code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _lowercase : List[str] = False _lowercase : Tuple = True _lowercase : Any = False if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _lowercase : Optional[Any] = parser.parse_args() _lowercase : List[Any] = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } _lowercase : Optional[Any] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } _lowercase : str = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: _lowercase : Union[str, Any] = reader.read() _lowercase : Dict = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): _lowercase : Optional[Any] = UNetaDModel(**config) else: _lowercase : Tuple = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel _lowercase : Any = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _lowercase : Dict = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _lowercase : Optional[Any] = config[key] del config[key] _lowercase : Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] _lowercase : Union[str, Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: _lowercase : int = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) _lowercase : List[Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue _lowercase : Tuple = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: _lowercase : Dict = param_value _lowercase : Union[str, Any] = True if not has_changed: _lowercase : int = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
332
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCamelCase ( _A ): lowerCAmelCase_ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False lowerCAmelCase_ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] lowerCAmelCase_ = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase_ = [4, 4, 4, 4] lowerCAmelCase_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase_ = [3, 3, 3, 3] else: lowerCAmelCase_ = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase_ = 96 elif "small" in model_name: lowerCAmelCase_ = 96 elif "base" in model_name: lowerCAmelCase_ = 128 elif "large" in model_name: lowerCAmelCase_ = 192 elif "xlarge" in model_name: lowerCAmelCase_ = 256 elif "huge" in model_name: lowerCAmelCase_ = 352 # set label information lowerCAmelCase_ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCAmelCase_ = '''imagenet-22k-id2label.json''' else: lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = FocalNetConfig( embed_dim=_A , depths=_A , focal_levels=_A , focal_windows=_A , use_conv_embed=_A , idalabel=_A , labelaid=_A , use_post_layernorm=_A , use_layerscale=_A , ) return config def __UpperCamelCase ( _A ): if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCAmelCase_ = '''encoder.''' + name if "encoder.layers" in name: lowerCAmelCase_ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCAmelCase_ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCAmelCase_ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase_ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase_ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase_ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": lowerCAmelCase_ = '''layernorm.bias''' if "head" in name: lowerCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: lowerCAmelCase_ = '''focalnet.''' + name return name def __UpperCamelCase ( _A , _A , _A=False ): # fmt: off lowerCAmelCase_ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCAmelCase_ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _A ) lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) lowerCAmelCase_ = val lowerCAmelCase_ = get_focalnet_config(_A ) lowerCAmelCase_ = FocalNetForImageClassification(_A ) model.eval() # load state dict model.load_state_dict(_A ) # verify conversion lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = BitImageProcessor( do_resize=_A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_A , crop_size=224 , do_normalize=_A , image_mean=_A , image_std=_A , ) lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) lowerCAmelCase_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCAmelCase_ = image_transforms(_A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _A , atol=1E-4 ) lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase_ = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase_ = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCAmelCase_ = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase_ = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCAmelCase_ = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase_ = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
0
from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( __a , __a = "cpu" , __a = None ): snake_case_ : str = torch.load(__a , map_location=__a ) for k, v in tqdm(state_dict.items() ): if not isinstance(__a , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) snake_case_ : List[Any] = v.half() if save_path is None: # overwrite src_path snake_case_ : Union[str, Any] = src_path torch.save(__a , __a ) if __name__ == "__main__": fire.Fire(convert)
88
from __future__ import annotations import pandas as pd def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Optional[Any] = [0] * no_of_processes snake_case_ : Tuple = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__a ): snake_case_ : Union[str, Any] = burst_time[i] snake_case_ : Optional[Any] = 0 snake_case_ : Dict = 0 snake_case_ : Any = 9_99_99_99_99 snake_case_ : Tuple = 0 snake_case_ : List[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__a ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: snake_case_ : str = remaining_time[j] snake_case_ : Any = j snake_case_ : List[str] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 snake_case_ : Any = remaining_time[short] if minm == 0: snake_case_ : Dict = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 snake_case_ : List[str] = False # Find finish time of current process snake_case_ : List[str] = increment_time + 1 # Calculate waiting time snake_case_ : Any = finish_time - arrival_time[short] snake_case_ : Any = finar - burst_time[short] if waiting_time[short] < 0: snake_case_ : Optional[int] = 0 # Increment time increment_time += 1 return waiting_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Tuple = [0] * no_of_processes for i in range(__a ): snake_case_ : str = burst_time[i] + waiting_time[i] return turn_around_time def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : int = 0 snake_case_ : Optional[Any] = 0 for i in range(__a ): snake_case_ : int = total_waiting_time + waiting_time[i] snake_case_ : Optional[Any] = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") _SCREAMING_SNAKE_CASE = int(input()) _SCREAMING_SNAKE_CASE = [0] * no_of_processes _SCREAMING_SNAKE_CASE = [0] * no_of_processes _SCREAMING_SNAKE_CASE = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input().split()) _SCREAMING_SNAKE_CASE = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _SCREAMING_SNAKE_CASE = burst_time _SCREAMING_SNAKE_CASE = no_of_processes _SCREAMING_SNAKE_CASE = waiting_time _SCREAMING_SNAKE_CASE = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _SCREAMING_SNAKE_CASE = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
88
1
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int ,A_ : int ) -> Union[str, Any]: A = n A = [None] * self.n A = 0 # index of the first element A = 0 A = 0 def __len__( self : int ) -> int: return self.size def _SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.size == 0 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> int: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) A = data A = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: if self.size == 0: raise Exception('UNDERFLOW' ) A = self.array[self.front] A = None A = (self.front + 1) % self.n self.size -= 1 return temp
74
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''deit''' def __init__( self : int ,A_ : Optional[Any]=768 ,A_ : Union[str, Any]=12 ,A_ : Dict=12 ,A_ : int=3072 ,A_ : Optional[Any]="gelu" ,A_ : Dict=0.0 ,A_ : Any=0.0 ,A_ : str=0.02 ,A_ : Tuple=1e-12 ,A_ : Union[str, Any]=224 ,A_ : Optional[Any]=16 ,A_ : List[Any]=3 ,A_ : Optional[Any]=True ,A_ : Optional[int]=16 ,**A_ : Union[str, Any] ,) -> Dict: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = encoder_stride class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: int = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> float: return 1e-4
74
1
"""simple docstring""" import re def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> list: '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str: '''simple docstring''' lowercase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool , lowerCAmelCase__ :str ) -> str: '''simple docstring''' try: lowercase = split_input(lowerCAmelCase__ ) if upper: lowercase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowercase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str: '''simple docstring''' return to_simple_case(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> str: '''simple docstring''' try: lowercase = to_simple_case(lowerCAmelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> str: '''simple docstring''' return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , """_""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :bool ) -> str: '''simple docstring''' return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
32
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
1
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCAmelCase : Dict =re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowerCAmelCase : int =re.compile(r'''([a-z\d])([A-Z])''') lowerCAmelCase : List[str] =re.compile(r'''(?<!_)_(?!_)''') lowerCAmelCase : Optional[Any] =re.compile(r'''(_{2,})''') lowerCAmelCase : Union[str, Any] =r"^\w+(\.\w+)*$" lowerCAmelCase : Optional[int] =r"<>:/\|?*" def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ): lowercase_ :Any = _uppercase_uppercase_re.sub(r"\1_\2" ,__lowerCAmelCase ) lowercase_ :Optional[Any] = _lowercase_uppercase_re.sub(r"\1_\2" ,__lowerCAmelCase ) return name.lower() def UpperCAmelCase_ ( __lowerCamelCase : Tuple ): lowercase_ :int = _single_underscore_re.split(__lowerCAmelCase ) lowercase_ :List[Any] = [_multiple_underscores_re.split(__lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowerCAmelCase ) if n != "" ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ): if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(__lowerCAmelCase ) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : str ): if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re ,__lowerCAmelCase ): raise ValueError(F'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return F'{filename_prefix_for_name(__lowerCAmelCase )}-{split}' def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any]=None ): lowercase_ :List[str] = filename_prefix_for_split(__lowerCAmelCase ,__lowerCAmelCase ) if filetype_suffix: prefix += F'.{filetype_suffix}' lowercase_ :List[str] = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) return F'{filepath}*' def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Union[str, Any]=None ): lowercase_ :Tuple = filename_prefix_for_split(__lowerCAmelCase ,__lowerCAmelCase ) lowercase_ :str = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) if shard_lengths: lowercase_ :Optional[int] = len(__lowerCAmelCase ) lowercase_ :Any = [F'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(__lowerCAmelCase )] if filetype_suffix: lowercase_ :str = [filename + F'.{filetype_suffix}' for filename in filenames] return filenames else: lowercase_ :int = prefix if filetype_suffix: filename += F'.{filetype_suffix}' return [filename]
223
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Dict = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): a__ : Any = """mask2former""" a__ : Dict = ["""swin"""] a__ : Any = {"""hidden_size""": """hidden_dim"""} def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 6 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : int = 20_48 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 2_55 , SCREAMING_SNAKE_CASE__ : int = 1_00 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 2.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : float = 5.0 , SCREAMING_SNAKE_CASE__ : int = 1_25_44 , SCREAMING_SNAKE_CASE__ : float = 3.0 , SCREAMING_SNAKE_CASE__ : float = 0.75 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[int] = [4, 8, 16, 32] , SCREAMING_SNAKE_CASE__ : bool = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> str: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) __lowerCamelCase = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = backbone_config.pop('''model_type''' ) __lowerCamelCase = CONFIG_MAPPING[backbone_model_type] __lowerCamelCase = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) __lowerCamelCase = backbone_config __lowerCamelCase = feature_size __lowerCamelCase = mask_feature_size __lowerCamelCase = hidden_dim __lowerCamelCase = encoder_feedforward_dim __lowerCamelCase = activation_function __lowerCamelCase = encoder_layers __lowerCamelCase = decoder_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = dropout __lowerCamelCase = dim_feedforward __lowerCamelCase = pre_norm __lowerCamelCase = enforce_input_projection __lowerCamelCase = common_stride __lowerCamelCase = ignore_value __lowerCamelCase = num_queries __lowerCamelCase = no_object_weight __lowerCamelCase = class_weight __lowerCamelCase = mask_weight __lowerCamelCase = dice_weight __lowerCamelCase = train_num_points __lowerCamelCase = oversample_ratio __lowerCamelCase = importance_sample_ratio __lowerCamelCase = init_std __lowerCamelCase = init_xavier_std __lowerCamelCase = use_auxiliary_loss __lowerCamelCase = feature_strides __lowerCamelCase = output_auxiliary_logits __lowerCamelCase = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( cls : Any , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def __A ( self : Any ) -> Dict[str, any]: __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.backbone_config.to_dict() __lowerCamelCase = self.__class__.model_type return output
270
0
class SCREAMING_SNAKE_CASE__ : def __init__( self , a): lowercase__ : str = size lowercase__ : Union[str, Any] = [0] * size lowercase__ : Any = [0] * size @staticmethod def snake_case_ ( a): return index | (index + 1) @staticmethod def snake_case_ ( a): return (index & (index + 1)) - 1 def snake_case_ ( self , a , a): lowercase__ : List[Any] = value while index < self.size: lowercase__ : Tuple = self.get_prev(a) + 1 if current_left_border == index: lowercase__ : int = value else: lowercase__ : Tuple = max(a , a , a) lowercase__ : str = self.get_next(a) def snake_case_ ( self , a , a): right -= 1 # Because of right is exclusive lowercase__ : Optional[int] = 0 while left <= right: lowercase__ : int = self.get_prev(a) if left <= current_left: lowercase__ : str = max(a , self.tree[right]) lowercase__ : Optional[Any] = current_left else: lowercase__ : List[Any] = max(a , self.arr[right]) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
216
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) snake_case : Union[str, Any] = logging.getLogger() def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) __magic_name__ : Any = parser.parse_args() return args.f def lowerCAmelCase_ ( _snake_case : Any ) -> Optional[int]: '''simple docstring''' __magic_name__ : str = {} __magic_name__ : List[Any] = os.path.join(_snake_case , "all_results.json" ) if os.path.exists(_snake_case ): with open(_snake_case , "r" ) as f: __magic_name__ : Optional[Any] = json.load(_snake_case ) else: raise ValueError(F'''can\'t find {path}''' ) return results def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' __magic_name__ : List[str] = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() snake_case : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _snake_case ( snake_case ): @classmethod def SCREAMING_SNAKE_CASE ( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __magic_name__ : Any = tempfile.mkdtemp() __magic_name__ : List[Any] = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __magic_name__ : Any = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def SCREAMING_SNAKE_CASE ( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.get_auto_remove_tmp_dir() __magic_name__ : str = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __magic_name__ : Optional[Any] = get_results(_a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.get_auto_remove_tmp_dir() __magic_name__ : List[str] = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __magic_name__ : Union[str, Any] = get_results(_a ) self.assertLess(result["perplexity"] , 100 ) self.assertTrue(os.path.exists(os.path.join(_a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = self.get_auto_remove_tmp_dir() __magic_name__ : Dict = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ : Tuple = get_results(_a ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(_a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __magic_name__ : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __magic_name__ : Optional[Any] = self.get_auto_remove_tmp_dir() __magic_name__ : Union[str, Any] = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ : List[Any] = get_results(_a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.get_auto_remove_tmp_dir() __magic_name__ : List[Any] = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ : Optional[Any] = get_results(_a ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(_a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.get_auto_remove_tmp_dir() __magic_name__ : str = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ : Tuple = get_results(_a ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_a , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = self.get_auto_remove_tmp_dir() __magic_name__ : Tuple = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ : List[Any] = get_results(_a ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(_a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.get_auto_remove_tmp_dir() __magic_name__ : List[str] = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) __magic_name__ : Dict = get_results(_a ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(_a , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "translation_no_trainer" ) ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) __magic_name__ : str = self.get_auto_remove_tmp_dir() __magic_name__ : int = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) __magic_name__ : Union[str, Any] = get_results(_a ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.get_auto_remove_tmp_dir() __magic_name__ : Tuple = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __magic_name__ : List[str] = get_results(_a ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_a , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(_a , "image_classification_no_trainer" ) ) )
281
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) snake_case : Optional[int] = logging.getLogger(__name__) def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' __magic_name__ : List[str] = np.argmax(_snake_case , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase_ ( _snake_case : Optional[Any] ) -> Dict: '''simple docstring''' with open(_snake_case , encoding="utf_8" ) as f: __magic_name__ : List[str] = csv.reader(_snake_case ) __magic_name__ : List[Any] = [] next(_snake_case ) # skip the first line for line in tqdm(_snake_case ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase_ ( _snake_case : str , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Optional[int] ) -> int: '''simple docstring''' __magic_name__ : Optional[int] = [] for dataset in encoded_datasets: __magic_name__ : Union[str, Any] = len(_snake_case ) __magic_name__ : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __magic_name__ : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa ) __magic_name__ : Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __magic_name__ : int = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_snake_case ): __magic_name__ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __magic_name__ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __magic_name__ : str = with_conta __magic_name__ : Tuple = with_conta __magic_name__ : Union[str, Any] = len(_snake_case ) - 1 __magic_name__ : int = len(_snake_case ) - 1 __magic_name__ : Optional[Any] = with_conta __magic_name__ : Optional[Any] = with_conta __magic_name__ : Optional[int] = mc_label __magic_name__ : str = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_snake_case ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' __magic_name__ : Any = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_snake_case , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=_snake_case , type=_snake_case , required=_snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=_snake_case , default="" ) parser.add_argument("--eval_dataset" , type=_snake_case , default="" ) parser.add_argument("--seed" , type=_snake_case , default=42 ) parser.add_argument("--num_train_epochs" , type=_snake_case , default=3 ) parser.add_argument("--train_batch_size" , type=_snake_case , default=8 ) parser.add_argument("--eval_batch_size" , type=_snake_case , default=16 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=_snake_case , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=_snake_case , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=_snake_case , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=_snake_case , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=_snake_case , default=6.25E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=_snake_case , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=_snake_case , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=_snake_case , default=0.01 ) parser.add_argument("--lm_coef" , type=_snake_case , default=0.9 ) parser.add_argument("--n_valid" , type=_snake_case , default=374 ) parser.add_argument("--server_ip" , type=_snake_case , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_snake_case , default="" , help="Can be used for distant debugging." ) __magic_name__ : List[Any] = parser.parse_args() print(_snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __magic_name__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __magic_name__ : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(_snake_case , _snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __magic_name__ : List[Any] = ["_start_", "_delimiter_", "_classify_"] __magic_name__ : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_snake_case ) __magic_name__ : Optional[Any] = tokenizer.convert_tokens_to_ids(_snake_case ) __magic_name__ : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_snake_case ) ) model.to(_snake_case ) # Load and encode the datasets def tokenize_and_encode(_snake_case : str ): if isinstance(_snake_case , _snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_snake_case ) ) elif isinstance(_snake_case , _snake_case ): return obj return [tokenize_and_encode(_snake_case ) for o in obj] logger.info("Encoding dataset..." ) __magic_name__ : Optional[int] = load_rocstories_dataset(args.train_dataset ) __magic_name__ : str = load_rocstories_dataset(args.eval_dataset ) __magic_name__ : int = (train_dataset, eval_dataset) __magic_name__ : List[str] = tokenize_and_encode(_snake_case ) # Compute the max input length for the Transformer __magic_name__ : Optional[Any] = model.config.n_positions // 2 - 2 __magic_name__ : Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __magic_name__ : List[str] = min(_snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __magic_name__ : List[Any] = pre_process_datasets(_snake_case , _snake_case , _snake_case , *_snake_case ) __magic_name__ , __magic_name__ : Optional[int] = tensor_datasets[0], tensor_datasets[1] __magic_name__ : Tuple = TensorDataset(*_snake_case ) __magic_name__ : Union[str, Any] = RandomSampler(_snake_case ) __magic_name__ : Dict = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.train_batch_size ) __magic_name__ : Any = TensorDataset(*_snake_case ) __magic_name__ : Optional[Any] = SequentialSampler(_snake_case ) __magic_name__ : int = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __magic_name__ : Tuple = args.max_steps __magic_name__ : List[str] = args.max_steps // (len(_snake_case ) // args.gradient_accumulation_steps) + 1 else: __magic_name__ : List[str] = len(_snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs __magic_name__ : str = list(model.named_parameters() ) __magic_name__ : Dict = ["bias", "LayerNorm.bias", "LayerNorm.weight"] __magic_name__ : str = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] __magic_name__ : str = AdamW(_snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) __magic_name__ : List[str] = get_linear_schedule_with_warmup( _snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=_snake_case ) if args.do_train: __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): __magic_name__ : List[str] = 0 __magic_name__ : Tuple = 0 __magic_name__ : Dict = tqdm(_snake_case , desc="Training" ) for step, batch in enumerate(_snake_case ): __magic_name__ : Optional[Any] = tuple(t.to(_snake_case ) for t in batch ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Dict = batch __magic_name__ : Optional[Any] = model(_snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __magic_name__ : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __magic_name__ : List[str] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __magic_name__ : int = "Training loss: {:.2e} lr: {:.2e}".format(_snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __magic_name__ : Dict = model.module if hasattr(_snake_case , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __magic_name__ : List[Any] = os.path.join(args.output_dir , _snake_case ) __magic_name__ : Dict = os.path.join(args.output_dir , _snake_case ) torch.save(model_to_save.state_dict() , _snake_case ) model_to_save.config.to_json_file(_snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __magic_name__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __magic_name__ : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_snake_case ) if args.do_eval: model.eval() __magic_name__ , __magic_name__ : Any = 0, 0 __magic_name__ , __magic_name__ : Union[str, Any] = 0, 0 for batch in tqdm(_snake_case , desc="Evaluating" ): __magic_name__ : int = tuple(t.to(_snake_case ) for t in batch ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = batch with torch.no_grad(): __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Dict = model( _snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __magic_name__ : Tuple = mc_logits.detach().cpu().numpy() __magic_name__ : Any = mc_labels.to("cpu" ).numpy() __magic_name__ : str = accuracy(_snake_case , _snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __magic_name__ : Tuple = eval_loss / nb_eval_steps __magic_name__ : List[Any] = eval_accuracy / nb_eval_examples __magic_name__ : int = tr_loss / nb_tr_steps if args.do_train else None __magic_name__ : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} __magic_name__ : int = os.path.join(args.output_dir , "eval_results.txt" ) with open(_snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _snake_case , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
