lowerCAmelCase_ = size def __getitem__( self , lowercase_ ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return self._size def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) ) def _lowercase ( self , lowercase_ , lowercase_ ) -> int | None: '''simple docstring''' lowerCAmelCase_ = deque([start_vertex] ) lowerCAmelCase_ = [None] * self.size lowerCAmelCase_ = 0 while queue: lowerCAmelCase_ = queue.popleft() lowerCAmelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ = current_distance + edge.weight lowerCAmelCase_ = distances[edge.destination_vertex] if ( isinstance(lowercase_ , lowercase_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations def A ( _SCREAMING_SNAKE_CASE ) -> bool: lowerCamelCase : int = str(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) == 9 and set(_SCREAMING_SNAKE_CASE ) == set("123456789" ) def A ( ) -> int | None: for base_num in range(9999 ,4999 ,-1 ): lowerCamelCase : int = 10_0002 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate for base_num in range(333 ,99 ,-1 ): lowerCamelCase : str = 100_2003 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
48
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''], model_result['''ss'''] ): __A = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sgugger/tiny-distilbert-classification''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, only_pretrain_model=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, torchscript=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''', '''Cant do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, fpaa=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` __A = None __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''', '''Can\'t do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], fpaa=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, save_to_csv=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(_lowerCamelCase, '''inf_time.csv''' ), train_memory_csv_file=os.path.join(_lowerCamelCase, '''train_mem.csv''' ), inference_memory_csv_file=os.path.join(_lowerCamelCase, '''inf_mem.csv''' ), train_time_csv_file=os.path.join(_lowerCamelCase, '''train_time.csv''' ), env_info_csv_file=os.path.join(_lowerCamelCase, '''env.csv''' ), multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''env.csv''' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase : List[Any] ): self.assertTrue(hasattr(_lowerCamelCase, '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(_lowerCamelCase, '''log.txt''' ), log_print=_lowerCamelCase, trace_memory_line_by_line=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''log.txt''' ) ).exists() )
266
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> Any: '''simple docstring''' UpperCAmelCase__ = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } UpperCAmelCase__ , UpperCAmelCase__ = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) assert base_extractor.is_extractable(__A ) UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(__A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } UpperCAmelCase__ = input_paths[compression_format] if input_path is None: UpperCAmelCase__ = f"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) UpperCAmelCase__ = Extractor.infer_extractor_format(__A ) assert extractor_format is not None UpperCAmelCase__ = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(__A, __A, __A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase__ = file_path.read_text(encoding="utf-8" ) else: UpperCAmelCase__ = output_path.read_text(encoding="utf-8" ) UpperCAmelCase__ = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_dot_dot" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(__A, "w" ) as f: f.add(__A, arcname=os.path.join("..", text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' import tarfile UpperCAmelCase__ = tmp_path / "data_sym_link" directory.mkdir() UpperCAmelCase__ = directory / "tar_file_with_sym_link.tar" os.symlink("..", directory / "subdir", target_is_directory=__A ) with tarfile.TarFile(__A, "w" ) as f: f.add(str(directory / "subdir" ), arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log", [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")], ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } UpperCAmelCase__ = insecure_tar_files[insecure_tar_file] UpperCAmelCase__ = tmp_path / "extracted" TarExtractor.extract(__A, __A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase__ = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(__A ) assert zipfile.is_zipfile(str(__A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__A ) # but we're right
143
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase_ ( __A, __A=False ) -> Any: '''simple docstring''' UpperCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( __A, __A, __A=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase__ = "" else: UpperCAmelCase__ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = in_proj_bias[: config.hidden_size] UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = dct.pop(__A ) UpperCAmelCase__ = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ = Image.open(requests.get(__A, stream=__A ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase__ = 1_000 UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = json.load(open(hf_hub_download(__A, __A, repo_type="dataset" ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = int(deit_name[-6:-4] ) UpperCAmelCase__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase__ = 192 UpperCAmelCase__ = 768 UpperCAmelCase__ = 12 UpperCAmelCase__ = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase__ = 384 UpperCAmelCase__ = 1_536 UpperCAmelCase__ = 12 UpperCAmelCase__ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase__ = 1_024 UpperCAmelCase__ = 4_096 UpperCAmelCase__ = 24 UpperCAmelCase__ = 16 # load original model from timm UpperCAmelCase__ = timm.create_model(__A, pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = timm_model.state_dict() UpperCAmelCase__ = create_rename_keys(__A, __A ) for src, dest in rename_keys: rename_key(__A, __A, __A ) read_in_q_k_v(__A, __A, __A ) # load HuggingFace model UpperCAmelCase__ = DeiTForImageClassificationWithTeacher(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase__ = DeiTImageProcessor(size=__A, crop_size=config.image_size ) UpperCAmelCase__ = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase__ = encoding["pixel_values"] UpperCAmelCase__ = model(__A ) UpperCAmelCase__ = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A, outputs.logits, atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __snake_case ( UpperCAmelCase_ : Dict ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ): lowerCamelCase_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCamelCase_ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowerCamelCase_ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowerCamelCase_ = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowerCamelCase_ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowerCamelCase_ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowerCamelCase_ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowerCamelCase_ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowerCamelCase_ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowerCamelCase_ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowerCamelCase_ = key.replace("image_encoder.module" , "flava.image_model" ) lowerCamelCase_ = key.replace("text_encoder.module" , "flava.text_model" ) lowerCamelCase_ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowerCamelCase_ = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowerCamelCase_ = key.replace("text_projection" , "flava.text_projection" ) lowerCamelCase_ = key.replace("image_projection" , "flava.image_projection" ) lowerCamelCase_ = value.float() for key, value in codebook_state_dict.items(): lowerCamelCase_ = value return upgrade @torch.no_grad() def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=None ): if config_path is not None: lowerCamelCase_ = FlavaConfig.from_pretrained(UpperCAmelCase_ ) else: lowerCamelCase_ = FlavaConfig() lowerCamelCase_ = FlavaForPreTraining(UpperCAmelCase_ ).eval() lowerCamelCase_ = convert_dalle_checkpoint(UpperCAmelCase_ , UpperCAmelCase_ , save_checkpoint=UpperCAmelCase_ ) if os.path.exists(UpperCAmelCase_ ): lowerCamelCase_ = torch.load(UpperCAmelCase_ , map_location="cpu" ) else: lowerCamelCase_ = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location="cpu" ) lowerCamelCase_ = upgrade_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) hf_model.load_state_dict(UpperCAmelCase_ ) lowerCamelCase_ = hf_model.state_dict() lowerCamelCase_ = count_parameters(UpperCAmelCase_ ) lowerCamelCase_ = count_parameters(UpperCAmelCase_ ) + count_parameters(UpperCAmelCase_ ) assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") a_ : Union[str, Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
55
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowerCamelCase_ ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__( self , __lowercase=None , **__lowercase) -> Tuple: super().__init__(features=_snake_case) __UpperCamelCase :str = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase__ ( self , __lowercase) -> Dict: import torch if isinstance(_snake_case , _snake_case) and column: if all( isinstance(_snake_case , torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return torch.stack(_snake_case) return column def UpperCamelCase__ ( self , __lowercase) -> List[Any]: import torch if isinstance(_snake_case , (str, bytes, type(_snake_case))): return value elif isinstance(_snake_case , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() __UpperCamelCase :Dict = {} if isinstance(_snake_case , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): __UpperCamelCase :Optional[Any] = {'''dtype''': torch.intaa} elif isinstance(_snake_case , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): __UpperCamelCase :Dict = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_snake_case , PIL.Image.Image): __UpperCamelCase :List[str] = np.asarray(_snake_case) return torch.tensor(_snake_case , **{**default_dtype, **self.torch_tensor_kwargs}) def UpperCamelCase__ ( self , __lowercase) -> int: import torch # support for torch, tf, jax etc. if hasattr(_snake_case , '''__array__''') and not isinstance(_snake_case , torch.Tensor): __UpperCamelCase :List[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_snake_case , np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_snake_case) for substruct in data_struct]) elif isinstance(_snake_case , (list, tuple)): return self._consolidate([self.recursive_tensorize(_snake_case) for substruct in data_struct]) return self._tensorize(_snake_case) def UpperCamelCase__ ( self , __lowercase) -> List[str]: return map_nested(self._recursive_tensorize , _snake_case , map_list=_snake_case) def UpperCamelCase__ ( self , __lowercase) -> Mapping: __UpperCamelCase :Dict = self.numpy_arrow_extractor().extract_row(_snake_case) __UpperCamelCase :Any = self.python_features_decoder.decode_row(_snake_case) return self.recursive_tensorize(_snake_case) def UpperCamelCase__ ( self , __lowercase) -> "torch.Tensor": __UpperCamelCase :str = self.numpy_arrow_extractor().extract_column(_snake_case) __UpperCamelCase :Any = self.python_features_decoder.decode_column(_snake_case , pa_table.column_names[0]) __UpperCamelCase :Any = self.recursive_tensorize(_snake_case) __UpperCamelCase :Tuple = self._consolidate(_snake_case) return column def UpperCamelCase__ ( self , __lowercase) -> Mapping: __UpperCamelCase :Union[str, Any] = self.numpy_arrow_extractor().extract_batch(_snake_case) __UpperCamelCase :List[Any] = self.python_features_decoder.decode_batch(_snake_case) __UpperCamelCase :str = self.recursive_tensorize(_snake_case) for column_name in batch: __UpperCamelCase :Any = self._consolidate(batch[column_name]) return batch
361
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowercase = logging.getLogger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """token-classification""" def __init__( self , __lowercase) -> str: if type(__lowercase) == dict: __UpperCamelCase :List[Any] = Namespace(**__lowercase) __UpperCamelCase :Dict = import_module('''tasks''') try: __UpperCamelCase :str = getattr(__lowercase , hparams.task_type) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""") __UpperCamelCase :Tuple = self.token_classification_task.get_labels(hparams.labels) __UpperCamelCase :Tuple = CrossEntropyLoss().ignore_index super().__init__(__lowercase , len(self.labels) , self.mode) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: return self.model(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Any: __UpperCamelCase :str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Dict = self(**__lowercase) __UpperCamelCase :str = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = self.hparams for mode in ["train", "dev", "test"]: __UpperCamelCase :int = self._feature_file(__lowercase) if os.path.exists(__lowercase) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :Any = torch.load(__lowercase) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir) __UpperCamelCase :Any = self.token_classification_task.read_examples_from_file(args.data_dir , __lowercase) __UpperCamelCase :Union[str, Any] = self.token_classification_task.convert_examples_to_features( __lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet''']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(self.config.model_type in ['''xlnet''']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __lowercase) torch.save(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = False) -> DataLoader: __UpperCamelCase :Tuple = self._feature_file(__lowercase) logger.info('''Loading features from cached file %s''' , __lowercase) __UpperCamelCase :str = torch.load(__lowercase) __UpperCamelCase :int = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __UpperCamelCase :Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: __UpperCamelCase :str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: __UpperCamelCase :Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) __UpperCamelCase :int = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(__lowercase , __lowercase , __lowercase , __lowercase) , batch_size=__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: """Compute validation""" "" __UpperCamelCase :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": __UpperCamelCase :Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids __UpperCamelCase :Any = self(**__lowercase) __UpperCamelCase , __UpperCamelCase :Tuple = outputs[:2] __UpperCamelCase :List[str] = logits.detach().cpu().numpy() __UpperCamelCase :List[str] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Tuple = torch.stack([x['''val_loss'''] for x in outputs]).mean() __UpperCamelCase :str = np.concatenate([x['''pred'''] for x in outputs] , axis=0) __UpperCamelCase :Any = np.argmax(__lowercase , axis=2) __UpperCamelCase :str = np.concatenate([x['''target'''] for x in outputs] , axis=0) __UpperCamelCase :List[str] = dict(enumerate(self.labels)) __UpperCamelCase :Tuple = [[] for _ in range(out_label_ids.shape[0])] __UpperCamelCase :Any = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) __UpperCamelCase :Any = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__lowercase , __lowercase), '''precision''': precision_score(__lowercase , __lowercase), '''recall''': recall_score(__lowercase , __lowercase), '''f1''': fa_score(__lowercase , __lowercase), } __UpperCamelCase :Dict = dict(results.items()) __UpperCamelCase :List[str] = results return ret, preds_list, out_label_list def UpperCamelCase__ ( self , __lowercase) -> int: # when stable __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._eval_end(__lowercase) __UpperCamelCase :Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase__ ( self , __lowercase) -> int: # updating to test_epoch_end instead of deprecated test_end __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[int] = self._eval_end(__lowercase) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __UpperCamelCase :Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase) -> Union[str, Any]: # Add NER specific options BaseTransformer.add_model_specific_args(__lowercase , __lowercase) parser.add_argument( '''--task_type''' , default='''NER''' , type=__lowercase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''') parser.add_argument( '''--max_seq_length''' , default=128 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__lowercase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__lowercase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''') return parser if __name__ == "__main__": __lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowercase = parser.parse_args() __lowercase = NERTransformer(args) __lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[Any] = "vit" def __init__( self, __magic_name__=768, __magic_name__=12, __magic_name__=12, __magic_name__=3072, __magic_name__="gelu", __magic_name__=0.0, __magic_name__=0.0, __magic_name__=0.02, __magic_name__=1E-12, __magic_name__=224, __magic_name__=16, __magic_name__=3, __magic_name__=True, __magic_name__=16, **__magic_name__, ) -> List[Any]: """simple docstring""" super().__init__(**__magic_name__ ) UpperCamelCase__ : Any = hidden_size UpperCamelCase__ : Optional[Any] = num_hidden_layers UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Optional[int] = layer_norm_eps UpperCamelCase__ : str = image_size UpperCamelCase__ : Any = patch_size UpperCamelCase__ : int = num_channels UpperCamelCase__ : List[str] = qkv_bias UpperCamelCase__ : Union[str, Any] = encoder_stride class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Tuple = version.parse("1.11" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase__ ( self ) -> float: """simple docstring""" return 1E-4
201
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = "mobilenet_v2" def __init__( self, __magic_name__=3, __magic_name__=224, __magic_name__=1.0, __magic_name__=8, __magic_name__=8, __magic_name__=6, __magic_name__=32, __magic_name__=True, __magic_name__=True, __magic_name__="relu6", __magic_name__=True, __magic_name__=0.8, __magic_name__=0.02, __magic_name__=0.001, __magic_name__=255, **__magic_name__, ) -> List[Any]: """simple docstring""" super().__init__(**__magic_name__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) UpperCamelCase__ : Union[str, Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : int = depth_multiplier UpperCamelCase__ : Tuple = depth_divisible_by UpperCamelCase__ : List[str] = min_depth UpperCamelCase__ : Optional[int] = expand_ratio UpperCamelCase__ : Optional[int] = output_stride UpperCamelCase__ : Tuple = first_layer_is_expansion UpperCamelCase__ : Union[str, Any] = finegrained_output UpperCamelCase__ : str = hidden_act UpperCamelCase__ : Optional[Any] = tf_padding UpperCamelCase__ : Optional[int] = classifier_dropout_prob UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : Tuple = semantic_loss_ignore_index class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Union[str, Any] = version.parse("1.11" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def UpperCamelCase__ ( self ) -> float: """simple docstring""" return 1E-4
201
1
from functools import reduce SCREAMING_SNAKE_CASE__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __lowerCamelCase , __lowerCamelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
_lowerCamelCase : Tuple = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCamelCase : Tuple = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCamelCase : Any = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
14
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
from typing import List from .keymap import KEYMAP, get_character def UpperCamelCase__( UpperCamelCase__ : str )->Union[str, Any]: def decorator(UpperCamelCase__ : Dict ): A__ = getattr(_lowerCamelCase , '''handle_key''' , [] ) handle += [key] setattr(_lowerCamelCase , '''handle_key''' , _lowerCamelCase ) return func return decorator def UpperCamelCase__( *UpperCamelCase__ : List[str] )->Optional[int]: def decorator(UpperCamelCase__ : Tuple ): A__ = getattr(_lowerCamelCase , '''handle_key''' , [] ) handle += keys setattr(_lowerCamelCase , '''handle_key''' , _lowerCamelCase ) return func return decorator class SCREAMING_SNAKE_CASE__ ( a__ ): def __new__( cls,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = super().__new__(cls,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) if not hasattr(__lowerCamelCase,'''key_handler''' ): setattr(__lowerCamelCase,'''key_handler''',{} ) setattr(__lowerCamelCase,'''handle_input''',KeyHandler.handle_input ) for value in attrs.values(): A__ = getattr(__lowerCamelCase,'''handle_key''',[] ) for key in handled_keys: A__ = value return new_cls @staticmethod def UpperCamelCase ( cls ): A__ = get_character() if char != KEYMAP["undefined"]: A__ = ord(__lowerCamelCase ) A__ = cls.key_handler.get(__lowerCamelCase ) if handler: A__ = char return handler(cls ) else: return None def UpperCamelCase__( cls : Dict )->Optional[Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
369
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = 42 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self,__lowerCamelCase = 3,__lowerCamelCase = 3,__lowerCamelCase = ("DownEncoderBlock2D",),__lowerCamelCase = ("UpDecoderBlock2D",),__lowerCamelCase = (64,),__lowerCamelCase = 1,__lowerCamelCase = "silu",__lowerCamelCase = 3,__lowerCamelCase = 32,__lowerCamelCase = 256,__lowerCamelCase = 32,__lowerCamelCase = None,__lowerCamelCase = 0.18215,__lowerCamelCase = "group",): super().__init__() # pass init params to Encoder A__ = Encoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,down_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,double_z=__lowerCamelCase,) A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) A__ = VectorQuantizer(__lowerCamelCase,__lowerCamelCase,beta=0.25,remap=__lowerCamelCase,sane_index_shape=__lowerCamelCase ) A__ = nn.Convad(__lowerCamelCase,__lowerCamelCase,1 ) # pass init params to Decoder A__ = Decoder( in_channels=__lowerCamelCase,out_channels=__lowerCamelCase,up_block_types=__lowerCamelCase,block_out_channels=__lowerCamelCase,layers_per_block=__lowerCamelCase,act_fn=__lowerCamelCase,norm_num_groups=__lowerCamelCase,norm_type=__lowerCamelCase,) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = self.encoder(__lowerCamelCase ) A__ = self.quant_conv(__lowerCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=__lowerCamelCase ) @apply_forward_hook def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = False,__lowerCamelCase = True ): # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ = self.quantize(__lowerCamelCase ) else: A__ = h A__ = self.post_quant_conv(__lowerCamelCase ) A__ = self.decoder(__lowerCamelCase,quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = True ): A__ = sample A__ = self.encode(__lowerCamelCase ).latents A__ = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
39
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase__ : List[Any] = logging.get_logger(__name__) # General docstring lowerCAmelCase__ : str = '''RegNetConfig''' # Base docstring lowerCAmelCase__ : List[Any] = '''facebook/regnet-y-040''' lowerCAmelCase__ : Tuple = [1, 10_88, 7, 7] # Image classification docstring lowerCAmelCase__ : Tuple = '''facebook/regnet-y-040''' lowerCAmelCase__ : str = '''tabby, tabby cat''' lowerCAmelCase__ : List[str] = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 3 , __UpperCamelCase = 1 , __UpperCamelCase = 1 , __UpperCamelCase = "relu" , ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case__ : Optional[Any] = nn.Convad( __UpperCamelCase , __UpperCamelCase , kernel_size=__UpperCamelCase , stride=__UpperCamelCase , padding=kernel_size // 2 , groups=__UpperCamelCase , bias=__UpperCamelCase , ) snake_case__ : List[str] = nn.BatchNormad(__UpperCamelCase ) snake_case__ : Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity() def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : Optional[int] = self.convolution(__UpperCamelCase ) snake_case__ : str = self.normalization(__UpperCamelCase ) snake_case__ : Optional[Any] = self.activation(__UpperCamelCase ) return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase ) -> Tuple: '''simple docstring''' super().__init__() snake_case__ : Optional[int] = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) snake_case__ : Optional[int] = config.num_channels def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : List[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) snake_case__ : List[Any] = self.embedder(__UpperCamelCase ) return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 ) -> Dict: '''simple docstring''' super().__init__() snake_case__ : Optional[int] = nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , stride=__UpperCamelCase , bias=__UpperCamelCase ) snake_case__ : Any = nn.BatchNormad(__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> Tensor: '''simple docstring''' snake_case__ : Optional[int] = self.convolution(__UpperCamelCase ) snake_case__ : Tuple = self.normalization(__UpperCamelCase ) return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase ) -> Tuple: '''simple docstring''' super().__init__() snake_case__ : str = nn.AdaptiveAvgPoolad((1, 1) ) snake_case__ : List[Any] = nn.Sequential( nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def __a ( self , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.pooler(__UpperCamelCase ) snake_case__ : str = self.attention(__UpperCamelCase ) snake_case__ : Dict = hidden_state * attention return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ) -> Optional[int]: '''simple docstring''' super().__init__() snake_case__ : List[str] = in_channels != out_channels or stride != 1 snake_case__ : Tuple = max(1 , out_channels // config.groups_width ) snake_case__ : Optional[Any] = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) snake_case__ : List[str] = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) snake_case__ : Union[str, Any] = ACTaFN[config.hidden_act] def __a ( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' snake_case__ : List[str] = hidden_state snake_case__ : Optional[int] = self.layer(__UpperCamelCase ) snake_case__ : List[Any] = self.shortcut(__UpperCamelCase ) hidden_state += residual snake_case__ : Union[str, Any] = self.activation(__UpperCamelCase ) return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ) -> List[str]: '''simple docstring''' super().__init__() snake_case__ : int = in_channels != out_channels or stride != 1 snake_case__ : List[str] = max(1 , out_channels // config.groups_width ) snake_case__ : Union[str, Any] = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) snake_case__ : Dict = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetSELayer(__UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) snake_case__ : Optional[int] = ACTaFN[config.hidden_act] def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = hidden_state snake_case__ : str = self.layer(__UpperCamelCase ) snake_case__ : Dict = self.shortcut(__UpperCamelCase ) hidden_state += residual snake_case__ : Any = self.activation(__UpperCamelCase ) return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 , __UpperCamelCase = 2 , ) -> Any: '''simple docstring''' super().__init__() snake_case__ : Any = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer snake_case__ : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , ) , *[layer(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for _ in range(depth - 1 )] , ) def __a ( self , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.layers(__UpperCamelCase ) return hidden_state class __snake_case ( nn.Module ): def __init__( self , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' super().__init__() snake_case__ : int = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) snake_case__ : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , depth=__UpperCamelCase ) ) def __a ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' snake_case__ : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: snake_case__ : int = hidden_states + (hidden_state,) snake_case__ : Any = stage_module(__UpperCamelCase ) if output_hidden_states: snake_case__ : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCamelCase , hidden_states=__UpperCamelCase ) class __snake_case ( _lowerCamelCase ): __lowerCamelCase = RegNetConfig __lowerCamelCase = """regnet""" __lowerCamelCase = """pixel_values""" __lowerCamelCase = True def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' if isinstance(__UpperCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __a ( self , __UpperCamelCase , __UpperCamelCase=False ) -> Dict: '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Any = value lowerCAmelCase__ : Any = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCAmelCase__ : Optional[int] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,_lowerCamelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __snake_case ( _lowerCamelCase ): def __init__( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' super().__init__(__UpperCamelCase ) snake_case__ : List[Any] = config snake_case__ : Any = RegNetEmbeddings(__UpperCamelCase ) snake_case__ : List[Any] = RegNetEncoder(__UpperCamelCase ) snake_case__ : Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' snake_case__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : str = self.embedder(__UpperCamelCase ) snake_case__ : Tuple = self.encoder( __UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) snake_case__ : Union[str, Any] = encoder_outputs[0] snake_case__ : Optional[int] = self.pooler(__UpperCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCamelCase , pooler_output=__UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,_lowerCamelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __snake_case ( _lowerCamelCase ): def __init__( self , __UpperCamelCase ) -> Optional[int]: '''simple docstring''' super().__init__(__UpperCamelCase ) snake_case__ : List[str] = config.num_labels snake_case__ : int = RegNetModel(__UpperCamelCase ) # classification head snake_case__ : str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __a ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' snake_case__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict snake_case__ : Optional[int] = self.regnet(__UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) snake_case__ : Any = outputs.pooler_output if return_dict else outputs[1] snake_case__ : Optional[int] = self.classifier(__UpperCamelCase ) snake_case__ : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case__ : Optional[int] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case__ : Union[str, Any] = 'single_label_classification' else: snake_case__ : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": snake_case__ : List[Any] = MSELoss() if self.num_labels == 1: snake_case__ : Tuple = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case__ : Optional[Any] = loss_fct(__UpperCamelCase , __UpperCamelCase ) elif self.config.problem_type == "single_label_classification": snake_case__ : int = CrossEntropyLoss() snake_case__ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case__ : int = BCEWithLogitsLoss() snake_case__ : str = loss_fct(__UpperCamelCase , __UpperCamelCase ) if not return_dict: snake_case__ : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states )
143
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowerCAmelCase__ : Union[str, Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : Optional[Any] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case__ : Dict = int(re.match(r'.*layer_(\d*).*' , A__ )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def UpperCamelCase__ ( A__ ) -> str: if dtype == torch.bool: return 1 / 8 snake_case__ : List[str] = re.search(r'[^\d](\d+)$' , str(A__ ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) snake_case__ : Union[str, Any] = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> List[str]: # Construct model if bloom_config_file == "": snake_case__ : Union[str, Any] = BloomConfig() else: snake_case__ : int = BloomConfig.from_json_file(A__ ) if shard_model: snake_case__ : Tuple = os.listdir(A__ ) snake_case__ : str = sorted(filter(lambda A__ : s.startswith('layer' ) and "model_00" in s , A__ ) ) snake_case__ : str = {'weight_map': {}, 'metadata': {}} snake_case__ : Optional[int] = 0 snake_case__ : Tuple = None snake_case__ : Any = BloomConfig() for j, file in enumerate(A__ ): print('Processing file: {}'.format(A__ ) ) snake_case__ : str = None for i in range(A__ ): # load all TP files snake_case__ : Optional[int] = file.replace('model_00' , F"""model_0{i}""" ) snake_case__ : int = torch.load(os.path.join(A__ , A__ ) , map_location='cpu' ) # Rename keys in the transformers names snake_case__ : List[Any] = list(temp.keys() ) for key in keys: snake_case__ : List[Any] = temp.pop(A__ ) if tensors is None: snake_case__ : Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Optional[int] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Dict = tensors[key] / pretraining_tp torch.save( A__ , os.path.join( A__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case__ : List[Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case__ : Optional[int] = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) snake_case__ : Dict = BloomConfig() snake_case__ : str = pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case__ : int = total_size with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: snake_case__ : List[str] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '\n' f.write(A__ ) else: snake_case__ : int = BloomModel(A__ ) snake_case__ : Dict = os.listdir(A__ ) snake_case__ : Union[str, Any] = sorted(filter(lambda A__ : s.startswith('layer' ) and "model_00" in s , A__ ) ) snake_case__ : List[str] = None for i, file in enumerate(A__ ): snake_case__ : Dict = None for i in range(A__ ): # load all TP files snake_case__ : List[Any] = file.replace('model_00' , F"""model_0{i}""" ) snake_case__ : int = torch.load(os.path.join(A__ , A__ ) , map_location='cpu' ) # Rename keys in the transformers names snake_case__ : List[str] = list(temp.keys() ) for key in keys: snake_case__ : Any = temp.pop(A__ ) if tensors is None: snake_case__ : Union[str, Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Optional[int] = tensors[key] / pretraining_tp snake_case__ : int = model.load_state_dict(A__ , strict=A__ ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: snake_case__ : List[Any] = set(other_keys.missing_keys ) else: snake_case__ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A__ , exist_ok=A__ ) snake_case__ : Any = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case__ : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: snake_case__ : str = model.to(config.torch_dtype ) torch.save(model.state_dict() , A__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowerCAmelCase__ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
143
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def _snake_case ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowercase_ : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowercase_ : str = floats_tensor((1, 3, 16, 16) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _snake_case ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): """simple docstring""" self._test_save_load_local() def _snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
353
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : str = "▁" _lowercase : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Dict = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _lowercase : Optional[Any] = { "facebook/xglm-564M": 2_0_4_8, } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase_ : Optional[Any] = 7 lowercase_ : List[Any] = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowercase_ : Tuple = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase_ : Dict = len(self.sp_model ) lowercase_ : int = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : Optional[Any] = None lowercase_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Optional[Any] = {} lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase_ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self ): """simple docstring""" lowercase_ : Any = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : str = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : str = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
264
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: pass def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = pipeline( "document-question-answering" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a : Optional[int] = INVOICE_URL a : str = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) a : Union[str, Any] = "What is the placebo?" a : Dict = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> List[Any]: a : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) a : Dict = INVOICE_URL a : List[str] = "How many cats are there?" a : Tuple = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) a : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes a : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Tuple = [] a : Optional[int] = [] a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Tuple: a : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a : List[str] = INVOICE_URL a : List[Any] = "What is the invoice number?" a : int = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Optional[int]: a : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> str: a : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : int = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , ) a : List[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> Tuple: a : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , max_seq_len=50 , ) a : List[str] = INVOICE_URL a : Union[str, Any] = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __a ( self ) -> int: a : Tuple = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __a ( self ) -> int: pass
105
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A (enum.Enum ): '''simple docstring''' __lowerCamelCase : Tuple = 0 __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : Optional[Any] = 2 @add_end_docstrings(SCREAMING_SNAKE_CASE ) class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : List[Any] = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : List[Any] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ = None if self.model.config.prefix is not None: A__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ = self._sanitize_parameters(prefix=__lowerCAmelCase , **self._forward_params ) A__ = {**self._preprocess_params, **preprocess_params} A__ = {**self._forward_params, **forward_params} def a_ ( self : Dict , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" A__ = {} if prefix is not None: A__ = prefix if prefix: A__ = self.tokenizer( __lowerCAmelCase , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework ) A__ = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' """ [None, 'hole']""" ) A__ = handle_long_generation preprocess_params.update(__lowerCAmelCase ) A__ = generate_kwargs A__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) A__ = ReturnType.TENSORS if return_type is not None: A__ = return_type if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if stop_sequence is not None: A__ = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) A__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self : Any , *__lowerCAmelCase : Dict , **__lowerCAmelCase : Dict ) -> Dict: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*__lowerCAmelCase , **__lowerCAmelCase ) def __call__( self : str , __lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str]="" , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" A__ = self.tokenizer( prefix + prompt_text , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework ) A__ = prompt_text if handle_long_generation == "hole": A__ = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: A__ = generate_kwargs["""max_new_tokens"""] else: A__ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: A__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) A__ = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: A__ = inputs["""attention_mask"""][:, -keep_length:] return inputs def a_ ( self : Dict , __lowerCAmelCase : Optional[int] , **__lowerCAmelCase : Tuple ) -> Any: """simple docstring""" A__ = model_inputs["""input_ids"""] A__ = model_inputs.get("""attention_mask""" , __lowerCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: A__ = None A__ = None A__ = 1 else: A__ = input_ids.shape[0] A__ = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: A__ = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: A__ = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase ) A__ = generated_sequence.shape[0] if self.framework == "pt": A__ = generated_sequence.reshape(__lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": A__ = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a_ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=ReturnType.FULL_TEXT , __lowerCAmelCase : Tuple=True ) -> Union[str, Any]: """simple docstring""" A__ = model_outputs["""generated_sequence"""][0] A__ = model_outputs["""input_ids"""] A__ = model_outputs["""prompt_text"""] A__ = generated_sequence.numpy().tolist() A__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ = self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ = 0 else: A__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: A__ = prompt_text + text[prompt_length:] else: A__ = text[prompt_length:] A__ = {"""generated_text""": all_text} records.append(__lowerCAmelCase ) return records
276
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": A : List[str] = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') A : Tuple = parser.parse_args() if args.model_type == "bert": A : Dict = BertForMaskedLM.from_pretrained(args.model_name) A : List[str] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') A : Optional[Any] = model.state_dict() A : int = {} for w in ["word_embeddings", "position_embeddings"]: A : str = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: A : Any = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] A : Tuple = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: A : Optional[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] A : Optional[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] A : Optional[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] A : int = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] A : List[Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] A : List[str] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] A : Union[str, Any] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] A : List[str] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 A : int = state_dict['''cls.predictions.decoder.weight'''] A : str = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: A : List[Any] = state_dict[F'''cls.predictions.transform.dense.{w}'''] A : List[str] = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
276
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'retribert' def __init__( self , lowercase=30_522 , lowercase=768 , lowercase=8 , lowercase=12 , lowercase=3_072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=True , lowercase=128 , lowercase=0 , **lowercase , ) -> str: super().__init__(pad_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = share_encoders lowerCAmelCase = projection_dim
46
'''simple docstring''' def lowerCamelCase__ ( _A , _A ): while second != 0: a : Union[str, Any] = first & second first ^= second a : Tuple = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase: Optional[int] = int(input('Enter the first number: ').strip()) lowerCAmelCase: Union[str, Any] = int(input('Enter the second number: ').strip()) print(F"{add(first, second) = }")
297
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : List[Any] = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __a ( ) ->str: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=UpperCAmelCase , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=UpperCAmelCase , default=5 ) parser.add_argument("""--batch_size""" , type=UpperCAmelCase , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=UpperCAmelCase , default=1 ) parser.add_argument("""--freeze""" , type=UpperCAmelCase , default=UpperCAmelCase ) parser.add_argument("""--learning_rate""" , type=UpperCAmelCase , default=5E-4 ) parser.add_argument("""--seed""" , type=UpperCAmelCase , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=UpperCAmelCase , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=UpperCAmelCase , default=10 ) parser.add_argument("""--weight_decay""" , type=UpperCAmelCase , default=0.01 ) parser.add_argument("""--output_dir""" , type=UpperCAmelCase , default="""./results""" ) return parser.parse_args() _lowerCamelCase : Optional[Any] = load('accuracy') def __a ( UpperCAmelCase ) ->Any: """simple docstring""" A , A = eval_pred A = np.argmax(UpperCAmelCase , axis=1 ) return metric.compute(predictions=UpperCAmelCase , references=UpperCAmelCase ) class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Any ): super().__init__() A = trainer def A (self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ): if control.should_evaluate: A = deepcopy(_lowerCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def __a ( ) ->Optional[int]: """simple docstring""" A = get_args() set_seed(args.seed ) A = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) A = dataset.train_test_split(test_size=0.2 ) A = train_test["""test"""].train_test_split(test_size=0.5 ) A = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) A = AutoTokenizer.from_pretrained(args.model_ckpt ) A = tokenizer.eos_token A = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) A = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): A = False A = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(UpperCAmelCase ): A = tokenizer(example["""src"""] , truncation=UpperCAmelCase , max_length=1024 ) A = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } A = train_test_validation.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=train_test_validation["""train"""].column_names , ) A = DataCollatorWithPadding(tokenizer=UpperCAmelCase ) A = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=UpperCAmelCase , data_collator=UpperCAmelCase , compute_metrics=UpperCAmelCase , ) print("""Training...""" ) trainer.add_callback(CustomCallback(UpperCAmelCase ) ) trainer.train() if __name__ == "__main__": main()
337
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Any = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='bert' def __init__( self : Dict , __a : Dict=3_05_22 , __a : int=7_68 , __a : Any=12 , __a : Tuple=12 , __a : List[str]=30_72 , __a : int="gelu" , __a : List[str]=0.1 , __a : Union[str, Any]=0.1 , __a : str=5_12 , __a : Any=2 , __a : Union[str, Any]=0.02 , __a : int=1e-1_2 , __a : Tuple=0 , __a : Tuple="absolute" , __a : Optional[Any]=True , __a : Optional[Any]=None , **__a : List[Any] , ): super().__init__(pad_token_id=__a , **__a ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Dict ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
63
def __A ( __lowerCAmelCase )-> list: """simple docstring""" if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _a = input('''Enter numbers separated by a comma:\n''').strip() _a = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
39
0
import numpy as np import datasets __UpperCAmelCase = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __UpperCAmelCase = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __UpperCAmelCase = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> int: # convert to numpy arrays UpperCAmelCase_ : Dict = np.array(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = np.array(_UpperCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : Dict = X - np.mean(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : List[Any] = np.linalg.inv(_UpperCamelCase ) except np.linalg.LinAlgError: UpperCAmelCase_ : Tuple = np.linalg.pinv(_UpperCamelCase ) UpperCAmelCase_ : Any = np.dot(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = np.dot(_UpperCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
145
def lowercase__ ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[Any] ): '''simple docstring''' if index == r: for j in range(__snake_case ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase_ : int = arr[i] combination_util(__snake_case , __snake_case , __snake_case , index + 1 , __snake_case , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase__ ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case , __snake_case , __snake_case , 0 , __snake_case , 0 ) if __name__ == "__main__": # Driver code to check the function above __UpperCAmelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
145
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Dict = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowercase_ ( lowerCAmelCase__ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = """ctrl""" UpperCAmelCase_ : List[Any] = ["""past_key_values"""] UpperCAmelCase_ : Optional[Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __SCREAMING_SNAKE_CASE=246534 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=1280 , __SCREAMING_SNAKE_CASE=8192 , __SCREAMING_SNAKE_CASE=48 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) ->Dict: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = dff lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = use_cache super().__init__(**lowercase_ )
338
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __lowercase ( _a="" ): snake_case_ : List[str] = tempfile.mkdtemp() return os.path.join(_a , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : str ): snake_case_ : int = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Optional[int] = AgentAudio(lowercase_ ) snake_case_ : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_ ) ) # Ensure that the file contains the same value as the original tensor snake_case_, snake_case_ : int = sf.read(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_ ) , atol=1E-4 ) ) def _snake_case ( self : Optional[int] ): snake_case_ : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : List[str] = get_new_path(suffix='''.wav''' ) sf.write(lowercase_ , lowercase_ , 16000 ) snake_case_ : Tuple = AgentAudio(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowercase_ ) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Tuple ): snake_case_ : List[Any] = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ : str = AgentImage(lowercase_ ) snake_case_ : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def _snake_case ( self : str ): snake_case_ : Any = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : Optional[int] = Image.open(lowercase_ ) snake_case_ : Tuple = AgentImage(lowercase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def _snake_case ( self : str ): snake_case_ : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : Dict = Image.open(lowercase_ ) snake_case_ : List[str] = AgentImage(lowercase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): snake_case_ : Tuple = '''Hey!''' snake_case_ : Optional[Any] = AgentText(lowercase_ ) self.assertEqual(lowercase_ , agent_type.to_string() ) self.assertEqual(lowercase_ , agent_type.to_raw() ) self.assertEqual(lowercase_ , lowercase_ )
264
0
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase=0 ) -> Any: '''simple docstring''' if name is None: snake_case_ = None else: snake_case_ = '''.''' * max(0, spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' snake_case_ = fmt.format(__UpperCAmelCase ) # Print and recurse (if needed). if isinstance(__UpperCAmelCase, __UpperCAmelCase ): if msg is not None: print(__UpperCAmelCase ) for k in val.keys(): recursive_print(__UpperCAmelCase, val[k], spaces + 2 ) elif isinstance(__UpperCAmelCase, torch.Tensor ): print(__UpperCAmelCase, ''':''', val.size() ) else: print(__UpperCAmelCase, ''':''', __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ = param.view(*__UpperCAmelCase ) snake_case_ = param.transpose(0, 2 ) snake_case_ = param.transpose(1, 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ = param.view(*__UpperCAmelCase ) snake_case_ = param.transpose(0, 1 ).contiguous() snake_case_ = param.view(*__UpperCAmelCase ) return param def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' snake_case_ = {} # old versions did not store training args snake_case_ = input_state_dict.get('''args''', __UpperCAmelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ = ds_args.padded_vocab_size snake_case_ = ds_args.max_position_embeddings snake_case_ = ds_args.hidden_size snake_case_ = ds_args.num_layers snake_case_ = ds_args.num_attention_heads snake_case_ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ = config.n_head # The hidden_size per head. snake_case_ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ = input_state_dict['''checkpoint_version'''] else: snake_case_ = 0.0 # The model. snake_case_ = input_state_dict['''model'''] # The language model. snake_case_ = model['''language_model'''] # The embeddings. snake_case_ = lm['''embedding'''] # The word embeddings. snake_case_ = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. snake_case_ = word_embeddings[: config.vocab_size, :] snake_case_ = word_embeddings # The position embeddings. snake_case_ = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. snake_case_ = pos_embeddings # The transformer. snake_case_ = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. snake_case_ = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. snake_case_ = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ = layer_re.match(__UpperCAmelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ = int(m.group(1 ) ) # The name of the operation. snake_case_ = m.group(2 ) # Is it a weight or a bias? snake_case_ = m.group(3 ) # The name of the layer. snake_case_ = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): snake_case_ = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' snake_case_ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.floataa ) ).view( 1, 1, __UpperCAmelCase, __UpperCAmelCase ) snake_case_ = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ = torch.tensor(-1e4, dtype=torch.floataa ) snake_case_ = masked_bias snake_case_ = fix_query_key_value_ordering(__UpperCAmelCase, __UpperCAmelCase, 3, __UpperCAmelCase, __UpperCAmelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ = out_val.transpose(0, 1 ).contiguous() # Store. snake_case_ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ = fix_query_key_value_ordering(__UpperCAmelCase, __UpperCAmelCase, 3, __UpperCAmelCase, __UpperCAmelCase ) # Store. No change of shape. snake_case_ = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ = megatron_to_transformers[op_name] snake_case_ = val.transpose(0, 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ = megatron_to_transformers[op_name] snake_case_ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ = transformer['''final_layernorm.weight'''] snake_case_ = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ = word_embeddings # It should be done! return output_state_dict def __magic_name__ ( ) -> Dict: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''', action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''', type=__UpperCAmelCase, help='''Path to the checkpoint file (.zip archive or direct .pt file)''', ) parser.add_argument( '''--config_file''', default='''''', type=__UpperCAmelCase, help='''An optional config json file describing the pre-trained model.''', ) snake_case_ = parser.parse_args() # Extract the basename. snake_case_ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint, '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) else: snake_case_ = torch.load(args.path_to_checkpoint, map_location='''cpu''' ) snake_case_ = input_state_dict.get('''args''', __UpperCAmelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ = '''gelu_fast''' elif ds_args.openai_gelu: snake_case_ = '''gelu_new''' else: snake_case_ = '''gelu''' else: # in the very early days this used to be "gelu_new" snake_case_ = '''gelu_new''' # Spell out all parameters in case the defaults change. snake_case_ = GPTaConfig( vocab_size=5_0257, n_positions=1024, n_embd=1024, n_layer=24, n_head=16, n_inner=4096, activation_function=__UpperCAmelCase, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.0_2, summary_type='''cls_index''', summary_use_proj=__UpperCAmelCase, summary_activation=__UpperCAmelCase, summary_proj_to_labels=__UpperCAmelCase, summary_first_dropout=0.1, scale_attn_weights=__UpperCAmelCase, use_cache=__UpperCAmelCase, bos_token_id=5_0256, eos_token_id=5_0256, ) else: snake_case_ = GPTaConfig.from_json_file(args.config_file ) snake_case_ = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) snake_case_ = convert_megatron_checkpoint(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__UpperCAmelCase, __UpperCAmelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": snake_case_ = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: snake_case_ = '''gpt2''' snake_case_ = AutoTokenizer.from_pretrained(__UpperCAmelCase ) snake_case_ = type(__UpperCAmelCase ).__name__ snake_case_ = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(__UpperCAmelCase ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(__UpperCAmelCase ) # Store the state_dict to file. snake_case_ = os.path.join(__UpperCAmelCase, '''pytorch_model.bin''' ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(__UpperCAmelCase, __UpperCAmelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
72
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Tuple = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class a ( _lowerCamelCase ): snake_case_ = "efficientnet" def __init__( self : int , lowercase_ : int = 3 , lowercase_ : int = 600 , lowercase_ : float = 2.0 , lowercase_ : float = 3.1 , lowercase_ : int = 8 , lowercase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowercase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowercase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowercase_ : List[int] = [] , lowercase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowercase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowercase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowercase_ : float = 0.25 , lowercase_ : str = "swish" , lowercase_ : int = 2560 , lowercase_ : str = "mean" , lowercase_ : float = 0.02 , lowercase_ : float = 0.001 , lowercase_ : float = 0.99 , lowercase_ : float = 0.5 , lowercase_ : float = 0.2 , **lowercase_ : Optional[Any] , ): super().__init__(**lowercase_ ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = width_coefficient snake_case_ = depth_coefficient snake_case_ = depth_divisor snake_case_ = kernel_sizes snake_case_ = in_channels snake_case_ = out_channels snake_case_ = depthwise_padding snake_case_ = strides snake_case_ = num_block_repeats snake_case_ = expand_ratios snake_case_ = squeeze_expansion_ratio snake_case_ = hidden_act snake_case_ = hidden_dim snake_case_ = pooling_type snake_case_ = initializer_range snake_case_ = batch_norm_eps snake_case_ = batch_norm_momentum snake_case_ = dropout_rate snake_case_ = drop_connect_rate snake_case_ = sum(lowercase_ ) * 4 class a ( _lowerCamelCase ): snake_case_ = version.parse("1.11" ) @property def A_ ( self : Optional[int] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A_ ( self : List[str] ): return 1e-5
72
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A__: Any = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A__: int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ,_UpperCAmelCase : str ) -> Dict: assert isinstance(_UpperCAmelCase ,_UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" ,[False, True] ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ) -> Optional[Any]: _a : Any =tmp_path / """cache""" _a : int ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a : Tuple =SqlDatasetReader( """dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_UpperCAmelCase ,keep_in_memory=_UpperCAmelCase ).read() _check_sql_dataset(_UpperCAmelCase ,_UpperCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" ,[ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] ,) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ) -> List[Any]: _a : Union[str, Any] =tmp_path / """cache""" _a : str ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _a : Optional[int] =features.copy() if features else default_expected_features _a : Union[str, Any] =( Features({feature: Value(_UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _a : Optional[Any] =SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,features=_UpperCAmelCase ,cache_dir=_UpperCAmelCase ).read() _check_sql_dataset(_UpperCAmelCase ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[Any] ) -> List[str]: with contextlib.closing(sqlitea.connect(_UpperCAmelCase ) ) as con: _a : Any =con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[str] ) -> Union[str, Any]: _a : Union[str, Any] =tmp_path / """cache""" _a : Union[str, Any] =os.path.join(_UpperCAmelCase ,"""tmp.sql""" ) _a : Tuple =SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_UpperCAmelCase ).read() SqlDatasetWriter(_UpperCAmelCase ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=1 ).write() _a : Tuple =iter_sql_file(_UpperCAmelCase ) _a : List[Any] =iter_sql_file(_UpperCAmelCase ) for rowa, rowa in zip(_UpperCAmelCase ,_UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[Any] ) -> Optional[int]: _a : int =tmp_path / """cache""" _a : Any =os.path.join(_UpperCAmelCase ,"""tmp.sql""" ) _a : Union[str, Any] =SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_UpperCAmelCase ).read() SqlDatasetWriter(_UpperCAmelCase ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=2 ).write() _a : List[Any] =iter_sql_file(_UpperCAmelCase ) _a : str =iter_sql_file(_UpperCAmelCase ) for rowa, rowa in zip(_UpperCAmelCase ,_UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : List[Any] ) -> List[str]: _a : List[str] =tmp_path / """cache""" _a : Dict =os.path.join(_UpperCAmelCase ,"""tmp.sql""" ) _a : Optional[Any] =SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=_UpperCAmelCase ).read() with pytest.raises(_UpperCAmelCase ): SqlDatasetWriter(_UpperCAmelCase ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=0 ).write()
276
1
import string import numpy def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , UpperCAmelCase ) class __UpperCAmelCase : UpperCamelCase = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCamelCase = numpy.vectorize(lambda lowerCamelCase__ : x % 3_6 ) UpperCamelCase = numpy.vectorize(lowerCamelCase__ ) def __init__( self : List[Any], __A : numpy.ndarray ): UpperCAmelCase : Optional[Any] = self.modulus(__A ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCAmelCase : Optional[int] = encrypt_key.shape[0] def __magic_name__ ( self : Union[str, Any], __A : str ): return self.key_string.index(__A ) def __magic_name__ ( self : Dict, __A : int ): return self.key_string[round(__A )] def __magic_name__ ( self : str ): UpperCAmelCase : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase : Dict = det % len(self.key_string ) UpperCAmelCase : Optional[Any] = len(self.key_string ) if greatest_common_divisor(__A, len(self.key_string ) ) != 1: UpperCAmelCase : Optional[Any] = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(__A ) def __magic_name__ ( self : Union[str, Any], __A : str ): UpperCAmelCase : Dict = [char for char in text.upper() if char in self.key_string] UpperCAmelCase : Optional[Any] = chars[-1] while len(__A ) % self.break_key != 0: chars.append(__A ) return "".join(__A ) def __magic_name__ ( self : Any, __A : str ): UpperCAmelCase : Optional[Any] = self.process_text(text.upper() ) UpperCAmelCase : Tuple = '''''' for i in range(0, len(__A ) - self.break_key + 1, self.break_key ): UpperCAmelCase : Union[str, Any] = text[i : i + self.break_key] UpperCAmelCase : str = [self.replace_letters(__A ) for char in batch] UpperCAmelCase : List[str] = numpy.array([vec] ).T UpperCAmelCase : Dict = self.modulus(self.encrypt_key.dot(__A ) ).T.tolist()[ 0 ] UpperCAmelCase : str = ''''''.join( self.replace_digits(__A ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCAmelCase : List[Any] = det % len(self.key_string ) UpperCAmelCase : int = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: UpperCAmelCase : Dict = i break UpperCAmelCase : str = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__A ) ) def __magic_name__ ( self : List[Any], __A : str ): UpperCAmelCase : str = self.make_decrypt_key() UpperCAmelCase : List[Any] = self.process_text(text.upper() ) UpperCAmelCase : Any = '''''' for i in range(0, len(__A ) - self.break_key + 1, self.break_key ): UpperCAmelCase : Dict = text[i : i + self.break_key] UpperCAmelCase : Optional[int] = [self.replace_letters(__A ) for char in batch] UpperCAmelCase : Optional[int] = numpy.array([vec] ).T UpperCAmelCase : Optional[int] = self.modulus(decrypt_key.dot(__A ) ).T.tolist()[0] UpperCAmelCase : List[Any] = ''''''.join( self.replace_digits(__A ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a__ ( ) -> None: UpperCAmelCase : List[Any] = int(input('''Enter the order of the encryption key: ''' ) ) UpperCAmelCase : List[str] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = [int(UpperCAmelCase ) for x in input().split()] hill_matrix.append(UpperCAmelCase ) UpperCAmelCase : int = HillCipher(numpy.array(UpperCAmelCase ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) UpperCAmelCase : str = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": UpperCAmelCase : Any = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(UpperCAmelCase ) ) elif option == "2": UpperCAmelCase : int = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
99