281
1
"""simple docstring""" import sys def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = len(a__ ) A = [[0 for x in range(a__ )] for x in range(a__ )] A = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(a__ , a__ ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" if i == j: print("A" + str(a__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(")" , end=" " ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = [30, 35, 15, 5, 10, 20, 25] A = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(a__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
361
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__(self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str): A , A = text, pattern A , A = len(__SCREAMING_SNAKE_CASE), len(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : int): for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ (self : List[Any]): # searches pattern in text and returns index positions A = [] for i in range(self.textLen - self.patLen + 1): A = self.mismatch_in_text(__SCREAMING_SNAKE_CASE) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE) else: A = self.match_in_pattern(self.text[mismatch_index]) A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : int = 'ABAABA' __A : Optional[Any] = 'AB' __A : Any = BoyerMooreSearch(text, pattern) __A : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
57
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase : str = logging.get_logger(__name__) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : str = None , UpperCamelCase__ : uuid.UUID = None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[str]=None ) -> List[str]: """simple docstring""" if not conversation_id: __magic_name__ = uuid.uuida() if past_user_inputs is None: __magic_name__ = [] if generated_responses is None: __magic_name__ = [] __magic_name__ = conversation_id __magic_name__ = past_user_inputs __magic_name__ = generated_responses __magic_name__ = text def __eq__( self : Union[str, Any] , UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : bool = False ) -> Tuple: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) __magic_name__ = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: __magic_name__ = text def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __magic_name__ = None def _lowercase ( self : Optional[Any] , UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" self.generated_responses.append(UpperCamelCase__ ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any] ) -> Tuple: """simple docstring""" __magic_name__ = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): __magic_name__ = """user""" if is_user else """bot""" output += F'''{name} >> {text} \n''' return output @add_end_docstrings( _A , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) if self.tokenizer.pad_token_id is None: __magic_name__ = self.tokenizer.eos_token def _lowercase ( self : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Tuple ) -> Any: """simple docstring""" __magic_name__ = {} __magic_name__ = {} __magic_name__ = {} if min_length_for_response is not None: __magic_name__ = min_length_for_response if minimum_tokens is not None: __magic_name__ = minimum_tokens if "max_length" in generate_kwargs: __magic_name__ = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __magic_name__ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCamelCase__ ) return preprocess_params, forward_params, postprocess_params def __call__( self : int , UpperCamelCase__ : Union[Conversation, List[Conversation]] , UpperCamelCase__ : Any=0 , **UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" __magic_name__ = super().__call__(UpperCamelCase__ , num_workers=UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) == 1: return outputs[0] return outputs def _lowercase ( self : List[Any] , UpperCamelCase__ : Conversation , UpperCamelCase__ : Union[str, Any]=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): __magic_name__ = self.tokenizer._build_conversation_input_ids(UpperCamelCase__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version __magic_name__ = self._legacy_parse_and_tokenize(UpperCamelCase__ ) if self.framework == "pt": __magic_name__ = torch.LongTensor([input_ids] ) elif self.framework == "tf": __magic_name__ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _lowercase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=10 , **UpperCamelCase__ : int ) -> Dict: """simple docstring""" __magic_name__ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) __magic_name__ = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) __magic_name__ = max_length - minimum_tokens __magic_name__ = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __magic_name__ = model_inputs["""attention_mask"""][:, -trim:] __magic_name__ = model_inputs.pop("""conversation""" ) __magic_name__ = max_length __magic_name__ = self.model.generate(**UpperCamelCase__ , **UpperCamelCase__ ) if self.model.config.is_encoder_decoder: __magic_name__ = 1 else: __magic_name__ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str]=True ) -> str: """simple docstring""" __magic_name__ = model_outputs["""output_ids"""] __magic_name__ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) __magic_name__ = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCamelCase__ ) return conversation def _lowercase ( self : List[Any] , UpperCamelCase__ : Conversation ) -> Dict: """simple docstring""" __magic_name__ = self.tokenizer.eos_token_id __magic_name__ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) if len(UpperCamelCase__ ) > self.tokenizer.model_max_length: __magic_name__ = input_ids[-self.tokenizer.model_max_length :] return input_ids
88
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' a__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowercase ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" __magic_name__ = TextaTextGenerationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return generator, ["Something to write", "Something else"] def _lowercase ( self : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ = generator("""Something there""" ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": ANY(UpperCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __magic_name__ = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) __magic_name__ = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], [{"""generated_text""": ANY(UpperCamelCase__ )}, {"""generated_text""": ANY(UpperCamelCase__ )}], ] , ) with self.assertRaises(UpperCamelCase__ ): generator(4 ) @require_torch def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __magic_name__ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] ) __magic_name__ = 3 __magic_name__ = generator( """Something there""" , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , ) __magic_name__ = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = generator("""This is a test""" , do_sample=UpperCamelCase__ , num_return_sequences=2 , return_tensors=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __magic_name__ = generator.model.config.eos_token_id __magic_name__ = """<pad>""" __magic_name__ = generator( ["""This is a test""", """This is a second test"""] , do_sample=UpperCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCamelCase__ , ) self.assertEqual( UpperCamelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __magic_name__ = generator("""Something there""" , do_sample=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , [{"""generated_text""": """"""}] )
88
1
import os import string import sys A_ : List[str] = 1 << 8 A_ : Any = { """tab""": ord('\t'), """newline""": ord('\r'), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } A_ : Any = KEYMAP["""up"""] A_ : Tuple = KEYMAP["""left"""] if sys.platform == "win32": A_ : Tuple = [] A_ : str = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): A_ : str = ord(str(i)) def UpperCamelCase () -> Optional[Any]: if os.name == "nt": import msvcrt A__ : Union[str, Any] = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke A__ : List[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ : str = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ : List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) A__ : str = chr(KEYMAP["""esc"""] ) except KeyError: A__ : str = cha[1] else: A__ : Union[str, Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: A__ : Any = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ : List[str] = sys.stdin.fileno() A__ : List[Any] = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) A__ : Dict = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def UpperCamelCase () -> List[Any]: A__ : List[str] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: A__ : List[str] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: A__ : Dict = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
366
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 16 A_ : Optional[int] = 32 def UpperCamelCase (lowercase_: Accelerator , lowercase_: int = 16 , lowercase_: str = "bert-base-cased" ) -> List[str]: A__ : int = AutoTokenizer.from_pretrained(lowercase_ ) A__ : Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_: Tuple ): # max_length=None => use the model max length (it's actually the default) A__ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A__ : int = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_: Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. A__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader def UpperCamelCase (lowercase_: Dict , lowercase_: Dict , lowercase_: Tuple , lowercase_: Optional[int] ) -> int: model.eval() A__ : str = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Any = model(**lowercase_ ) A__ : List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A__ , A__ : str = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase_ ) - 1: A__ : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : Dict = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ : int = metric.compute() return eval_metric["accuracy"] def UpperCamelCase (lowercase_: List[Any] , lowercase_: str ) -> List[str]: # Initialize accelerator A__ : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : List[Any] = config["""lr"""] A__ : Union[str, Any] = int(config["""num_epochs"""] ) A__ : List[Any] = int(config["""seed"""] ) A__ : Optional[Any] = int(config["""batch_size"""] ) A__ : Tuple = args.model_name_or_path set_seed(lowercase_ ) A__ , A__ : Optional[Any] = get_dataloaders(lowercase_ , lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Tuple = AutoModelForSequenceClassification.from_pretrained(lowercase_ , return_dict=lowercase_ ) # Instantiate optimizer A__ : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A__ : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: A__ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: A__ : Optional[int] = 1 A__ : Optional[int] = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=0 , num_training_steps=lowercase_ , ) else: A__ : int = DummyScheduler(lowercase_ , total_num_steps=lowercase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : str = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over A__ : Dict = 0 # We also need to keep track of the stating epoch so files are named properly A__ : Any = 0 A__ : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) A__ : Optional[Any] = num_epochs if args.partial_train_epoch is not None: A__ : Tuple = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A__ : Dict = args.resume_from_checkpoint.split("""epoch_""" )[1] A__ : int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A__ : Any = int(lowercase_ ) + 1 A__ : Any = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.print("""resumed checkpoint performance:""" , lowercase_ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: A__ : int = json.load(lowercase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A__ : Optional[Any] = {} for epoch in range(lowercase_ , lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): A__ : int = model(**lowercase_ ) A__ : int = outputs.loss A__ : int = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A__ : Any = f"""epoch_{epoch}""" A__ : int = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) A__ : List[Any] = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ : Tuple = accuracy A__ : Optional[Any] = lr_scheduler.get_lr()[0] A__ : Tuple = optimizer.param_groups[0]["""lr"""] A__ : int = epoch A__ : int = overall_step accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) def UpperCamelCase () -> int: A__ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--output_dir""" , type=lowercase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowercase_ , default=lowercase_ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowercase_ , default=lowercase_ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase_ , default=2 , help="""Number of train epochs.""" , ) A__ : List[str] = parser.parse_args() A__ : List[str] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
141
0
# Imports import numpy as np class SCREAMING_SNAKE_CASE__ : def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> Union[str, Any]: self.set_matricies(red=SCREAMING_SNAKE_CASE__ , green=SCREAMING_SNAKE_CASE__ , blue=SCREAMING_SNAKE_CASE__ , red_edge=SCREAMING_SNAKE_CASE__ , nir=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=None ) -> List[Any]: if red is not None: a_ : int = red if green is not None: a_ : Any = green if blue is not None: a_ : int = blue if red_edge is not None: a_ : List[str] = red_edge if nir is not None: a_ : int = nir return True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any]="" , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> List[str]: self.set_matricies(red=SCREAMING_SNAKE_CASE__ , green=SCREAMING_SNAKE_CASE__ , blue=SCREAMING_SNAKE_CASE__ , red_edge=SCREAMING_SNAKE_CASE__ , nir=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def SCREAMING_SNAKE_CASE ( self : Any ) -> int: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: return self.nir * (self.red / (self.green**2)) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: return (self.nir - self.red) / (self.nir + self.red) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: return (self.nir - self.blue) / (self.nir + self.blue) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: return (self.redEdge - self.red) / (self.redEdge + self.red) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: return (self.nir - self.green) / (self.nir + self.green) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str=0.08 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1.22 , SCREAMING_SNAKE_CASE__ : List[Any]=0.03 ) -> List[Any]: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: return (self.nir / self.green) - 1 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return (self.nir / self.redEdge) - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return (self.red - self.blue) / self.red def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : List[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.nir - self.green def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: a_ : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=0.16 ) -> int: return (self.nir - self.green) / (self.nir + self.green + y) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.5 ) -> Optional[Any]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Union[str, Any]: return (self.nir - b) / (a * self.red) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: return (self.red + self.green + self.blue) / 30.5 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return self.nir / self.red def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return (self.rvi() - 1) / (self.rvi() + 1) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: return self.green / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return self.nir / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return self.red / (self.nir + self.red + self.green) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: return (self.red - self.green) / (self.red + self.green) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ : List[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) a_ : Tuple = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: return self.nir / self.red def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: return (self.ndvi() + 0.5) ** (1 / 2) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
32
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCAmelCase_ : str = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCAmelCase_ : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCAmelCase_ : int = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCAmelCase_ : List[str] = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCAmelCase_ : Dict = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCAmelCase_ : Union[str, Any] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCAmelCase_ : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCAmelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCAmelCase_ : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCAmelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCAmelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCAmelCase_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[Any] = FLAX_MODEL_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Any = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase_ : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCAmelCase_ : Optional[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Tuple = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ : str = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCAmelCase_ : Tuple = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCAmelCase_ : int = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[int] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCAmelCase_ : Dict = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ : str = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase_ : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): snake_case__ : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCAmelCase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
32
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
"""simple docstring""" from __future__ import annotations import math class __lowerCamelCase : '''simple docstring''' def __init__( self : Dict , a_ : int ): lowerCAmelCase_ : Union[str, Any] = size # approximate the overall size of segment tree with given value lowerCAmelCase_ : Union[str, Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase_ : int = [0 for i in range(0 , 4 * size )] lowerCAmelCase_ : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCamelCase ( self : List[Any] , a_ : int ): return idx * 2 def lowerCamelCase ( self : Tuple , a_ : int ): return idx * 2 + 1 def lowerCamelCase ( self : Tuple , a_ : int , a_ : int , a_ : int , a_ : list[int] ): if left_element == right_element: lowerCAmelCase_ : Tuple = a[left_element - 1] else: lowerCAmelCase_ : Tuple = (left_element + right_element) // 2 self.build(self.left(a_ ) , a_ , a_ , a_ ) self.build(self.right(a_ ) , mid + 1 , a_ , a_ ) lowerCAmelCase_ : int = max( self.segment_tree[self.left(a_ )] , self.segment_tree[self.right(a_ )] ) def lowerCamelCase ( self : Union[str, Any] , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int ): if self.flag[idx] is True: lowerCAmelCase_ : Dict = self.lazy[idx] lowerCAmelCase_ : Optional[Any] = False if left_element != right_element: lowerCAmelCase_ : str = self.lazy[idx] lowerCAmelCase_ : Dict = self.lazy[idx] lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase_ : Dict = val if left_element != right_element: lowerCAmelCase_ : Union[str, Any] = val lowerCAmelCase_ : Dict = val lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : List[str] = True return True lowerCAmelCase_ : Optional[Any] = (left_element + right_element) // 2 self.update(self.left(a_ ) , a_ , a_ , a_ , a_ , a_ ) self.update(self.right(a_ ) , mid + 1 , a_ , a_ , a_ , a_ ) lowerCAmelCase_ : int = max( self.segment_tree[self.left(a_ )] , self.segment_tree[self.right(a_ )] ) return True def lowerCamelCase ( self : int , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int ): if self.flag[idx] is True: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Optional[int] = False if left_element != right_element: lowerCAmelCase_ : int = self.lazy[idx] lowerCAmelCase_ : int = self.lazy[idx] lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Dict = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase_ : Any = (left_element + right_element) // 2 lowerCAmelCase_ : Union[str, Any] = self.query(self.left(a_ ) , a_ , a_ , a_ , a_ ) lowerCAmelCase_ : List[str] = self.query(self.right(a_ ) , mid + 1 , a_ , a_ , a_ ) return max(a_ , a_ ) def __str__( self : str ): return str([self.query(1 , 1 , self.size , a_ , a_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": lowercase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ = 15 lowercase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
161
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowercase__ ={ 'allenai/led-base-16384': 16384, } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = LEDTokenizer _SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__(self : Tuple , snake_case_ : Optional[int]=None , snake_case_ : Any=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]="replace" , snake_case_ : Any="<s>" , snake_case_ : str="</s>" , snake_case_ : List[str]="</s>" , snake_case_ : str="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : str="<pad>" , snake_case_ : Union[str, Any]="<mask>" , snake_case_ : Optional[Any]=False , snake_case_ : str=True , **snake_case_ : Dict , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) __a : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , snake_case_ ) != add_prefix_space: __a : str = getattr(snake_case_ , pre_tok_state.pop('''type''' ) ) __a : Optional[int] = add_prefix_space __a : str = pre_tok_class(**snake_case_ ) __a : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __a : List[Any] = '''post_processor''' __a : Optional[int] = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: __a : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a : Tuple = tuple(state['''sep'''] ) if "cls" in state: __a : Optional[int] = tuple(state['''cls'''] ) __a : Union[str, Any] = False if state.get('''add_prefix_space''' , snake_case_ ) != add_prefix_space: __a : Optional[int] = add_prefix_space __a : List[str] = True if state.get('''trim_offsets''' , snake_case_ ) != trim_offsets: __a : Tuple = trim_offsets __a : List[str] = True if changes_to_apply: __a : Union[str, Any] = getattr(snake_case_ , state.pop('''type''' ) ) __a : Tuple = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCAmelCase (self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase (self : Optional[Any] , snake_case_ : Any ): __a : Dict = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value __a : Union[str, Any] = value def lowerCAmelCase (self : Dict , *snake_case_ : Dict , **snake_case_ : Dict ): __a : Any = kwargs.get('''is_split_into_words''' , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : List[Any] , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): __a : Optional[int] = kwargs.get('''is_split_into_words''' , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def lowerCAmelCase (self : List[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): __a : str = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase (self : str , snake_case_ : Dict , snake_case_ : Tuple=None ): __a : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : Tuple = [self.sep_token_id] __a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase (self : List[str] , snake_case_ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case_ : Optional[int] = None , snake_case_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , ): __a : int = super()._pad( encoded_inputs=snake_case_ , max_length=snake_case_ , padding_strategy=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , ) # Load from model defaults if return_attention_mask is None: __a : List[str] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a : List[str] = len(encoded_inputs['''global_attention_mask'''] ) != len(snake_case_ ) if needs_to_be_padded: __a : str = len(snake_case_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a : Tuple = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __a : Dict = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
216
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } lowercase__ ={ 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } lowercase__ ={ 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Optional[int] = RoFormerTokenizer def __init__(self : List[str] , snake_case_ : Optional[int]=None , snake_case_ : str=None , snake_case_ : Optional[Any]=True , snake_case_ : str="[UNK]" , snake_case_ : Dict="[SEP]" , snake_case_ : Any="[PAD]" , snake_case_ : str="[CLS]" , snake_case_ : List[Any]="[MASK]" , snake_case_ : Any=True , snake_case_ : List[str]=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __a : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , snake_case_ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , snake_case_ ) != strip_accents ): __a : List[str] = getattr(snake_case_ , pre_tok_state.pop('''type''' ) ) __a : Optional[Any] = do_lower_case __a : Optional[int] = strip_accents __a : List[str] = pre_tok_class(**snake_case_ ) __a : Optional[Any] = do_lower_case def __getstate__(self : Union[str, Any] ): __a : Any = self.__dict__.copy() __a : Union[str, Any] = BertPreTokenizer() return state def __setstate__(self : Tuple , snake_case_ : Optional[Any] ): __a : Dict = d __a : str = self.__dict__['''_tokenizer'''].get_vocab() __a : Optional[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=None ): __a : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase (self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : int = [self.sep_token_id] __a : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase (self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): __a : Optional[Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase (self : Dict , snake_case_ : Dict , snake_case_ : Tuple=None , snake_case_ : Optional[Any]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): __a : List[str] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
216
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
355
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase = logging.get_logger(__name__) class __lowercase ( A ): '''simple docstring''' def __init__( self : List[str] , *_a : Any , **_a : str ): warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
35
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : list ) -> list: """simple docstring""" _UpperCAmelCase : List[Any] = len(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _UpperCAmelCase , _UpperCAmelCase : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(10, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
31
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[int] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
'''simple docstring''' import os from math import logaa def __lowerCAmelCase ( UpperCamelCase__ = "base_exp.txt" ) -> int: __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) ): __lowerCamelCase , __lowerCamelCase = list(map(UpperCamelCase__ , line.split(''',''' ) ) ) if x * logaa(UpperCamelCase__ ) > largest: __lowerCamelCase = x * logaa(UpperCamelCase__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
237
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =LongformerTokenizer lowerCamelCase : Optional[Any] =True lowerCamelCase : List[str] =LongformerTokenizerFast lowerCamelCase : Union[str, Any] =True def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __lowerCamelCase = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowerCamelCase = {'''unk_token''': '''<unk>'''} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(a ) ) def SCREAMING_SNAKE_CASE__ ( self : int , **a : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def SCREAMING_SNAKE_CASE__ ( self : str , **a : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int ): """simple docstring""" __lowerCamelCase = '''lower newer''' __lowerCamelCase = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowerCamelCase = tokenizer.tokenize(a ) # , add_prefix_space=True) self.assertListEqual(a , a ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=a ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" __lowerCamelCase = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) __lowerCamelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=a ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = '''Encode this sequence.''' __lowerCamelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(a , a ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a , add_prefix_space=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(a , a ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(a , a ) # Testing spaces after special tokens __lowerCamelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(a , lstrip=a , rstrip=a )} ) # mask token has a left space __lowerCamelCase = tokenizer.convert_tokens_to_ids(a ) __lowerCamelCase = '''Encode <mask> sequence''' __lowerCamelCase = '''Encode <mask>sequence''' __lowerCamelCase = tokenizer.encode(a ) __lowerCamelCase = encoded.index(a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(a , a ) __lowerCamelCase = tokenizer.encode(a ) __lowerCamelCase = encoded.index(a ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase = self.tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase = '''A, <mask> AllenNLP sentence.''' __lowerCamelCase = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) __lowerCamelCase = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( a , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , a ) self.assertEqual(post_processor_state['''add_prefix_space'''] , a ) self.assertEqual(post_processor_state['''trim_offsets'''] , a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase = f"""{text_of_1_token} {text_of_1_token}""" __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ), len(a ) + 1 + len(a )) , ) __lowerCamelCase = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , add_prefix_space=a , trim_offsets=a ) __lowerCamelCase = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ), 1 + len(a ) + 1 + len(a )) , )
237
1
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCamelCase : '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = str(id_ ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = [] __lowerCAmelCase = {} # {vertex:distance} def __lt__( self , __a ): return self.key < other.key def __repr__( self ): return self.id def snake_case ( self , __a ): self.neighbors.append(__a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = weight def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = graph[:] while q: __lowerCAmelCase = min(_UpperCamelCase ) q.remove(_UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] for i in range(1 , len(_UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' for u in graph: __lowerCAmelCase = math.inf __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = list(_UpperCamelCase ) hq.heapify(_UpperCamelCase ) while h: __lowerCAmelCase = hq.heappop(_UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __lowerCAmelCase = u __lowerCAmelCase = u.edges[v.id] hq.heapify(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def _lowerCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
57
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' __lowercase =0.0 for coeff in reversed(lowercase__ ): __lowercase =result * x + coeff return result if __name__ == "__main__": UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
141
0
from __future__ import annotations def A_ ( _lowerCAmelCase ) -> bool: UpperCamelCase : str = str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set("123456789" ) def A_ ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): UpperCamelCase : Tuple = 10_0002 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): UpperCamelCase : Optional[Any] = 100_2003 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
140
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A__ : def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=2 , ): '''simple docstring''' UpperCamelCase : List[str] = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Optional[int] = patch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : Any = is_training UpperCamelCase : Dict = use_labels UpperCamelCase : List[str] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : str = intermediate_size UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : List[Any] = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : Union[str, Any] = scope UpperCamelCase : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase : Optional[Any] = (image_size // patch_size) ** 2 UpperCamelCase : int = num_patches + 2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Tuple = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = TFDeiTModel(config=A_ ) UpperCamelCase : Tuple = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = TFDeiTForMaskedImageModeling(config=A_ ) UpperCamelCase : Optional[Any] = model(A_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : Dict = 1 UpperCamelCase : Optional[Any] = TFDeiTForMaskedImageModeling(A_ ) UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Any = model(A_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.type_sequence_label_size UpperCamelCase : List[Any] = TFDeiTForImageClassification(A_ ) UpperCamelCase : Optional[int] = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : List[Any] = 1 UpperCamelCase : Optional[Any] = TFDeiTForImageClassification(A_ ) UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[Any] = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase : int = config_and_inputs UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :str = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _UpperCAmelCase :Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _UpperCAmelCase :Dict = False _UpperCAmelCase :List[str] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Optional[int] = False def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = TFDeiTModelTester(self ) UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __UpperCamelCase( self ): '''simple docstring''' pass def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Dense ) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : str = model_class(A_ ) UpperCamelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __UpperCamelCase( self , A_ , A_ , A_=False ): '''simple docstring''' UpperCamelCase : List[str] = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = TFDeiTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_ ( ) -> str: UpperCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) UpperCamelCase : List[Any] = self.default_image_processor UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Union[str, Any] = image_processor(images=A_ , return_tensors="tf" ) # forward pass UpperCamelCase : str = model(**A_ ) # verify the logits UpperCamelCase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase : Tuple = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
140
1
"""simple docstring""" from __future__ import annotations def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Any = 0.00 _lowerCamelCase : Union[str, Any] = 0 for resistor in resistors: if resistor <= 0: _lowerCamelCase : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(A_ ) first_sum += 1 / float(A_ ) index += 1 return 1 / first_sum def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Dict = 0.00 _lowerCamelCase : Tuple = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowerCamelCase : Any = F'''Resistor at index {index} has a negative value!''' raise ValueError(A_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
72
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ : Tuple = logging.get_logger(__name__) # General docstring a__ : List[Any] = "RegNetConfig" # Base docstring a__ : Dict = "facebook/regnet-y-040" a__ : Optional[int] = [1, 1_0_8_8, 7, 7] # Image classification docstring a__ : Union[str, Any] = "facebook/regnet-y-040" a__ : Union[str, Any] = "tabby, tabby cat" a__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__ ( nn.Module): def __init__( self :Union[str, Any] , _A :int , _A :int , _A :int = 3 , _A :int = 1 , _A :int = 1 , _A :Optional[str] = "relu" , ) -> int: '''simple docstring''' super().__init__() __A = nn.Convad( _A , _A , kernel_size=_A , stride=_A , padding=kernel_size // 2 , groups=_A , bias=_A , ) __A = nn.BatchNormad(_A ) __A = ACTaFN[activation] if activation is not None else nn.Identity() def lowercase_ ( self :Tuple , _A :Union[str, Any] ) -> int: '''simple docstring''' __A = self.convolution(_A ) __A = self.normalization(_A ) __A = self.activation(_A ) return hidden_state class UpperCamelCase__ ( nn.Module): def __init__( self :Optional[int] , _A :RegNetConfig ) -> List[str]: '''simple docstring''' super().__init__() __A = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __A = config.num_channels def lowercase_ ( self :Any , _A :Optional[int] ) -> Optional[int]: '''simple docstring''' __A = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __A = self.embedder(_A ) return hidden_state class UpperCamelCase__ ( nn.Module): def __init__( self :Optional[int] , _A :int , _A :int , _A :int = 2 ) -> Any: '''simple docstring''' super().__init__() __A = nn.Convad(_A , _A , kernel_size=1 , stride=_A , bias=_A ) __A = nn.BatchNormad(_A ) def lowercase_ ( self :Optional[int] , _A :Tensor ) -> Tensor: '''simple docstring''' __A = self.convolution(_A ) __A = self.normalization(_A ) return hidden_state class UpperCamelCase__ ( nn.Module): def __init__( self :Optional[Any] , _A :int , _A :int ) -> List[str]: '''simple docstring''' super().__init__() __A = nn.AdaptiveAvgPoolad((1, 1) ) __A = nn.Sequential( nn.Convad(_A , _A , kernel_size=1 ) , nn.ReLU() , nn.Convad(_A , _A , kernel_size=1 ) , nn.Sigmoid() , ) def lowercase_ ( self :Any , _A :str ) -> int: '''simple docstring''' __A = self.pooler(_A ) __A = self.attention(_A ) __A = hidden_state * attention return hidden_state class UpperCamelCase__ ( nn.Module): def __init__( self :int , _A :RegNetConfig , _A :int , _A :int , _A :int = 1 ) -> List[Any]: '''simple docstring''' super().__init__() __A = in_channels != out_channels or stride != 1 __A = max(1 , out_channels // config.groups_width ) __A = ( RegNetShortCut(_A , _A , stride=_A ) if should_apply_shortcut else nn.Identity() ) __A = nn.Sequential( RegNetConvLayer(_A , _A , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_A , _A , stride=_A , groups=_A , activation=config.hidden_act ) , RegNetConvLayer(_A , _A , kernel_size=1 , activation=_A ) , ) __A = ACTaFN[config.hidden_act] def lowercase_ ( self :Optional[Any] , _A :int ) -> int: '''simple docstring''' __A = hidden_state __A = self.layer(_A ) __A = self.shortcut(_A ) hidden_state += residual __A = self.activation(_A ) return hidden_state class UpperCamelCase__ ( nn.Module): def __init__( self :Optional[int] , _A :RegNetConfig , _A :int , _A :int , _A :int = 1 ) -> Any: '''simple docstring''' super().__init__() __A = in_channels != out_channels or stride != 1 __A = max(1 , out_channels // config.groups_width ) __A = ( RegNetShortCut(_A , _A , stride=_A ) if should_apply_shortcut else nn.Identity() ) __A = nn.Sequential( RegNetConvLayer(_A , _A , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_A , _A , stride=_A , groups=_A , activation=config.hidden_act ) , RegNetSELayer(_A , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_A , _A , kernel_size=1 , activation=_A ) , ) __A = ACTaFN[config.hidden_act] def lowercase_ ( self :int , _A :int ) -> int: '''simple docstring''' __A = hidden_state __A = self.layer(_A ) __A = self.shortcut(_A ) hidden_state += residual __A = self.activation(_A ) return hidden_state class UpperCamelCase__ ( nn.Module): def __init__( self :Tuple , _A :RegNetConfig , _A :int , _A :int , _A :int = 2 , _A :int = 2 , ) -> Any: '''simple docstring''' super().__init__() __A = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __A = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _A , _A , _A , stride=_A , ) , *[layer(_A , _A , _A ) for _ in range(depth - 1 )] , ) def lowercase_ ( self :List[str] , _A :Optional[int] ) -> Tuple: '''simple docstring''' __A = self.layers(_A ) return hidden_state class UpperCamelCase__ ( nn.Module): def __init__( self :Union[str, Any] , _A :RegNetConfig ) -> List[str]: '''simple docstring''' super().__init__() __A = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __A = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_A , config.depths[1:] ): self.stages.append(RegNetStage(_A , _A , _A , depth=_A ) ) def lowercase_ ( self :str , _A :Tensor , _A :bool = False , _A :bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' __A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __A = hidden_states + (hidden_state,) __A = stage_module(_A ) if output_hidden_states: __A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_A , hidden_states=_A ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : int = RegNetConfig UpperCAmelCase__ : Dict = 'regnet' UpperCAmelCase__ : int = 'pixel_values' UpperCAmelCase__ : Optional[int] = True def lowercase_ ( self :str , _A :Optional[int] ) -> Tuple: '''simple docstring''' if isinstance(_A , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_A , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowercase_ ( self :int , _A :str , _A :Dict=False ) -> Dict: '''simple docstring''' if isinstance(_A , _A ): __A = value a__ : Optional[int] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" a__ : int = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :List[str] , _A :List[Any] ) -> List[str]: '''simple docstring''' super().__init__(_A ) __A = config __A = RegNetEmbeddings(_A ) __A = RegNetEncoder(_A ) __A = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase_ ( self :List[Any] , _A :Tensor , _A :Optional[bool] = None , _A :Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.embedder(_A ) __A = self.encoder( _A , output_hidden_states=_A , return_dict=_A ) __A = encoder_outputs[0] __A = self.pooler(_A ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A , pooler_output=_A , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Optional[int] , _A :Optional[Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(_A ) __A = config.num_labels __A = RegNetModel(_A ) # classification head __A = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase_ ( self :Optional[int] , _A :Optional[torch.FloatTensor] = None , _A :Optional[torch.LongTensor] = None , _A :Optional[bool] = None , _A :Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' __A = return_dict if return_dict is not None else self.config.use_return_dict __A = self.regnet(_A , output_hidden_states=_A , return_dict=_A ) __A = outputs.pooler_output if return_dict else outputs[1] __A = self.classifier(_A ) __A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __A = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __A = 'single_label_classification' else: __A = 'multi_label_classification' if self.config.problem_type == "regression": __A = MSELoss() if self.num_labels == 1: __A = loss_fct(logits.squeeze() , labels.squeeze() ) else: __A = loss_fct(_A , _A ) elif self.config.problem_type == "single_label_classification": __A = CrossEntropyLoss() __A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __A = BCEWithLogitsLoss() __A = loss_fct(_A , _A ) if not return_dict: __A = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_A , logits=_A , hidden_states=outputs.hidden_states )
161
0
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( snake_case_ : int ) -> str: if not isinstance(snake_case_ , snake_case_ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) __snake_case = precision __snake_case = ceil(precision / 14 ) __snake_case = 42_6880 * Decimal(1_0005 ).sqrt() __snake_case = 1 __snake_case = 1359_1409 __snake_case = Decimal(snake_case_ ) for k in range(1 , snake_case_ ): __snake_case = factorial(6 * k ) // (factorial(3 * k ) * factorial(snake_case_ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case_ = 50 print(F'The first {n} digits of pi is: {pi(n)}')
238
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Union[str, Any] = (DPMSolverSinglestepScheduler,) A_ : Union[str, Any] = (('num_inference_steps', 25),) def a (self : Dict , **a__ : Tuple ): """simple docstring""" __snake_case = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**a__ ) return config def a (self : str , a__ : Any=0 , **a__ : Tuple ): """simple docstring""" __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop('''num_inference_steps''' , a__ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config(**a__ ) __snake_case = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) __snake_case = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case , __snake_case = sample, sample for t in range(a__ , time_step + scheduler.config.solver_order + 1 ): __snake_case = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample __snake_case = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a (self : Union[str, Any] ): """simple docstring""" pass def a (self : List[Any] , a__ : Dict=0 , **a__ : List[str] ): """simple docstring""" __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop('''num_inference_steps''' , a__ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) __snake_case = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample __snake_case = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a (self : int , a__ : Tuple=None , **a__ : List[str] ): """simple docstring""" if scheduler is None: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**a__ ) __snake_case = scheduler_class(**a__ ) __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**a__ ) __snake_case = scheduler_class(**a__ ) __snake_case = 10 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(a__ , a__ ) __snake_case = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def a (self : str ): """simple docstring""" __snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __snake_case = 50 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(a__ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __snake_case = model(a__ , a__ ) __snake_case = scheduler.step(a__ , a__ , a__ ).prev_sample __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def a (self : int ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def a (self : List[str] ): """simple docstring""" __snake_case = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __snake_case = self.full_loop(scheduler=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 __snake_case = DEISMultistepScheduler.from_config(scheduler.config ) __snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) __snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) __snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __snake_case = self.full_loop(scheduler=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def a (self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=a__ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=a__ , prediction_type=a__ , sample_max_value=a__ , algorithm_type='''dpmsolver++''' , solver_order=a__ , solver_type=a__ , ) def a (self : Union[str, Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def a (self : Union[str, Any] ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=a__ , solver_type=a__ , prediction_type=a__ , algorithm_type=a__ , ) __snake_case = self.full_loop( solver_order=a__ , solver_type=a__ , prediction_type=a__ , algorithm_type=a__ , ) assert not torch.isnan(a__ ).any(), "Samples have nan numbers" def a (self : List[str] ): """simple docstring""" self.check_over_configs(lower_order_final=a__ ) self.check_over_configs(lower_order_final=a__ ) def a (self : Optional[Any] ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def a (self : Tuple ): """simple docstring""" self.check_over_configs(variance_type=a__ ) self.check_over_configs(variance_type='''learned_range''' ) def a (self : int ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=a__ , time_step=0 ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.full_loop() __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def a (self : int ): """simple docstring""" __snake_case = self.full_loop(use_karras_sigmas=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def a (self : Tuple ): """simple docstring""" __snake_case = self.full_loop(prediction_type='''v_prediction''' ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def a (self : List[Any] ): """simple docstring""" __snake_case = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=a__ ) __snake_case = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def a (self : int ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(thresholding=a__ , dynamic_thresholding_ratio=0 ) __snake_case = scheduler_class(**a__ ) __snake_case = 10 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(a__ , a__ ) __snake_case = scheduler.step(a__ , a__ , a__ ).prev_sample assert sample.dtype == torch.floataa