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : def __init__( self : Any, __A : List[Any], __A : Optional[Any]=2, __A : List[Any]=3_2, __A : Tuple=1_6, __A : int=3, __A : Any=True, __A : List[Any]=True, __A : List[Any]=3_2, __A : List[Any]=4, __A : Union[str, Any]=[0, 1, 2, 3], __A : List[Any]=4, __A : Optional[int]=3_7, __A : int="gelu", __A : Any=0.1, __A : Tuple=0.1, __A : Any=0.0_2, __A : List[str]=3, __A : int=[1, 3_8_4, 2_4, 2_4], __A : Any=True, __A : List[str]=None, ): UpperCAmelCase : List[str] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Tuple = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : str = num_channels UpperCAmelCase : Tuple = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : str = backbone_out_indices UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : Tuple = attention_probs_dropout_prob UpperCAmelCase : str = initializer_range UpperCAmelCase : Optional[int] = num_labels UpperCAmelCase : int = backbone_featmap_shape UpperCAmelCase : Union[str, Any] = scope UpperCAmelCase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Any = (image_size // patch_size) ** 2 UpperCAmelCase : Optional[Any] = num_patches + 1 def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Dict ): UpperCAmelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [9_6, 1_9_2, 3_8_4, 7_6_8], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, backbone_out_indices=self.backbone_out_indices, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, is_hybrid=self.is_hybrid, backbone_config=__A, backbone_featmap_shape=self.backbone_featmap_shape, ) def __magic_name__ ( self : Optional[Any], __A : List[Any], __A : Union[str, Any], __A : Tuple ): UpperCAmelCase : Optional[Any] = DPTModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Optional[int], __A : Any, __A : Dict, __A : Optional[int] ): UpperCAmelCase : Optional[Any] = self.num_labels UpperCAmelCase : List[Any] = DPTForDepthEstimation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size) ) def __magic_name__ ( self : Union[str, Any], __A : Dict, __A : List[Any], __A : Optional[int] ): UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Tuple = DPTForSemanticSegmentation(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : str = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = config_and_inputs UpperCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Tuple ): UpperCAmelCase : int = DPTModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __magic_name__ ( self : int ): pass def __magic_name__ ( self : List[Any] ): UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] UpperCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Any ): UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) def __magic_name__ ( self : Union[str, Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = True if model_class in get_values(__A ): continue UpperCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.train() UpperCAmelCase : str = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Union[str, Any] = model(**__A ).loss loss.backward() def __magic_name__ ( self : Optional[int] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = False UpperCAmelCase : int = True if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase : Dict = model_class(__A ) model.to(__A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : List[str] = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : Any = model(**__A ).loss loss.backward() def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(config=__A ) # Skip the check for the backbone UpperCAmelCase : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase : Optional[Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__ ( self : Optional[int] ): pass @slow def __magic_name__ ( self : Optional[Any] ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase : Optional[int] = DPTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __magic_name__ ( self : int ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = '''add''' with self.assertRaises(__A ): UpperCAmelCase : Dict = DPTForDepthEstimation(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : Dict ): UpperCAmelCase : Dict = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCAmelCase : Tuple = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__A ) UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : int = model(**__A ) UpperCAmelCase : int = outputs.predicted_depth # verify the predicted depth UpperCAmelCase : Tuple = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape, __A ) UpperCAmelCase : Dict = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0, __A, atol=1E-4 ) )
99
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __SCREAMING_SNAKE_CASE ( pl.LightningModule ): def __init__( self , SCREAMING_SNAKE_CASE__ ): super().__init__() lowercase : Any = model lowercase : Optional[Any] = 2 lowercase : Optional[int] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __lowerCamelCase ( self ): pass def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : str = LongformerModel.from_pretrained(_UpperCamelCase ) lowercase : int = LightningModel(_UpperCamelCase ) lowercase : Union[str, Any] = torch.load(_UpperCamelCase, map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model lowercase : List[Any] = LongformerForQuestionAnswering.from_pretrained(_UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_UpperCamelCase ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
337
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _A = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _A = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = BertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> List[str]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
117
0
'''simple docstring''' import argparse import struct import unittest class A__ : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : bytes ) -> None: """simple docstring""" _UpperCAmelCase : Tuple = data # Initialize hash values _UpperCAmelCase : Optional[Any] = [ 0x6a09_e667, 0xbb67_ae85, 0x3c6e_f372, 0xa54f_f53a, 0x510e_527f, 0x9b05_688c, 0x1f83_d9ab, 0x5be0_cd19, ] # Initialize round constants _UpperCAmelCase : List[Any] = [ 0x428a_2f98, 0x7137_4491, 0xb5c0_fbcf, 0xe9b5_dba5, 0x3956_c25b, 0x59f1_11f1, 0x923f_82a4, 0xab1c_5ed5, 0xd807_aa98, 0x1283_5b01, 0x2431_85be, 0x550c_7dc3, 0x72be_5d74, 0x80de_b1fe, 0x9bdc_06a7, 0xc19b_f174, 0xe49b_69c1, 0xefbe_4786, 0x0fc1_9dc6, 0x240c_a1cc, 0x2de9_2c6f, 0x4a74_84aa, 0x5cb0_a9dc, 0x76f9_88da, 0x983e_5152, 0xa831_c66d, 0xb003_27c8, 0xbf59_7fc7, 0xc6e0_0bf3, 0xd5a7_9147, 0x06ca_6351, 0x1429_2967, 0x27b7_0a85, 0x2e1b_2138, 0x4d2c_6dfc, 0x5338_0d13, 0x650a_7354, 0x766a_0abb, 0x81c2_c92e, 0x9272_2c85, 0xa2bf_e8a1, 0xa81a_664b, 0xc24b_8b70, 0xc76c_51a3, 0xd192_e819, 0xd699_0624, 0xf40e_3585, 0x106a_a070, 0x19a4_c116, 0x1e37_6c08, 0x2748_774c, 0x34b0_bcb5, 0x391c_0cb3, 0x4ed8_aa4a, 0x5b9c_ca4f, 0x682e_6ff3, 0x748f_82ee, 0x78a5_636f, 0x84c8_7814, 0x8cc7_0208, 0x90be_fffa, 0xa450_6ceb, 0xbef9_a3f7, 0xc671_78f2, ] _UpperCAmelCase : Union[str, Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : bytes ) -> bytes: """simple docstring""" _UpperCAmelCase : Tuple = B"\x80" + (B"\x00" * (6_3 - (len(lowerCAmelCase__ ) + 8) % 6_4)) _UpperCAmelCase : Tuple = struct.pack(">Q" , (len(lowerCAmelCase__ ) * 8) ) return data + padding + big_endian_integer def _lowerCAmelCase ( self : Optional[int] ) -> None: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _UpperCAmelCase : Optional[Any] = list(struct.unpack(">16L" , lowerCAmelCase__ ) ) # add 48 0-ed integers words += [0] * 4_8 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array _UpperCAmelCase : Tuple = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) _UpperCAmelCase : Dict = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) _UpperCAmelCase : Tuple = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _UpperCAmelCase : List[Any] = self.ror(lowerCAmelCase__ , 6 ) ^ self.ror(lowerCAmelCase__ , 1_1 ) ^ self.ror(lowerCAmelCase__ , 2_5 ) _UpperCAmelCase : Union[str, Any] = (e & f) ^ ((~e & 0xffff_ffff) & g) _UpperCAmelCase : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _UpperCAmelCase : Dict = self.ror(lowerCAmelCase__ , 2 ) ^ self.ror(lowerCAmelCase__ , 1_3 ) ^ self.ror(lowerCAmelCase__ , 2_2 ) _UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) _UpperCAmelCase : Tuple = (sa + maj) % 0x1_0000_0000 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values _UpperCAmelCase : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _UpperCAmelCase : List[Any] = "".join([hex(lowerCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: """simple docstring""" return 0xffff_ffff & (value << (3_2 - rotations)) | (value >> rotations) class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> None: """simple docstring""" import hashlib _UpperCAmelCase : Optional[int] = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(lowerCAmelCase__ ).hash , hashlib.shaaaa(lowerCAmelCase__ ).hexdigest() ) def __UpperCAmelCase ( ): import doctest doctest.testmod() _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) _UpperCAmelCase : Dict = parser.parse_args() _UpperCAmelCase : Dict = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: _UpperCAmelCase : List[str] = f.read() else: _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) print(SHAaaa(a_ ).hash ) if __name__ == "__main__": main()
145
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
145
1
from __future__ import annotations import time import numpy as np __snake_case : Optional[int] =[8, 5, 9, 7] __snake_case : Optional[Any] =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __snake_case : int =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) -> None: """simple docstring""" lowerCAmelCase__ : str = claim_vector lowerCAmelCase__ : Union[str, Any] = allocated_resources_table lowerCAmelCase__ : Any = maximum_claim_table def lowerCAmelCase__ (self ) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase__ (self ) -> list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase__ (self ) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase__ (self ) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.__need() lowerCAmelCase__ : Optional[Any] = self.__allocated_resources_table lowerCAmelCase__ : Optional[int] = self.__available_resources() lowerCAmelCase__ : List[str] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: lowerCAmelCase__ : List[Any] = False for each_need in need_list: lowerCAmelCase__ : Tuple = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCAmelCase__ : List[Any] = False break if execution: lowerCAmelCase__ : List[str] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCAmelCase__ : List[str] = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCAmelCase__ : Optional[Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}""" + ''' '''.join(f"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}""" + ''' '''.join(f"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
367
def lowerCAmelCase__ ( lowerCamelCase_ : int = 1000): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = 1, 1 lowerCAmelCase__ : Any = 2 while True: lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Any = fa + fa lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = fa, f index += 1 for _ in str(lowerCamelCase_): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
0
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def snake_case_ ( A_ : Union[str, Any], A_ : Dict, A_ : Any, A_ : Optional[int] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _lowerCamelCase : List[str] = TOKENIZER_CLASSES else: _lowerCamelCase : List[str] = {tokenizer_name: getattr(A_, tokenizer_name + '''Fast''' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _lowerCamelCase : Optional[int] = TOKENIZER_CLASSES[tokenizer_name] _lowerCamelCase : List[str] = True if checkpoint_name is None: _lowerCamelCase : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: _lowerCamelCase : List[str] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _lowerCamelCase : int = tokenizer_class.from_pretrained(A_, force_download=A_ ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = checkpoint.split('''/''' ) _lowerCamelCase : Dict = os.path.join(A_, A_ ) elif add_prefix: _lowerCamelCase : List[Any] = checkpoint _lowerCamelCase : str = dump_path else: _lowerCamelCase : str = None _lowerCamelCase : List[str] = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _lowerCamelCase : int = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _lowerCamelCase : Union[str, Any] = file_path.split(A_ )[-1][0] if next_char == "/": _lowerCamelCase : Any = os.path.join(A_, A_ ) _lowerCamelCase : Union[str, Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _lowerCamelCase : Union[str, Any] = tokenizer.save_pretrained( A_, legacy_format=A_, filename_prefix=A_ ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(A_ ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowerCAmelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
72
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __snake_case ( _lowercase): snake_case__ : List[str] = "unispeech" def __init__( self : List[str] , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : str=7_6_8 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=3_0_7_2 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Dict=1E-5 , __lowerCAmelCase : Optional[int]="group" , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : List[str]=1_2_8 , __lowerCAmelCase : Any=1_6 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=0.05 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Optional[int]=1_0 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[str]=3_2_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=1_0_0 , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : str=2_5_6 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict="mean" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Optional[Any]=2_5_6 , __lowerCAmelCase : Dict=8_0 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Any=0.5 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = feat_extract_norm _lowerCamelCase : List[Any] = feat_extract_activation _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : Tuple = list(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = conv_bias _lowerCamelCase : List[str] = num_conv_pos_embeddings _lowerCamelCase : Tuple = num_conv_pos_embedding_groups _lowerCamelCase : List[str] = len(self.conv_dim ) _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = hidden_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Optional[Any] = feat_proj_dropout _lowerCamelCase : Optional[int] = final_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : List[str] = num_ctc_classes _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = do_stable_layer_norm _lowerCamelCase : Tuple = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Any = apply_spec_augment _lowerCamelCase : Dict = mask_time_prob _lowerCamelCase : List[str] = mask_time_length _lowerCamelCase : Optional[Any] = mask_time_min_masks _lowerCamelCase : List[str] = mask_feature_prob _lowerCamelCase : int = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : Optional[Any] = num_codevectors_per_group _lowerCamelCase : int = num_codevector_groups _lowerCamelCase : List[Any] = contrastive_logits_temperature _lowerCamelCase : List[str] = feat_quantizer_dropout _lowerCamelCase : Dict = num_negatives _lowerCamelCase : Optional[int] = codevector_dim _lowerCamelCase : List[Any] = proj_codevector_dim _lowerCamelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCamelCase : Union[str, Any] = ctc_loss_reduction _lowerCamelCase : Any = ctc_zero_infinity # pretraining loss _lowerCamelCase : str = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
72
1
"""simple docstring""" from __future__ import annotations def __lowercase ( _a , _a ): if nth_term == "": return [""] snake_case_ : List[str] = int(_a ) snake_case_ : str = int(_a ) snake_case_ : list[str] = [] for temp in range(int(_a ) ): series.append(f"1 / {pow(temp + 1 , int(_a ) )}" if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : int = int(input('''Enter the last number (nth term) of the P-Series''')) lowercase__ : List[Any] = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
155
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ : Union[str, Any] = get_tests_dir('''fixtures''') class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # A mock response for an HTTP head request to emulate server down snake_case_ : Any = mock.Mock() snake_case_ : Tuple = 500 snake_case_ : Dict = {} snake_case_ : Optional[Any] = HTTPError snake_case_ : Optional[int] = {} # Download this model to make sure it's in the cache. snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_ ) as mock_head: snake_case_ : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 snake_case_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase): @classmethod def _snake_case ( cls : List[Any] ): snake_case_ : Dict = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls : int ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _snake_case ( self : Any ): snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case_ : int = CustomFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) snake_case_ : List[str] = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
155
1
def A_ ( A__ , A__ , A__ ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate a__ : Union[str, Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__ : Optional[int] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
99
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def A_ ( A__ ) -> float: return np.dot(A__ , A__ ) class A__ : """simple docstring""" def __init__( self , *, lowercase = np.inf , lowercase = "linear" , lowercase = 0.0 , ) -> None: '''simple docstring''' a__ : Tuple = regularization a__ : Optional[Any] = gamma if kernel == "linear": a__ : Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') a__ : str = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: a__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(lowercase) def __lowercase ( self , lowercase , lowercase) -> float: '''simple docstring''' return np.dot(lowercase , lowercase) def __lowercase ( self , lowercase , lowercase) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __lowercase ( self , lowercase , lowercase) -> None: '''simple docstring''' a__ : List[str] = observations a__ : Dict = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((a__) , ) : Optional[int] = np.shape(lowercase) def to_minimize(lowercase) -> float: a__ : Tuple = 0 ((a__) , ) : Optional[int] = np.shape(lowercase) for i in range(lowercase): for j in range(lowercase): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(lowercase) a__ : Optional[Any] = LinearConstraint(lowercase , 0 , 0) a__ : str = Bounds(0 , self.regularization) a__ : List[str] = minimize( lowercase , np.ones(lowercase) , bounds=lowercase , constraints=[ly_contraint]).x a__ : Dict = l_star # calculating mean offset of separation plane to points a__ : int = 0 for i in range(lowercase): for j in range(lowercase): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) a__ : List[str] = s / n def __lowercase ( self , lowercase) -> int: '''simple docstring''' a__ : int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowercase) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
99
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( _UpperCAmelCase, unittest.TestCase ): """simple docstring""" lowerCamelCase = FunnelTokenizer lowerCamelCase = FunnelTokenizerFast lowerCamelCase = True lowerCamelCase = True def UpperCAmelCase_ ( self ) -> int: super().setUp() A_ : Optional[Any] = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> Dict: return FunnelTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def UpperCAmelCase_ ( self , **_lowerCamelCase ) -> Any: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> str: A_ : Tuple = '''UNwant\u00E9d,running''' A_ : Optional[int] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase_ ( self ) -> str: A_ : List[str] = self.tokenizer_class(self.vocab_file ) A_ : Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Union[str, Any] = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: A_ : int = tokenizer("""UNwant\u00E9d,running""" ) A_ : Union[str, Any] = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) A_ : Union[str, Any] = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
352
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : int = {'vocab_file': 'spm_char.model'} UpperCamelCase__ : Optional[Any] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } UpperCamelCase__ : Union[str, Any] = { 'microsoft/speecht5_asr': 1_024, 'microsoft/speecht5_tts': 1_024, 'microsoft/speecht5_vc': 1_024, } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) -> None: A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : List[Any] = vocab_file A_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def UpperCAmelCase_ ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self ) -> int: A_ : Dict = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: A_ : Optional[int] = self.__dict__.copy() A_ : str = None return state def __setstate__( self , _lowerCamelCase ) -> List[str]: A_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Union[str, Any] = {} A_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: return self.sp_model.piece_to_id(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[str]: A_ : Dict = self.sp_model.IdToPiece(_lowerCamelCase ) return token def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Union[str, Any]: A_ : Tuple = [] A_ : Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token A_ : Optional[int] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ : Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(_lowerCamelCase )) + suffix_ones return ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A_ : Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
164
0
'''simple docstring''' from functools import lru_cache @lru_cache def _A ( A__ ): """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
104
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ : int = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } snake_case__ : int = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } snake_case__ : str = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BertTokenizer def __init__(self :List[str] , _UpperCamelCase :List[str]=None , _UpperCamelCase :Optional[Any]=None , _UpperCamelCase :str=True , _UpperCamelCase :Optional[Any]="[UNK]" , _UpperCamelCase :Tuple="[SEP]" , _UpperCamelCase :List[Any]="[PAD]" , _UpperCamelCase :int="[CLS]" , _UpperCamelCase :Optional[int]="[MASK]" , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :str=None , **_UpperCamelCase :List[str] , )-> str: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): __A = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**_UpperCamelCase ) __A = do_lower_case def _lowerCAmelCase (self :Any , _UpperCamelCase :int , _UpperCamelCase :List[str]=None )-> List[Any]: __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase (self :List[str] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None )-> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase (self :Any , _UpperCamelCase :str , _UpperCamelCase :Optional[str] = None )-> Tuple[str]: __A = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
117
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : Optional[Any] = credit_card_number lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[Any] = len(lowerCAmelCase__ ) - 2 for i in range(lowerCAmelCase__ , -1 , -2 ): # double the value of every second digit lowerCAmelCase_ : Any = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCAmelCase_ : Optional[int] = cc_number[:i] + str(lowerCAmelCase__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = f"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(f"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(lowerCAmelCase__ ) <= 16: print(f"{error_message} of its length." ) return False if not validate_initial_digits(lowerCAmelCase__ ): print(f"{error_message} of its first two digits." ) return False if not luhn_validation(lowerCAmelCase__ ): print(f"{error_message} it fails the Luhn check." ) return False print(f"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
289
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets lowercase__ : Tuple = datasets.logging.get_logger(__name__) lowercase__ : List[Any] = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ lowercase__ : Tuple = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ lowercase__ : List[Any] = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ lowercase__ : List[Any] = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : str ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) lowerCAmelCase_ : List[Any] = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: lowerCAmelCase_ : List[Any] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCAmelCase_ : Tuple = self.config_name.upper() else: raise KeyError( F"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCAmelCase_ : List[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCAmelCase_ : List[str] = score.BleurtScorer(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : Tuple = self.scorer.score(references=SCREAMING_SNAKE_CASE_ , candidates=SCREAMING_SNAKE_CASE_ ) return {"scores": scores}
289
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase__ ( _A ): if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCAmelCase_ , '_dynamo' ): return False return isinstance(UpperCAmelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase__ ( _A , _A = True ): a : List[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a : List[str] = is_compiled_module(UpperCAmelCase_ ) if is_compiled: a : Tuple = model a : Optional[int] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a : Any = model.module if not keep_fpaa_wrapper: a : Union[str, Any] = getattr(UpperCAmelCase_ , 'forward' ) a : str = model.__dict__.pop('_original_forward' , UpperCAmelCase_ ) if original_forward is not None: while hasattr(UpperCAmelCase_ , '__wrapped__' ): a : Tuple = forward.__wrapped__ if forward == original_forward: break a : Union[str, Any] = forward if getattr(UpperCAmelCase_ , '_converted_to_transformer_engine' , UpperCAmelCase_ ): convert_model(UpperCAmelCase_ , to_transformer_engine=UpperCAmelCase_ ) if is_compiled: a : List[Any] = model a : int = compiled_model return model def lowerCamelCase__ ( ): PartialState().wait_for_everyone() def lowerCamelCase__ ( _A , _A ): if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase_ , UpperCAmelCase_ ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) @contextmanager def lowerCamelCase__ ( **_A ): for key, value in kwargs.items(): a : Union[str, Any] = str(UpperCAmelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase__ ( _A ): if not hasattr(UpperCAmelCase_ , '__qualname__' ) and not hasattr(UpperCAmelCase_ , '__name__' ): a : List[str] = getattr(UpperCAmelCase_ , '__class__' , UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCAmelCase_ , '__name__' ): return obj.__name__ return str(UpperCAmelCase_ ) def lowerCamelCase__ ( _A , _A ): for key, value in source.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a : Tuple = destination.setdefault(UpperCAmelCase_ , {} ) merge_dicts(UpperCAmelCase_ , UpperCAmelCase_ ) else: a : Optional[int] = value return destination def lowerCamelCase__ ( _A = None ): if port is None: a : Any = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
297
def __lowerCamelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int ): """simple docstring""" if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a :Optional[int] = [p / w for p, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] # Creating a copy of the list and sorting profit/weight in ascending order a :List[Any] = sorted(UpperCAmelCase_ ) # declaring useful variables a :Dict = len(UpperCAmelCase_ ) a :Tuple = 0 a :List[Any] = 0 a :str = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a :List[Any] = sorted_profit_by_weight[length - i - 1] a :Optional[Any] = profit_by_weight.index(UpperCAmelCase_ ) a :Optional[int] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Union[str, Any] = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Tuple = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : str = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
94
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCamelCase ( _A, _A, _A = 1 / sqrt(2 ) ): """simple docstring""" __magic_name__ : Union[str, Any] = tau * frequency / samplerate __magic_name__ : str = sin(_A ) __magic_name__ : str = cos(_A ) __magic_name__ : List[Any] = _sin / (2 * q_factor) __magic_name__ : List[str] = (1 - _cos) / 2 __magic_name__ : Any = 1 - _cos __magic_name__ : Union[str, Any] = 1 + alpha __magic_name__ : int = -2 * _cos __magic_name__ : Tuple = 1 - alpha __magic_name__ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def UpperCamelCase ( _A, _A, _A = 1 / sqrt(2 ) ): """simple docstring""" __magic_name__ : Optional[int] = tau * frequency / samplerate __magic_name__ : List[Any] = sin(_A ) __magic_name__ : Union[str, Any] = cos(_A ) __magic_name__ : List[str] = _sin / (2 * q_factor) __magic_name__ : str = (1 + _cos) / 2 __magic_name__ : Any = -1 - _cos __magic_name__ : int = 1 + alpha __magic_name__ : Tuple = -2 * _cos __magic_name__ : int = 1 - alpha __magic_name__ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def UpperCamelCase ( _A, _A, _A = 1 / sqrt(2 ) ): """simple docstring""" __magic_name__ : Any = tau * frequency / samplerate __magic_name__ : Tuple = sin(_A ) __magic_name__ : Dict = cos(_A ) __magic_name__ : Optional[Any] = _sin / (2 * q_factor) __magic_name__ : List[Any] = _sin / 2 __magic_name__ : Any = 0 __magic_name__ : Union[str, Any] = -ba __magic_name__ : List[Any] = 1 + alpha __magic_name__ : List[Any] = -2 * _cos __magic_name__ : int = 1 - alpha __magic_name__ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def UpperCamelCase ( _A, _A, _A = 1 / sqrt(2 ) ): """simple docstring""" __magic_name__ : List[str] = tau * frequency / samplerate __magic_name__ : Optional[Any] = sin(_A ) __magic_name__ : Optional[Any] = cos(_A ) __magic_name__ : List[str] = _sin / (2 * q_factor) __magic_name__ : Union[str, Any] = 1 - alpha __magic_name__ : Optional[int] = -2 * _cos __magic_name__ : int = 1 + alpha __magic_name__ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba], [ba, ba, ba] ) return filt def UpperCamelCase ( _A, _A, _A, _A = 1 / sqrt(2 ), ): """simple docstring""" __magic_name__ : Union[str, Any] = tau * frequency / samplerate __magic_name__ : int = sin(_A ) __magic_name__ : Any = cos(_A ) __magic_name__ : str = _sin / (2 * q_factor) __magic_name__ : Union[str, Any] = 10 ** (gain_db / 40) __magic_name__ : Dict = 1 + alpha * big_a __magic_name__ : List[Any] = -2 * _cos __magic_name__ : List[Any] = 1 - alpha * big_a __magic_name__ : Optional[int] = 1 + alpha / big_a __magic_name__ : List[Any] = -2 * _cos __magic_name__ : str = 1 - alpha / big_a __magic_name__ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def UpperCamelCase ( _A, _A, _A, _A = 1 / sqrt(2 ), ): """simple docstring""" __magic_name__ : Tuple = tau * frequency / samplerate __magic_name__ : Optional[Any] = sin(_A ) __magic_name__ : Any = cos(_A ) __magic_name__ : List[Any] = _sin / (2 * q_factor) __magic_name__ : Optional[int] = 10 ** (gain_db / 40) __magic_name__ : List[str] = (big_a + 1) - (big_a - 1) * _cos __magic_name__ : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos __magic_name__ : Dict = (big_a - 1) - (big_a + 1) * _cos __magic_name__ : Optional[Any] = (big_a - 1) + (big_a + 1) * _cos __magic_name__ : List[str] = 2 * sqrt(_A ) * alpha __magic_name__ : Dict = big_a * (pmc + aaa) __magic_name__ : Tuple = 2 * big_a * mpc __magic_name__ : str = big_a * (pmc - aaa) __magic_name__ : Union[str, Any] = ppmc + aaa __magic_name__ : List[str] = -2 * pmpc __magic_name__ : Optional[int] = ppmc - aaa __magic_name__ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt def UpperCamelCase ( _A, _A, _A, _A = 1 / sqrt(2 ), ): """simple docstring""" __magic_name__ : List[Any] = tau * frequency / samplerate __magic_name__ : Union[str, Any] = sin(_A ) __magic_name__ : Optional[Any] = cos(_A ) __magic_name__ : Union[str, Any] = _sin / (2 * q_factor) __magic_name__ : Dict = 10 ** (gain_db / 40) __magic_name__ : List[Any] = (big_a + 1) - (big_a - 1) * _cos __magic_name__ : Dict = (big_a + 1) + (big_a - 1) * _cos __magic_name__ : List[str] = (big_a - 1) - (big_a + 1) * _cos __magic_name__ : Any = (big_a - 1) + (big_a + 1) * _cos __magic_name__ : str = 2 * sqrt(_A ) * alpha __magic_name__ : Dict = big_a * (ppmc + aaa) __magic_name__ : Tuple = -2 * big_a * pmpc __magic_name__ : List[Any] = big_a * (ppmc - aaa) __magic_name__ : Union[str, Any] = pmc + aaa __magic_name__ : List[Any] = 2 * mpc __magic_name__ : int = pmc - aaa __magic_name__ : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa], [ba, ba, ba] ) return filt
359