238
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = AlbertConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = AlbertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
49
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : List[str]=3 , snake_case_ : Tuple=32 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : int="relu" , snake_case_ : List[Any]=3 , snake_case_ : str=None , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : int = image_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = embeddings_size snake_case__ : Optional[int] = hidden_sizes snake_case__ : Tuple = depths snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = num_labels snake_case__ : int = scope snake_case__ : Tuple = len(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = TFResNetModel(config=snake_case_ ) snake_case__ : int = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : str = self.num_labels snake_case__ : Optional[int] = TFResNetForImageClassification(snake_case_ ) snake_case__ : Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = TFResNetModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCamelCase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : int ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] ): snake_case__ : List[Any] = model_class(snake_case_ ) snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Dict = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFResNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[int]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[str] = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[Any] = model(**snake_case_ ) # verify the logits snake_case__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1E-4 ) )
35
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = '▁' lowerCamelCase__ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCamelCase__ = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCamelCase__ = { 'facebook/s2t-small-librispeech-asr': 1_024, } lowerCamelCase__ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCamelCase__ = {'mustc': MUSTC_LANGS} class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : List[str] = VOCAB_FILES_NAMES lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = MAX_MODEL_INPUT_SIZES lowerCAmelCase : Any = ["input_ids", "attention_mask"] lowerCAmelCase : List[int] = [] def __init__( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="</s>" , lowerCamelCase__ : Tuple="<pad>" , lowerCamelCase__ : List[Any]="<unk>" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : int=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : str , ) ->None: '''simple docstring''' _UpperCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , do_upper_case=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , lang_codes=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) _UpperCAmelCase : Union[str, Any] = do_upper_case _UpperCAmelCase : int = do_lower_case _UpperCAmelCase : Union[str, Any] = load_json(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : List[Any] = spm_file _UpperCAmelCase : int = load_spm(lowerCamelCase__ , self.sp_model_kwargs ) if lang_codes is not None: _UpperCAmelCase : List[str] = lang_codes _UpperCAmelCase : List[Any] = LANGUAGES[lang_codes] _UpperCAmelCase : int = [F"""<lang:{lang}>""" for lang in self.langs] _UpperCAmelCase : List[Any] = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} _UpperCAmelCase : List[Any] = self.lang_tokens _UpperCAmelCase : List[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _UpperCAmelCase : List[Any] = {} @property def lowerCAmelCase__ ( self : List[str] ) ->int: '''simple docstring''' return len(self.encoder ) @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) ->None: '''simple docstring''' _UpperCAmelCase : Tuple = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->None: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.lang_code_to_id[tgt_lang] _UpperCAmelCase : int = [lang_code_id] def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : str ) ->List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : str ) ->Tuple: '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder[self.unk_token] ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : int ) ->str: '''simple docstring''' return self.decoder.get(lowerCamelCase__ , self.unk_token ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _UpperCAmelCase : Dict = self.sp_model.decode(lowerCamelCase__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _UpperCAmelCase : int = [] else: current_sub_tokens.append(lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.sp_model.decode(lowerCamelCase__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int=None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) _UpperCAmelCase : Tuple = [1] * len(self.prefix_tokens ) _UpperCAmelCase : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def lowerCAmelCase__ ( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase : int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.__dict__.copy() _UpperCAmelCase : Any = None return state def __setstate__( self : Optional[Any] , lowerCamelCase__ : Dict ) ->None: '''simple docstring''' _UpperCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : Dict = Path(lowerCamelCase__ ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" _UpperCAmelCase : Union[str, Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _UpperCAmelCase : List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowerCamelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCamelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase__ , "wb" ) as fi: _UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (str(lowerCamelCase__ ), str(lowerCamelCase__ )) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Tuple = sentencepiece.SentencePieceProcessor(**__lowerCAmelCase ) spm.Load(str(__lowerCAmelCase ) ) return spm def __lowerCAmelCase (__lowerCAmelCase ): with open(__lowerCAmelCase , "r" ) as f: return json.load(__lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): with open(__lowerCAmelCase , "w" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=2 )
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __lowerCAmelCase : Tuple =logging.get_logger(__name__) class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , lowercase_ :Union[List[ControlNetModel], Tuple[ControlNetModel]] )-> str: super().__init__() A__ = nn.ModuleList(lowercase_ ) def UpperCAmelCase_ ( self :Dict , lowercase_ :torch.FloatTensor , lowercase_ :Union[torch.Tensor, float, int] , lowercase_ :torch.Tensor , lowercase_ :List[torch.tensor] , lowercase_ :List[float] , lowercase_ :Optional[torch.Tensor] = None , lowercase_ :Optional[torch.Tensor] = None , lowercase_ :Optional[torch.Tensor] = None , lowercase_ :Optional[Dict[str, Any]] = None , lowercase_ :bool = False , lowercase_ :bool = True , )-> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(lowercase_ , lowercase_ , self.nets ) ): A__, A__ = controlnet( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) # merge samples if i == 0: A__, A__ = down_samples, mid_sample else: A__ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowercase_ , lowercase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase_ ( self :Any , lowercase_ :Union[str, os.PathLike] , lowercase_ :bool = True , lowercase_ :Callable = None , lowercase_ :bool = False , lowercase_ :Optional[str] = None , )-> List[Any]: A__ = 0 A__ = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowercase_ , is_main_process=lowercase_ , save_function=lowercase_ , safe_serialization=lowercase_ , variant=lowercase_ , ) idx += 1 A__ = model_path_to_save + F"_{idx}" @classmethod def UpperCAmelCase_ ( cls :Any , lowercase_ :Optional[Union[str, os.PathLike]] , **lowercase_ :Dict )-> Union[str, Any]: A__ = 0 A__ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... A__ = pretrained_model_path while os.path.isdir(lowercase_ ): A__ = ControlNetModel.from_pretrained(lowercase_ , **lowercase_ ) controlnets.append(lowercase_ ) idx += 1 A__ = pretrained_model_path + F"_{idx}" logger.info(F"{len(lowercase_ )} controlnets loaded from {pretrained_model_path}." ) if len(lowercase_ ) == 0: raise ValueError( F"No ControlNets found under {os.path.dirname(lowercase_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowercase_ )
237
'''simple docstring''' import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
237
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def snake_case_ ( A_ : str, A_ : Dict, A_ : List[str] ): '''simple docstring''' _lowerCamelCase : Any = state_dict.pop(A_ ) _lowerCamelCase : Union[str, Any] = val def snake_case_ ( A_ : Tuple ): '''simple docstring''' _lowerCamelCase : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _lowerCamelCase : Union[str, Any] = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''' ) _lowerCamelCase : Union[str, Any] = value else: _lowerCamelCase : Tuple = value return new_state_dict def snake_case_ ( A_ : Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _lowerCamelCase : int = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _lowerCamelCase : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[:2_56, :] _lowerCamelCase : int = in_proj_bias[:2_56] _lowerCamelCase : Any = in_proj_weight[2_56:5_12, :] _lowerCamelCase : Union[str, Any] = in_proj_bias[2_56:5_12] _lowerCamelCase : Optional[Any] = in_proj_weight[-2_56:, :] _lowerCamelCase : Optional[Any] = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _lowerCamelCase : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _lowerCamelCase : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Optional[Any] = in_proj_weight[:2_56, :] _lowerCamelCase : Tuple = in_proj_bias[:2_56] _lowerCamelCase : List[Any] = in_proj_weight[2_56:5_12, :] _lowerCamelCase : Dict = in_proj_bias[2_56:5_12] _lowerCamelCase : Union[str, Any] = in_proj_weight[-2_56:, :] _lowerCamelCase : List[str] = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention _lowerCamelCase : Optional[Any] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _lowerCamelCase : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _lowerCamelCase : Tuple = in_proj_weight_cross_attn[:2_56, :] _lowerCamelCase : Optional[int] = in_proj_bias_cross_attn[:2_56] _lowerCamelCase : Union[str, Any] = in_proj_weight_cross_attn[2_56:5_12, :] _lowerCamelCase : Union[str, Any] = in_proj_bias_cross_attn[2_56:5_12] _lowerCamelCase : List[str] = in_proj_weight_cross_attn[-2_56:, :] _lowerCamelCase : Tuple = in_proj_bias_cross_attn[-2_56:] def snake_case_ ( A_ : Dict, A_ : List[str] ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Any = image.size _lowerCamelCase : Any = max(A_, A_ ) _lowerCamelCase : str = 8_00 if '''detection''' in checkpoint_url else 10_00 _lowerCamelCase : str = target_max_size / current_max_size _lowerCamelCase : List[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Any = F.to_tensor(A_ ) _lowerCamelCase : Optional[Any] = F.normalize(A_, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case_ ( A_ : List[str], A_ : int, A_ : str ): '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict _lowerCamelCase : Optional[int] = torch.hub.load_state_dict_from_url(A_, map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(A_, A_, A_ ) _lowerCamelCase : int = rename_backbone_keys(A_ ) # query, key and value matrices need special treatment read_in_q_k_v(A_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _lowerCamelCase : Dict = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): _lowerCamelCase : Any = state_dict.pop(A_ ) _lowerCamelCase : int = val # create HuggingFace model and load state dict _lowerCamelCase : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''', mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, ) if "detection" in checkpoint_url: _lowerCamelCase : str = 15 _lowerCamelCase : Dict = 2 _lowerCamelCase : List[Any] = {0: '''table''', 1: '''table rotated'''} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: _lowerCamelCase : Union[str, Any] = 1_25 _lowerCamelCase : Tuple = 6 _lowerCamelCase : str = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } _lowerCamelCase : int = idalabel _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} _lowerCamelCase : str = DetrImageProcessor( format='''coco_detection''', max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) _lowerCamelCase : List[Any] = TableTransformerForObjectDetection(A_ ) model.load_state_dict(A_ ) model.eval() # verify our conversion _lowerCamelCase : Tuple = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' _lowerCamelCase : List[Any] = hf_hub_download(repo_id='''nielsr/example-pdf''', repo_type='''dataset''', filename=A_ ) _lowerCamelCase : Optional[Any] = Image.open(A_ ).convert('''RGB''' ) _lowerCamelCase : Union[str, Any] = normalize(resize(A_, A_ ) ).unsqueeze(0 ) _lowerCamelCase : str = model(A_ ) if "detection" in checkpoint_url: _lowerCamelCase : int = (1, 15, 3) _lowerCamelCase : str = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _lowerCamelCase : List[str] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _lowerCamelCase : Dict = (1, 1_25, 7) _lowerCamelCase : str = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _lowerCamelCase : int = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3], A_, atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], A_, atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) image_processor.save_pretrained(A_ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) _lowerCamelCase : Dict = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(A_ ) image_processor.push_to_hub(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
175
"""simple docstring""" import argparse lowerCAmelCase__ = '''docs/source/_static/js/custom.js''' def snake_case_ ( A_ : List[str] ): '''simple docstring''' with open(A_, encoding='''utf-8''', newline='''\n''' ) as f: _lowerCamelCase : int = f.readlines() _lowerCamelCase : List[str] = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 _lowerCamelCase : List[Any] = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(A_, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') lowerCAmelCase__ = parser.parse_args() update_custom_js(args.version)
175
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def UpperCamelCase ( __lowercase : int = 3 ): '''simple docstring''' if isinstance(__lowercase ,__lowercase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(__lowercase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) A_ : Any = QuantumRegister(__lowercase ,'qr' ) A_ : Tuple = ClassicalRegister(__lowercase ,'cr' ) A_ : Optional[int] = QuantumCircuit(__lowercase ,__lowercase ) A_ : int = number_of_qubits for i in range(__lowercase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__lowercase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,__lowercase ,__lowercase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__lowercase ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__lowercase ,__lowercase ) # simulate with 10000 shots A_ : Tuple = Aer.get_backend('qasm_simulator' ) A_ : Dict = execute(__lowercase ,__lowercase ,shots=1_00_00 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
140
from string import ascii_lowercase, ascii_uppercase def UpperCamelCase ( __lowercase : str ): '''simple docstring''' if not sentence: return "" A_ : List[str] = dict(zip(__lowercase ,__lowercase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
140
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _UpperCamelCase (a__ :Optional[Any] , a__ :str=False ): """simple docstring""" UpperCamelCase__ = OmegaConf.load(a__ ) if display: print(yaml.dump(OmegaConf.to_container(a__ ) ) ) return config def _UpperCamelCase (a__ :int , a__ :Optional[Any]=None , a__ :str=None ): """simple docstring""" if conf_path is None: UpperCamelCase__ = """./model_checkpoints/vqgan_only.yaml""" UpperCamelCase__ = load_config(a__ , display=a__ ) UpperCamelCase__ = VQModel(**config.model.params ) if ckpt_path is None: UpperCamelCase__ = """./model_checkpoints/vqgan_only.pt""" UpperCamelCase__ = torch.load(a__ , map_location=a__ ) if ".ckpt" in ckpt_path: UpperCamelCase__ = sd["""state_dict"""] model.load_state_dict(a__ , strict=a__ ) model.to(a__ ) del sd return model def _UpperCamelCase (a__ :Optional[Any] , a__ :List[Any] ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = model.encode(a__ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) UpperCamelCase__ = model.decode(a__ ) return xrec def _UpperCamelCase (a__ :Dict , a__ :List[Any]=False ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = string.rsplit(""".""" , 1 ) if reload: UpperCamelCase__ = importlib.import_module(a__ ) importlib.reload(a__ ) return getattr(importlib.import_module(a__ , package=a__ ) , cls ) def _UpperCamelCase (a__ :Optional[int] ): """simple docstring""" if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def _UpperCamelCase (a__ :Union[str, Any] , a__ :Dict , a__ :Dict=True , a__ :Optional[int]=True ): """simple docstring""" UpperCamelCase__ = instantiate_from_config(a__ ) if sd is not None: model.load_state_dict(a__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _UpperCamelCase (a__ :int , a__ :Any , a__ :Optional[int] , a__ :str ): """simple docstring""" if ckpt: UpperCamelCase__ = torch.load(a__ , map_location="""cpu""" ) UpperCamelCase__ = pl_sd["""global_step"""] print(f"""loaded model from global step {global_step}.""" ) else: UpperCamelCase__ = {"""state_dict""": None} UpperCamelCase__ = None UpperCamelCase__ = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=a__ , eval_mode=a__ )["""model"""] return model, global_step
364
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCamelCase__ = random.Random() def _UpperCamelCase (a__ :Any , a__ :Union[str, Any]=1.0 , a__ :Tuple=None , a__ :str=None ): """simple docstring""" if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=7 , __lowerCAmelCase=400 , __lowerCAmelCase=2000 , __lowerCAmelCase=10 , __lowerCAmelCase=160 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=4000 , __lowerCAmelCase=False , __lowerCAmelCase=True , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize UpperCamelCase__ = feature_size UpperCamelCase__ = chunk_length UpperCamelCase__ = hop_length def _lowerCamelCase ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self , __lowerCAmelCase=False , __lowerCAmelCase=False ): def _flatten(__lowerCAmelCase ): return list(itertools.chain(*__lowerCAmelCase ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case : int = WhisperFeatureExtractor if is_speech_available() else None def _lowerCamelCase ( self ): UpperCamelCase__ = WhisperFeatureExtractionTester(self ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = feat_extract_first.save_pretrained(__lowerCAmelCase )[0] check_json_file_has_correct_format(__lowerCAmelCase ) UpperCamelCase__ = self.feature_extraction_class.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(__lowerCAmelCase , """feat_extract.json""" ) feat_extract_first.to_json_file(__lowerCAmelCase ) UpperCamelCase__ = self.feature_extraction_class.from_json_file(__lowerCAmelCase ) UpperCamelCase__ = feat_extract_first.to_dict() UpperCamelCase__ = feat_extract_second.to_dict() UpperCamelCase__ = feat_extract_first.mel_filters UpperCamelCase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(__lowerCAmelCase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(__lowerCAmelCase ) UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) # Test truncation required UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs] UpperCamelCase__ = [x[: feature_extractor.n_samples] for x in speech_inputs] UpperCamelCase__ = [np.asarray(__lowerCAmelCase ) for speech_input in speech_inputs_truncated] UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertTrue(np.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def _lowerCamelCase ( self ): import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("""id""" ).select(range(__lowerCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): # fmt: off UpperCamelCase__ = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = WhisperFeatureExtractor() UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __lowerCAmelCase , atol=1E-4 ) ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = self._load_datasamples(1 )[0] UpperCamelCase__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue UpperCamelCase__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__lowerCAmelCase )[0] self.assertTrue(np.all(np.mean(__lowerCAmelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowerCAmelCase ) - 1 ) < 1E-3 ) )
87
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any]=13, lowerCamelCase : Optional[int]=7, lowerCamelCase : Optional[int]=True, lowerCamelCase : int=True, lowerCamelCase : str=False, lowerCamelCase : int=True, lowerCamelCase : Optional[Any]=99, lowerCamelCase : Union[str, Any]=32, lowerCamelCase : Optional[int]=5, lowerCamelCase : List[Any]=4, lowerCamelCase : List[Any]=37, lowerCamelCase : Any="gelu", lowerCamelCase : Any=0.1, lowerCamelCase : List[Any]=0.1, lowerCamelCase : Union[str, Any]=512, lowerCamelCase : Optional[int]=16, lowerCamelCase : Optional[int]=2, lowerCamelCase : Optional[int]=0.02, lowerCamelCase : List[str]=3, lowerCamelCase : str=4, lowerCamelCase : Any=None, )-> Optional[Any]: lowerCamelCase__ : Optional[Any] =parent lowerCamelCase__ : Dict =batch_size lowerCamelCase__ : int =seq_length lowerCamelCase__ : str =is_training lowerCamelCase__ : str =use_input_mask lowerCamelCase__ : List[Any] =use_token_type_ids lowerCamelCase__ : Union[str, Any] =use_labels lowerCamelCase__ : Union[str, Any] =vocab_size lowerCamelCase__ : str =hidden_size lowerCamelCase__ : Optional[int] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Dict =intermediate_size lowerCamelCase__ : Dict =hidden_act lowerCamelCase__ : Optional[int] =hidden_dropout_prob lowerCamelCase__ : List[Any] =attention_probs_dropout_prob lowerCamelCase__ : List[Any] =max_position_embeddings lowerCamelCase__ : str =type_vocab_size lowerCamelCase__ : List[str] =type_sequence_label_size lowerCamelCase__ : int =initializer_range lowerCamelCase__ : Union[str, Any] =num_labels lowerCamelCase__ : str =num_choices lowerCamelCase__ : List[str] =scope def snake_case ( self : Optional[Any] )-> Optional[int]: lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Union[str, Any] =None if self.use_input_mask: lowerCamelCase__ : str =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : str =None if self.use_token_type_ids: lowerCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase__ : Dict =None lowerCamelCase__ : Optional[int] =None lowerCamelCase__ : Any =None if self.use_labels: lowerCamelCase__ : List[Any] =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase__ : Optional[int] =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase__ : List[str] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Optional[int] )-> int: return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, use_stable_embedding=lowerCamelCase, ) def snake_case ( self : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : Any, lowerCamelCase : List[Any] )-> Optional[Any]: lowerCamelCase__ : List[str] =OpenLlamaModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : List[Any] =model(lowerCamelCase, attention_mask=lowerCamelCase ) lowerCamelCase__ : List[str] =model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : Optional[Any], lowerCamelCase : List[Any], lowerCamelCase : Dict, lowerCamelCase : List[str], )-> str: lowerCamelCase__ : Tuple =True lowerCamelCase__ : List[Any] =OpenLlamaModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : Any =model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, ) lowerCamelCase__ : Union[str, Any] =model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, ) lowerCamelCase__ : Any =model(lowerCamelCase, attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], )-> Optional[Any]: lowerCamelCase__ : Optional[int] =OpenLlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : str =model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : List[str], lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str], )-> Any: lowerCamelCase__ : Tuple =True lowerCamelCase__ : Any =True lowerCamelCase__ : Dict =OpenLlamaForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass lowerCamelCase__ : Union[str, Any] =model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, use_cache=lowerCamelCase, ) lowerCamelCase__ : int =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase__ : Optional[Any] =ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Union[str, Any] =ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and lowerCamelCase__ : List[Any] =torch.cat([input_ids, next_tokens], dim=-1 ) lowerCamelCase__ : List[Any] =torch.cat([input_mask, next_mask], dim=-1 ) lowerCamelCase__ : Dict =model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, output_hidden_states=lowerCamelCase, )['''hidden_states'''][0] lowerCamelCase__ : Optional[int] =model( lowerCamelCase, attention_mask=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, output_hidden_states=lowerCamelCase, )['''hidden_states'''][0] # select random slice lowerCamelCase__ : List[str] =ids_tensor((1,), output_from_past.shape[-1] ).item() lowerCamelCase__ : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase__ : int =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3 ) ) def snake_case ( self : Optional[Any] )-> Any: lowerCamelCase__ : str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[Any] =config_and_inputs lowerCamelCase__ : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _a = (OpenLlamaForCausalLM,) if is_torch_available() else () _a = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def snake_case ( self : Dict )-> List[Any]: lowerCamelCase__ : List[Any] =OpenLlamaModelTester(self ) lowerCamelCase__ : List[Any] =ConfigTester(self, config_class=lowerCamelCase, hidden_size=37 ) def snake_case ( self : Optional[int] )-> Optional[Any]: self.config_tester.run_common_tests() def snake_case ( self : Tuple )-> Union[str, Any]: lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def snake_case ( self : int )-> Optional[Any]: lowerCamelCase__ : List[str] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict =type self.model_tester.create_and_check_model(*lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple =3 lowerCamelCase__ : Dict =input_dict['''input_ids'''] lowerCamelCase__ : Dict =input_ids.ne(1 ).to(lowerCamelCase ) lowerCamelCase__ : List[str] =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) lowerCamelCase__ : List[str] =OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ , lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any =3 lowerCamelCase__ : List[Any] ='''single_label_classification''' lowerCamelCase__ : Any =input_dict['''input_ids'''] lowerCamelCase__ : Optional[Any] =input_ids.ne(1 ).to(lowerCamelCase ) lowerCamelCase__ : Tuple =ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] =OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : str =model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self : List[str] )-> List[str]: lowerCamelCase__ , lowerCamelCase__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[int] =3 lowerCamelCase__ : Optional[int] ='''multi_label_classification''' lowerCamelCase__ : Optional[Any] =input_dict['''input_ids'''] lowerCamelCase__ : str =input_ids.ne(1 ).to(lowerCamelCase ) lowerCamelCase__ : List[str] =ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase__ : str =OpenLlamaForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] =model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def snake_case ( self : Optional[Any] )-> List[str]: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def snake_case ( self : Union[str, Any], lowerCamelCase : Optional[int] )-> str: lowerCamelCase__ , lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[Any] =ids_tensor([1, 10], config.vocab_size ) lowerCamelCase__ : str =ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Union[str, Any] =OpenLlamaModel(lowerCamelCase ) original_model.to(lowerCamelCase ) original_model.eval() lowerCamelCase__ : List[str] =original_model(lowerCamelCase ).last_hidden_state lowerCamelCase__ : str =original_model(lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase__ : Tuple ={'''type''': scaling_type, '''factor''': 10.0} lowerCamelCase__ : Any =OpenLlamaModel(lowerCamelCase ) scaled_model.to(lowerCamelCase ) scaled_model.eval() lowerCamelCase__ : int =scaled_model(lowerCamelCase ).last_hidden_state lowerCamelCase__ : Optional[int] =scaled_model(lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-5 ) )
238
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[int] = "▁" _lowercase : Optional[Any] = {"vocab_file": "spiece.model"} _lowercase : Optional[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } _lowercase : Tuple = { "google/pegasus-xsum": 5_1_2, } _lowercase : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = VOCAB_FILES_NAMES _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['input_ids', 'attention_mask'] def __init__( self : Any, lowerCamelCase : Optional[Any], lowerCamelCase : Any="<pad>", lowerCamelCase : Optional[Any]="</s>", lowerCamelCase : Any="<unk>", lowerCamelCase : Tuple="<mask_2>", lowerCamelCase : int="<mask_1>", lowerCamelCase : Optional[Any]=None, lowerCamelCase : Dict=103, lowerCamelCase : Optional[Dict[str, Any]] = None, **lowerCamelCase : Optional[int], )-> None: lowerCamelCase__ : Union[str, Any] =offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase, lowerCamelCase ): raise TypeError( F'''additional_special_tokens should be of type {type(lowerCamelCase )}, but is''' F''' {type(lowerCamelCase )}''' ) lowerCamelCase__ : Any =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(lowerCamelCase ), self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowerCamelCase__ : Optional[Any] =additional_special_tokens_extended else: lowerCamelCase__ : Tuple =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2, self.offset )] lowerCamelCase__ : Tuple ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCamelCase, unk_token=lowerCamelCase, mask_token=lowerCamelCase, pad_token=lowerCamelCase, mask_token_sent=lowerCamelCase, offset=lowerCamelCase, additional_special_tokens=lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCamelCase, ) lowerCamelCase__ : Optional[int] =mask_token_sent lowerCamelCase__ : Optional[Any] =vocab_file lowerCamelCase__ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase ) # add special tokens to encoder dict lowerCamelCase__ : Dict[int, str] ={ 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1, self.offset - 1 )} ) lowerCamelCase__ : Dict[str, int] ={v: k for k, v in self.encoder.items()} @property def snake_case ( self : Union[str, Any] )-> int: return len(self.sp_model ) + self.offset def snake_case ( self : Optional[Any] )-> Dict[str, int]: lowerCamelCase__ : List[Any] ={self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str )-> List[Any]: lowerCamelCase__ : Optional[Any] =self.__dict__.copy() lowerCamelCase__ : Optional[int] =None return state def __setstate__( self : Dict, lowerCamelCase : int )-> Optional[Any]: lowerCamelCase__ : Optional[int] =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase__ : str ={} lowerCamelCase__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self : Any, lowerCamelCase : str )-> List[str]: return self.sp_model.encode(lowerCamelCase, out_type=lowerCamelCase ) def snake_case ( self : int, lowerCamelCase : str )-> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCamelCase__ : Any =self.sp_model.piece_to_id(lowerCamelCase ) return sp_id + self.offset def snake_case ( self : Tuple, lowerCamelCase : int )-> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCamelCase__ : Any =self.sp_model.IdToPiece(index - self.offset ) return token def snake_case ( self : List[Any], lowerCamelCase : Optional[int] )-> Any: lowerCamelCase__ : Optional[int] =[] lowerCamelCase__ : Tuple ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase ) + token lowerCamelCase__ : str =[] else: current_sub_tokens.append(lowerCamelCase ) out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def snake_case ( self : Union[str, Any], lowerCamelCase : Union[str, Any]=False )-> List[str]: return 1 def snake_case ( self : Tuple, lowerCamelCase : Optional[int] )-> Tuple: lowerCamelCase__ : Tuple =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def snake_case ( self : Any, lowerCamelCase : List, lowerCamelCase : Optional[List] = None, lowerCamelCase : bool = False )-> List[int]: if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case ( self : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[int]=None )-> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self : Optional[int], lowerCamelCase : str, lowerCamelCase : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : List[str] =os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase, '''wb''' ) as fi: lowerCamelCase__ : int =self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,)
238
1
"""simple docstring""" from math import pow def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): '''simple docstring''' if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase = int(pow(__UpperCamelCase , __UpperCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase , UpperCAmelCase = backtrack( __UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase , UpperCAmelCase = backtrack( __UpperCamelCase , __UpperCamelCase , current_number + 1 , __UpperCamelCase , __UpperCamelCase ) return current_sum, solutions_count def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(__UpperCamelCase , __UpperCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
369
"""simple docstring""" from __future__ import annotations import math def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = str(lowerCAmelCase ) UpperCAmelCase = [n] for i in range(1 , len(lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if len(str(lowerCAmelCase ) ) > 3: if not is_prime(int(str(lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase )[:3] ) ): return False return True def _lowerCAmelCase ( lowerCAmelCase = 11 ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = 13 while len(lowerCAmelCase ) != count: if validate(lowerCAmelCase ): UpperCAmelCase = list_truncated_nums(lowerCAmelCase ) if all(is_prime(lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ): '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(1_1)) = }')
248
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '''▁''' _a = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } _a = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } _a = { '''facebook/s2t-small-librispeech-asr''': 1_0_2_4, } _a = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] _a = {'''mustc''': MUSTC_LANGS} class A_ ( snake_case__ ): _lowercase : int = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = MAX_MODEL_INPUT_SIZES _lowercase : int = ['input_ids', 'attention_mask'] _lowercase : List[int] = [] def __init__( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]="<s>" , UpperCAmelCase : Union[str, Any]="</s>" , UpperCAmelCase : int="<pad>" , UpperCAmelCase : Any="<unk>" , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : List[str] , ) -> None: __lowerCAmelCase: Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , do_upper_case=UpperCAmelCase , do_lower_case=UpperCAmelCase , tgt_lang=UpperCAmelCase , lang_codes=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __lowerCAmelCase: Tuple = do_upper_case __lowerCAmelCase: List[str] = do_lower_case __lowerCAmelCase: Dict = load_json(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = {v: k for k, v in self.encoder.items()} __lowerCAmelCase: Optional[int] = spm_file __lowerCAmelCase: str = load_spm(UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __lowerCAmelCase: Tuple = lang_codes __lowerCAmelCase: Any = LANGUAGES[lang_codes] __lowerCAmelCase: str = [F'''<lang:{lang}>''' for lang in self.langs] __lowerCAmelCase: Tuple = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} __lowerCAmelCase: List[Any] = self.lang_tokens __lowerCAmelCase: str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __lowerCAmelCase: Any = {} @property def UpperCAmelCase ( self : Any ) -> int: return len(self.encoder ) @property def UpperCAmelCase ( self : List[str] ) -> str: return self._tgt_lang @tgt_lang.setter def UpperCAmelCase ( self : Any , UpperCAmelCase : Union[str, Any] ) -> None: __lowerCAmelCase: Tuple = new_tgt_lang self.set_tgt_lang_special_tokens(UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : str ) -> None: __lowerCAmelCase: Tuple = self.lang_code_to_id[tgt_lang] __lowerCAmelCase: List[Any] = [lang_code_id] def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : Any ) -> int: return self.encoder.get(UpperCAmelCase , self.encoder[self.unk_token] ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : int ) -> str: return self.decoder.get(UpperCAmelCase , self.unk_token ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : List[str] ) -> str: __lowerCAmelCase: Optional[int] = [] __lowerCAmelCase: Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __lowerCAmelCase: List[Any] = self.sp_model.decode(UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __lowerCAmelCase: List[Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __lowerCAmelCase: Any = self.sp_model.decode(UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) __lowerCAmelCase: Tuple = [1] * len(self.prefix_tokens ) __lowerCAmelCase: Optional[int] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase )) + ([0] * len(UpperCAmelCase )) + suffix_ones def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase: Optional[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Dict: __lowerCAmelCase: List[Any] = self.__dict__.copy() __lowerCAmelCase: List[Any] = None return state def __setstate__( self : Optional[Any] , UpperCAmelCase : Dict ) -> None: __lowerCAmelCase: Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase: List[str] = {} __lowerCAmelCase: Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase: Optional[int] = Path(UpperCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' __lowerCAmelCase: List[str] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __lowerCAmelCase: int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(UpperCAmelCase , 'wb' ) as fi: __lowerCAmelCase: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (str(UpperCAmelCase ), str(UpperCAmelCase )) def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" __lowerCAmelCase: str = sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE ) spm.Load(str(SCREAMING_SNAKE_CASE ) ) return spm def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[Dict, List]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=2 )
322
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
1
"""simple docstring""" import math import random def a__ ( snake_case__ , snake_case__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase : Dict = 0.0_2 def a__ ( snake_case__ , snake_case__ ) -> float: lowerCamelCase = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation lowerCamelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCamelCase = (expected / 1_00) - layer_a # Error delta lowerCamelCase = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Any = int(input("""Expected value: """)) lowerCAmelCase : List[Any] = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
168
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase : Dict = 16 lowerCAmelCase : int = 32 def a__ ( snake_case__ ) -> Optional[Any]: return int(x / 2**20 ) class __magic_name__ : '''simple docstring''' def __enter__( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase = torch.cuda.memory_allocated() return self def __exit__( self , *_a ): """simple docstring""" gc.collect() torch.cuda.empty_cache() lowerCamelCase = torch.cuda.memory_allocated() lowerCamelCase = torch.cuda.max_memory_allocated() lowerCamelCase = bamb(self.end - self.begin ) lowerCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def a__ ( snake_case__ , snake_case__ = 16 , snake_case__ = "bert-base-cased" , snake_case__ = 3_20 , snake_case__ = 1_60 , ) -> List[str]: lowerCamelCase = AutoTokenizer.from_pretrained(snake_case__ ) lowerCamelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": F'train[:{n_train}]', """validation""": F'validation[:{n_val}]'} ) def tokenize_function(snake_case__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(snake_case__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(snake_case__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def a__ ( snake_case__ , snake_case__ ) -> Any: # Initialize accelerator lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config["""lr"""] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = args.model_name_or_path set_seed(snake_case__ ) lowerCamelCase , lowerCamelCase = get_dataloaders(snake_case__ , snake_case__ , snake_case__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCamelCase = 1 lowerCamelCase = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: lowerCamelCase = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase = 0 # Now we train the model lowerCamelCase = {} for epoch in range(snake_case__ , snake_case__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case__ ): lowerCamelCase = model(**snake_case__ ) lowerCamelCase = outputs.loss lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) def a__ ( ) -> str: lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=snake_case__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=snake_case__ , ) parser.add_argument( """--output_dir""" , type=snake_case__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=snake_case__ , default=snake_case__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=snake_case__ , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=snake_case__ , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=snake_case__ , default=1 , help="""Number of train epochs.""" , ) lowerCamelCase = parser.parse_args() lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
168
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Dict ): UpperCamelCase_ : List[Any] = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase_ : List[str] = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } UpperCamelCase_ : List[Any] = F"{src_lang}-{tgt_lang}" UpperCamelCase_ : List[Any] = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) UpperCamelCase_ : Any = os.path.join(lowerCamelCase , 'README.md' ) print(F"Generating {path}" ) with open(lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(lowerCamelCase ) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ , a_ , a_ = model_name.split('-') a_ = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
175
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __lowercase ( lowerCamelCase : Optional[Any] ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ): return max(metric_fn(lowerCamelCase , lowerCamelCase ) for gt in ground_truths ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Dict ): UpperCamelCase_ : Tuple = [line.strip() for line in open(lowerCamelCase , 'r' ).readlines()] UpperCamelCase_ : List[Any] = [] if args.gold_data_mode == "qa": UpperCamelCase_ : Union[str, Any] = pd.read_csv(lowerCamelCase , sep='\t' , header=lowerCamelCase ) for answer_list in data[1]: UpperCamelCase_ : Optional[int] = ast.literal_eval(lowerCamelCase ) answers.append(lowerCamelCase ) else: UpperCamelCase_ : int = [line.strip() for line in open(lowerCamelCase , 'r' ).readlines()] UpperCamelCase_ : Optional[int] = [[reference] for reference in references] UpperCamelCase_ : Optional[int] = 0 for prediction, ground_truths in zip(lowerCamelCase , lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase , lowerCamelCase , lowerCamelCase ) fa += metric_max_over_ground_truths(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = 1_0_0.0 * em / total UpperCamelCase_ : List[Any] = 1_0_0.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : List[str] ): UpperCamelCase_ : Optional[int] = args.k UpperCamelCase_ : List[Any] = [line.strip() for line in open(lowerCamelCase , 'r' ).readlines()] UpperCamelCase_ : List[str] = [line.strip() for line in open(lowerCamelCase , 'r' ).readlines()] UpperCamelCase_ : List[str] = 0 for hypo, reference in zip(lowerCamelCase , lowerCamelCase ): UpperCamelCase_ : List[str] = set(hypo.split('\t' )[:k] ) UpperCamelCase_ : int = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCamelCase_ : Union[str, Any] = 1_0_0.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Any ): def strip_title(lowerCamelCase : List[str] ): if title.startswith('"' ): UpperCamelCase_ : List[str] = title[1:] if title.endswith('"' ): UpperCamelCase_ : int = title[:-1] return title UpperCamelCase_ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase , return_tensors='pt' , padding=lowerCamelCase , truncation=lowerCamelCase , )['input_ids'].to(args.device ) UpperCamelCase_ : int = rag_model.rag.question_encoder(lowerCamelCase ) UpperCamelCase_ : List[str] = question_enc_outputs[0] UpperCamelCase_ : Tuple = rag_model.retriever( lowerCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) UpperCamelCase_ : str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCamelCase_ : int = [] for docs in all_docs: UpperCamelCase_ : Union[str, Any] = [strip_title(lowerCamelCase ) for title in docs['title']] provenance_strings.append('\t'.join(lowerCamelCase ) ) return provenance_strings def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] ): with torch.no_grad(): UpperCamelCase_ : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase , return_tensors='pt' , padding=lowerCamelCase , truncation=lowerCamelCase ) UpperCamelCase_ : Union[str, Any] = inputs_dict.input_ids.to(args.device ) UpperCamelCase_ : str = inputs_dict.attention_mask.to(args.device ) UpperCamelCase_ : List[Any] = rag_model.generate( # rag_model overwrites generate lowerCamelCase , attention_mask=lowerCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCamelCase_ : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) if args.print_predictions: for q, a in zip(lowerCamelCase , lowerCamelCase ): logger.info('Q: {} - A: {}'.format(lowerCamelCase , lowerCamelCase ) ) return answers def __lowercase ( ): UpperCamelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=lowerCamelCase , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=lowerCamelCase , choices=['exact', 'compressed', 'legacy'] , type=lowerCamelCase , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=lowerCamelCase , type=lowerCamelCase , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=lowerCamelCase , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=lowerCamelCase , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=lowerCamelCase , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=lowerCamelCase , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=lowerCamelCase , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=lowerCamelCase , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=lowerCamelCase , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=lowerCamelCase , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=lowerCamelCase , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) UpperCamelCase_ : Union[str, Any] = parser.parse_args() UpperCamelCase_ : Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : Any = {} if args.model_type is None: UpperCamelCase_ : List[Any] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): UpperCamelCase_ : Optional[int] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration UpperCamelCase_ : Dict = args.n_docs if args.index_name is not None: UpperCamelCase_ : Union[str, Any] = args.index_name if args.index_path is not None: UpperCamelCase_ : str = args.index_path else: UpperCamelCase_ : Tuple = BartForConditionalGeneration UpperCamelCase_ : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , lowerCamelCase ) UpperCamelCase_ : Optional[int] = get_scores if args.eval_mode == 'e2e' else get_precision_at_k UpperCamelCase_ : Optional[int] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowerCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowerCamelCase ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): UpperCamelCase_ : List[str] = RagRetriever.from_pretrained(lowerCamelCase , **lowerCamelCase ) UpperCamelCase_ : List[Any] = model_class.from_pretrained(lowerCamelCase , retriever=lowerCamelCase , **lowerCamelCase ) model.retriever.init_retrieval() else: UpperCamelCase_ : Optional[Any] = model_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: UpperCamelCase_ : Optional[Any] = [] for line in tqdm(lowerCamelCase ): questions.append(line.strip() ) if len(lowerCamelCase ) == args.eval_batch_size: UpperCamelCase_ : Dict = evaluate_batch_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) preds_file.write('\n'.join(lowerCamelCase ) + '\n' ) preds_file.flush() UpperCamelCase_ : Tuple = [] if len(lowerCamelCase ) > 0: UpperCamelCase_ : Optional[int] = evaluate_batch_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) preds_file.write('\n'.join(lowerCamelCase ) ) preds_file.flush() score_fn(lowerCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a_ = get_args() main(args)