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __magic_name__: Any = logging.get_logger(__name__) __magic_name__: Dict = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Any = '''blenderbot-small''' lowercase__ : Optional[int] = ['''past_key_values'''] lowercase__ : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=5_12 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=5_12 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Tuple: __magic_name__ : Tuple = vocab_size __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Union[str, Any] = d_model __magic_name__ : Optional[int] = encoder_ffn_dim __magic_name__ : Union[str, Any] = encoder_layers __magic_name__ : List[str] = encoder_attention_heads __magic_name__ : List[Any] = decoder_ffn_dim __magic_name__ : str = decoder_layers __magic_name__ : List[str] = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : Tuple = attention_dropout __magic_name__ : List[Any] = activation_dropout __magic_name__ : List[Any] = activation_function __magic_name__ : Optional[int] = init_std __magic_name__ : Dict = encoder_layerdrop __magic_name__ : Union[str, Any] = decoder_layerdrop __magic_name__ : Optional[int] = use_cache __magic_name__ : List[Any] = encoder_layers __magic_name__ : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , forced_eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) class snake_case__ ( _lowerCAmelCase ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ : List[Any] = {0: """batch"""} __magic_name__ : Dict = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : List[str] = {0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __magic_name__ ,__magic_name__ : Dict = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : int = {0: """batch""", 2: """past_sequence + sequence"""} else: __magic_name__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Any = super().outputs else: __magic_name__ : int = super(lowerCAmelCase__ , self ).outputs if self.use_past: __magic_name__ ,__magic_name__ : str = self.num_layers for i in range(lowerCAmelCase__ ): __magic_name__ : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} __magic_name__ : Dict = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Generate decoder inputs __magic_name__ : Optional[int] = seq_length if not self.use_past else 1 __magic_name__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Optional[Any] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __magic_name__ : Dict = dict(**lowerCAmelCase__ , **lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : List[Any] = common_inputs["""input_ids"""].shape __magic_name__ : Optional[Any] = common_inputs["""decoder_input_ids"""].shape[1] __magic_name__ ,__magic_name__ : str = self.num_attention_heads __magic_name__ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Any = decoder_seq_length + 3 __magic_name__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __magic_name__ : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __magic_name__ ,__magic_name__ : List[str] = self.num_layers __magic_name__ : Optional[Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[str] = max(lowerCAmelCase__ , lowerCAmelCase__ ) - min_num_layers __magic_name__ : Tuple = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(lowerCAmelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ ), ) ) # TODO: test this. __magic_name__ : Union[str, Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(lowerCAmelCase__ , lowerCAmelCase__ ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: __magic_name__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __magic_name__ ,__magic_name__ : Tuple = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __magic_name__ : List[Any] = seqlen + 2 __magic_name__ ,__magic_name__ : Any = self.num_layers __magic_name__ ,__magic_name__ : int = self.num_attention_heads __magic_name__ : Optional[int] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __magic_name__ : Optional[int] = common_inputs["""attention_mask"""].dtype __magic_name__ : Optional[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) __magic_name__ : Tuple = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(lowerCAmelCase__ ) ] return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __magic_name__ : Tuple = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __magic_name__ : str = tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) __magic_name__ : List[str] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence __magic_name__ : List[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __magic_name__ : List[str] = dict(tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) elif self.task == "causal-lm": __magic_name__ : str = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) else: __magic_name__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) return common_inputs def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: if self.task in ["default", "seq2seq-lm"]: __magic_name__ : List[Any] = super()._flatten_past_key_values_(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __magic_name__ : Tuple = super(lowerCAmelCase__ , self )._flatten_past_key_values_( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
138
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : str ): lowerCAmelCase = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) lowerCAmelCase = { """input_ids""": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowerCAmelCase = model(lowerCAmelCase )["""last_hidden_state"""] lowerCAmelCase = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , lowerCAmelCase ) # compare the actual values for a slice. lowerCAmelCase = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
155
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[Any] ): lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = BlipImageProcessor() lowerCAmelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCAmelCase = BlipProcessor(lowerCAmelCase , lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] , **lowerCAmelCase : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).tokenizer def __lowercase ( self : List[Any] , **lowerCAmelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def __lowercase ( self : Dict ): shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : List[str] ): lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowerCAmelCase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowerCAmelCase ) lowerCAmelCase = tokenizer(lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def __lowercase ( self : List[Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowerCAmelCase ) lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
155
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ='T5Config' def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : int = jnp.zeros_like(A__ ) SCREAMING_SNAKE_CASE_ : str = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) SCREAMING_SNAKE_CASE_ : List[str] = shifted_input_ids.at[:, 0].set(A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.where(shifted_input_ids == -1_0_0, A__, A__ ) return shifted_input_ids class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """mt5""" _UpperCAmelCase = MTaConfig class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """mt5""" _UpperCAmelCase = MTaConfig class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """mt5""" _UpperCAmelCase = MTaConfig
162
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a__ ( A__ ): if is_torch_version('<', '2.0.0' ) or not hasattr(A__, '_dynamo' ): return False return isinstance(A__, torch._dynamo.eval_frame.OptimizedModule ) def a__ ( A__, A__ = True ): SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE_ : List[str] = is_compiled_module(A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[Any] = model SCREAMING_SNAKE_CASE_ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : int = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE_ : str = getattr(A__, 'forward' ) SCREAMING_SNAKE_CASE_ : Any = model.__dict__.pop('_original_forward', A__ ) if original_forward is not None: while hasattr(A__, '__wrapped__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE_ : Any = forward if getattr(A__, '_converted_to_transformer_engine', A__ ): convert_model(A__, to_transformer_engine=A__ ) if is_compiled: SCREAMING_SNAKE_CASE_ : List[str] = model SCREAMING_SNAKE_CASE_ : Dict = compiled_model return model def a__ ( ): PartialState().wait_for_everyone() def a__ ( A__, A__ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(A__, A__ ) elif PartialState().local_process_index == 0: torch.save(A__, A__ ) @contextmanager def a__ ( **A__ ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE_ : List[Any] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a__ ( A__ ): if not hasattr(A__, '__qualname__' ) and not hasattr(A__, '__name__' ): SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(A__, '__class__', A__ ) if hasattr(A__, '__qualname__' ): return obj.__qualname__ if hasattr(A__, '__name__' ): return obj.__name__ return str(A__ ) def a__ ( A__, A__ ): for key, value in source.items(): if isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = destination.setdefault(A__, {} ) merge_dicts(A__, A__ ) else: SCREAMING_SNAKE_CASE_ : Tuple = value return destination def a__ ( A__ = None ): if port is None: SCREAMING_SNAKE_CASE_ : Tuple = 2_9_5_0_0 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
162
1
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def _A ( lowercase__ ): return "".join(sorted(lowercase__ ) ) def _A ( lowercase__ ): return word_by_signature[signature(lowercase__ )] __A = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __A = sorted({word.strip().lower() for word in data.splitlines()}) __A = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __A = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
164
'''simple docstring''' import os import sys __A = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __A = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoConfig.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoTokenizer.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModel.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModel.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForCausalLM.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForMaskedLM.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForSequenceClassification.from_pretrained(*lowercase__ , **lowercase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _A ( *lowercase__ , **lowercase__ ): return AutoModelForQuestionAnswering.from_pretrained(*lowercase__ , **lowercase__ )
164
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __snake_case ( _UpperCAmelCase ): __a = filter(lambda _UpperCAmelCase : p.requires_grad , model.parameters() ) __a = sum([np.prod(p.size() ) for p in model_parameters] ) return params __snake_case :Dict = logging.getLogger(__name__) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if metric == "rouge2": __a = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __a = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __a = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __a = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ''' function.''' ) __a = ModelCheckpoint( dirpath=_UpperCAmelCase , filename=_UpperCAmelCase , monitor=f'val_{metric}' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return EarlyStopping( monitor=f'val_{metric}' , mode='''min''' if '''loss''' in metric else '''max''' , patience=_UpperCAmelCase , verbose=_UpperCAmelCase , ) class _A ( pl.Callback ): def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = {F'lr_group_{i}': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE) @rank_zero_only def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=True): '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****') __a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']}) # Log results __a = Path(pl_module.hparams.output_dir) if type_path == "test": __a = od / '''test_results.txt''' __a = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __a = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __a = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE) generations_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE) with open(__SCREAMING_SNAKE_CASE , '''a+''') as writer: for key in sorted(__SCREAMING_SNAKE_CASE): if key in ["log", "progress_bar", "preds"]: continue __a = metrics[key] if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor): __a = val.item() __a = F'{key}: {val:.6f}\n' writer.write(__SCREAMING_SNAKE_CASE) if not save_generations: return if "preds" in metrics: __a = '''\n'''.join(metrics['''preds''']) generations_file.open('''w+''').write(__SCREAMING_SNAKE_CASE) @rank_zero_only def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' try: __a = pl_module.model.model.num_parameters() except AttributeError: __a = pl_module.model.num_parameters() __a = count_trainable_parameters(__SCREAMING_SNAKE_CASE) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6}) @rank_zero_only def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''test''') @rank_zero_only def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
131
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : str): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : Any): '''simple docstring''' __a = 1 __a = 3 __a = (32, 32) __a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(__SCREAMING_SNAKE_CASE) return image @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' torch.manual_seed(0) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Any): '''simple docstring''' torch.manual_seed(0) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE) @property def _lowerCamelCase ( self : List[str]): '''simple docstring''' def extract(*__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict): class _A : def __init__( self : int): '''simple docstring''' __a = torch.ones([0]) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' self.pixel_values.to(__SCREAMING_SNAKE_CASE) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''') __a = output.images __a = torch.Generator(device=__SCREAMING_SNAKE_CASE).manual_seed(0) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__SCREAMING_SNAKE_CASE , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__SCREAMING_SNAKE_CASE) assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) assert isinstance(pipe.scheduler , __SCREAMING_SNAKE_CASE) assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__SCREAMING_SNAKE_CASE) __a = StableDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE) # sanity check that the pipeline still works assert pipe.safety_checker is None __a = pipe('''example prompt''' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.dummy_cond_unet __a = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE) __a = self.dummy_vae __a = self.dummy_text_encoder __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') # put models in fp16 __a = unet.half() __a = vae.half() __a = bert.half() # make sure here that pndm scheduler skips prk __a = StableDiffusionPipeline( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''A painting of a squirrel eating a burger''' __a = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __a = 4_003_660_346 __a = 7 # without safety guidance (sld_guidance_scale = 0) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__SCREAMING_SNAKE_CASE) __a = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = '''padme amidala taking a bath artwork, safe for work, no nudity''' __a = 2_734_971_755 __a = 7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : str): '''simple docstring''' __a = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''') __a = sd_pipe.to(__SCREAMING_SNAKE_CASE) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE) __a = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __a = 1_044_355_234 __a = 12 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 __a = torch.manual_seed(__SCREAMING_SNAKE_CASE) __a = sd_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=__SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __a = output.images __a = image[0, -3:, -3:, -1] __a = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
131
1
"""simple docstring""" import heapq import sys import numpy as np UpperCAmelCase__ = tuple[int, int] class a : def __init__( self : Any ): _UpperCAmelCase = [] _UpperCAmelCase = set() def lowerCAmelCase_ ( self : List[str] ): if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): return len(self.elements ) == 0 def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__lowerCAmelCase ) else: # update # print("update", item) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[Any] ): if item in self.set: self.set.remove(__lowerCAmelCase ) _UpperCAmelCase = [] ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowerCAmelCase_ ( self : Optional[Any] ): return self.elements[0][1] def lowerCAmelCase_ ( self : Dict ): ((_UpperCAmelCase) , (_UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__lowerCAmelCase ) return (priority, item) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # euclidean distance _UpperCAmelCase = np.array(lowercase ) _UpperCAmelCase = np.array(lowercase ) return np.linalg.norm(a - b ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # integer division by time variable return consistent_heuristic(lowercase ,lowercase ) // t def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = g_function[start] + Wa * heuristics[i](lowercase ,lowercase ) return ans def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = np.chararray((n, n) ) for i in range(lowercase ): for j in range(lowercase ): _UpperCAmelCase = """*""" for i in range(lowercase ): for j in range(lowercase ): if (j, (n - 1) - i) in blocks: _UpperCAmelCase = """#""" _UpperCAmelCase = """-""" _UpperCAmelCase = back_pointer[goal] while x != start: ((_UpperCAmelCase) , (_UpperCAmelCase)) = x # print(x) _UpperCAmelCase = """-""" _UpperCAmelCase = back_pointer[x] _UpperCAmelCase = """-""" for i in range(lowercase ): for j in range(lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] ,end=""" """ ) print("""<-- End position""" ,end=""" """ ) else: print(grid[i][j] ,end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) _UpperCAmelCase = back_pointer[goal] while x != start: print(lowercase ,end=""" """ ) _UpperCAmelCase = back_pointer[x] print(lowercase ) sys.exit() def __UpperCAmelCase ( lowercase ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" for itera in range(lowercase ): open_list[itera].remove_element(lowercase ) # print("s", s) # print("j", j) ((_UpperCAmelCase) , (_UpperCAmelCase)) = s _UpperCAmelCase = (x - 1, y) _UpperCAmelCase = (x + 1, y) _UpperCAmelCase = (x, y + 1) _UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase ) _UpperCAmelCase = -1 _UpperCAmelCase = float("""inf""" ) if valid(lowercase ) and g_function[neighbours] > g_function[s] + 1: _UpperCAmelCase = g_function[s] + 1 _UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowercase ,key(lowercase ,0 ,lowercase ,lowercase ) ) if neighbours not in close_list_inad: for var in range(1 ,lowercase ): if key(lowercase ,lowercase ,lowercase ,lowercase ) <= Wa * key( lowercase ,0 ,lowercase ,lowercase ): open_list[j].put( lowercase ,key(lowercase ,lowercase ,lowercase ,lowercase ) ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [] for x in range(1 ,5 ): for y in range(1 ,6 ): some_list.append((x, y) ) for x in range(15 ,20 ): some_list.append((x, 17) ) for x in range(10 ,19 ): for y in range(1 ,15 ): some_list.append((x, y) ) # L block for x in range(1 ,4 ): for y in range(12 ,19 ): some_list.append((x, y) ) for x in range(3 ,13 ): for y in range(16 ,19 ): some_list.append((x, y) ) return some_list UpperCAmelCase__ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCAmelCase__ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] UpperCAmelCase__ = make_common_ground() UpperCAmelCase__ = blocks_blk # hyper parameters UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2_0 UpperCAmelCase__ = 3 # one consistent and two other inconsistent # start and end destination UpperCAmelCase__ = (0, 0) UpperCAmelCase__ = (n - 1, n - 1) UpperCAmelCase__ = 1 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = {start: 0, goal: float("""inf""" )} _UpperCAmelCase = {start: -1, goal: -1} _UpperCAmelCase = [] _UpperCAmelCase = set() for i in range(lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase ,key(lowercase ,lowercase ,lowercase ,lowercase ) ) _UpperCAmelCase = [] _UpperCAmelCase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 ,lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowercase ,lowercase ,lowercase ) else: _UpperCAmelCase , _UpperCAmelCase = open_list[i].top_show() visited.add(lowercase ) expand_state( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,) close_list_inad.append(lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowercase ,lowercase ,lowercase ) else: _UpperCAmelCase = open_list[0].top_show() visited.add(lowercase ) expand_state( lowercase ,0 ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,) close_list_anchor.append(lowercase ) print("""No path found to goal""" ) print() for i in range(n - 1 ,-1 ,-1 ): for j in range(lowercase ): if (j, i) in blocks: print("""#""" ,end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" ,end=""" """ ) else: print("""-""" ,end=""" """ ) else: print("""*""" ,end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" ,end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
289
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : int = StableUnCLIPPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : Any = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : str = False def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = 32 _UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _UpperCAmelCase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase = pipe("""anime turle""" , generator=__lowerCAmelCase , output_type="""np""" ) _UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
289
1
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Any: A: Dict = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A: Tuple = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A: str = F"""{src_lang}-{tgt_lang}""" A: Optional[Any] = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(__lowercase , exist_ok=__lowercase ) A: Dict = os.path.join(__lowercase , '''README.md''' ) print(F"""Generating {path}""" ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(__lowercase ) # make sure we are under the root of the project UpperCamelCase = Path(__file__).resolve().parent.parent.parent UpperCamelCase = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase , UpperCamelCase , UpperCamelCase = model_name.split('''-''') UpperCamelCase = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
334
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
1
def __UpperCamelCase ( _lowerCAmelCase ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) A : Dict = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A : List[Any] = 1 if upper_limit > 0: A : int = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_UpperCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: SCREAMING_SNAKE_CASE_:Optional[int] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
116
__A : dict[tuple[int, int, int], int] = {} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowerCAmelCase : Dict = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowerCAmelCase : int = _calculate(days - 1, _UpperCAmelCase, late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowerCAmelCase : List[Any] = _calculate(days - 1, absent + 1, 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowerCAmelCase : Optional[Any] = _calculate(days - 1, _UpperCAmelCase, 0 ) lowerCAmelCase : int = state_late + state_absent + state_ontime lowerCAmelCase : Any = prizestrings return prizestrings def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 30 ) -> int: '''simple docstring''' return _calculate(_UpperCAmelCase, absent=0, late=0 ) if __name__ == "__main__": print(solution())
138
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( a__ : str ) -> List[str]: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): @staticmethod def lowerCamelCase_ ( __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=__UpperCamelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=__UpperCamelCase ) def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = model UpperCamelCase_ = cache UpperCamelCase_ = force UpperCamelCase_ = trust_remote_code def lowerCamelCase_ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
261
def lowerCamelCase__ ( a__ : Optional[int] , a__ : Any ) -> Optional[Any]: UpperCamelCase_ = 0 UpperCamelCase_ = len(a__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a__ ): return None UpperCamelCase_ = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCamelCase_ = left UpperCamelCase_ = point elif point > right: UpperCamelCase_ = right UpperCamelCase_ = point else: if item < current_item: UpperCamelCase_ = point - 1 else: UpperCamelCase_ = point + 1 return None def lowerCamelCase__ ( a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : List[Any] ) -> Any: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCamelCase_ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(a__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(a__ , a__ , a__ , a__ ) elif point > right: return interpolation_search_by_recursion(a__ , a__ , a__ , a__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( a__ , a__ , a__ , point - 1 ) else: return interpolation_search_by_recursion( a__ , a__ , point + 1 , a__ ) def lowerCamelCase__ ( a__ : Tuple ) -> Any: if collection != sorted(a__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys _A = 0 if debug == 1: _A = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') _A = 67 _A = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('''Not found''')
261
1
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: A_ = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def UpperCAmelCase__ ( ) -> str: A_ = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = """imagenet-1k-id2label.json""" A_ = 10_00 A_ = """huggingface/label-files""" A_ = num_labels A_ = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = A_ = CvtConfig(num_labels=UpperCAmelCase__, idalabel=UpperCAmelCase__, labelaid=UpperCAmelCase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""", 1 )[-1][4:6] == "13": A_ = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""", 1 )[-1][4:6] == "21": A_ = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A_ = [2, 2, 20] A_ = [3, 12, 16] A_ = [1_92, 7_68, 10_24] A_ = CvtForImageClassification(UpperCAmelCase__ ) A_ = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) A_ = image_size A_ = torch.load(UpperCAmelCase__, map_location=torch.device("""cpu""" ) ) A_ = OrderedDict() A_ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A_ = list_of_state_dict + cls_token(UpperCAmelCase__ ) A_ = list_of_state_dict + embeddings(UpperCAmelCase__ ) for cnt in range(config.depth[idx] ): A_ = list_of_state_dict + attention(UpperCAmelCase__, UpperCAmelCase__ ) A_ = list_of_state_dict + final() for gg in list_of_state_dict: print(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) ): A_ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) image_processor.save_pretrained(UpperCAmelCase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCamelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
162
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] __lowerCamelCase = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
162
1
"""simple docstring""" import heapq import sys import numpy as np a :Union[str, Any] = tuple[int, int] class __a : '''simple docstring''' def __init__( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : List[Any] = set() def _a ( self ) -> Dict: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self ) -> int: """simple docstring""" return len(self.elements ) == 0 def _a ( self , _a , _a ) -> List[Any]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_a ) else: # update # print("update", item) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] (SCREAMING_SNAKE_CASE__) : Dict = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (SCREAMING_SNAKE_CASE__) : Union[str, Any] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self , _a ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_a ) SCREAMING_SNAKE_CASE__ : List[str] = [] (SCREAMING_SNAKE_CASE__) : Tuple = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (SCREAMING_SNAKE_CASE__) : List[str] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self ) -> Tuple: """simple docstring""" return self.elements[0][1] def _a ( self ) -> Union[str, Any]: """simple docstring""" (SCREAMING_SNAKE_CASE__) : Tuple = heapq.heappop(self.elements ) self.set.remove(_a ) return (priority, item) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: # euclidean distance SCREAMING_SNAKE_CASE__ : List[str] = np.array(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = np.array(__lowerCAmelCase ) return np.linalg.norm(a - b ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: # integer division by time variable return consistent_heuristic(__lowerCAmelCase , __lowerCAmelCase ) // t def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : List[str] = g_function[start] + Wa * heuristics[i](__lowerCAmelCase , __lowerCAmelCase ) return ans def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Dict = np.chararray((n, n) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = """*""" for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE__ : List[str] = """#""" SCREAMING_SNAKE_CASE__ : Dict = """-""" SCREAMING_SNAKE_CASE__ : List[str] = back_pointer[goal] while x != start: (SCREAMING_SNAKE_CASE__) : Optional[Any] = x # print(x) SCREAMING_SNAKE_CASE__ : int = """-""" SCREAMING_SNAKE_CASE__ : int = back_pointer[x] SCREAMING_SNAKE_CASE__ : Optional[int] = """-""" for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) SCREAMING_SNAKE_CASE__ : List[str] = back_pointer[goal] while x != start: print(__lowerCAmelCase , end=""" """ ) SCREAMING_SNAKE_CASE__ : List[str] = back_pointer[x] print(__lowerCAmelCase ) sys.exit() def _lowercase ( __lowerCAmelCase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Union[str, Any]: for itera in range(__lowerCAmelCase ): open_list[itera].remove_element(__lowerCAmelCase ) # print("s", s) # print("j", j) (SCREAMING_SNAKE_CASE__) : Dict = s SCREAMING_SNAKE_CASE__ : Any = (x - 1, y) SCREAMING_SNAKE_CASE__ : List[str] = (x + 1, y) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (x, y + 1) SCREAMING_SNAKE_CASE__ : Dict = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowerCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : str = -1 SCREAMING_SNAKE_CASE__ : List[str] = float("""inf""" ) if valid(__lowerCAmelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE__ : Any = g_function[s] + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = s if neighbours not in close_list_anchor: open_list[0].put(__lowerCAmelCase , key(__lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowerCAmelCase ): if key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) <= Wa * key( __lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase ): open_list[j].put( __lowerCAmelCase , key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) def _lowercase ( ) -> int: SCREAMING_SNAKE_CASE__ : List[str] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a :List[str] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a :int = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a :List[Any] = make_common_ground() a :List[Any] = blocks_blk # hyper parameters a :Optional[Any] = 1 a :List[str] = 1 a :Any = 20 a :Tuple = 3 # one consistent and two other inconsistent # start and end destination a :str = (0, 0) a :List[Any] = (n - 1, n - 1) a :Dict = 1 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any = {start: 0, goal: float("""inf""" )} SCREAMING_SNAKE_CASE__ : Tuple = {start: -1, goal: -1} SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Tuple = set() for i in range(__lowerCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowerCAmelCase , key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : list[int] = [] SCREAMING_SNAKE_CASE__ : list[int] = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , __lowerCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = open_list[i].top_show() visited.add(__lowerCAmelCase ) expand_state( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) close_list_inad.append(__lowerCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = open_list[0].top_show() visited.add(__lowerCAmelCase ) expand_state( __lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) close_list_anchor.append(__lowerCAmelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowerCAmelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
355
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowercase ( __lowerCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( ) -> Iterator[int]: SCREAMING_SNAKE_CASE__ : List[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def _lowercase ( __lowerCAmelCase = 200_0000 ) -> int: return sum(takewhile(lambda __lowerCAmelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'{solution() = }')
56
0
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( _lowercase , unittest.TestCase): _a : Union[str, Any] = FunnelTokenizer _a : str = FunnelTokenizerFast _a : str = True _a : List[str] = True def UpperCAmelCase__( self : Union[str, Any] )-> Dict: super().setUp() lowerCAmelCase__ : Optional[Any] = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__( self : List[Any] , **_SCREAMING_SNAKE_CASE : List[str] )-> Any: return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] , **_SCREAMING_SNAKE_CASE : str )-> int: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] )-> Optional[int]: lowerCAmelCase__ : str = '''UNwant\u00E9d,running''' lowerCAmelCase__ : int = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__( self : str )-> str: lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase__( self : List[str] )-> Optional[int]: lowerCAmelCase__ : Optional[int] = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: lowerCAmelCase__ : Tuple = tokenizer('''UNwant\u00E9d,running''' ) lowerCAmelCase__ : Any = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) lowerCAmelCase__ : int = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
131
import unittest from transformers import DonutProcessor lowerCamelCase = '''naver-clova-ix/donut-base''' class _a ( unittest.TestCase): def UpperCAmelCase__( self : str )-> int: lowerCAmelCase__ : Any = DonutProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] )-> List[Any]: lowerCAmelCase__ : Dict = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowerCAmelCase__ : Any = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowerCAmelCase__ : str = self.processor.tokenajson(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
131
1
from math import factorial, radians def UpperCAmelCase_ (_lowerCAmelCase : float , _lowerCAmelCase : int = 18 , _lowerCAmelCase : int = 10 ): __UpperCamelCase : Any = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __UpperCamelCase : Dict = radians(_lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = angle_in_radians __UpperCamelCase : int = 3 __UpperCamelCase : int = -1 for _ in range(_lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(_lowerCAmelCase ) __UpperCamelCase : List[Any] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": __import__("doctest").testmod()
171
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : Union[str, Any] = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ["GLPNFeatureExtractor"] lowercase : Tuple = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ={ 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE ={ 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } SCREAMING_SNAKE_CASE =F'{src_lang}-{tgt_lang}' SCREAMING_SNAKE_CASE =F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'README.md' ) print(F'Generating {path}' ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(lowerCAmelCase_ ) # make sure we are under the root of the project _lowerCamelCase =Path(__file__).resolve().parent.parent.parent _lowerCamelCase =repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =model_name.split("-") _lowerCamelCase =model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
334
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__="divided_space_time" , SCREAMING_SNAKE_CASE__=None , ): lowercase : Any = parent lowercase : Optional[Any] = batch_size lowercase : Optional[Any] = image_size lowercase : str = num_channels lowercase : List[Any] = patch_size lowercase : Dict = num_frames lowercase : Optional[Any] = is_training lowercase : Optional[int] = use_labels lowercase : int = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : List[Any] = num_attention_heads lowercase : Any = intermediate_size lowercase : List[Any] = hidden_act lowercase : Union[str, Any] = hidden_dropout_prob lowercase : str = attention_probs_dropout_prob lowercase : List[Any] = attention_type lowercase : Dict = initializer_range lowercase : str = scope lowercase : List[Any] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase : str = (image_size // patch_size) ** 2 lowercase : Tuple = (num_frames) * self.num_patches_per_frame + 1 def __lowerCamelCase ( self ): lowercase : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase : str = None if self.use_labels: lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): lowercase : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase : int = self.num_labels return config def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = TimesformerModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Optional[int] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = TimesformerForVideoClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowercase : Any = model(SCREAMING_SNAKE_CASE__ ) # verify the logits shape lowercase : Optional[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Tuple = config_and_inputs lowercase : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( A__ , A__ , unittest.TestCase ): A : Union[str, Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () A : List[str] = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) A : str = False A : int = False A : Dict = False A : List[str] = False def __lowerCamelCase ( self ): lowercase : Union[str, Any] = TimesformerModelTester(self ) lowercase : Any = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): lowercase : int = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def __lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __lowerCamelCase ( self ): lowercase , lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Dict = [*signature.parameters.keys()] lowercase : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*SCREAMING_SNAKE_CASE__ ) @slow def __lowerCamelCase ( self ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = TimesformerModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): if not self.has_attentions: pass else: lowercase , lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : List[str] = True for model_class in self.all_model_classes: lowercase : str = self.model_tester.seq_length lowercase : str = self.model_tester.num_frames lowercase : List[str] = True lowercase : str = False lowercase : List[Any] = True lowercase : List[Any] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowercase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : List[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase : Union[str, Any] = True lowercase : List[Any] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowercase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : int = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) # Check attention is always last and order is fine lowercase : Optional[Any] = True lowercase : Optional[int] = True lowercase : int = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowercase : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE__ ) ) lowercase : int = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __lowerCamelCase ( self ): def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Dict = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): lowercase : Dict = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) lowercase : Dict = outputs.hidden_states lowercase : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) lowercase : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowercase ( ) ->int: """simple docstring""" lowercase : Optional[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) lowercase : Optional[Any] = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): lowercase : Dict = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self.default_image_processor lowercase : Union[str, Any] = prepare_video() lowercase : Union[str, Any] = image_processor(video[:8] , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): lowercase : int = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits lowercase : Optional[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) )
173
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __a = 50_00_00 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Any: """simple docstring""" lowercase : Optional[Any] = dataset.map(**_UpperCamelCase ) @get_duration def __lowercase ( _UpperCamelCase, **_UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : int = dataset.filter(**_UpperCamelCase ) def __lowercase ( ) ->Union[str, Any]: """simple docstring""" lowercase : Dict = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase : List[str] = generate_example_dataset( os.path.join(_UpperCamelCase, '''dataset.arrow''' ), _UpperCamelCase, num_examples=_UpperCamelCase ) lowercase : List[Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=_UpperCamelCase ) def tokenize(_UpperCamelCase ): return tokenizer(examples['''text'''] ) lowercase : Union[str, Any] = map(_UpperCamelCase ) lowercase : Dict = map(_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''numpy''' ): lowercase : Dict = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''pandas''' ): lowercase : Any = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): lowercase : str = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): lowercase : Tuple = map(_UpperCamelCase, function=lambda _UpperCamelCase : None, batched=_UpperCamelCase ) lowercase : List[str] = map(_UpperCamelCase, function=_UpperCamelCase, batched=_UpperCamelCase ) lowercase : Any = filter(_UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCamelCase, '''wb''' ) as f: f.write(json.dumps(_UpperCamelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
173
1
"""simple docstring""" def _lowerCamelCase( a ): if length <= 0 or not isinstance(a , a ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(a )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
261
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE__:List[str] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:Optional[Any] = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
261
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase : str = getLogger(__name__) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 8 , UpperCamelCase__ = 1024 , UpperCamelCase__="val" , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__="summarization" , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__ = None , UpperCamelCase__="" , **UpperCamelCase__ , ): '''simple docstring''' snake_case_ = str(UpperCamelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=UpperCamelCase__ ) snake_case_ = Path(UpperCamelCase__ ) snake_case_ = save_dir.joinpath(F'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(UpperCamelCase__ ) snake_case_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ).cuda() if fpaa: snake_case_ = model.half() # determine if we need to increase num_beams use_task_specific_params(UpperCamelCase__ , UpperCamelCase__ ) # update config with task specific params snake_case_ = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: snake_case_ = num_return_sequences snake_case_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: snake_case_ = tokenizer.model_max_length if prefix is None: snake_case_ = prefix or getattr(model.config , 'prefix' , '' ) or '' snake_case_ = SeqaSeqDataset( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_target_length=1024 , type_path=UpperCamelCase__ , n_obs=UpperCamelCase__ , prefix=UpperCamelCase__ , **UpperCamelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. snake_case_ = ds.make_sortish_sampler(UpperCamelCase__ , distributed=UpperCamelCase__ , add_extra_examples=UpperCamelCase__ , shuffle=UpperCamelCase__ ) snake_case_ = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=ds.collate_fn ) snake_case_ = [] for batch in tqdm(UpperCamelCase__ ): snake_case_ = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case_ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) snake_case_ = batch['ids'] if num_return_sequences > 1: snake_case_ = chunks(UpperCamelCase__ , UpperCamelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(UpperCamelCase__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(UpperCamelCase__ , UpperCamelCase__ ) return results, sampler.num_replicas def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=UpperCamelCase__ , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=UpperCamelCase__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=UpperCamelCase__ , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument( '--type_path' , type=UpperCamelCase__ , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=UpperCamelCase__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=UpperCamelCase__ , default=8 , required=UpperCamelCase__ , help='batch size' ) parser.add_argument( '--local_rank' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=UpperCamelCase__ , default=1 , required=UpperCamelCase__ , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=UpperCamelCase__ , default=600 , required=UpperCamelCase__ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument('--tgt_lang' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument( '--prefix' , type=UpperCamelCase__ , required=UpperCamelCase__ , default=UpperCamelCase__ , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) snake_case_ = time.time() snake_case_ , snake_case_ = parser.parse_known_args() snake_case_ = parse_numeric_n_bool_cl_kwargs(UpperCamelCase__ ) if generate_kwargs and args.local_rank <= 0: print(F'''parsed the following generate kwargs: {generate_kwargs}''' ) snake_case_ = Path(args.save_dir + '_tmp' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) # this handles locking. snake_case_ = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. snake_case_ = {} if args.src_lang is not None: snake_case_ = args.src_lang if args.tgt_lang is not None: snake_case_ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=UpperCamelCase__ ) snake_case_ , snake_case_ = eval_data_dir( args.data_dir , UpperCamelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=UpperCamelCase__ , **UpperCamelCase__ , ) if args.local_rank <= 0: snake_case_ = Path(args.save_dir ) save_dir.mkdir(exist_ok=UpperCamelCase__ ) snake_case_ = gather_results_from_each_node(UpperCamelCase__ , UpperCamelCase__ , args.sync_timeout ) snake_case_ = combine_partial_results(UpperCamelCase__ ) if args.num_return_sequences > 1: snake_case_ = save_dir.joinpath('pseudolabel_results.json' ) print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(UpperCamelCase__ , UpperCamelCase__ ) return snake_case_ = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(UpperCamelCase__ ) as f: snake_case_ = [x.rstrip() for x in f.readlines()][: len(UpperCamelCase__ )] # Calculate metrics, save metrics, and save _generations.txt snake_case_ = 'translation' in args.task snake_case_ = calculate_bleu if calc_bleu else calculate_rouge snake_case_ = 'bleu' if calc_bleu else 'rouge' snake_case_ = score_fn(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = len(UpperCamelCase__ ) snake_case_ = time.time() - start_time snake_case_ = round(runtime / metrics['n_obs'] , 4 ) snake_case_ = num_replicas # TODO(@stas00): add whatever metadata to metrics snake_case_ = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' ) save_json(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ ) print(UpperCamelCase__ ) write_txt_file(UpperCamelCase__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(UpperCamelCase__ , save_dir.joinpath(F'''{args.type_path}.target''' ) ) else: shutil.rmtree(UpperCamelCase__ ) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] for partial_result in partial_results: records.extend(UpperCamelCase__ ) snake_case_ = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x["id"] ) snake_case_ = [x['pred'] for x in records] return preds def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = time.time() logger.info('waiting for all nodes to finish' ) snake_case_ = None while (time.time() - start_wait) < timeout: snake_case_ = list(save_dir.glob('rank_*.json' ) ) if len(UpperCamelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved snake_case_ = lmap(UpperCamelCase__ , UpperCamelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
200
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(snake_case ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , snake_case ) snake_case_ = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=snake_case , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) )
200
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : Tuple = global_rng _A : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=1 , _a=0.0 , _a=1_6000 , _a=True , _a=True , ) -> Any: _A : Union[str, Any] = parent _A : Dict = batch_size _A : int = min_seq_length _A : int = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Any = feature_size _A : List[str] = padding_value _A : int = sampling_rate _A : Dict = return_attention_mask _A : Any = do_normalize def a__ ( self ) -> List[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> str: def _flatten(_a ): return list(itertools.chain(*lowercase_ ) ) if equal_length: _A : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _A : int = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : str = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs class lowercase ( _lowerCamelCase,unittest.TestCase ): _a = WavaVecaFeatureExtractor def a__ ( self ) -> Tuple: _A : Dict = WavaVecaFeatureExtractionTester(self ) def a__ ( self , _a ) -> Optional[Any]: self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1e-3 ) ) def a__ ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input _A : Dict = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _A : str = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test batched _A : List[str] = feat_extract(lowercase_ , return_tensors="""np""" ).input_values _A : List[str] = feat_extract(lowercase_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[Any] = np.asarray(lowercase_ ) _A : Optional[int] = feat_extract(lowercase_ , return_tensors="""np""" ).input_values _A : List[Any] = feat_extract(lowercase_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def a__ ( self ) -> Union[str, Any]: _A : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Optional[Any] = ["""longest""", """max_length""", """do_not_pad"""] _A : str = [None, 1600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): _A : int = feat_extract(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors="""np""" ) _A : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def a__ ( self ) -> Any: _A : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : List[Any] = range(800 , 1400 , 200 ) _A : str = [floats_list((1, x) )[0] for x in lengths] _A : Optional[Any] = ["""longest""", """max_length""", """do_not_pad"""] _A : List[str] = [None, 1600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): _A : Dict = feat_extract(lowercase_ , max_length=lowercase_ , padding=lowercase_ ) _A : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) _A : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def a__ ( self ) -> Union[str, Any]: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Tuple = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) _A : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _A : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Optional[int] = feat_extract( lowercase_ , truncation=lowercase_ , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) _A : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def a__ ( self ) -> List[Any]: import torch _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : List[str] = np.random.rand(100 ).astype(np.floataa ) _A : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[int] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _A : Union[str, Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def a__ ( self ) -> Union[str, Any]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _A : Union[str, Any] = WavaVecaConfig.from_pretrained(lowercase_ ) _A : Any = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
26
'''simple docstring''' from collections import defaultdict def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCAmelCase ) if ret % 2 == 0: cuts.append(__UpperCAmelCase ) return ret def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": a ,a : Dict = 10, 9 a : Dict = defaultdict(list) a : dict[int, bool] = {} a : list[int] = [] a : Tuple = 0 a : str = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
56
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
230
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): def __init__( self : Optional[int] , snake_case_ : int = 16 , snake_case_ : int = 88 , snake_case_ : Optional[int] = None , snake_case_ : int = 1 , snake_case_ : float = 0.0 , snake_case_ : int = 32 , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : str = "geglu" , snake_case_ : Optional[int] = None , ) -> str: '''simple docstring''' super().__init__() A__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case_ , attention_head_dim=snake_case_ , in_channels=snake_case_ , num_layers=snake_case_ , dropout=snake_case_ , norm_num_groups=snake_case_ , cross_attention_dim=snake_case_ , attention_bias=snake_case_ , sample_size=snake_case_ , num_vector_embeds=snake_case_ , activation_fn=snake_case_ , num_embeds_ada_norm=snake_case_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A__ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A__ = [1, 0] def __magic_name__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : int=None , snake_case_ : Union[str, Any]=None , snake_case_ : bool = True , ) -> Union[str, Any]: '''simple docstring''' A__ = hidden_states A__ = [] A__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A__ = self.transformer_index_for_condition[i] A__ = self.transformers[transformer_index]( snake_case_ , encoder_hidden_states=snake_case_ , timestep=snake_case_ , cross_attention_kwargs=snake_case_ , return_dict=snake_case_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case_ )
230
1
"""simple docstring""" from numpy import exp, pi, sqrt def a__ ( lowerCAmelCase , lowerCAmelCase = 0.0 , lowerCAmelCase = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
171
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : Optional[int] = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : int = use_attention_mask UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = num_choices def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : int = None if self.use_attention_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[Any] = None if self.use_token_type_ids: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Optional[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = config_and_inputs UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = FlaxRobertaModelTester(self ) @slow def _a (self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ : Dict = model_class_name.from_pretrained("""roberta-base""" , from_pt=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase )
171
1
'''simple docstring''' import math import sys def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : List[Any] = """""" try: with open(A__ , """rb""" ) as binary_file: lowerCAmelCase_ : Dict = binary_file.read() for dat in data: lowerCAmelCase_ : str = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = {"""0""": """0""", """1""": """1"""} lowerCAmelCase_, lowerCAmelCase_ : Any = """""", """""" lowerCAmelCase_ : Tuple = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase_ : str = lexicon[curr_string] result += last_match_id lowerCAmelCase_ : Tuple = last_match_id + """0""" if math.loga(A__ ).is_integer(): lowerCAmelCase_ : Optional[Any] = {} for curr_key in list(A__ ): lowerCAmelCase_ : Optional[int] = lexicon.pop(A__ ) lowerCAmelCase_ : Any = new_lex lowerCAmelCase_ : Optional[Any] = last_match_id + """1""" index += 1 lowerCAmelCase_ : Any = """""" return result def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Tuple = 8 try: with open(A__ , """wb""" ) as opened_file: lowerCAmelCase_ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase_ : Optional[int] = data_bits[counter:] lowerCAmelCase_ : List[Any] = data_bits[counter + 1 :] return data_bits def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = read_file_binary(A__ ) lowerCAmelCase_ : List[str] = remove_prefix(A__ ) lowerCAmelCase_ : Tuple = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
89
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCAmelCase_ : str = get_sagemaker_input() else: lowerCAmelCase_ : Optional[int] = get_cluster_input() return config def UpperCamelCase_ ( A__ : Optional[Any]=None ): '''simple docstring''' if subparsers is not None: lowerCAmelCase_ : List[str] = subparsers.add_parser("""config""" , description=A__ ) else: lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser("""Accelerate config command""" , description=A__ ) parser.add_argument( """--config_file""" , default=A__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def UpperCamelCase_ ( A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Dict = get_user_input() if args.config_file is not None: lowerCAmelCase_ : List[str] = args.config_file else: if not os.path.isdir(A__ ): os.makedirs(A__ ) lowerCAmelCase_ : List[Any] = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(A__ ) else: config.to_yaml_file(A__ ) print(f'accelerate configuration saved at {config_file}' ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = config_command_parser() lowerCAmelCase_ : Tuple = parser.parse_args() config_command(A__ ) if __name__ == "__main__": main()
89
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =emb.weight.shape SCREAMING_SNAKE_CASE_: List[Any] =nn.Linear(lowercase , lowercase , bias=lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =emb.weight.data return lin_layer def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase , map_location="""cpu""" ) SCREAMING_SNAKE_CASE_: Union[str, Any] =mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] SCREAMING_SNAKE_CASE_: int =mam_aaa["""model"""] remove_ignore_keys_(lowercase ) SCREAMING_SNAKE_CASE_: int =state_dict["""encoder.embed_tokens.weight"""].shape[0] SCREAMING_SNAKE_CASE_: Optional[int] =MaMaaaConfig( vocab_size=lowercase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) SCREAMING_SNAKE_CASE_: Any =state_dict["""decoder.embed_tokens.weight"""] SCREAMING_SNAKE_CASE_: int =MaMaaaForConditionalGeneration(lowercase ) model.model.load_state_dict(lowercase , strict=lowercase ) SCREAMING_SNAKE_CASE_: Any =make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
173
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCAmelCase = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _UpperCAmelCase = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ _UpperCAmelCase = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ={prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} SCREAMING_SNAKE_CASE_: Tuple =[ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_: str =evaluate(dataset=lowerCAmelCase , predictions=lowerCAmelCase ) return score
173
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Any = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE : Dict = 16 SCREAMING_SNAKE_CASE : str = 32 def UpperCamelCase ( _a ) -> Any: '''simple docstring''' return int(x / 2**2_0 ) class UpperCamelCase : '''simple docstring''' def __enter__( self ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase_ :List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *UpperCamelCase_ ): gc.collect() torch.cuda.empty_cache() lowercase_ :Any = torch.cuda.memory_allocated() lowercase_ :Union[str, Any] = torch.cuda.max_memory_allocated() lowercase_ :Optional[int] = bamb(self.end - self.begin ) lowercase_ :List[str] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase ( _a , _a = 1_6 , _a = "bert-base-cased" , _a = 3_2_0 , _a = 1_6_0 , ) -> Optional[Any]: '''simple docstring''' lowercase_ :Optional[Any] = AutoTokenizer.from_pretrained(_a ) lowercase_ :int = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f"train[:{n_train}]", '''validation''': f"validation[:{n_val}]"} ) def tokenize_function(_a ): # max_length=None => use the model max length (it's actually the default) lowercase_ :Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase_ :Tuple = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ :int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_a , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(_a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowercase_ :Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) lowercase_ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) return train_dataloader, eval_dataloader def UpperCamelCase ( _a , _a ) -> List[Any]: '''simple docstring''' lowercase_ :Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ :Dict = config['''lr'''] lowercase_ :List[Any] = int(config['''num_epochs'''] ) lowercase_ :Tuple = int(config['''seed'''] ) lowercase_ :List[str] = int(config['''batch_size'''] ) lowercase_ :Optional[Any] = args.model_name_or_path set_seed(_a ) lowercase_ , lowercase_ :Any = get_dataloaders(_a , _a , _a , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ :Tuple = AutoModelForSequenceClassification.from_pretrained(_a , return_dict=_a ) # Instantiate optimizer lowercase_ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase_ :str = optimizer_cls(params=model.parameters() , lr=_a ) if accelerator.state.deepspeed_plugin is not None: lowercase_ :str = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowercase_ :List[str] = 1 lowercase_ :Union[str, Any] = (len(_a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase_ :int = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=0 , num_training_steps=_a , ) else: lowercase_ :str = DummyScheduler(_a , total_num_steps=_a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ :Optional[Any] = accelerator.prepare( _a , _a , _a , _a , _a ) # We need to keep track of how many total steps we have iterated over lowercase_ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly lowercase_ :int = 0 # Now we train the model lowercase_ :str = {} for epoch in range(_a , _a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_a ): lowercase_ :Optional[Any] = model(**_a ) lowercase_ :Dict = outputs.loss lowercase_ :Dict = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase_ :Union[str, Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(_a , _a ) def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowercase_ :List[str] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_a , ) parser.add_argument( '''--output_dir''' , type=_a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=_a , default=_a , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=_a , default=3_2_0 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=_a , default=1_6_0 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=_a , default=1 , help='''Number of train epochs.''' , ) lowercase_ :Dict = parser.parse_args() lowercase_ :Dict = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_a , _a ) if __name__ == "__main__": main()
252
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowercase__ ( _snake_case ): '''simple docstring''' A_ : Tuple = """wav2vec2""" def __init__( self , __snake_case=32 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.02 , __snake_case=1e-5 , __snake_case="group" , __snake_case="gelu" , __snake_case=(512, 512, 512, 512, 512, 512, 512) , __snake_case=(5, 2, 2, 2, 2, 2, 2) , __snake_case=(10, 3, 3, 3, 3, 2, 2) , __snake_case=False , __snake_case=128 , __snake_case=16 , __snake_case=False , __snake_case=True , __snake_case=0.05 , __snake_case=10 , __snake_case=2 , __snake_case=0.0 , __snake_case=10 , __snake_case=0 , __snake_case=320 , __snake_case=2 , __snake_case=0.1 , __snake_case=100 , __snake_case=256 , __snake_case=256 , __snake_case=0.1 , __snake_case="sum" , __snake_case=False , __snake_case=False , __snake_case=256 , __snake_case=(512, 512, 512, 512, 1500) , __snake_case=(5, 3, 3, 1, 1) , __snake_case=(1, 2, 3, 1, 1) , __snake_case=512 , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=False , __snake_case=3 , __snake_case=2 , __snake_case=3 , __snake_case=None , __snake_case=None , **__snake_case , ): super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : Dict = feat_extract_norm _SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract_activation _SCREAMING_SNAKE_CASE : List[str] = list(__snake_case ) _SCREAMING_SNAKE_CASE : int = list(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = list(__snake_case ) _SCREAMING_SNAKE_CASE : Any = conv_bias _SCREAMING_SNAKE_CASE : List[Any] = num_conv_pos_embeddings _SCREAMING_SNAKE_CASE : str = num_conv_pos_embedding_groups _SCREAMING_SNAKE_CASE : Dict = len(self.conv_dim ) _SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout _SCREAMING_SNAKE_CASE : List[Any] = attention_dropout _SCREAMING_SNAKE_CASE : List[Any] = activation_dropout _SCREAMING_SNAKE_CASE : Dict = feat_proj_dropout _SCREAMING_SNAKE_CASE : Optional[Any] = final_dropout _SCREAMING_SNAKE_CASE : List[str] = layerdrop _SCREAMING_SNAKE_CASE : str = layer_norm_eps _SCREAMING_SNAKE_CASE : Any = initializer_range _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : Any = do_stable_layer_norm _SCREAMING_SNAKE_CASE : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _SCREAMING_SNAKE_CASE : int = apply_spec_augment _SCREAMING_SNAKE_CASE : int = mask_time_prob _SCREAMING_SNAKE_CASE : Dict = mask_time_length _SCREAMING_SNAKE_CASE : Optional[int] = mask_time_min_masks _SCREAMING_SNAKE_CASE : Union[str, Any] = mask_feature_prob _SCREAMING_SNAKE_CASE : Optional[int] = mask_feature_length _SCREAMING_SNAKE_CASE : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _SCREAMING_SNAKE_CASE : Dict = num_codevectors_per_group _SCREAMING_SNAKE_CASE : Optional[int] = num_codevector_groups _SCREAMING_SNAKE_CASE : str = contrastive_logits_temperature _SCREAMING_SNAKE_CASE : int = feat_quantizer_dropout _SCREAMING_SNAKE_CASE : List[Any] = num_negatives _SCREAMING_SNAKE_CASE : str = codevector_dim _SCREAMING_SNAKE_CASE : int = proj_codevector_dim _SCREAMING_SNAKE_CASE : List[str] = diversity_loss_weight # ctc loss _SCREAMING_SNAKE_CASE : Dict = ctc_loss_reduction _SCREAMING_SNAKE_CASE : Dict = ctc_zero_infinity # adapter _SCREAMING_SNAKE_CASE : Any = add_adapter _SCREAMING_SNAKE_CASE : Union[str, Any] = adapter_kernel_size _SCREAMING_SNAKE_CASE : Tuple = adapter_stride _SCREAMING_SNAKE_CASE : str = num_adapter_layers _SCREAMING_SNAKE_CASE : Optional[int] = output_hidden_size or hidden_size _SCREAMING_SNAKE_CASE : List[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _SCREAMING_SNAKE_CASE : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _SCREAMING_SNAKE_CASE : str = list(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = list(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = list(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = xvector_output_dim @property def UpperCAmelCase_ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