175
1
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[Any] )-> Optional[int]: _lowerCamelCase = {} _lowerCamelCase = tokenizer(example['content'] , truncation=snake_case )['input_ids'] _lowerCamelCase = len(example['content'] ) / len(output['input_ids'] ) return output A_ : List[str] =HfArgumentParser(PretokenizationArguments) A_ : Dict =parser.parse_args() if args.num_workers is None: A_ : int =multiprocessing.cpu_count() A_ : List[Any] =AutoTokenizer.from_pretrained(args.tokenizer_dir) A_ : Optional[Any] =time.time() A_ : Union[str, Any] =load_dataset(args.dataset_name, split="""train""") print(f'Dataset loaded in {time.time()-t_start:.2f}s') A_ : Union[str, Any] =time.time() A_ : Union[str, Any] =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(f'Dataset tokenized in {time.time()-t_start:.2f}s') A_ : Dict =time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'Data pushed to the hub in {time.time()-t_start:.2f}s')
80
"""simple docstring""" from __future__ import annotations A_ : List[Any] =list[tuple[int, int]] A_ : Tuple =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A_ : List[str] =([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __a : def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCamelCase = pos_x _lowerCamelCase = pos_y _lowerCamelCase = (pos_y, pos_x) _lowerCamelCase = goal_x _lowerCamelCase = goal_y _lowerCamelCase = g_cost _lowerCamelCase = parent _lowerCamelCase = self.calculate_heuristic() def snake_case_ ( self ): _lowerCamelCase = abs(self.pos_x - self.goal_x ) _lowerCamelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , a__ ): return self.f_cost < other.f_cost class __a : def __init__( self , a__ , a__ ): _lowerCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a__ ) _lowerCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a__ ) _lowerCamelCase = [self.start] _lowerCamelCase = [] _lowerCamelCase = False def snake_case_ ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCamelCase = True return self.retrace_path(a__ ) self.closed_nodes.append(a__ ) _lowerCamelCase = self.get_successors(a__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a__ ) else: # retrieve the best current path _lowerCamelCase = self.open_nodes.pop(self.open_nodes.index(a__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a__ ) else: self.open_nodes.append(a__ ) if not self.reached: return [self.start.pos] return None def snake_case_ ( self , a__ ): _lowerCamelCase = [] for action in delta: _lowerCamelCase = parent.pos_x + action[1] _lowerCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a__ , a__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a__ , ) ) return successors def snake_case_ ( self , a__ ): _lowerCamelCase = node _lowerCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCamelCase = current_node.parent path.reverse() return path if __name__ == "__main__": A_ : str =(0, 0) A_ : Tuple =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") A_ : List[str] =GreedyBestFirst(init, goal) A_ : Optional[int] =greedy_bf.search() if path: for pos_x, pos_y in path: A_ : Optional[Any] =2 for elem in grid: print(elem)
80
1
A : Any = 'Tobias Carryer' from time import time class A : '''simple docstring''' def __init__(self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=int(time() ) ) -> Dict: # noqa: B008 """simple docstring""" lowercase__ = multiplier lowercase__ = increment lowercase__ = modulo lowercase__ = seed def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. A : List[Any] = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
305
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict): # Initialise PyTorch model lowercase__ : List[str] = BertConfig.from_json_file(_lowerCamelCase) print(f'''Building PyTorch model from configuration: {config}''') lowercase__ : Optional[Any] = BertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
87
0
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : int = torch.nn.Linear(1_0 , 1_0 ) _lowerCamelCase : Dict = torch.optim.SGD(model.parameters() , 0.1 ) _lowerCamelCase : Dict = Accelerator() _lowerCamelCase : int = accelerator.prepare(__lowerCAmelCase ) try: pickle.loads(pickle.dumps(__lowerCAmelCase ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
175
"""simple docstring""" def snake_case_ ( A_ : list ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(A_ ) for i in range(1, A_ ): _lowerCamelCase : Tuple = collection[i] _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = i - 1 while low <= high: _lowerCamelCase : Optional[int] = (low + high) // 2 if val < collection[mid]: _lowerCamelCase : List[str] = mid - 1 else: _lowerCamelCase : Dict = mid + 1 for j in range(A_, A_, -1 ): _lowerCamelCase : Optional[int] = collection[j - 1] _lowerCamelCase : Tuple = val return collection if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
175
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=3 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : Optional[int]=[10, 20, 30, 40] , __UpperCAmelCase : Dict=[1, 1, 2, 1] , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[Any]="relu" , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[int]=None , ): '''simple docstring''' _A = parent _A = batch_size _A = image_size _A = num_channels _A = embeddings_size _A = hidden_sizes _A = depths _A = is_training _A = use_labels _A = hidden_act _A = num_labels _A = scope _A = len(__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = self.get_config() return config, pixel_values def lowerCAmelCase ( self : Dict ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = FlaxRegNetModel(config=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : str ): '''simple docstring''' _A = self.num_labels _A = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.prepare_config_and_inputs() _A , _A = config_and_inputs _A = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () snake_case = False snake_case = False snake_case = False def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = FlaxRegNetModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : Any ): '''simple docstring''' return def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowerCAmelCase ( self : Any ): '''simple docstring''' pass def lowerCAmelCase ( self : str ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ) _A = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ): _A = model_class(__UpperCAmelCase ) _A = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _A = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Any ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest("JIT Enabled" ): _A = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _A = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowercase ( ) -> str: '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__UpperCAmelCase , return_tensors="np" ) _A = model(**__UpperCAmelCase ) # verify the logits _A = (1, 1000) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _A = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
79
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case : List[Any] = logging.get_logger(__name__) class A__(a_ ): """simple docstring""" _A : Optional[Any] = ['''pixel_values'''] def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BICUBIC , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = None , _lowercase = True , **_lowercase , ) -> None: super().__init__(**_lowercase ) a_ : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384} a_ : List[str] = get_size_dict(_lowercase , default_to_square=_lowercase ) a_ : str = do_resize a_ : Optional[int] = size a_ : Dict = resample a_ : Optional[int] = do_rescale a_ : Dict = rescale_factor a_ : int = do_normalize a_ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a_ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD a_ : Any = do_convert_rgb def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , ) -> np.ndarray: a_ : Union[str, Any] = get_size_dict(_lowercase , default_to_square=_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) a_ : List[str] = (size["""height"""], size["""width"""]) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> Optional[Any]: return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , ) -> np.ndarray: return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def UpperCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: a_ : Optional[int] = do_resize if do_resize is not None else self.do_resize a_ : Any = resample if resample is not None else self.resample a_ : Dict = do_rescale if do_rescale is not None else self.do_rescale a_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize a_ : Optional[int] = image_mean if image_mean is not None else self.image_mean a_ : Optional[Any] = image_std if image_std is not None else self.image_std a_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ : str = size if size is not None else self.size a_ : Tuple = get_size_dict(_lowercase , default_to_square=_lowercase ) a_ : Optional[int] = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: a_ : Optional[Any] = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. a_ : str = [to_numpy_array(_lowercase ) for image in images] if do_resize: a_ : Optional[int] = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: a_ : Union[str, Any] = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: a_ : str = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] a_ : Optional[Any] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] a_ : Optional[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=_lowercase ) return encoded_outputs
248
0
from __future__ import annotations import math def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __SCREAMING_SNAKE_CASE : Optional[int] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def snake_case (__lowercase ) -> Optional[Any]: '''simple docstring''' if not isinstance(__a , __a ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) _snake_case : Optional[int] = [] for num in range(len(__a ) ): _snake_case : List[str] = 0 while 2 * i * i <= odd_composites[num]: _snake_case : Optional[Any] = odd_composites[num] - 2 * i * i if is_prime(__a ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__a ) == n: return list_nums return [] def snake_case () -> Optional[Any]: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
355
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowercase_ ( __snake_case ): _lowerCamelCase = 'M-CLIP' def __init__( self , lowercase_=1_024 , lowercase_=768 , **lowercase_ ): _snake_case : str = transformerDimSize _snake_case : Union[str, Any] = imageDimSize super().__init__(**lowercase_ ) class lowercase_ ( __snake_case ): _lowerCamelCase = MCLIPConfig def __init__( self , lowercase_ , *lowercase_ , **lowercase_ ): super().__init__(lowercase_ , *lowercase_ , **lowercase_ ) _snake_case : List[Any] = XLMRobertaModel(lowercase_ ) _snake_case : int = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : Tuple = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0] _snake_case : Tuple = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
284
0
'''simple docstring''' def _A (lowerCAmelCase__ :int = 2_00 ) -> int: '''simple docstring''' _a = [1, 2, 5, 10, 20, 50, 1_00, 2_00] _a = [0] * (pence + 1) _a = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
168
'''simple docstring''' import sys a_ : Dict = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _A (lowerCAmelCase__ :str = N ) -> int: '''simple docstring''' _a = -sys.maxsize - 1 for i in range(len(lowerCAmelCase__ ) - 12 ): _a = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _a = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
168
1
from math import isqrt, loga def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def _a ( SCREAMING_SNAKE_CASE = 80_08_00 , SCREAMING_SNAKE_CASE = 80_08_00 ): """simple docstring""" lowercase__ = degree * loga(SCREAMING_SNAKE_CASE ) lowercase__ = int(SCREAMING_SNAKE_CASE ) lowercase__ = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) lowercase__ = 0 lowercase__ = 0 lowercase__ = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
93
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = ShapEImgaImgPipeline _lowercase : Optional[Any] = ['''image'''] _lowercase : Optional[int] = ['''image'''] _lowercase : Optional[int] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowercase : Tuple = False @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return 8 @property def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase_ ) return model def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int]=0 ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
93
1
'''simple docstring''' def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if not isinstance(__A , __A ) or number < 0: raise ValueError("Input must be a non-negative integer" ) UpperCamelCase__ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
80
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase_ ( enum.Enum ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @add_end_docstrings(a__ ) class lowercase_ ( a__ ): __UpperCAmelCase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *a , **a ): super().__init__(*a , **a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCamelCase__ = None if self.model.config.prefix is not None: UpperCamelCase__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCamelCase__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._sanitize_parameters(prefix=a , **self._forward_params ) UpperCamelCase__ = {**self._preprocess_params, **preprocess_params} UpperCamelCase__ = {**self._forward_params, **forward_params} def __a ( self , a=None , a=None , a=None , a=None , a=None , a=None , a=None , a=None , **a , ): UpperCamelCase__ = {} if prefix is not None: UpperCamelCase__ = prefix if prefix: UpperCamelCase__ = self.tokenizer( a , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) UpperCamelCase__ = handle_long_generation preprocess_params.update(a ) UpperCamelCase__ = generate_kwargs UpperCamelCase__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.TENSORS if return_type is not None: UpperCamelCase__ = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase__ = self.tokenizer.encode(a , add_special_tokens=a ) if len(a ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCamelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self , *a , **a ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*a , **a ) def __call__( self , a , **a ): return super().__call__(a , **a ) def __a ( self , a , a="" , a=None , **a ): UpperCamelCase__ = self.tokenizer( prefix + prompt_text , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prompt_text if handle_long_generation == "hole": UpperCamelCase__ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCamelCase__ = generate_kwargs["max_new_tokens"] else: UpperCamelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCamelCase__ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCamelCase__ = inputs["attention_mask"][:, -keep_length:] return inputs def __a ( self , a , **a ): UpperCamelCase__ = model_inputs["input_ids"] UpperCamelCase__ = model_inputs.get("attention_mask" , a ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = 1 else: UpperCamelCase__ = input_ids.shape[0] UpperCamelCase__ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCamelCase__ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCamelCase__ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCamelCase__ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCamelCase__ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCamelCase__ = self.model.generate(input_ids=a , attention_mask=a , **a ) UpperCamelCase__ = generated_sequence.shape[0] if self.framework == "pt": UpperCamelCase__ = generated_sequence.reshape(a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCamelCase__ = tf.reshape(a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __a ( self , a , a=ReturnType.FULL_TEXT , a=True ): UpperCamelCase__ = model_outputs["generated_sequence"][0] UpperCamelCase__ = model_outputs["input_ids"] UpperCamelCase__ = model_outputs["prompt_text"] UpperCamelCase__ = generated_sequence.numpy().tolist() UpperCamelCase__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCamelCase__ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCamelCase__ = self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCamelCase__ = 0 else: UpperCamelCase__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) ) if return_type == ReturnType.FULL_TEXT: UpperCamelCase__ = prompt_text + text[prompt_length:] else: UpperCamelCase__ = text[prompt_length:] UpperCamelCase__ = {"generated_text": all_text} records.append(a ) return records
80
1
'''simple docstring''' from __future__ import annotations __snake_case = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a ( __a , __a , __a , __a , __a , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' UpperCamelCase__ :Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the reference grid UpperCamelCase__ :Any = 1 UpperCamelCase__ :Optional[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__a ) ) ] # the action grid UpperCamelCase__ :str = init[0] UpperCamelCase__ :Tuple = init[1] UpperCamelCase__ :List[str] = 0 UpperCamelCase__ :Tuple = g + heuristic[x][y] # cost from starting cell to destination cell UpperCamelCase__ :int = [[f, g, x, y]] UpperCamelCase__ :Optional[int] = False # flag that is set when search is complete UpperCamelCase__ :Optional[Any] = False # flag set if we can't find expand while not found and not resign: if len(__a ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCamelCase__ :List[Any] = cell.pop() UpperCamelCase__ :Dict = next_cell[2] UpperCamelCase__ :int = next_cell[3] UpperCamelCase__ :List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: UpperCamelCase__ :Tuple = True else: for i in range(len(__a ) ): # to try out different valid actions UpperCamelCase__ :List[str] = x + DIRECTIONS[i][0] UpperCamelCase__ :Optional[int] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCamelCase__ :Any = g + cost UpperCamelCase__ :Optional[int] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCamelCase__ :List[Any] = 1 UpperCamelCase__ :Any = i UpperCamelCase__ :List[str] = [] UpperCamelCase__ :List[Any] = goal[0] UpperCamelCase__ :int = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCamelCase__ :Optional[int] = x - DIRECTIONS[action[x][y]][0] UpperCamelCase__ :Dict = y - DIRECTIONS[action[x][y]][1] UpperCamelCase__ :Optional[Any] = xa UpperCamelCase__ :Tuple = ya invpath.append([x, y] ) UpperCamelCase__ :Dict = [] for i in range(len(__a ) ): path.append(invpath[len(__a ) - 1 - i] ) return path, action if __name__ == "__main__": __snake_case = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __snake_case = [0, 0] # all coordinates are given in format [y,x] __snake_case = [len(grid) - 1, len(grid[0]) - 1] __snake_case = 1 # the cost map which pushes the path closer to the goal __snake_case = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __snake_case = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __snake_case = 99 __snake_case , __snake_case = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
219
'''simple docstring''' from __future__ import annotations __snake_case = list[list[int]] # assigning initial values to the grid __snake_case = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __snake_case = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a ( __a , __a , __a , __a ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a ( __a ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a ( __a ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(__a ): UpperCamelCase__ , UpperCamelCase__ :Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): UpperCamelCase__ :Tuple = digit if sudoku(__a ) is not None: return grid UpperCamelCase__ :Union[str, Any] = 0 return None def a ( __a ) -> None: '''simple docstring''' for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __snake_case = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
219
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowercase ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : int=1024 , lowerCamelCase : Dict=1024 , lowerCamelCase : Union[str, Any]=False , **lowerCamelCase : str ): UpperCamelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase ) UpperCamelCase_ : Tuple = SeqaSeqDataset(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , type_path='train' , **lowerCamelCase ) UpperCamelCase_ : List[Any] = tok.pad_token_id def get_lens(lowerCamelCase : Optional[int] ): UpperCamelCase_ : Tuple = tqdm( DataLoader(lowerCamelCase , batch_size=512 , num_workers=8 , shuffle=lowerCamelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCamelCase_ : Any = [] for batch in dl: UpperCamelCase_ : Union[str, Any] = batch['input_ids'].ne(lowerCamelCase ).sum(1 ).tolist() UpperCamelCase_ : Optional[Any] = batch['labels'].ne(lowerCamelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase , lowerCamelCase ): max_lens.append(max(lowerCamelCase , lowerCamelCase ) ) else: max_lens.extend(lowerCamelCase ) return max_lens UpperCamelCase_ : Optional[Any] = get_lens(lowerCamelCase ) UpperCamelCase_ : List[Any] = SeqaSeqDataset(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , type_path='val' , **lowerCamelCase ) UpperCamelCase_ : Optional[Any] = get_lens(lowerCamelCase ) pickle_save(lowerCamelCase , train_ds.len_file ) pickle_save(lowerCamelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
175
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : int=False ): try: UpperCamelCase_ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase_ : List[str] = default else: # KEY is set, convert it to True or False. try: UpperCamelCase_ : Union[str, Any] = strtobool(lowerCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value a_ = parse_flag_from_env('RUN_SLOW', default=False) def __lowercase ( lowerCamelCase : List[Any] ): return unittest.skip('Test was skipped' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(_run_slow_tests , 'test is slow' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Optional[Any] ): return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Any ): return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Any ): return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : List[str] ): return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : str ): return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Tuple ): return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Tuple ): return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Optional[Any] ): return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : List[Any] ): return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Any ): return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Tuple ): return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : List[Any]=None , lowerCamelCase : Optional[int]=None ): if test_case is None: return partial(lowerCamelCase , version=lowerCamelCase ) return unittest.skipUnless(is_torch_version('>=' , lowerCamelCase ) , F"test requires torch version >= {version}" )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : int ): return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(lowerCamelCase ) def __lowercase ( lowerCamelCase : Dict ): return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(lowerCamelCase ) a_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __lowercase ( lowerCamelCase : Dict ): return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(lowerCamelCase ) class _lowercase ( unittest.TestCase ): lowercase = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = tempfile.mkdtemp() @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ) -> Union[str, Any]: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(snake_case ) class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Union[mock.Mock, List[mock.Mock]] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : str = mocks if isinstance(snake_case , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : str = AcceleratorState() UpperCamelCase_ : str = tensor[None].clone().to(state.device ) UpperCamelCase_ : List[Any] = gather(lowerCamelCase ).cpu() UpperCamelCase_ : Tuple = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase ): return False return True class _lowercase : def __init__( self : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = returncode UpperCamelCase_ : Optional[int] = stdout UpperCamelCase_ : Optional[int] = stderr async def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple ): while True: UpperCamelCase_ : Tuple = await stream.readline() if line: callback(lowerCamelCase ) else: break async def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Dict=None , lowerCamelCase : Optional[Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=False ): if echo: print('\nRunning: ' , ' '.join(lowerCamelCase ) ) UpperCamelCase_ : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase_ : str = [] UpperCamelCase_ : Union[str, Any] = [] def tee(lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : List[str]="" ): UpperCamelCase_ : int = line.decode('utf-8' ).rstrip() sink.append(lowerCamelCase ) if not quiet: print(lowerCamelCase , lowerCamelCase , file=lowerCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase : tee(lowerCamelCase , lowerCamelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase : tee(lowerCamelCase , lowerCamelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=lowerCamelCase , ) return _RunOutput(await p.wait() , lowerCamelCase , lowerCamelCase ) def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=None , lowerCamelCase : int=None , lowerCamelCase : Any=180 , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]=True ): UpperCamelCase_ : str = asyncio.get_event_loop() UpperCamelCase_ : Union[str, Any] = loop.run_until_complete( _stream_subprocess(lowerCamelCase , env=lowerCamelCase , stdin=lowerCamelCase , timeout=lowerCamelCase , quiet=lowerCamelCase , echo=lowerCamelCase ) ) UpperCamelCase_ : int = ' '.join(lowerCamelCase ) if result.returncode > 0: UpperCamelCase_ : Dict = '\n'.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class _lowercase ( snake_case_ ): pass def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[int]=False ): try: UpperCamelCase_ : Any = subprocess.check_output(lowerCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase , 'decode' ): UpperCamelCase_ : Any = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(lowerCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
175
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Optional[int]=7 , UpperCamelCase : int=True , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Any=True , UpperCamelCase : int=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Any=2 , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Any=0 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Any=5 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=512 , UpperCamelCase : int=12 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]="last" , UpperCamelCase : Optional[int]=None , UpperCamelCase : Dict=None , ): '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : List[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Optional[Any] = use_input_lengths __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : List[Any] = gelu_activation __UpperCAmelCase : Optional[Any] = sinusoidal_embeddings __UpperCAmelCase : Optional[Any] = causal __UpperCAmelCase : Any = asm __UpperCAmelCase : List[Any] = n_langs __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : List[Any] = n_special __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Optional[int] = num_labels __UpperCAmelCase : Any = num_choices __UpperCAmelCase : str = summary_type __UpperCAmelCase : List[Any] = use_proj __UpperCAmelCase : List[Any] = scope def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[Any] = None if self.use_input_lengths: __UpperCAmelCase : Tuple = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = FlaubertModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Any = model(UpperCamelCase , lengths=UpperCamelCase , langs=UpperCamelCase ) __UpperCAmelCase : Dict = model(UpperCamelCase , langs=UpperCamelCase ) __UpperCAmelCase : Tuple = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : List[str] = FlaubertWithLMHeadModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Optional[int] = FlaubertForQuestionAnsweringSimple(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(UpperCamelCase ) __UpperCAmelCase : int = model(UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , ): '''simple docstring''' __UpperCAmelCase : str = FlaubertForQuestionAnswering(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = model( UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , cls_index=UpperCamelCase , is_impossible=UpperCamelCase , p_mask=UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = model( UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , cls_index=UpperCamelCase , is_impossible=UpperCamelCase , ) ((__UpperCAmelCase) ,) : Optional[Any] = result_with_labels.to_tuple() __UpperCAmelCase : Optional[Any] = model(UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase ) ((__UpperCAmelCase) ,) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase__ ( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = FlaubertForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : Any = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : int , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : Tuple = FlaubertForTokenClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , ): '''simple docstring''' __UpperCAmelCase : Any = self.num_choices __UpperCAmelCase : Dict = FlaubertForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Any = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) ,( __UpperCAmelCase ) , ) : Optional[Any] = config_and_inputs __UpperCAmelCase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __a = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase__ ( self : str , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any]=False ): '''simple docstring''' __UpperCAmelCase : Optional[int] = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) __UpperCAmelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) return inputs_dict def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : List[str] = FlaubertModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase , emb_dim=37 ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase ) @slow def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Any = FlaubertModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @slow @require_torch_gpu def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCAmelCase : int = True __UpperCAmelCase : List[Any] = model_class(config=UpperCamelCase ) __UpperCAmelCase : Tuple = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : List[str] = torch.jit.trace( UpperCamelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase , os.path.join(UpperCamelCase , """traced_model.pt""" ) ) __UpperCAmelCase : int = torch.jit.load(os.path.join(UpperCamelCase , """traced_model.pt""" ) , map_location=UpperCamelCase ) loaded(inputs_dict["""input_ids"""].to(UpperCamelCase ) , inputs_dict["""attention_mask"""].to(UpperCamelCase ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) __UpperCAmelCase : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): __UpperCAmelCase : Any = model(UpperCamelCase )[0] __UpperCAmelCase : Union[str, Any] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase ) __UpperCAmelCase : Tuple = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase , atol=1e-4 ) )
320
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase : List[str] = { 'b0': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = EfficientNetConfig() __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""hidden_dim"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""width_coef"""] __UpperCAmelCase : str = CONFIG_MAP[model_name]["""depth_coef"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""dropout_rate"""] __UpperCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = 1_0_0_0 __UpperCAmelCase : Dict = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Dict = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Any ) -> str: '''simple docstring''' __UpperCAmelCase : Tuple = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCamelCase ( _UpperCamelCase : Dict ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] __UpperCAmelCase : str = sorted(set(_UpperCamelCase ) ) __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) __UpperCAmelCase : Any = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __UpperCAmelCase : Any = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: __UpperCAmelCase : List[str] = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) __UpperCAmelCase : Optional[int] = {} for item in rename_keys: if item[0] in original_param_names: __UpperCAmelCase : Optional[Any] = """efficientnet.""" + item[1] __UpperCAmelCase : Tuple = """classifier.weight""" __UpperCAmelCase : Optional[int] = """classifier.bias""" return key_mapping def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __UpperCAmelCase : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: __UpperCAmelCase : int = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __UpperCAmelCase : Optional[Any] = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __UpperCAmelCase : List[str] = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __UpperCAmelCase : Tuple = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = model_classes[model_name]( include_top=_UpperCamelCase , weights="""imagenet""" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="""softmax""" , ) __UpperCAmelCase : List[str] = original_model.trainable_variables __UpperCAmelCase : List[Any] = original_model.non_trainable_variables __UpperCAmelCase : Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __UpperCAmelCase : int = param.numpy() __UpperCAmelCase : Dict = list(tf_params.keys() ) # Load HuggingFace model __UpperCAmelCase : Optional[Any] = get_efficientnet_config(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = EfficientNetForImageClassification(_UpperCamelCase ).eval() __UpperCAmelCase : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) __UpperCAmelCase : Tuple = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __UpperCAmelCase : List[Any] = convert_image_processor(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = hf_model(**_UpperCamelCase ) __UpperCAmelCase : Any = outputs.logits.detach().numpy() # Original model inference __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Dict = CONFIG_MAP[model_name]["""image_size"""] __UpperCAmelCase : str = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __UpperCAmelCase : Optional[Any] = image.img_to_array(_UpperCamelCase ) __UpperCAmelCase : Tuple = np.expand_dims(_UpperCamelCase , axis=0 ) __UpperCAmelCase : str = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) __UpperCAmelCase : List[str] = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _snake_case : str = 8 def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : int=BITS ): __lowerCAmelCase = x.device __lowerCAmelCase = (x * 255).int().clamp(0, 255 ) __lowerCAmelCase = 2 ** torch.arange(bits - 1, -1, -1, device=lowerCAmelCase_ ) __lowerCAmelCase = rearrange(lowerCAmelCase_, 'd -> d 1 1' ) __lowerCAmelCase = rearrange(lowerCAmelCase_, 'b c h w -> b c 1 h w' ) __lowerCAmelCase = ((x & mask) != 0).float() __lowerCAmelCase = rearrange(lowerCAmelCase_, 'b c d h w -> b (c d) h w' ) __lowerCAmelCase = bits * 2 - 1 return bits def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[Any]=BITS ): __lowerCAmelCase = x.device __lowerCAmelCase = (x > 0).int() __lowerCAmelCase = 2 ** torch.arange(bits - 1, -1, -1, device=lowerCAmelCase_, dtype=torch.intaa ) __lowerCAmelCase = rearrange(lowerCAmelCase_, 'd -> d 1 1' ) __lowerCAmelCase = rearrange(lowerCAmelCase_, 'b (c d) h w -> b c d h w', d=8 ) __lowerCAmelCase = reduce(x * mask, 'b c d h w -> b c h w', 'sum' ) return (dec / 255).clamp(0.0, 1.0 ) def a_ ( self : Dict, lowerCAmelCase_ : torch.FloatTensor, lowerCAmelCase_ : int, lowerCAmelCase_ : torch.FloatTensor, lowerCAmelCase_ : float = 0.0, lowerCAmelCase_ : bool = True, lowerCAmelCase_ : Optional[int]=None, lowerCAmelCase_ : bool = True, ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowerCAmelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowerCAmelCase = self.alphas_cumprod[timestep] __lowerCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowerCAmelCase = self.bit_scale if self.config.clip_sample: __lowerCAmelCase = torch.clamp(lowerCAmelCase_, -scale, lowerCAmelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowerCAmelCase = self._get_variance(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowerCAmelCase = model_output.device if torch.is_tensor(lowerCAmelCase_ ) else 'cpu' __lowerCAmelCase = torch.randn(model_output.shape, dtype=model_output.dtype, generator=lowerCAmelCase_ ).to(lowerCAmelCase_ ) __lowerCAmelCase = self._get_variance(lowerCAmelCase_, lowerCAmelCase_ ) ** 0.5 * eta * noise __lowerCAmelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase_, pred_original_sample=lowerCAmelCase_ ) def a_ ( self : List[str], lowerCAmelCase_ : torch.FloatTensor, lowerCAmelCase_ : int, lowerCAmelCase_ : torch.FloatTensor, lowerCAmelCase_ : Any="epsilon", lowerCAmelCase_ : Optional[int]=None, lowerCAmelCase_ : bool = True, ): __lowerCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowerCAmelCase , __lowerCAmelCase = torch.split(lowerCAmelCase_, sample.shape[1], dim=1 ) else: __lowerCAmelCase = None # 1. compute alphas, betas __lowerCAmelCase = self.alphas_cumprod[t] __lowerCAmelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowerCAmelCase = 1 - alpha_prod_t __lowerCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowerCAmelCase = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __lowerCAmelCase = self.bit_scale if self.config.clip_sample: __lowerCAmelCase = torch.clamp(lowerCAmelCase_, -scale, lowerCAmelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowerCAmelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCAmelCase = 0 if t > 0: __lowerCAmelCase = torch.randn( model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=lowerCAmelCase_ ).to(model_output.device ) __lowerCAmelCase = (self._get_variance(lowerCAmelCase_, predicted_variance=lowerCAmelCase_ ) ** 0.5) * noise __lowerCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCAmelCase_, pred_original_sample=lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> List[str]: super().__init__() __lowerCAmelCase = bit_scale __lowerCAmelCase = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] = 2_5_6 , lowerCAmelCase_ : Optional[int] = 2_5_6 , lowerCAmelCase_ : Optional[int] = 5_0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: __lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , ) __lowerCAmelCase = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale __lowerCAmelCase = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowerCAmelCase = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample __lowerCAmelCase = bits_to_decimal(lowerCAmelCase_ ) if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
284
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple=1024, lowerCAmelCase_ : Optional[Any]=1024, lowerCAmelCase_ : Tuple=False, **lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='train', **lowerCAmelCase_ ) __lowerCAmelCase = tok.pad_token_id def get_lens(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = tqdm( DataLoader(lowerCAmelCase_, batch_size=512, num_workers=8, shuffle=lowerCAmelCase_, collate_fn=ds.collate_fn ), desc=str(ds.len_file ), ) __lowerCAmelCase = [] for batch in dl: __lowerCAmelCase = batch['input_ids'].ne(lowerCAmelCase_ ).sum(1 ).tolist() __lowerCAmelCase = batch['labels'].ne(lowerCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase_, lowerCAmelCase_ ): max_lens.append(max(lowerCAmelCase_, lowerCAmelCase_ ) ) else: max_lens.extend(lowerCAmelCase_ ) return max_lens __lowerCAmelCase = get_lens(lowerCAmelCase_ ) __lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='val', **lowerCAmelCase_ ) __lowerCAmelCase = get_lens(lowerCAmelCase_ ) pickle_save(lowerCAmelCase_, train_ds.len_file ) pickle_save(lowerCAmelCase_, val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
284
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A : int = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
import math def __lowerCamelCase ( __a :int ) -> bool: """simple docstring""" A__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__a ) def __lowerCamelCase ( __a :float = 1 / 1_2_3_4_5 ) -> int: """simple docstring""" A__ = 0 A__ = 0 A__ = 3 while True: A__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__a ): A__ = int(__a ) total_partitions += 1 if check_partition_perfect(__a ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__a ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
276
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _lowercase : Optional[Any] = None _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Optional[int] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _lowercase : int = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } _lowercase : int = { "moussaKam/mbarthez": 1_0_2_4, "moussaKam/barthez": 1_0_2_4, "moussaKam/barthez-orangesum-title": 1_0_2_4, } _lowercase : Optional[int] = "▁" class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = BarthezTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[str] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = vocab_file lowercase_ : Optional[Any] = False if not self.vocab_file else True def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : Any = [self.cls_token_id] lowercase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : str = [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Any = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
93
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() lowercase_ : Tuple = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.nn.CosineSimilarity(3 , 1E-0_8 ) lowercase_ : Optional[Any] = torch.nn.Softmax(dim=1 ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = W_supports['''sizes'''].tolist() lowercase_ : Dict = W_supports['''start_token_id'''].item() lowercase_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase_ : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Tuple = W_supports['''input_ids'''] == start_token_id lowercase_ : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: lowercase_ : List[str] = 0 else: lowercase_ : List[Any] = support_sizes[i - 1] lowercase_ : str = S[s : s + size][start_token_masks[s : s + size]] lowercase_ : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] lowercase_ : List[str] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase_ : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase_ : Tuple = torch.vstack((p_starts, p_start) ) lowercase_ : Optional[Any] = torch.vstack((p_ends, p_end) ) else: lowercase_ : str = p_start lowercase_ : int = p_end return p_starts, p_ends
93
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
142
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: Optional[int] , _UpperCamelCase: Optional[int]=None , **_UpperCamelCase: Any ) -> Optional[Any]: """simple docstring""" _snake_case = [x.strip() for x in open(_UpperCamelCase ).readlines()] _snake_case = [x.strip() for x in open(_UpperCamelCase ).readlines()][: len(_UpperCamelCase )] _snake_case = calculate_rouge(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) if save_path is not None: save_json(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
142
1
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = str(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [n] for i in range(1 , len(__UpperCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" if len(str(__UpperCamelCase ) ) > 3: if not is_prime(int(str(__UpperCamelCase )[-3:] ) ) or not is_prime(int(str(__UpperCamelCase )[:3] ) ): return False return True def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 11 ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 13 while len(__UpperCamelCase ) != count: if validate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = list_truncated_nums(__UpperCamelCase ) if all(is_prime(__UpperCamelCase ) for i in list_nums ): list_truncated_primes.append(__UpperCamelCase ) num += 2 return list_truncated_primes def __SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
219
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE__ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
219
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __A = None __A = logging.get_logger(__name__) __A = """▁""" __A = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __A = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } __A = { """google/pegasus-xsum""": 512, } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Union[str, Any] = VOCAB_FILES_NAMES __magic_name__ :Dict = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :Union[str, Any] = PegasusTokenizer __magic_name__ :Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<mask_2>" , __UpperCAmelCase="<mask_1>" , __UpperCAmelCase=None , __UpperCAmelCase=1_0_3 , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :int = offset if additional_special_tokens is not None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError( F"additional_special_tokens should be of type {type(__UpperCAmelCase )}, but is" F" {type(__UpperCAmelCase )}" ) lowerCAmelCase__ :List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(__UpperCAmelCase ) , self.offset - 1 ) ] if len(set(__UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase__ :Any = additional_special_tokens_extended else: lowerCAmelCase__ :List[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , pad_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , mask_token_sent=__UpperCAmelCase , offset=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :Optional[int] = vocab_file lowerCAmelCase__ :Tuple = False if not self.vocab_file else True def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__UpperCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__UpperCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ :Optional[Any] = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
352
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __A (_SCREAMING_SNAKE_CASE = "" ) ->dict[str, float]: """simple docstring""" lowerCAmelCase__ :Optional[Any] = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' lowerCAmelCase__ :str = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) lowerCAmelCase__ :List[Any] = soup.find_all('td' , attrs='titleColumn' ) lowerCAmelCase__ :Optional[int] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) } def __A (_SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ) ->None: """simple docstring""" lowerCAmelCase__ :Any = get_imdb_top_aaa_movies() with open(_SCREAMING_SNAKE_CASE , 'w' , newline='' ) as out_file: lowerCAmelCase__ :Dict = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
254