200
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = 0 while len(SCREAMING_SNAKE_CASE__ ) > 1: _SCREAMING_SNAKE_CASE : Any = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _SCREAMING_SNAKE_CASE : Optional[int] = files.index(min(SCREAMING_SNAKE_CASE__ ) ) temp += files[min_index] files.pop(SCREAMING_SNAKE_CASE__ ) files.append(SCREAMING_SNAKE_CASE__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
200
1
"""simple docstring""" def lowerCAmelCase_ (lowerCAmelCase__: int = 5_0 ): """simple docstring""" UpperCAmelCase_: Optional[Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
366
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: str = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): UpperCAmelCase_: Tuple = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): UpperCAmelCase_: List[str] = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCAmelCase_: Optional[Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] UpperCAmelCase_: Optional[Any] = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowerCAmelCase__ )-1}' ) if "norm" in key: UpperCAmelCase_: Dict = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCAmelCase_: Any = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] UpperCAmelCase_: str = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowerCAmelCase__ )-1}' ) if "layer_norm1" in key: UpperCAmelCase_: Tuple = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: UpperCAmelCase_: int = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 UpperCAmelCase_: Any = key[key.find("""block""" ) + len("""block""" )] UpperCAmelCase_: Optional[Any] = key.replace(F'block{idx}' , F'block.{int(lowerCAmelCase__ )-1}' ) if "attn.q" in key: UpperCAmelCase_: Dict = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: UpperCAmelCase_: Tuple = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: UpperCAmelCase_: str = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: UpperCAmelCase_: Tuple = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: UpperCAmelCase_: Optional[int] = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: UpperCAmelCase_: Optional[int] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: UpperCAmelCase_: Tuple = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) UpperCAmelCase_: List[str] = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCAmelCase_: Optional[int] = key[key.find("""linear_c""" ) + len("""linear_c""" )] UpperCAmelCase_: List[str] = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowerCAmelCase__ )-1}' ) if "bot_conv" in key: UpperCAmelCase_: Optional[Any] = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: UpperCAmelCase_: Any = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: UpperCAmelCase_: Optional[Any] = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: UpperCAmelCase_: Dict = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: UpperCAmelCase_: Any = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: UpperCAmelCase_: Union[str, Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: UpperCAmelCase_: List[Any] = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): UpperCAmelCase_: Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) UpperCAmelCase_: Union[str, Any] = value return new_state_dict def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCAmelCase_: str = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) UpperCAmelCase_: Tuple = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict UpperCAmelCase_: Any = kv_weight[ : config.hidden_sizes[i], : ] UpperCAmelCase_: Tuple = kv_bias[: config.hidden_sizes[i]] UpperCAmelCase_: Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] UpperCAmelCase_: int = kv_bias[config.hidden_sizes[i] :] def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_: List[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def lowerCAmelCase_ (lowerCAmelCase__: List[str] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: List[Any]=False , lowerCAmelCase__: Optional[Any]=None ): """simple docstring""" UpperCAmelCase_: str = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) UpperCAmelCase_: Dict = GLPNImageProcessor() # prepare image UpperCAmelCase_: List[str] = prepare_img() UpperCAmelCase_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict UpperCAmelCase_: Any = torch.load(lowerCAmelCase__ , map_location=torch.device("""cpu""" ) ) # rename keys UpperCAmelCase_: Optional[Any] = rename_keys(lowerCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict UpperCAmelCase_: Dict = GLPNForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass UpperCAmelCase_: Any = model(lowerCAmelCase__ ) UpperCAmelCase_: Union[str, Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCAmelCase_: List[str] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCAmelCase_: List[str] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) UpperCAmelCase_: Any = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) a : List[Any] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
82
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a ( unittest.TestCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Union[str, Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : int = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__lowercase ) ,torch_builtin(__lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(__lowercase ) ,gelu_new(__lowercase ) ) ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation('''gelu''' ) snake_case__ : int = get_activation('''gelu_10''' ) snake_case__ : Optional[int] = torch_builtin(__lowercase ) snake_case__ : str = geluaa(__lowercase ) snake_case__ : Tuple = torch.where(y_gelu_aa < 10.0 ,1 ,0 ) self.assertTrue(torch.max(__lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask ,y_gelu_aa * clipped_mask ) ) def __lowerCamelCase ( self :Any ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__lowercase ): get_activation('''bogus''' ) with self.assertRaises(__lowercase ): get_activation(__lowercase ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = get_activation('''gelu''' ) snake_case__ : List[Any] = 1 snake_case__ : Optional[Any] = get_activation('''gelu''' ) self.assertEqual(acta.a ,1 ) with self.assertRaises(__lowercase ): snake_case__ : str = acta.a
230
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a ( unittest.TestCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Union[str, Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : int = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__lowercase ) ,torch_builtin(__lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(__lowercase ) ,gelu_new(__lowercase ) ) ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation('''gelu''' ) snake_case__ : int = get_activation('''gelu_10''' ) snake_case__ : Optional[int] = torch_builtin(__lowercase ) snake_case__ : str = geluaa(__lowercase ) snake_case__ : Tuple = torch.where(y_gelu_aa < 10.0 ,1 ,0 ) self.assertTrue(torch.max(__lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask ,y_gelu_aa * clipped_mask ) ) def __lowerCamelCase ( self :Any ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__lowercase ): get_activation('''bogus''' ) with self.assertRaises(__lowercase ): get_activation(__lowercase ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = get_activation('''gelu''' ) snake_case__ : List[Any] = 1 snake_case__ : Optional[Any] = get_activation('''gelu''' ) self.assertEqual(acta.a ,1 ) with self.assertRaises(__lowercase ): snake_case__ : str = acta.a
230
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[Any] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class __snake_case ( a ): UpperCAmelCase__ : List[Any] = '''realm''' def __init__( self : Union[str, Any] , _snake_case : Union[str, Any]=30522 , _snake_case : int=768 , _snake_case : List[str]=128 , _snake_case : List[str]=12 , _snake_case : Tuple=12 , _snake_case : Tuple=8 , _snake_case : int=3072 , _snake_case : int="gelu_new" , _snake_case : List[str]=0.1 , _snake_case : Dict=0.1 , _snake_case : List[Any]=512 , _snake_case : str=2 , _snake_case : str=0.0_2 , _snake_case : Dict=1e-12 , _snake_case : Union[str, Any]=256 , _snake_case : str=10 , _snake_case : Optional[int]=1e-3 , _snake_case : Dict=5 , _snake_case : Union[str, Any]=320 , _snake_case : Tuple=13353718 , _snake_case : Optional[Any]=5000 , _snake_case : Any=1 , _snake_case : Dict=0 , _snake_case : Optional[int]=2 , **_snake_case : Optional[int] , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case) # Common config UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = retriever_proj_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_candidates UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps # Reader config UpperCAmelCase_ = span_hidden_size UpperCAmelCase_ = max_span_width UpperCAmelCase_ = reader_layer_norm_eps UpperCAmelCase_ = reader_beam_size UpperCAmelCase_ = reader_seq_len # Retrieval config UpperCAmelCase_ = num_block_records UpperCAmelCase_ = searcher_beam_size
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github __lowerCAmelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def __lowerCamelCase ( ) -> Tuple: _a : List[Any] = Github(os.environ['GITHUB_TOKEN'] ) _a : List[Any] = g.get_repo('huggingface/transformers' ) _a : Tuple = repo.get_issues(state='open' ) for issue in open_issues: _a : str = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase_ : i.created_at , reverse=lowerCAmelCase_ ) _a : List[str] = comments[0] if len(lowerCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
89
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=1 ) -> Dict: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Tuple: _a : Any = [] for old_item in old_list: _a : Union[str, Any] = old_item.replace('in_layers.0' , 'norm1' ) _a : Optional[int] = new_item.replace('in_layers.2' , 'conv1' ) _a : str = new_item.replace('out_layers.0' , 'norm2' ) _a : List[str] = new_item.replace('out_layers.3' , 'conv2' ) _a : str = new_item.replace('emb_layers.1' , 'time_emb_proj' ) _a : Tuple = new_item.replace('skip_connection' , 'conv_shortcut' ) _a : Any = shave_segments(lowerCAmelCase_ , n_shave_prefix_segments=lowerCAmelCase_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Any: _a : List[str] = [] for old_item in old_list: _a : List[Any] = old_item _a : Optional[int] = new_item.replace('norm.weight' , 'group_norm.weight' ) _a : Optional[Any] = new_item.replace('norm.bias' , 'group_norm.bias' ) _a : Any = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) _a : Optional[Any] = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) _a : Optional[int] = shave_segments(lowerCAmelCase_ , n_shave_prefix_segments=lowerCAmelCase_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> Any: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _a : Optional[Any] = old_checkpoint[path] _a : Optional[Any] = old_tensor.shape[0] // 3 _a : Any = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _a : int = old_tensor.shape[0] // config['num_head_channels'] // 3 _a : str = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _a , _a , _a : Tuple = old_tensor.split(channels // num_heads , dim=1 ) _a : Dict = query.reshape(lowerCAmelCase_ ) _a : str = key.reshape(lowerCAmelCase_ ) _a : Optional[int] = value.reshape(lowerCAmelCase_ ) for path in paths: _a : Dict = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _a : Any = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) _a : str = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) _a : Union[str, Any] = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: _a : int = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _a : List[str] = old_checkpoint[path['old']][:, :, 0] else: _a : Dict = old_checkpoint[path['old']] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _a : Optional[int] = {} _a : Dict = checkpoint['time_embed.0.weight'] _a : Tuple = checkpoint['time_embed.0.bias'] _a : Union[str, Any] = checkpoint['time_embed.2.weight'] _a : List[str] = checkpoint['time_embed.2.bias'] _a : List[str] = checkpoint['input_blocks.0.0.weight'] _a : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _a : Optional[int] = checkpoint['out.0.weight'] _a : int = checkpoint['out.0.bias'] _a : List[str] = checkpoint['out.2.weight'] _a : Optional[int] = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only _a : Optional[int] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) _a : Dict = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase_ ) } # Retrieves the keys for the middle blocks only _a : List[Any] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) _a : Union[str, Any] = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(lowerCAmelCase_ ) } # Retrieves the keys for the output blocks only _a : Optional[int] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) _a : str = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase_ ) } for i in range(1 , lowerCAmelCase_ ): _a : List[Any] = (i - 1) // (config['num_res_blocks'] + 1) _a : Optional[int] = (i - 1) % (config['num_res_blocks'] + 1) _a : Optional[int] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] _a : Optional[Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: _a : List[Any] = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] _a : Union[str, Any] = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue _a : Any = renew_resnet_paths(lowerCAmelCase_ ) _a : List[str] = {'old': f"""input_blocks.{i}.0""", 'new': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} _a : Optional[Any] = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path, resnet_op] , config=lowerCAmelCase_ ) if len(lowerCAmelCase_ ): _a : List[str] = renew_attention_paths(lowerCAmelCase_ ) _a : List[Any] = { 'old': f"""input_blocks.{i}.1""", 'new': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : Optional[Any] = { f"""input_blocks.{i}.1.qkv.bias""": { 'key': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", 'query': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", 'value': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { 'key': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", 'query': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", 'value': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=lowerCAmelCase_ , config=lowerCAmelCase_ , ) _a : str = middle_blocks[0] _a : Tuple = middle_blocks[1] _a : Any = middle_blocks[2] _a : List[Any] = renew_resnet_paths(lowerCAmelCase_ ) assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , config=lowerCAmelCase_ ) _a : Any = renew_resnet_paths(lowerCAmelCase_ ) assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , config=lowerCAmelCase_ ) _a : int = renew_attention_paths(lowerCAmelCase_ ) _a : int = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , attention_paths_to_split=lowerCAmelCase_ , config=lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): _a : List[str] = i // (config['num_res_blocks'] + 1) _a : Any = i % (config['num_res_blocks'] + 1) _a : Union[str, Any] = [shave_segments(lowerCAmelCase_ , 2 ) for name in output_blocks[i]] _a : Optional[Any] = {} for layer in output_block_layers: _a , _a : str = layer.split('.' )[0], shave_segments(lowerCAmelCase_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowerCAmelCase_ ) else: _a : str = [layer_name] if len(lowerCAmelCase_ ) > 1: _a : str = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] _a : Optional[Any] = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] _a : Dict = renew_resnet_paths(lowerCAmelCase_ ) _a : str = renew_resnet_paths(lowerCAmelCase_ ) _a : Optional[int] = {'old': f"""output_blocks.{i}.0""", 'new': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _a : List[Any] = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) _a : Tuple = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] _a : List[str] = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(lowerCAmelCase_ ) == 2: _a : Union[str, Any] = [] if len(lowerCAmelCase_ ): _a : Tuple = renew_attention_paths(lowerCAmelCase_ ) _a : str = { 'old': f"""output_blocks.{i}.1""", 'new': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : List[Any] = { f"""output_blocks.{i}.1.qkv.bias""": { 'key': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", 'query': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", 'value': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { 'key': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", 'query': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", 'value': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=lowerCAmelCase_ , ) else: _a : List[Any] = renew_resnet_paths(lowerCAmelCase_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _a : int = '.'.join(['output_blocks', str(lowerCAmelCase_ ), path['old']] ) _a : Union[str, Any] = '.'.join(['up_blocks', str(lowerCAmelCase_ ), 'resnets', str(lowerCAmelCase_ ), path['new']] ) _a : Union[str, Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __lowerCAmelCase = json.loads(f.read()) __lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __lowerCAmelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __lowerCAmelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
89
1
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated UpperCamelCase_ = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ UpperCamelCase_ = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=UpperCAmelCase )[0] @deprecated(UpperCAmelCase , "Please use tf.data to implement this functionality." ) def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" print("Extracting" , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: a_ = _readaa(UpperCAmelCase ) if magic != 2_051: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) a_ = _readaa(UpperCAmelCase ) a_ = _readaa(UpperCAmelCase ) a_ = _readaa(UpperCAmelCase ) a_ = bytestream.read(rows * cols * num_images ) a_ = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) a_ = data.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , 1 ) return data @deprecated(UpperCAmelCase , "Please use tf.one_hot on tensors." ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = labels_dense.shape[0] a_ = numpy.arange(UpperCAmelCase ) * num_classes a_ = numpy.zeros((num_labels, num_classes) ) a_ = 1 return labels_one_hot @deprecated(UpperCAmelCase , "Please use tf.data to implement this functionality." ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=10 ) ->str: """simple docstring""" print("Extracting" , f.name ) with gzip.GzipFile(fileobj=UpperCAmelCase ) as bytestream: a_ = _readaa(UpperCAmelCase ) if magic != 2_049: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) a_ = _readaa(UpperCAmelCase ) a_ = bytestream.read(UpperCAmelCase ) a_ = numpy.frombuffer(UpperCAmelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(UpperCAmelCase , UpperCAmelCase ) return labels class snake_case : @deprecated( __UpperCAmelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->List[str]: a_ , a_ = random_seed.get_seed(__UpperCAmelCase) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) a_ = dtypes.as_dtype(__UpperCAmelCase).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype) if fake_data: a_ = 1_00_00 a_ = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' a_ = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 a_ = images.reshape( images.shape[0] , images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. a_ = images.astype(numpy.floataa) a_ = numpy.multiply(__UpperCAmelCase , 1.0 / 255.0) a_ = images a_ = labels a_ = 0 a_ = 0 @property def UpperCAmelCase__ ( self) ->List[str]: return self._images @property def UpperCAmelCase__ ( self) ->Any: return self._labels @property def UpperCAmelCase__ ( self) ->Tuple: return self._num_examples @property def UpperCAmelCase__ ( self) ->int: return self._epochs_completed def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True) ->str: if fake_data: a_ = [1] * 7_84 a_ = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase)], [fake_label for _ in range(__UpperCAmelCase)], ) a_ = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: a_ = numpy.arange(self._num_examples) numpy.random.shuffle(__UpperCAmelCase) a_ = self.images[perma] a_ = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch a_ = self._num_examples - start a_ = self._images[start : self._num_examples] a_ = self._labels[start : self._num_examples] # Shuffle the data if shuffle: a_ = numpy.arange(self._num_examples) numpy.random.shuffle(__UpperCAmelCase) a_ = self.images[perm] a_ = self.labels[perm] # Start next epoch a_ = 0 a_ = batch_size - rest_num_examples a_ = self._index_in_epoch a_ = self._images[start:end] a_ = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0), ) else: self._index_in_epoch += batch_size a_ = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(UpperCAmelCase , "Please write your own downloading logic." ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" if not gfile.Exists(UpperCAmelCase ): gfile.MakeDirs(UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) if not gfile.Exists(UpperCAmelCase ): urllib.request.urlretrieve(UpperCAmelCase , UpperCAmelCase ) # noqa: S310 with gfile.GFile(UpperCAmelCase ) as f: a_ = f.size() print("Successfully downloaded" , UpperCAmelCase , UpperCAmelCase , "bytes." ) return filepath @deprecated( UpperCAmelCase , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=dtypes.floataa , UpperCAmelCase=True , UpperCAmelCase=5_000 , UpperCAmelCase=None , UpperCAmelCase=DEFAULT_SOURCE_URL , ) ->Optional[Any]: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=UpperCAmelCase , one_hot=UpperCAmelCase , dtype=UpperCAmelCase , seed=UpperCAmelCase ) a_ = fake() a_ = fake() a_ = fake() return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase ) if not source_url: # empty string check a_ = DEFAULT_SOURCE_URL a_ = "train-images-idx3-ubyte.gz" a_ = "train-labels-idx1-ubyte.gz" a_ = "t10k-images-idx3-ubyte.gz" a_ = "t10k-labels-idx1-ubyte.gz" a_ = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_images_file ) with gfile.Open(UpperCAmelCase , "rb" ) as f: a_ = _extract_images(UpperCAmelCase ) a_ = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + train_labels_file ) with gfile.Open(UpperCAmelCase , "rb" ) as f: a_ = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) a_ = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_images_file ) with gfile.Open(UpperCAmelCase , "rb" ) as f: a_ = _extract_images(UpperCAmelCase ) a_ = _maybe_download( UpperCAmelCase , UpperCAmelCase , source_url + test_labels_file ) with gfile.Open(UpperCAmelCase , "rb" ) as f: a_ = _extract_labels(UpperCAmelCase , one_hot=UpperCAmelCase ) if not 0 <= validation_size <= len(UpperCAmelCase ): a_ = ( "Validation size should be between 0 and " F'''{len(UpperCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(UpperCAmelCase ) a_ = train_images[:validation_size] a_ = train_labels[:validation_size] a_ = train_images[validation_size:] a_ = train_labels[validation_size:] a_ = {"dtype": dtype, "reshape": reshape, "seed": seed} a_ = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) a_ = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) a_ = _DataSet(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) return _Datasets(train=UpperCAmelCase , validation=UpperCAmelCase , test=UpperCAmelCase )
303
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") lowerCamelCase__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCAmelCase (_UpperCamelCase ): with open(_UpperCamelCase , 'rb' ) as f: __lowerCAmelCase : Optional[int] = Image.open(_UpperCamelCase ) return im.convert('RGB' ) @dataclass class A__ : A_ : Optional[str] = field( default=_lowerCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) A_ : Optional[str] = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the training data.'}) A_ : Optional[str] = field(default=_lowerCamelCase , metadata={'help': 'A folder containing the validation data.'}) A_ : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'}) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __lowerCamelCase ( self ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class A__ : A_ : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCamelCase)} , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'}) A_ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A_ : str = field(default=_lowerCamelCase , metadata={'help': 'Name or path of preprocessor config.'}) A_ : bool = field( default=_lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[Any] = torch.stack([example['pixel_values'] for example in examples] ) __lowerCAmelCase : Dict = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCAmelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. __lowerCAmelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowerCAmelCase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCAmelCase : Union[str, Any] = {} if data_args.train_dir is not None: __lowerCAmelCase : Dict = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: __lowerCAmelCase : Union[str, Any] = os.path.join(data_args.validation_dir , '**' ) __lowerCAmelCase : Optional[int] = load_dataset( 'imagefolder' , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. __lowerCAmelCase : Union[str, Any] = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: __lowerCAmelCase : Tuple = dataset['train'].train_test_split(data_args.train_val_split ) __lowerCAmelCase : List[str] = split['train'] __lowerCAmelCase : Dict = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowerCAmelCase : Any = dataset['train'].features['labels'].names __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = {}, {} for i, label in enumerate(_UpperCamelCase ): __lowerCAmelCase : Any = str(_UpperCamelCase ) __lowerCAmelCase : Tuple = label # Load the accuracy metric from the datasets package __lowerCAmelCase : Optional[Any] = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Optional[int] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowerCAmelCase : List[Any] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowerCAmelCase : List[Any] = image_processor.size['shortest_edge'] else: __lowerCAmelCase : Optional[int] = (image_processor.size['height'], image_processor.size['width']) __lowerCAmelCase : List[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowerCAmelCase : Tuple = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowerCAmelCase : Union[str, Any] = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase ): __lowerCAmelCase : Optional[Any] = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(_UpperCamelCase ): __lowerCAmelCase : List[str] = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowerCAmelCase : List[str] = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowerCAmelCase : List[Any] = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer __lowerCAmelCase : Optional[Any] = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: __lowerCAmelCase : List[Any] = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase : List[str] = last_checkpoint __lowerCAmelCase : Dict = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCAmelCase : Tuple = trainer.evaluate() trainer.log_metrics('eval' , _UpperCamelCase ) trainer.save_metrics('eval' , _UpperCamelCase ) # Write model card and (optionally) push to hub __lowerCAmelCase : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
86
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = ["input_features"] def __init__( self , A=80 , A=1_60_00 , A=1_60 , A=30 , A=4_00 , A=0.0 , A=False , **A , ) -> Dict: '''simple docstring''' super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) lowerCamelCase = n_fft lowerCamelCase = hop_length lowerCamelCase = chunk_length lowerCamelCase = chunk_length * sampling_rate lowerCamelCase = self.n_samples // hop_length lowerCamelCase = sampling_rate lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=A , norm="""slaney""" , mel_scale="""slaney""" , ) def __A ( self , A ) -> np.ndarray: '''simple docstring''' lowerCamelCase = spectrogram( A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = np.maximum(A , log_spec.max() - 8.0 ) lowerCamelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( A , A , A = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowerCamelCase = np.array(A , np.intaa ) lowerCamelCase = [] for vector, length in zip(A , attention_mask.sum(-1 ) ): lowerCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase = padding_value normed_input_values.append(A ) else: lowerCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , A , A = True , A = None , A = None , A = None , A = "max_length" , A = None , A = None , A = None , **A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] lowerCamelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCamelCase = self.pad( A , padding=A , max_length=max_length if max_length else self.n_samples , truncation=A , pad_to_multiple_of=A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCamelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCamelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCamelCase = [self._np_extract_fbank_features(A ) for waveform in input_features[0]] if isinstance(input_features[0] , A ): lowerCamelCase = [np.asarray(A , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase = padded_inputs.convert_to_tensors(A ) return padded_inputs def __A ( self ) -> Dict[str, Any]: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
252
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline A : Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : tuple , __magic_name__ : Path , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , use_external_data_format=__magic_name__ , enable_onnx_checker=__magic_name__ , opset_version=__magic_name__ , ) else: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , opset_version=__magic_name__ , ) @torch.no_grad() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> List[str]: """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowercase__ = """cpu""" lowercase__ = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=__magic_name__ ).to(__magic_name__ ) lowercase__ = Path(__magic_name__ ) # TEXT ENCODER lowercase__ = pipeline.text_encoder.config.max_position_embeddings lowercase__ = pipeline.text_encoder.config.hidden_size lowercase__ = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__magic_name__ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=__magic_name__ , ) del pipeline.text_encoder # UNET lowercase__ = pipeline.unet.config.in_channels lowercase__ = pipeline.unet.config.sample_size lowercase__ = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), torch.randn(2 ).to(device=__magic_name__ , dtype=__magic_name__ ), torch.randn(2 , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=__magic_name__ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=__magic_name__ , use_external_data_format=__magic_name__ , ) lowercase__ = str(unet_path.absolute().as_posix() ) lowercase__ = os.path.dirname(__magic_name__ ) lowercase__ = onnx.load(__magic_name__ ) # clean up existing tensor files shutil.rmtree(__magic_name__ ) os.mkdir(__magic_name__ ) # collate external tensor files into one onnx.save_model( __magic_name__ , __magic_name__ , save_as_external_data=__magic_name__ , all_tensors_to_one_file=__magic_name__ , location="""weights.pb""" , convert_attribute=__magic_name__ , ) del pipeline.unet # VAE ENCODER lowercase__ = pipeline.vae lowercase__ = vae_encoder.config.in_channels lowercase__ = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase__ = lambda __magic_name__ , __magic_name__ : vae_encoder.encode(__magic_name__ , __magic_name__ )[0].sample() onnx_export( __magic_name__ , model_args=( torch.randn(1 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__magic_name__ , ) # VAE DECODER lowercase__ = pipeline.vae lowercase__ = vae_decoder.config.latent_channels lowercase__ = vae_decoder.config.out_channels # forward only through the decoder part lowercase__ = vae_encoder.decode onnx_export( __magic_name__ , model_args=( torch.randn(1 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__magic_name__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase__ = pipeline.safety_checker lowercase__ = safety_checker.config.vision_config.num_channels lowercase__ = safety_checker.config.vision_config.image_size lowercase__ = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __magic_name__ , __magic_name__ , __magic_name__ , ).to(device=__magic_name__ , dtype=__magic_name__ ), torch.randn(1 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=__magic_name__ , ) del pipeline.safety_checker lowercase__ = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) lowercase__ = pipeline.feature_extractor else: lowercase__ = None lowercase__ = None lowercase__ = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__magic_name__ ) print("""ONNX pipeline saved to""" , __magic_name__ ) del pipeline del onnx_pipeline lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(__magic_name__ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') A : Any = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
146
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : int = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''roberta-prelayernorm''' def __init__(self : Dict , _UpperCAmelCase : List[Any]=5_0265 , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[Any]="absolute" , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Any , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class A ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase__ (self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
146
1
from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( a): lowerCamelCase__ = 'SpeechT5FeatureExtractor' lowerCamelCase__ = 'SpeechT5Tokenizer' def __init__( self, __a, __a): '''simple docstring''' super().__init__(__a, __a) def __call__( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = kwargs.pop("audio", __a) _lowerCAmelCase : Dict = kwargs.pop("text", __a) _lowerCAmelCase : Dict = kwargs.pop("text_target", __a) _lowerCAmelCase : Union[str, Any] = kwargs.pop("audio_target", __a) _lowerCAmelCase : Any = kwargs.pop("sampling_rate", __a) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?") if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?") if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.") if audio is not None: _lowerCAmelCase : Tuple = self.feature_extractor(__a, *__a, sampling_rate=__a, **__a) elif text is not None: _lowerCAmelCase : List[Any] = self.tokenizer(__a, **__a) else: _lowerCAmelCase : Dict = None if audio_target is not None: _lowerCAmelCase : Union[str, Any] = self.feature_extractor(audio_target=__a, *__a, sampling_rate=__a, **__a) _lowerCAmelCase : Optional[int] = targets["input_values"] elif text_target is not None: _lowerCAmelCase : List[Any] = self.tokenizer(__a, **__a) _lowerCAmelCase : Union[str, Any] = targets["input_ids"] else: _lowerCAmelCase : Union[str, Any] = None if inputs is None: return targets if targets is not None: _lowerCAmelCase : Any = labels _lowerCAmelCase : List[Any] = targets.get("attention_mask") if decoder_attention_mask is not None: _lowerCAmelCase : Tuple = decoder_attention_mask return inputs def snake_case__ ( self, *__a, **__a): '''simple docstring''' _lowerCAmelCase : List[str] = kwargs.pop("input_values", __a) _lowerCAmelCase : int = kwargs.pop("input_ids", __a) _lowerCAmelCase : List[Any] = kwargs.pop("labels", __a) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs.") if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.") if input_values is not None: _lowerCAmelCase : List[str] = self.feature_extractor.pad(__a, *__a, **__a) elif input_ids is not None: _lowerCAmelCase : Optional[Any] = self.tokenizer.pad(__a, **__a) else: _lowerCAmelCase : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(__a, __a) and "input_ids" in labels[0]): _lowerCAmelCase : str = self.tokenizer.pad(__a, **__a) _lowerCAmelCase : str = targets["input_ids"] else: _lowerCAmelCase : Union[str, Any] = self.feature_extractor.feature_size _lowerCAmelCase : str = self.feature_extractor.num_mel_bins _lowerCAmelCase : str = self.feature_extractor.pad(__a, *__a, **__a) _lowerCAmelCase : List[Any] = feature_size_hack _lowerCAmelCase : str = targets["input_values"] else: _lowerCAmelCase : Optional[Any] = None if inputs is None: return targets if targets is not None: _lowerCAmelCase : str = labels _lowerCAmelCase : List[str] = targets.get("attention_mask") if decoder_attention_mask is not None: _lowerCAmelCase : Any = decoder_attention_mask return inputs def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a)
36
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): _lowerCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): _lowerCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _lowerCAmelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(snake_case )-1}' ) if "norm" in key: _lowerCAmelCase = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] _lowerCAmelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(snake_case )-1}' ) if "layer_norm1" in key: _lowerCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: _lowerCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _lowerCAmelCase = key[key.find("""block""" ) + len("""block""" )] _lowerCAmelCase = key.replace(F'block{idx}' , F'block.{int(snake_case )-1}' ) if "attn.q" in key: _lowerCAmelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: _lowerCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: _lowerCAmelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: _lowerCAmelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: _lowerCAmelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: _lowerCAmelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: _lowerCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) _lowerCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] _lowerCAmelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(snake_case )-1}' ) if "bot_conv" in key: _lowerCAmelCase = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: _lowerCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: _lowerCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: _lowerCAmelCase = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: _lowerCAmelCase = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: _lowerCAmelCase = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: _lowerCAmelCase = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): _lowerCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" ) _lowerCAmelCase = value return new_state_dict def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) _lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict _lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] _lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] _lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case , snake_case=False , snake_case=None ): """simple docstring""" _lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowerCAmelCase = GLPNImageProcessor() # prepare image _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=snake_case , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict _lowerCAmelCase = torch.load(snake_case , map_location=torch.device("""cpu""" ) ) # rename keys _lowerCAmelCase = rename_keys(snake_case ) # key and value matrices need special treatment read_in_k_v(snake_case , snake_case ) # create HuggingFace model and load state dict _lowerCAmelCase = GLPNForDepthEstimation(snake_case ) model.load_state_dict(snake_case ) model.eval() # forward pass _lowerCAmelCase = model(snake_case ) _lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: _lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) _lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , snake_case , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=snake_case , ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) A__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
82
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = ShapEImgaImgPipeline UpperCAmelCase : Dict = ['''image'''] UpperCAmelCase : str = ['''image'''] UpperCAmelCase : List[Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCAmelCase : int = False @property def lowerCAmelCase_ ( self : Union[str, Any] ): return 32 @property def lowerCAmelCase_ ( self : Optional[Any] ): return 32 @property def lowerCAmelCase_ ( self : Dict ): return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self : List[Any] ): return 8 @property def lowerCAmelCase_ ( self : Any ): torch.manual_seed(0 ) _A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCAmelCase_ ( self : List[Any] ): _A = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def lowerCAmelCase_ ( self : str ): torch.manual_seed(0 ) _A = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _A = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCAmelCase_ ( self : Any ): torch.manual_seed(0 ) _A = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _A = ShapERenderer(**_UpperCAmelCase ) return model def lowerCAmelCase_ ( self : List[str] ): _A = self.dummy_prior _A = self.dummy_image_encoder _A = self.dummy_image_processor _A = self.dummy_renderer _A = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) _A = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=0 ): _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCAmelCase ) else: _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _A = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self : Dict ): _A = 'cpu' _A = self.get_dummy_components() _A = self.pipeline_class(**_UpperCAmelCase ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) _A = output.images[0] _A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase_ ( self : List[Any] ): _A = torch_device == 'cpu' _A = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : int ): _A = self.get_dummy_components() _A = self.pipeline_class(**_UpperCAmelCase ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 1 _A = 2 _A = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: _A = batch_size * [inputs[key]] _A = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : str ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _A = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _A = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
354
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any]=False ) -> List[str]: '''simple docstring''' _A = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _A = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _A = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def _snake_case ( _snake_case : List[Any] , _snake_case : int , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : int=None ) -> Optional[int]: '''simple docstring''' _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _A = checkpoint[F'''{old_prefix}.norm.weight'''] _A = checkpoint[F'''{old_prefix}.norm.bias'''] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _snake_case ( _snake_case : str , _snake_case : Any ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) _A = {} _A = checkpoint['time_embed.0.weight'] _A = checkpoint['time_embed.0.bias'] _A = checkpoint['time_embed.2.weight'] _A = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _A = checkpoint['label_emb.weight'] _A = checkpoint['input_blocks.0.0.weight'] _A = checkpoint['input_blocks.0.0.bias'] _A = unet_config['down_block_types'] _A = unet_config['layers_per_block'] _A = unet_config['attention_head_dim'] _A = unet_config['block_out_channels'] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(_snake_case ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''down_blocks.{i}.attentions.{j}''' _A = F'''input_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''down_blocks.{i}.downsamplers.0''' _A = F'''input_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = 'mid_block.resnets.0' _A = 'middle_block.0' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.attentions.0' _A = 'middle_block.1' _A = convert_attention(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.resnets.1' _A = 'middle_block.2' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 0 _A = unet_config['up_block_types'] for i, layer_type in enumerate(_snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.1''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''up_blocks.{i}.attentions.{j}''' _A = F'''output_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.2''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = checkpoint['out.0.weight'] _A = checkpoint['out.0.bias'] _A = checkpoint['out.2.weight'] _A = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
271
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'realm' def __init__( self : Dict,lowercase_ : Any=3_0_5_2_2,lowercase_ : Tuple=7_6_8,lowercase_ : List[str]=1_2_8,lowercase_ : List[Any]=1_2,lowercase_ : str=1_2,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_0_7_2,lowercase_ : List[str]="gelu_new",lowercase_ : str=0.1,lowercase_ : Optional[Any]=0.1,lowercase_ : Dict=5_1_2,lowercase_ : Dict=2,lowercase_ : Optional[Any]=0.02,lowercase_ : List[str]=1E-12,lowercase_ : Any=2_5_6,lowercase_ : Optional[int]=1_0,lowercase_ : List[Any]=1E-3,lowercase_ : int=5,lowercase_ : int=3_2_0,lowercase_ : int=1_3_3_5_3_7_1_8,lowercase_ : int=5_0_0_0,lowercase_ : Tuple=1,lowercase_ : Union[str, Any]=0,lowercase_ : Dict=2,**lowercase_ : Dict,)-> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ ) # Common config A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = retriever_proj_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_candidates A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps # Reader config A__ = span_hidden_size A__ = max_span_width A__ = reader_layer_norm_eps A__ = reader_beam_size A__ = reader_seq_len # Retrieval config A__ = num_block_records A__ = searcher_beam_size
7
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'resnet' lowerCamelCase = ['basic', 'bottleneck'] def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = downsample_in_first_stage A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.11' ) @property def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__ ( self : Any )-> float: '''simple docstring''' return 1E-3
7
1
def __a ( UpperCAmelCase = 1000 ) ->int: """simple docstring""" A = 2**power A = 0 while n: A , A = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
355
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __SCREAMING_SNAKE_CASE : Tuple = model(_A )['''last_hidden_state'''] __SCREAMING_SNAKE_CASE : int = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
303
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = grid.shape __SCREAMING_SNAKE_CASE : Tuple = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = None while queue: ((__SCREAMING_SNAKE_CASE), (__SCREAMING_SNAKE_CASE)) : Any = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : int = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : int = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = {"vocab_file": "vocab.txt"} snake_case_ : int = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } snake_case_ : Dict = { "openbmb/cpm-ant-10b": 1024, } def A (__A : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase_ = collections.OrderedDict() with open(__A , '''r''' , encoding='''utf-8''' ) as reader: UpperCAmelCase_ = reader.readlines() for index, token in enumerate(__A ): UpperCAmelCase_ = token.rstrip('''\n''' ) UpperCAmelCase_ = index return vocab class __snake_case ( a ): def __init__( self : str , _snake_case : Tuple , _snake_case : List[str]="<unk>" , _snake_case : Optional[int]=200): """simple docstring""" UpperCAmelCase_ = vocab UpperCAmelCase_ = unk_token UpperCAmelCase_ = max_input_chars_per_word def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = list(_snake_case) if len(_snake_case) > self.max_input_chars_per_word: return [self.unk_token] UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while start < len(_snake_case): UpperCAmelCase_ = len(_snake_case) UpperCAmelCase_ = None while start < end: UpperCAmelCase_ = ''''''.join(chars[start:end]) if substr in self.vocab: UpperCAmelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(_snake_case) UpperCAmelCase_ = end return sub_tokens class __snake_case ( a ): UpperCAmelCase__ : Dict = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ : List[Any] = False def __init__( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Optional[int]="<d>" , _snake_case : Tuple="</d>" , _snake_case : int="<s>" , _snake_case : Tuple="</s>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[int]="<unk>" , _snake_case : Optional[Any]="</n>" , _snake_case : str="</_>" , _snake_case : Any="left" , **_snake_case : Optional[int] , ): """simple docstring""" requires_backends(self , ['''jieba''']) super().__init__( bod_token=_snake_case , eod_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , unk_token=_snake_case , line_token=_snake_case , space_token=_snake_case , padding_side=_snake_case , **_snake_case , ) UpperCAmelCase_ = bod_token UpperCAmelCase_ = eod_token UpperCAmelCase_ = load_vocab(_snake_case) UpperCAmelCase_ = self.encoder[space_token] UpperCAmelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] UpperCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _snake_case: x[1])) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def lowerCamelCase ( self : int): """simple docstring""" return self.encoder[self.bod_token] @property def lowerCamelCase ( self : int): """simple docstring""" return self.encoder[self.eod_token] @property def lowerCamelCase ( self : List[Any]): """simple docstring""" return self.encoder["\n"] @property def lowerCamelCase ( self : Optional[Any]): """simple docstring""" return len(self.encoder) def lowerCamelCase ( self : Tuple): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def lowerCamelCase ( self : List[str] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = [] for x in jieba.cut(_snake_case , cut_all=_snake_case): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_snake_case)) return output_tokens def lowerCamelCase ( self : Optional[int] , _snake_case : Union[str, Any] , **_snake_case : Any): """simple docstring""" UpperCAmelCase_ = [i for i in token_ids if i >= 0] UpperCAmelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_snake_case , **_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Union[str, Any]): """simple docstring""" return token in self.encoder def lowerCamelCase ( self : List[str] , _snake_case : List[str]): """simple docstring""" return "".join(_snake_case) def lowerCamelCase ( self : Optional[Any] , _snake_case : Dict): """simple docstring""" return self.encoder.get(_snake_case , self.encoder.get(self.unk_token)) def lowerCamelCase ( self : Optional[int] , _snake_case : Any): """simple docstring""" return self.decoder.get(_snake_case , self.unk_token) def lowerCamelCase ( self : Tuple , _snake_case : str , _snake_case : Optional[str] = None): """simple docstring""" if os.path.isdir(_snake_case): UpperCAmelCase_ = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: UpperCAmelCase_ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory UpperCAmelCase_ = 0 if " " in self.encoder: UpperCAmelCase_ = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: UpperCAmelCase_ = self.encoder['''\n'''] del self.encoder["\n"] UpperCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _snake_case: x[1])) with open(_snake_case , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''') UpperCAmelCase_ = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def lowerCamelCase ( self : Optional[Any] , _snake_case : List[int] , _snake_case : List[int] = None): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case) if token_ids_a is not None: return [1] + ([0] * len(_snake_case)) + [1] + ([0] * len(_snake_case)) return [1] + ([0] * len(_snake_case))
7
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case_ : int = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case_ : Union[str, Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A (__A : List[Any] , __A : Optional[int] , __A : str , __A : Dict ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCAmelCase_ = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __A , ) is not None ): UpperCAmelCase_ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase_ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase_ = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase_ = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase_ = True if not attribute_used: UpperCAmelCase_ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase_ = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase_ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase_ = True elif attribute.endswith('''_token_id''' ): UpperCAmelCase_ = True # configuration class specific cases if not case_allowed: UpperCAmelCase_ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase_ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A (__A : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase_ = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase_ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase_ = {} if len(config_class.attribute_map ) > 0: UpperCAmelCase_ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase_ = inspect.getsourcefile(__A ) UpperCAmelCase_ = os.path.dirname(__A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase_ = [os.path.join(__A , __A ) for fn in os.listdir(__A ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase_ = [] for path in modeling_paths: if os.path.isfile(__A ): with open(__A ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase_ = [] for config_param, default_value in zip(__A , __A ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase_ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__A , __A , __A , __A ): unused_attributes.append(attributes[0] ) return sorted(__A ) def A () -> Any: """simple docstring""" UpperCAmelCase_ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase_ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __A : inspect.isclass(__A ) and issubclass(__A , __A ) and inspect.getmodule(__A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase_ = check_config_attributes_being_used(__A ) if len(__A ) > 0: UpperCAmelCase_ = unused_attributes if len(__A ) > 0: UpperCAmelCase_ = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__A ) if __name__ == "__main__": check_config_attributes()
7
1
def _a ( SCREAMING_SNAKE_CASE : int = 1000 ): """simple docstring""" UpperCamelCase__ : Optional[int] = 3 UpperCamelCase__ : List[str] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"{solution() = }")
146
import cmath import math def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = math.radians(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = math.radians(SCREAMING_SNAKE_CASE ) # Convert voltage and current to rectangular form UpperCamelCase__ : str = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
146
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase ( _snake_case : List[Any] ) ->Tuple: """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def lowercase ( _snake_case : str ) ->Optional[int]: """simple docstring""" for char in word: __snake_case : Union[str, Any] = ord(__a ) if not _is_chinese_char(__a ): return 0 return 1 def lowercase ( _snake_case : List[str] ) ->List[str]: """simple docstring""" __snake_case : Dict = set() for token in tokens: __snake_case : str = len(__a ) > 1 and is_chinese(__a ) if chinese_word: word_set.add(__a ) __snake_case : Optional[Any] = list(__a ) return word_list def lowercase ( _snake_case : List[str] , _snake_case : set() ) ->List[str]: """simple docstring""" if not chinese_word_set: return bert_tokens __snake_case : Optional[Any] = max([len(__a ) for w in chinese_word_set] ) __snake_case : Optional[int] = bert_tokens __snake_case : Any = 0, len(__a ) while start < end: __snake_case : Tuple = True if is_chinese(bert_word[start] ): __snake_case : Union[str, Any] = min(end - start , __a ) for i in range(__a , 1 , -1 ): __snake_case : Optional[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __snake_case : Any = '##' + bert_word[j] __snake_case : Union[str, Any] = start + i __snake_case : int = False break if single_word: start += 1 return bert_word def lowercase ( _snake_case : List[str] , _snake_case : LTP , _snake_case : BertTokenizer ) ->Union[str, Any]: """simple docstring""" __snake_case : int = [] for i in range(0 , len(__a ) , 100 ): __snake_case : Union[str, Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] __snake_case : Optional[Any] = [get_chinese_word(__a ) for r in res] ltp_res.extend(__a ) assert len(__a ) == len(__a ) __snake_case : str = [] for i in range(0 , len(__a ) , 100 ): __snake_case : List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__a , truncation=__a , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(__a ) == len(__a ) __snake_case : List[str] = [] for input_ids, chinese_word in zip(__a , __a ): __snake_case : int = [] for id in input_ids: __snake_case : Optional[int] = bert_tokenizer._convert_id_to_token(__a ) input_tokens.append(__a ) __snake_case : List[str] = add_sub_symbol(__a , __a ) __snake_case : Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__a ): if token[:2] == "##": __snake_case : str = token[2:] # save chinese tokens' pos if len(__a ) == 1 and _is_chinese_char(ord(__a ) ): ref_id.append(__a ) ref_ids.append(__a ) assert len(__a ) == len(__a ) return ref_ids def lowercase ( _snake_case : Optional[Any] ) ->Any: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: __snake_case : Dict = f.readlines() __snake_case : int = [line.strip() for line in data if len(__a ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __snake_case : int = LTP(args.ltp ) # faster in GPU device __snake_case : Tuple = BertTokenizer.from_pretrained(args.bert ) __snake_case : int = prepare_ref(__a , __a , __a ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: __snake_case : Optional[Any] = [json.dumps(__a ) + '\n' for ref in ref_ids] f.writelines(__a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() main(args)
102
'''simple docstring''' def UpperCAmelCase_ (__a : list , __a : list , __a : int ): """simple docstring""" _a : Optional[Any] = len(__a ) _a : int = [[0] * n for i in range(__a )] for i in range(__a ): _a : Tuple = y_points[i] for i in range(2 , __a ): for j in range(__a , __a ): _a : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
271
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase ( __lowercase : Any ) -> Optional[Any]: '''simple docstring''' A_ : List[str] = 3_84 if "tiny" in model_name: A_ : int = [3, 3, 9, 3] A_ : Dict = [96, 1_92, 3_84, 7_68] if "small" in model_name: A_ : Any = [3, 3, 27, 3] A_ : Union[str, Any] = [96, 1_92, 3_84, 7_68] if "base" in model_name: A_ : str = [3, 3, 27, 3] A_ : List[str] = [1_28, 2_56, 5_12, 10_24] A_ : Optional[Any] = 5_12 if "large" in model_name: A_ : str = [3, 3, 27, 3] A_ : List[str] = [1_92, 3_84, 7_68, 15_36] A_ : Union[str, Any] = 7_68 if "xlarge" in model_name: A_ : Optional[Any] = [3, 3, 27, 3] A_ : List[str] = [2_56, 5_12, 10_24, 20_48] A_ : int = 10_24 # set label information A_ : Tuple = 1_50 A_ : Tuple = 'huggingface/label-files' A_ : Optional[int] = 'ade20k-id2label.json' A_ : Tuple = json.load(open(hf_hub_download(__lowercase ,__lowercase ,repo_type='dataset' ) ,'r' ) ) A_ : List[Any] = {int(__lowercase ): v for k, v in idalabel.items()} A_ : List[Any] = {v: k for k, v in idalabel.items()} A_ : Tuple = ConvNextConfig( depths=__lowercase ,hidden_sizes=__lowercase ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) A_ : Optional[int] = UperNetConfig( backbone_config=__lowercase ,auxiliary_in_channels=__lowercase ,num_labels=__lowercase ,idalabel=__lowercase ,labelaid=__lowercase ,) return config def UpperCamelCase ( __lowercase : List[str] ) -> Dict: '''simple docstring''' A_ : int = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : Optional[int] ,__lowercase : int ) -> Optional[int]: '''simple docstring''' A_ : Any = dct.pop(__lowercase ) A_ : Union[str, Any] = val def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : Tuple ,__lowercase : int ) -> Dict: '''simple docstring''' A_ : Optional[Any] = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } A_ : Tuple = model_name_to_url[model_name] A_ : List[str] = torch.hub.load_state_dict_from_url(__lowercase ,map_location='cpu' )['state_dict'] A_ : Tuple = get_upernet_config(__lowercase ) A_ : Tuple = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ : Optional[Any] = state_dict.pop(__lowercase ) if "bn" in key: A_ : List[str] = key.replace('bn' ,'batch_norm' ) A_ : List[Any] = val # rename keys A_ : Optional[int] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase ,__lowercase ,__lowercase ) model.load_state_dict(__lowercase ) # verify on image A_ : List[Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' A_ : List[Any] = Image.open(requests.get(__lowercase ,stream=__lowercase ).raw ).convert('RGB' ) A_ : Tuple = SegformerImageProcessor() A_ : List[str] = processor(__lowercase ,return_tensors='pt' ).pixel_values with torch.no_grad(): A_ : List[Any] = model(__lowercase ) if model_name == "upernet-convnext-tiny": A_ : Tuple = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": A_ : Optional[Any] = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": A_ : str = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": A_ : Optional[int] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": A_ : Optional[Any] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('Logits:' ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,__lowercase ,atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
370
import math def UpperCamelCase ( __lowercase : int = 1_00 ): '''simple docstring''' A_ : List[Any] = sum(i * i for i in range(1 ,n + 1 ) ) A_ : int = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
192
0
A_ :Union[str, Any] = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def A ( a_ ) -> str: assert type(a_ ) in (int, float) and decimal == int(a_ ) __UpperCamelCase : Union[str, Any] =int(a_ ) __UpperCamelCase : List[str] ='' __UpperCamelCase : Optional[Any] =False if decimal < 0: __UpperCamelCase : Tuple =True decimal *= -1 while decimal > 0: __UpperCamelCase , __UpperCamelCase : Optional[Any] =divmod(a_ ,16 ) __UpperCamelCase : Tuple =values[remainder] + hexadecimal __UpperCamelCase : Dict ='0x' + hexadecimal if negative: __UpperCamelCase : int ='-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
71
import os import re import shutil import sys import tempfile import unittest import black __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __a = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowercase : Any = self.diffusers_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __lowerCamelCase ( self ): lowercase : List[Any] = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): lowercase : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowercase : List[Any] = black.format_str(SCREAMING_SNAKE_CASE__ , mode=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(SCREAMING_SNAKE_CASE__ , '''w''' , newline='''\n''' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: self.assertTrue(f.read() , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Tuple = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with a really long name lowercase : List[Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , SCREAMING_SNAKE_CASE__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE__ ) , )
337
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Optional[int] = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
122
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : List[Any] = '''microsoft/speecht5_tts''' _SCREAMING_SNAKE_CASE : Any = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _SCREAMING_SNAKE_CASE : int = '''text_reader''' _SCREAMING_SNAKE_CASE : List[str] = SpeechTaProcessor _SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaForTextToSpeech _SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGan _SCREAMING_SNAKE_CASE : Optional[int] = ['''text'''] _SCREAMING_SNAKE_CASE : List[Any] = ['''audio'''] def UpperCamelCase__ ( self ): """simple docstring""" if self.post_processor is None: lowerCAmelCase__ = 'microsoft/speecht5_hifigan' super().setup() def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = self.pre_processor(text=_UpperCamelCase , return_tensors='pt' , truncation=_UpperCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) lowerCAmelCase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) lowerCAmelCase__ = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): return self.post_processor(_UpperCamelCase ).cpu().detach()
122
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt"} lowercase_ = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } lowercase_ = { "openbmb/cpm-ant-10b": 1024, } def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as reader: A__ = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE__ ): A__ = token.rstrip('\n' ) A__ = index return vocab class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any],lowercase_ : Any,lowercase_ : Any="<unk>",lowercase_ : List[Any]=2_0_0 )-> int: '''simple docstring''' A__ = vocab A__ = unk_token A__ = max_input_chars_per_word def snake_case__ ( self : int,lowercase_ : Any )-> int: '''simple docstring''' A__ = list(lowercase_ ) if len(lowercase_ ) > self.max_input_chars_per_word: return [self.unk_token] A__ = 0 A__ = [] while start < len(lowercase_ ): A__ = len(lowercase_ ) A__ = None while start < end: A__ = ''.join(chars[start:end] ) if substr in self.vocab: A__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowercase_ ) A__ = end return sub_tokens class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['input_ids', 'attention_mask'] lowerCamelCase = False def __init__( self : str,lowercase_ : List[str],lowercase_ : Dict="<d>",lowercase_ : int="</d>",lowercase_ : int="<s>",lowercase_ : Optional[Any]="</s>",lowercase_ : Optional[Any]="<pad>",lowercase_ : Optional[int]="<unk>",lowercase_ : Any="</n>",lowercase_ : Dict="</_>",lowercase_ : Optional[int]="left",**lowercase_ : int,)-> int: '''simple docstring''' requires_backends(self,['jieba'] ) super().__init__( bod_token=lowercase_,eod_token=lowercase_,bos_token=lowercase_,eos_token=lowercase_,pad_token=lowercase_,unk_token=lowercase_,line_token=lowercase_,space_token=lowercase_,padding_side=lowercase_,**lowercase_,) A__ = bod_token A__ = eod_token A__ = load_vocab(lowercase_ ) A__ = self.encoder[space_token] A__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A__ = collections.OrderedDict(sorted(self.encoder.items(),key=lambda lowercase_ : x[1] ) ) A__ = {v: k for k, v in self.encoder.items()} A__ = WordpieceTokenizer(vocab=self.encoder,unk_token=self.unk_token ) @property def snake_case__ ( self : Optional[Any] )-> Any: '''simple docstring''' return self.encoder[self.bod_token] @property def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' return self.encoder[self.eod_token] @property def snake_case__ ( self : Optional[Any] )-> Union[str, Any]: '''simple docstring''' return self.encoder["\n"] @property def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' return len(self.encoder ) def snake_case__ ( self : int )-> str: '''simple docstring''' return dict(self.encoder,**self.added_tokens_encoder ) def snake_case__ ( self : Union[str, Any],lowercase_ : Union[str, Any] )-> str: '''simple docstring''' A__ = [] for x in jieba.cut(lowercase_,cut_all=lowercase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase_ ) ) return output_tokens def snake_case__ ( self : List[str],lowercase_ : Optional[Any],**lowercase_ : int )-> int: '''simple docstring''' A__ = [i for i in token_ids if i >= 0] A__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowercase_,**lowercase_ ) def snake_case__ ( self : Optional[int],lowercase_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' return token in self.encoder def snake_case__ ( self : List[str],lowercase_ : List[str] )-> str: '''simple docstring''' return "".join(lowercase_ ) def snake_case__ ( self : Optional[Any],lowercase_ : List[Any] )-> Any: '''simple docstring''' return self.encoder.get(lowercase_,self.encoder.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any],lowercase_ : List[str] )-> List[str]: '''simple docstring''' return self.decoder.get(lowercase_,self.unk_token ) def snake_case__ ( self : Any,lowercase_ : str,lowercase_ : Optional[str] = None )-> Tuple[str]: '''simple docstring''' if os.path.isdir(lowercase_ ): A__ = os.path.join( lowercase_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: A__ = (filename_prefix + '-' if filename_prefix else '') + save_directory A__ = 0 if " " in self.encoder: A__ = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: A__ = self.encoder['\n'] del self.encoder["\n"] A__ = collections.OrderedDict(sorted(self.encoder.items(),key=lambda lowercase_ : x[1] ) ) with open(lowercase_,'w',encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) A__ = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def snake_case__ ( self : Optional[int],lowercase_ : List[int],lowercase_ : List[int] = None )-> List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def snake_case__ ( self : Optional[Any],lowercase_ : List[int],lowercase_ : Optional[List[int]] = None,lowercase_ : bool = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_,token_ids_a=lowercase_,already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ ))
7
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class A ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'resnet' lowerCamelCase = ['basic', 'bottleneck'] def __init__( self : Optional[Any],lowercase_ : int=3,lowercase_ : List[str]=6_4,lowercase_ : int=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8],lowercase_ : Tuple=[3, 4, 6, 3],lowercase_ : Union[str, Any]="bottleneck",lowercase_ : List[str]="relu",lowercase_ : Tuple=False,lowercase_ : List[str]=None,lowercase_ : List[Any]=None,**lowercase_ : str,)-> Optional[Any]: '''simple docstring''' super().__init__(**lowercase_ ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) A__ = num_channels A__ = embedding_size A__ = hidden_sizes A__ = depths A__ = layer_type A__ = hidden_act A__ = downsample_in_first_stage A__ = ['stem'] + [F'stage{idx}' for idx in range(1,len(lowercase_ ) + 1 )] A__ , A__ = get_aligned_output_features_output_indices( out_features=lowercase_,out_indices=lowercase_,stage_names=self.stage_names ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.11' ) @property def snake_case__ ( self : List[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case__ ( self : Any )-> float: '''simple docstring''' return 1E-3
7
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Optional[Any] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "detr" lowercase_ = ["past_key_values"] lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=3 , _lowerCAmelCase : Optional[Any]=100 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : str=2_048 , _lowerCAmelCase : Any=8 , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Union[str, Any]=2_048 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Tuple="relu" , _lowerCAmelCase : Any=256 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1.0 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Optional[int]="sine" , _lowerCAmelCase : Optional[int]="resnet50" , _lowerCAmelCase : Any=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Optional[int] , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = backbone_config.get('model_type' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(_lowerCAmelCase ) # set timm attributes to None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None, None, None SCREAMING_SNAKE_CASE_ = use_timm_backbone SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = backbone SCREAMING_SNAKE_CASE_ = use_pretrained_backbone SCREAMING_SNAKE_CASE_ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): return self.encoder_attention_heads @property def lowerCAmelCase_ ( self : int ): return self.d_model @classmethod def lowerCAmelCase_ ( cls : Tuple , _lowerCAmelCase : PretrainedConfig , **_lowerCAmelCase : Tuple ): return cls(backbone_config=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def lowerCAmelCase_ ( self : str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def lowerCAmelCase_ ( self : Dict ): return 1E-5 @property def lowerCAmelCase_ ( self : Optional[int] ): return 12
210
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "" lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : Optional[int] , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : int , ): super().__init__(self , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = repo_info SCREAMING_SNAKE_CASE_ = token SCREAMING_SNAKE_CASE_ = None def lowerCAmelCase_ ( self : Tuple ): if self.dir_cache is None: SCREAMING_SNAKE_CASE_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE_ = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowerCAmelCase ): {'name': str(_lowerCAmelCase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str = "rb" , **_lowerCAmelCase : Optional[Any] , ): if not isinstance(self.repo_info , _lowerCAmelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) SCREAMING_SNAKE_CASE_ = hf_hub_url(self.repo_info.id , _lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCAmelCase , mode=_lowerCAmelCase , headers=get_authentication_headers_for_url(_lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , **_lowerCAmelCase : Dict ): self._get_dirs() SCREAMING_SNAKE_CASE_ = self._strip_protocol(_lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False , **_lowerCAmelCase : str ): self._get_dirs() SCREAMING_SNAKE_CASE_ = PurePosixPath(path.strip('/' ) ) SCREAMING_SNAKE_CASE_ = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE_ = PurePosixPath(p.strip('/' ) ) SCREAMING_SNAKE_CASE_ = p.parent if root == path: SCREAMING_SNAKE_CASE_ = f SCREAMING_SNAKE_CASE_ = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
210
1
'''simple docstring''' import math def snake_case_ (_a : float , _a : float ): return math.pow(_a , 2 ) - a def snake_case_ (_a : float ): return 2 * x def snake_case_ (_a : float ): UpperCAmelCase = 2.0 while start <= a: UpperCAmelCase = math.pow(_a , 2 ) return start def snake_case_ (_a : float , _a : int = 9_9_9_9 , _a : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase = get_initial_point(_a ) for _ in range(_a ): UpperCAmelCase = value UpperCAmelCase = value - fx(_a , _a ) / fx_derivative(_a ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
34
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCamelCase__ ) , """Tatoeba directory does not exist.""" ) class a__ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a , a = self.resolver.write_model_card("opus-mt-he-en" , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
180
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> list[int]: a = 2 a = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase) if n > 1: factors.append(__UpperCamelCase) return factors if __name__ == "__main__": import doctest doctest.testmod()
180
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase :List[str] = logging.get_logger(__name__) lowerCamelCase :Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCamelCase :int = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : Tuple = getattr(lowercase_ , lowercase_ ) if weight_type is not None: A_ : Optional[int] = getattr(lowercase_ , lowercase_ ).shape else: A_ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : List[Any] = value elif weight_type == "weight_v": A_ : Optional[int] = value elif weight_type == "bias": A_ : Optional[Any] = value else: A_ : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = [] A_ : Optional[Any] = fairseq_model.state_dict() A_ : Any = hf_model.feature_extractor A_ : Optional[int] = hf_model.adapter for name, value in fairseq_dict.items(): A_ : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase_ , lowercase_ , lowercase_ , lowercase_ , hf_model.config.feat_extract_norm == """group""" , ) A_ : Optional[int] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A_ : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A_ : int = True if "*" in mapped_key: A_ : Dict = name.split(lowercase_ )[0].split(""".""" )[-2] A_ : Optional[Any] = mapped_key.replace("""*""" , lowercase_ ) if "weight_g" in name: A_ : List[Any] = """weight_g""" elif "weight_v" in name: A_ : List[str] = """weight_v""" elif "bias" in name: A_ : Optional[Any] = """bias""" elif "weight" in name: A_ : Dict = """weight""" else: A_ : str = None set_recursively(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) continue if not is_used: unused_weights.append(lowercase_ ) logger.warning(f'Unused weights: {unused_weights}' ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = full_name.split("""conv_layers.""" )[-1] A_ : Tuple = name.split(""".""" ) A_ : Dict = int(items[0] ) A_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A_ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A_ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A_ : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A_ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase_ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = full_name.split("""adaptor.""" )[-1] A_ : Dict = name.split(""".""" ) if items[1].isdigit(): A_ : str = int(items[1] ) else: A_ : Dict = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A_ : Tuple = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A_ : str = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A_ : Dict = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A_ : Union[str, Any] = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(lowercase_ , lowercase_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A_ : str = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A_ : List[Any] = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(lowercase_ ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = emb.weight.shape A_ : Union[str, Any] = nn.Linear(lowercase_ , lowercase_ , bias=lowercase_ ) A_ : Optional[Any] = emb.weight.data return lin_layer @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' A_ : Optional[Any] = WavaVecaConfig.from_pretrained( lowercase_ , add_adapter=lowercase_ , adapter_stride=lowercase_ , adapter_kernel_size=lowercase_ , use_auth_token=lowercase_ , output_hidden_size=lowercase_ , ) A_ : List[str] = MBartConfig.from_pretrained(lowercase_ ) # load model A_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) A_ : Tuple = model[0].eval() # load feature extractor A_ : str = WavaVecaFeatureExtractor.from_pretrained(lowercase_ , use_auth_token=lowercase_ ) # set weights for wav2vec2 encoder A_ : Optional[Any] = WavaVecaModel(lowercase_ ) recursively_load_weights_wavaveca(model.encoder , lowercase_ ) # load decoder weights A_ : Optional[int] = MBartForCausalLM(lowercase_ ) A_ : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase_ ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) A_ : Union[str, Any] = SpeechEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) A_ : Optional[int] = False A_ : Dict = MBartaaTokenizer(lowercase_ ) tokenizer.save_pretrained(lowercase_ ) A_ : str = hf_wavavec.config.to_dict() A_ : Union[str, Any] = tokenizer.pad_token_id A_ : List[str] = tokenizer.bos_token_id A_ : Tuple = tokenizer.eos_token_id A_ : List[Any] = """mbart50""" A_ : Tuple = """wav2vec2""" A_ : Union[str, Any] = tokenizer.eos_token_id A_ : Tuple = 25_00_04 A_ : int = tokenizer.eos_token_id A_ : Any = SpeechEncoderDecoderConfig.from_dict(lowercase_ ) hf_wavavec.save_pretrained(lowercase_ ) feature_extractor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowerCamelCase :int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1_0_2_4, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=2_5_0_0_0_4, type=int, help='''`decoder_start_token_id` of model config''') lowerCamelCase :List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
206
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] = logging.get_logger(__name__) A_ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A_ : List[Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } A_ : Tuple = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } A_ : Union[str, Any] = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Dict = VOCAB_FILES_NAMES UpperCAmelCase__: Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__: Optional[int] = RoFormerTokenizer def __init__( self , A__=None , A__=None , A__=True , A__="[UNK]" , A__="[SEP]" , A__="[PAD]" , A__="[CLS]" , A__="[MASK]" , A__=True , A__=None , **A__ , ): super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) A__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , A__ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , A__ ) != strip_accents ): A__ : List[Any] = getattr(A__ , pre_tok_state.pop("""type""" ) ) A__ : Optional[int] = do_lower_case A__ : int = strip_accents A__ : str = pre_tok_class(**A__ ) A__ : Any = do_lower_case def __getstate__( self ): A__ : int = self.__dict__.copy() A__ : Union[str, Any] = BertPreTokenizer() return state def __setstate__( self , A__ ): A__ : Union[str, Any] = d A__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() A__ : Dict = PreTokenizer.custom(JiebaPreTokenizer(A__ ) ) def __A ( self , A__ , A__=None ): A__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A__ , A__ = None ): A__ : Tuple = [self.sep_token_id] A__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A__ , A__ = None ): A__ : Any = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def __A ( self , A__ , A__=None , A__=None , A__=False , **A__ , ): A__ : str = BertPreTokenizer() return super().save_pretrained(A__ , A__ , A__ , A__ , **A__ )
192
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Dict = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "informer" lowercase__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : str ,lowercase_ : Optional[int] = None ,lowercase_ : Optional[int] = None ,lowercase_ : str = "student_t" ,lowercase_ : str = "nll" ,lowercase_ : int = 1 ,lowercase_ : List[int] = None ,lowercase_ : Optional[Union[str, bool]] = "mean" ,lowercase_ : int = 0 ,lowercase_ : int = 0 ,lowercase_ : int = 0 ,lowercase_ : int = 0 ,lowercase_ : Optional[List[int]] = None ,lowercase_ : Optional[List[int]] = None ,lowercase_ : int = 6_4 ,lowercase_ : int = 3_2 ,lowercase_ : int = 3_2 ,lowercase_ : int = 2 ,lowercase_ : int = 2 ,lowercase_ : int = 2 ,lowercase_ : int = 2 ,lowercase_ : bool = True ,lowercase_ : str = "gelu" ,lowercase_ : float = 0.05 ,lowercase_ : float = 0.1 ,lowercase_ : float = 0.1 ,lowercase_ : float = 0.1 ,lowercase_ : float = 0.1 ,lowercase_ : int = 1_0_0 ,lowercase_ : float = 0.02 ,lowercase_ : Union[str, Any]=True ,lowercase_ : str = "prob" ,lowercase_ : int = 5 ,lowercase_ : bool = True ,**lowercase_ : List[str] ,): # time series specific configuration lowerCAmelCase__ : Union[str, Any] = prediction_length lowerCAmelCase__ : str = context_length or prediction_length lowerCAmelCase__ : Any = distribution_output lowerCAmelCase__ : Optional[int] = loss lowerCAmelCase__ : Optional[int] = input_size lowerCAmelCase__ : str = num_time_features lowerCAmelCase__ : Dict = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase__ : Dict = scaling lowerCAmelCase__ : str = num_dynamic_real_features lowerCAmelCase__ : List[str] = num_static_real_features lowerCAmelCase__ : List[str] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowerCAmelCase__ : List[Any] = cardinality else: lowerCAmelCase__ : str = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowercase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowerCAmelCase__ : List[str] = embedding_dimension else: lowerCAmelCase__ : Any = [min(5_0 ,(cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase__ : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase__ : int = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase__ : List[Any] = d_model lowerCAmelCase__ : int = encoder_attention_heads lowerCAmelCase__ : Union[str, Any] = decoder_attention_heads lowerCAmelCase__ : int = encoder_ffn_dim lowerCAmelCase__ : Tuple = decoder_ffn_dim lowerCAmelCase__ : Optional[int] = encoder_layers lowerCAmelCase__ : Optional[int] = decoder_layers lowerCAmelCase__ : Any = dropout lowerCAmelCase__ : List[Any] = attention_dropout lowerCAmelCase__ : List[Any] = activation_dropout lowerCAmelCase__ : List[Any] = encoder_layerdrop lowerCAmelCase__ : List[str] = decoder_layerdrop lowerCAmelCase__ : Union[str, Any] = activation_function lowerCAmelCase__ : int = init_std lowerCAmelCase__ : List[Any] = use_cache # Informer lowerCAmelCase__ : Any = attention_type lowerCAmelCase__ : int = sampling_factor lowerCAmelCase__ : Dict = distil super().__init__(is_encoder_decoder=lowercase_ ,**lowercase_ ) @property def __lowerCAmelCase ( self : Optional[int] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
74
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A_ , 2 ) - pow(A_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A_ , 2 ) + pow(A_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
74
1
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _A = '''sshleifer/mar_enro_6_3_student''' class lowercase_ ( __SCREAMING_SNAKE_CASE ): def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() UpperCamelCase_ = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=__UpperCamelCase , ) UpperCamelCase_ = f'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def lowerCamelCase_ ( self ): """simple docstring""" MarianMTModel.from_pretrained(__UpperCamelCase ) @slow @require_torch_gpu def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = { """$MAX_LEN""": 6_4, """$BS""": 6_4, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script UpperCamelCase_ = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() UpperCamelCase_ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): UpperCamelCase_ = bash_script.replace(__UpperCamelCase , str(__UpperCamelCase ) ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCamelCase_ = f''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCamelCase_ = ["""finetune.py"""] + bash_script.split() + args with patch.object(__UpperCamelCase , """argv""" , __UpperCamelCase ): UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = pl.Trainer.add_argparse_args(__UpperCamelCase ) UpperCamelCase_ = SummarizationModule.add_model_specific_args(__UpperCamelCase , os.getcwd() ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = main(__UpperCamelCase ) # Check metrics UpperCamelCase_ = load_json(model.metrics_save_path ) UpperCamelCase_ = metrics["""val"""][0] UpperCamelCase_ = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , __UpperCamelCase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 1_7 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCamelCase_ = os.listdir(__UpperCamelCase ) UpperCamelCase_ = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCamelCase_ = os.path.join(args.output_dir , __UpperCamelCase ) UpperCamelCase_ = torch.load(__UpperCamelCase , map_location="""cpu""" ) UpperCamelCase_ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCamelCase_ = {os.path.basename(__UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class lowercase_ ( __SCREAMING_SNAKE_CASE ): @timeout_decorator.timeout(6_0_0 ) @slow @require_torch_gpu def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = f'''{self.test_file_dir_str}/test_data/wmt_en_ro''' UpperCamelCase_ = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 1_2_8, """$BS""": 1_6, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script UpperCamelCase_ = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) UpperCamelCase_ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) UpperCamelCase_ = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): UpperCamelCase_ = bash_script.replace(__UpperCamelCase , str(__UpperCamelCase ) ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = bash_script.replace("""--fp16""" , """""" ) UpperCamelCase_ = 6 UpperCamelCase_ = ( ["""distillation.py"""] + bash_script.split() + [ f'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", f'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(__UpperCamelCase , """argv""" , __UpperCamelCase ): UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = pl.Trainer.add_argparse_args(__UpperCamelCase ) UpperCamelCase_ = SummarizationDistiller.add_model_specific_args(__UpperCamelCase , os.getcwd() ) UpperCamelCase_ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCamelCase_ = distill_main(__UpperCamelCase ) # Check metrics UpperCamelCase_ = load_json(model.metrics_save_path ) UpperCamelCase_ = metrics["""val"""][0] UpperCamelCase_ = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , __UpperCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCamelCase_ = os.listdir(__UpperCamelCase ) UpperCamelCase_ = [x for x in contents if x.endswith(""".ckpt""" )][0] UpperCamelCase_ = os.path.join(args.output_dir , __UpperCamelCase ) UpperCamelCase_ = torch.load(__UpperCamelCase , map_location="""cpu""" ) UpperCamelCase_ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCamelCase_ = {os.path.basename(__UpperCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
122
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _A = 10 _A = 256 def lowerCamelCase__ ( a__ : List[str] ) -> Optional[MinHash]: if len(a__ ) < MIN_NUM_TOKENS: return None UpperCamelCase_ = MinHash(num_perm=a__ ) for token in set(a__ ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase__ ( a__ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(a__ ) if len(t.strip() ) > 0} class lowercase_ : def __init__( self , *, __UpperCamelCase = 0.85 , ): """simple docstring""" UpperCamelCase_ = duplication_jaccard_threshold UpperCamelCase_ = NUM_PERM UpperCamelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) UpperCamelCase_ = defaultdict(__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self._index.query(__UpperCamelCase ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__UpperCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): UpperCamelCase_ = [base] + list(__UpperCamelCase ) # reformat the cluster to be a list of dict UpperCamelCase_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__UpperCamelCase ) return duplicate_clusters def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = self.get_duplicate_clusters() with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase__ ( a__ : Optional[int] ) -> List[str]: UpperCamelCase_ , UpperCamelCase_ = element UpperCamelCase_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase__ ( a__ : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a__ , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase__ ( a__ : Type[Dataset] , a__ : float ) -> List[Any]: UpperCamelCase_ = DuplicationIndex(duplication_jaccard_threshold=a__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a__ ) ) , max_queue_size=100 ) ): di.add(a__ , a__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase__ ( a__ : str , a__ : str ) -> float: UpperCamelCase_ = get_tokens(a__ ) UpperCamelCase_ = get_tokens(a__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A = None def lowerCamelCase__ ( a__ : str , a__ : str ) -> Optional[Any]: UpperCamelCase_ = [] for elementa in cluster: UpperCamelCase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: UpperCamelCase_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(a__ , a__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: UpperCamelCase_ = 1 extremes.append(a__ ) return extremes def lowerCamelCase__ ( a__ : str , a__ : Optional[int] , a__ : Optional[int] ) -> str: global _shared_dataset UpperCamelCase_ = dataset UpperCamelCase_ = [] UpperCamelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=a__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a__ , a__ , ) , total=len(a__ ) , ): extremes_list.append(a__ ) return extremes_list def lowerCamelCase__ ( a__ : Type[Dataset] , a__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: UpperCamelCase_ = make_duplicate_clusters(a__ , a__ ) UpperCamelCase_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} UpperCamelCase_ = {} UpperCamelCase_ = find_extremes(a__ , a__ , a__ ) for extremes in extremes_clusters: for element in extremes: UpperCamelCase_ = element UpperCamelCase_ = duplicate_indices - set(extreme_dict.keys() ) UpperCamelCase_ = dataset.filter(lambda a__ , a__ : idx not in remove_indices , with_indices=a__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: UpperCamelCase_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: UpperCamelCase_ = extreme_dict[element["""base_index"""]]["""copies"""] print(f'''Original dataset size: {len(a__ )}''' ) print(f'''Number of duplicate clusters: {len(a__ )}''' ) print(f'''Files in duplicate cluster: {len(a__ )}''' ) print(f'''Unique files in duplicate cluster: {len(a__ )}''' ) print(f'''Filtered dataset size: {len(a__ )}''' ) return ds_filter, duplicate_clusters
122
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Tuple = {"""vocab_file""": """sentencepiece.model"""} __lowerCamelCase : Optional[Any] = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } __lowerCamelCase : Union[str, Any] = { """google/rembert""": 256, } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , __A : int , __A : Dict=False , __A : Any=True , __A : Optional[Any]=True , __A : Any="[CLS]" , __A : int="[SEP]" , __A : int="[UNK]" , __A : List[Any]="[SEP]" , __A : Tuple="[PAD]" , __A : Optional[Any]="[CLS]" , __A : Tuple="[MASK]" , **__A : Union[str, Any] , ): super().__init__( do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) snake_case__ : Any = do_lower_case snake_case__ : Dict = remove_space snake_case__ : Any = keep_accents snake_case__ : List[str] = vocab_file snake_case__ : int = spm.SentencePieceProcessor() self.sp_model.Load(__A ) @property def _lowercase ( self : Optional[Any] ): return len(self.sp_model ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : Optional[int] = None return state def __setstate__( self : Optional[Any] , __A : List[Any] ): snake_case__ : Dict = d snake_case__ : List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _lowercase ( self : Dict , __A : Dict , __A : List[str]=False ): snake_case__ : Optional[Any] = self.sp_model.EncodeAsPieces(__A ) return pieces def _lowercase ( self : str , __A : Dict ): return self.sp_model.PieceToId(__A ) def _lowercase ( self : Tuple , __A : Optional[Any] ): return self.sp_model.IdToPiece(__A ) def _lowercase ( self : int , __A : Dict ): snake_case__ : Tuple = self.sp_model.decode_pieces(__A ) return out_string def _lowercase ( self : Union[str, Any] , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] def _lowercase ( self : Dict , __A : List[int] , __A : Optional[List[int]] = None ): snake_case__ : Tuple = [self.sep_token_id] snake_case__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error("Vocabulary path ({}) should be a directory".format(__A ) ) return snake_case__ : Union[str, Any] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
286
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Any = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = TaConfig.from_json_file(lowercase ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase = TaForConditionalGeneration(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_ta(lowercase , lowercase , lowercase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowercase ) if __name__ == "__main__": __a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __a : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
210
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a : str = 1_6 __a : str = 3_2 def UpperCAmelCase ( lowercase ): """simple docstring""" return int(x / 2**20 ) class _UpperCamelCase : """simple docstring""" def __enter__( self ) -> str: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowercase = torch.cuda.memory_allocated() return self def __exit__( self , *lowerCAmelCase__ ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() __lowercase = torch.cuda.memory_allocated() __lowercase = torch.cuda.max_memory_allocated() __lowercase = bamb(self.end - self.begin ) __lowercase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCAmelCase ( lowercase , lowercase = 16 , lowercase = "bert-base-cased" , lowercase = 320 , lowercase = 160 , ): """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(lowercase ) __lowercase = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"train[:{n_train}]", '''validation''': F"validation[:{n_val}]"} ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( lowercase , batched=lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) __lowercase = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['''lr'''] __lowercase = int(config['''num_epochs'''] ) __lowercase = int(config['''seed'''] ) __lowercase = int(config['''batch_size'''] ) __lowercase = args.model_name_or_path set_seed(lowercase ) __lowercase , __lowercase = get_dataloaders(lowercase , lowercase , lowercase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowercase , return_dict=lowercase ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowercase = 1 __lowercase = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=0 , num_training_steps=lowercase , ) else: __lowercase = DummyScheduler(lowercase , total_num_steps=lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 # Now we train the model __lowercase = {} for epoch in range(lowercase , lowercase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase ): __lowercase = model(**lowercase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowercase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(lowercase , lowercase ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase , ) parser.add_argument( '''--output_dir''' , type=lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=lowercase , default=lowercase , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=lowercase , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=lowercase , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=lowercase , default=1 , help='''Number of train epochs.''' , ) __lowercase = parser.parse_args() __lowercase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
210
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
219
'''simple docstring''' from math import ceil def a ( __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :str = list(range(0 , __a ) ) UpperCamelCase__ :Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ :Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(__a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__a ) # Missing blocks UpperCamelCase__ :List[str] = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ :Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(__a ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(__a ) ) def a ( __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Optional[Any] = list(range(__a ) ) UpperCamelCase__ :Any = int(ceil(n_layers / len(__a ) ) ) UpperCamelCase__ :List[Any] = [layers[i : i + n_blocks] for i in range(0 , __a , __a )] return dict(zip(__a , __a ) )
219
1