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=99 , __UpperCAmelCase=0 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase="last" , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> List[Any]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope def _UpperCAmelCase ( self ) -> List[Any]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Optional[int]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: _a = FlaubertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase ) _a = model(__UpperCAmelCase , langs=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[str]: _a = FlaubertWithLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = FlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _a = FlaubertForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) _a = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , ) _a = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = FlaubertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = self.num_labels _a = FlaubertForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = self.num_choices _a = FlaubertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A_ : Dict = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Any: _a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def _UpperCAmelCase ( self ) -> List[str]: _a = FlaubertModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def _UpperCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = FlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _a = True _a = model_class(config=__UpperCAmelCase ) _a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _a = torch.jit.trace( __UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) ) _a = torch.jit.load(os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) , map_location=__UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(__UpperCAmelCase ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> Optional[int]: _a = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _a = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _a = model(__UpperCAmelCase )[0] _a = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) _a = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
320
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : List[str] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCamelCase ( _UpperCAmelCase ): lowercase : List[str] = 'trocr' lowercase : int = ['past_key_values'] lowercase : Tuple = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self , SCREAMING_SNAKE_CASE_=5_0265 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Tuple = vocab_size UpperCamelCase : List[Any] = d_model UpperCamelCase : Dict = decoder_layers UpperCamelCase : List[Any] = decoder_attention_heads UpperCamelCase : Dict = decoder_ffn_dim UpperCamelCase : Dict = activation_function UpperCamelCase : Optional[int] = max_position_embeddings UpperCamelCase : str = dropout UpperCamelCase : Tuple = attention_dropout UpperCamelCase : Dict = activation_dropout UpperCamelCase : str = init_std UpperCamelCase : Optional[int] = decoder_layerdrop UpperCamelCase : List[Any] = use_cache UpperCamelCase : Union[str, Any] = scale_embedding UpperCamelCase : List[Any] = use_learned_position_embeddings UpperCamelCase : str = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
27
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __A : Optional[Any] = logging.get_logger(__name__) def A_ ( snake_case_ : np.ndarray ,snake_case_ : Union[int, Iterable[int]] ,snake_case_ : bool ,snake_case_ : int ): '''simple docstring''' def constraint_to_multiple_of(snake_case_ : Optional[Any] ,snake_case_ : Optional[int] ,snake_case_ : List[str]=0 ,snake_case_ : Optional[Any]=None ): UpperCamelCase : List[str] = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase : Dict = math.ceil(val / multiple ) * multiple return x UpperCamelCase : Any = (output_size, output_size) if isinstance(snake_case_ ,snake_case_ ) else output_size UpperCamelCase , UpperCamelCase : int = get_image_size(snake_case_ ) UpperCamelCase , UpperCamelCase : Union[str, Any] = output_size # determine new height and width UpperCamelCase : List[str] = output_height / input_height UpperCamelCase : List[str] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase : int = scale_width else: # fit height UpperCamelCase : Optional[Any] = scale_height UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height ,multiple=snake_case_ ) UpperCamelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width ,multiple=snake_case_ ) return (new_height, new_width) class lowerCamelCase ( _UpperCAmelCase ): lowercase : str = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = size if size is not None else {"""height""": 384, """width""": 384} UpperCamelCase : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = do_resize UpperCamelCase : Union[str, Any] = size UpperCamelCase : Union[str, Any] = keep_aspect_ratio UpperCamelCase : Any = ensure_multiple_of UpperCamelCase : List[Any] = resample UpperCamelCase : str = do_rescale UpperCamelCase : Optional[Any] = rescale_factor UpperCamelCase : List[str] = do_normalize UpperCamelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase : Dict = get_resize_output_image_size( SCREAMING_SNAKE_CASE_ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=SCREAMING_SNAKE_CASE_ , multiple=SCREAMING_SNAKE_CASE_ , ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCamelCase : List[Any] = size if size is not None else self.size UpperCamelCase : Dict = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase : Tuple = resample if resample is not None else self.resample UpperCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std UpperCamelCase : str = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase : Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase : Union[str, Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase : List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = target_sizes.numpy() UpperCamelCase : Dict = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : List[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : List[Any] = logits.argmax(dim=1 ) UpperCamelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
27
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__: Any = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A__: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available A__: int = logging.getLogger(__name__) @dataclass class A__ : __UpperCamelCase : str __UpperCamelCase : List[str] __UpperCamelCase : Optional[List[str]] @dataclass class A__ : __UpperCamelCase : List[int] __UpperCamelCase : List[int] __UpperCamelCase : Optional[List[int]] = None __UpperCamelCase : Optional[List[int]] = None class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = "train" __UpperCamelCase : Tuple = "dev" __UpperCamelCase : str = "test" class A__ : @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Union[Split, str] ) -> List[InputExample]: '''simple docstring''' raise NotImplementedError @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :str ) -> List[str]: '''simple docstring''' raise NotImplementedError @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE :List[InputExample] , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :Optional[Any]="[CLS]" , SCREAMING_SNAKE_CASE :Optional[int]=1 , SCREAMING_SNAKE_CASE :Any="[SEP]" , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Union[str, Any]=False , SCREAMING_SNAKE_CASE :List[str]=0 , SCREAMING_SNAKE_CASE :str=0 , SCREAMING_SNAKE_CASE :Dict=-1_0_0 , SCREAMING_SNAKE_CASE :Optional[int]=0 , SCREAMING_SNAKE_CASE :Tuple=True , ) -> List[InputFeatures]: '''simple docstring''' _a : str ={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} _a : Tuple =[] for ex_index, example in enumerate(SCREAMING_SNAKE_CASE ): if ex_index % 1_0_0_0_0 == 0: logger.info("""Writing example %d of %d""" , SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) _a : Optional[Any] =[] _a : List[Any] =[] for word, label in zip(example.words , example.labels ): _a : Optional[int] =tokenizer.tokenize(SCREAMING_SNAKE_CASE ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(SCREAMING_SNAKE_CASE ) > 0: tokens.extend(SCREAMING_SNAKE_CASE ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(SCREAMING_SNAKE_CASE ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _a : Optional[int] =tokenizer.num_special_tokens_to_add() if len(SCREAMING_SNAKE_CASE ) > max_seq_length - special_tokens_count: _a : List[Any] =tokens[: (max_seq_length - special_tokens_count)] _a : Tuple =label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _a : Dict =[sequence_a_segment_id] * len(SCREAMING_SNAKE_CASE ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _a : Any =[cls_token] + tokens _a : Dict =[pad_token_label_id] + label_ids _a : Union[str, Any] =[cls_token_segment_id] + segment_ids _a : List[str] =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _a : Optional[int] =[1 if mask_padding_with_zero else 0] * len(SCREAMING_SNAKE_CASE ) # Zero-pad up to the sequence length. _a : Union[str, Any] =max_seq_length - len(SCREAMING_SNAKE_CASE ) if pad_on_left: _a : Optional[Any] =([pad_token] * padding_length) + input_ids _a : Optional[int] =([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _a : Union[str, Any] =([pad_token_segment_id] * padding_length) + segment_ids _a : Dict =([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length assert len(SCREAMING_SNAKE_CASE ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(SCREAMING_SNAKE_CASE ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(SCREAMING_SNAKE_CASE ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(SCREAMING_SNAKE_CASE ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(SCREAMING_SNAKE_CASE ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(SCREAMING_SNAKE_CASE ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _a : Tuple =None features.append( InputFeatures( input_ids=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[InputFeatures] __UpperCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self :Dict , SCREAMING_SNAKE_CASE :TokenClassificationTask , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :int=False , SCREAMING_SNAKE_CASE :Split = Split.train , ) -> List[str]: '''simple docstring''' # Load data features from cache or dataset file _a : Optional[Any] =os.path.join( SCREAMING_SNAKE_CASE , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(SCREAMING_SNAKE_CASE ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a : List[str] =cached_features_file + """.lock""" with FileLock(SCREAMING_SNAKE_CASE ): if os.path.exists(SCREAMING_SNAKE_CASE ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) _a : Any =torch.load(SCREAMING_SNAKE_CASE ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) _a : Any =token_classification_task.read_examples_from_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers _a : List[str] =token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"Saving features into cached file {cached_features_file}" ) torch.save(self.features , SCREAMING_SNAKE_CASE ) def __len__( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return len(self.features ) def __getitem__( self :Dict , SCREAMING_SNAKE_CASE :int ) -> InputFeatures: '''simple docstring''' return self.features[i] if is_tf_available(): import tensorflow as tf class A__ : __UpperCamelCase : List[InputFeatures] __UpperCamelCase : int = -100 def __init__( self :str , SCREAMING_SNAKE_CASE :TokenClassificationTask , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :Split = Split.train , ) -> Any: '''simple docstring''' _a : Tuple =token_classification_task.read_examples_from_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # TODO clean up all this to leverage built-in features of tokenizers _a : List[Any] =token_classification_task.convert_examples_to_features( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=SCREAMING_SNAKE_CASE , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _a : Union[str, Any] =tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _a : Union[str, Any] =tf.data.Dataset.from_generator( SCREAMING_SNAKE_CASE , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __UpperCAmelCase ( self :Tuple ) -> Any: '''simple docstring''' _a : List[Any] =self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self :str ) -> Optional[int]: '''simple docstring''' return len(self.features ) def __getitem__( self :int , SCREAMING_SNAKE_CASE :str ) -> InputFeatures: '''simple docstring''' return self.features[i]
276
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __UpperCamelCase ( lowercase__ ): lowercase : Union[str, Any] = (DPMSolverSDEScheduler,) lowercase : Dict = 1_0 def a__ ( self :Union[str, Any] ,**_UpperCamelCase :Optional[Any] ): snake_case_ : Union[str, Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_UpperCamelCase ) return config def a__ ( self :int ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def a__ ( self :Tuple ): for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] ,[0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_UpperCamelCase ,beta_end=_UpperCamelCase ) def a__ ( self :Optional[int] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def a__ ( self :Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def a__ ( self :Optional[Any] ): snake_case_ : Any = self.scheduler_classes[0] snake_case_ : Dict = self.get_scheduler_config() snake_case_ : str = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Dict = self.dummy_model() snake_case_ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : Any = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[Any] = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Tuple = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Any = output.prev_sample snake_case_ : Tuple = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : List[str] = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.47_82_10_44_92_18_75 ) < 1E-2 assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_21_11_81_64_06 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def a__ ( self :str ): snake_case_ : str = self.scheduler_classes[0] snake_case_ : Any = self.get_scheduler_config(prediction_type="""v_prediction""" ) snake_case_ : Tuple = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ : Optional[int] = self.dummy_model() snake_case_ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ : int = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ : List[str] = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Tuple = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : str = output.prev_sample snake_case_ : Dict = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : Optional[Any] = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_24.77_14_92_00_43_94_53 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_28.1_66_33_60_59_57_03 ) < 1E-2 assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97 ) < 1E-3 else: assert abs(result_sum.item() - 1_19.8_48_75_48_82_81_25 ) < 1E-2 assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21 ) < 1E-3 def a__ ( self :Any ): snake_case_ : Tuple = self.scheduler_classes[0] snake_case_ : List[str] = self.get_scheduler_config() snake_case_ : Optional[Any] = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=_UpperCamelCase ) snake_case_ : Optional[Any] = self.dummy_model() snake_case_ : Optional[int] = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ : Dict = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : str = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[str] = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[str] = output.prev_sample snake_case_ : Dict = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : str = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_67.46_95_73_97_46_09_38 ) < 1E-2 assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_71.59_35_36_37_69_53_12 ) < 1E-2 assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71 ) < 1E-3 else: assert abs(result_sum.item() - 1_62.52_38_34_22_85_15_62 ) < 1E-2 assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26 ) < 1E-3 def a__ ( self :Optional[Any] ): snake_case_ : Dict = self.scheduler_classes[0] snake_case_ : Any = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**_UpperCamelCase ,use_karras_sigmas=_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=_UpperCamelCase ) snake_case_ : Dict = self.dummy_model() snake_case_ : Tuple = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma snake_case_ : List[Any] = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: snake_case_ : Any = scheduler.scale_model_input(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : int = model(_UpperCamelCase ,_UpperCamelCase ) snake_case_ : List[Any] = scheduler.step(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Any = output.prev_sample snake_case_ : Optional[Any] = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ : Dict = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_76.66_97_41_35_74_21_88 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_77.63_65_35_64_45_31_25 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2 else: assert abs(result_sum.item() - 1_70.3_13_52_23_38_86_72 ) < 1E-2 assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11 ) < 1E-2
8
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : int = logging.getLogger() def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case_ : int = parser.parse_args() return args.f def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : Optional[Any] = {} snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """all_results.json""" ) if os.path.exists(lowerCamelCase_ ): with open(lowerCamelCase_ , """r""" ) as f: snake_case_ : str = json.load(lowerCamelCase_ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( lowercase__ ): @classmethod def a__ ( cls :Dict ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ : Optional[int] = tempfile.mkdtemp() snake_case_ : Any = os.path.join(cls.tmpdir ,"""default_config.yml""" ) write_basic_config(save_location=cls.configPath ) snake_case_ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def a__ ( cls :int ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Optional[int] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : Dict = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Tuple ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[str] = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertLess(result["""perplexity"""] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ : Dict = 7 if get_gpu_count() > 1 else 2 snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : str = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Optional[int] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.75 ) self.assertLess(result["""train_loss"""] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[str] ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : Optional[int] = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] ,2_8 ) self.assertGreaterEqual(result["""eval_exact"""] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :List[Any] ): snake_case_ : str = self.get_auto_remove_tmp_dir() snake_case_ : Union[str, Any] = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Union[str, Any] = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : List[Any] = self.get_auto_remove_tmp_dir() snake_case_ : List[Any] = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : int = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] ,1_0 ) self.assertGreaterEqual(result["""eval_rouge2"""] ,2 ) self.assertGreaterEqual(result["""eval_rougeL"""] ,7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] ,7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :int ): snake_case_ : Tuple = self.get_auto_remove_tmp_dir() snake_case_ : Optional[Any] = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ : Any = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_bleu"""] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""translation_no_trainer""" ) ) ) @slow def a__ ( self :Optional[Any] ): snake_case_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] ,0.10 ) @mock.patch.dict(os.environ ,{"""WANDB_MODE""": """offline"""} ) def a__ ( self :Any ): snake_case_ : Dict = self.get_auto_remove_tmp_dir() snake_case_ : Tuple = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) snake_case_ : str = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase ,"""image_classification_no_trainer""" ) ) )
8
1
from maths.prime_factors import prime_factors def _a ( UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : Tuple = f"Input value of [number={number}] must be an integer" raise TypeError(UpperCAmelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(UpperCAmelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
142
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Any = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
142
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : List[Any] = "longformer" def __init__( self: Optional[int] ,lowerCamelCase_: Union[List[int], int] = 512 ,lowerCamelCase_: int = 2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: int = 0 ,lowerCamelCase_: int = 2 ,lowerCamelCase_: int = 30522 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 512 ,lowerCamelCase_: int = 2 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: float = 1e-12 ,lowerCamelCase_: bool = False ,**lowerCamelCase_: int ,) -> str: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = attention_window UpperCAmelCase_ : Optional[Any] = sep_token_id UpperCAmelCase_ : int = bos_token_id UpperCAmelCase_ : int = eos_token_id UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[str] = onnx_export class _snake_case ( __snake_case ): '''simple docstring''' def __init__( self: Dict ,lowerCamelCase_: "PretrainedConfig" ,lowerCamelCase_: str = "default" ,lowerCamelCase_: "List[PatchingSpec]" = None ) -> Any: super().__init__(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Any = True @property def A__ ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def A__ ( self: Any ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : Tuple = super().outputs if self.task == "default": UpperCAmelCase_ : int = {0: """batch"""} return outputs @property def A__ ( self: List[str] ) -> float: return 1e-4 @property def A__ ( self: Any ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset ,14 ) def A__ ( self: List[str] ,lowerCamelCase_: "PreTrainedTokenizerBase" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional[TensorType] = None ,) -> Mapping[str, Any]: UpperCAmelCase_ : List[Any] = super().generate_dummy_inputs( preprocessor=lowerCamelCase_ ,batch_size=lowerCamelCase_ ,seq_length=lowerCamelCase_ ,is_pair=lowerCamelCase_ ,framework=lowerCamelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase_ : str = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global UpperCAmelCase_ : Dict = 1 return inputs
368
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[int] = "roformer" def __init__( self: Optional[int] ,lowerCamelCase_: Tuple=50000 ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: List[Any]=768 ,lowerCamelCase_: List[Any]=12 ,lowerCamelCase_: Optional[int]=12 ,lowerCamelCase_: Optional[Any]=3072 ,lowerCamelCase_: int="gelu" ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: Any=1536 ,lowerCamelCase_: str=2 ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-12 ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: Any=False ,lowerCamelCase_: Union[str, Any]=True ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size if embedding_size is None else embedding_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = rotary_value UpperCAmelCase_ : str = use_cache class _snake_case ( __snake_case ): '''simple docstring''' @property def A__ ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ : Optional[Any] = {0: """batch""", 1: """sequence"""} UpperCAmelCase_ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
59
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCamelCase : str = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "sequence-classification" def __init__( self : List[Any] ,lowercase_ : List[str] ): if type(lowercase_ ) == dict: lowerCAmelCase__ : int = Namespace(**lowercase_ ) lowerCAmelCase__ : int = glue_output_modes[hparams.task] lowerCAmelCase__ : List[Any] = glue_tasks_num_labels[hparams.task] super().__init__(lowercase_ ,lowercase_ ,self.mode ) def __lowerCAmelCase ( self : Dict ,**lowercase_ : Tuple ): return self.model(**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Tuple ,lowercase_ : Dict ): lowerCAmelCase__ : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase__ : Optional[Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowerCAmelCase__ : Optional[int] = self(**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = outputs[0] lowerCAmelCase__ : Union[str, Any] = self.trainer.lr_schedulers[0]['''scheduler'''] lowerCAmelCase__ : Union[str, Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Tuple = self.hparams lowerCAmelCase__ : int = processors[args.task]() lowerCAmelCase__ : int = processor.get_labels() for mode in ["train", "dev"]: lowerCAmelCase__ : int = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' ,lowercase_ ) else: logger.info('''Creating features from dataset file at %s''' ,args.data_dir ) lowerCAmelCase__ : int = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowerCAmelCase__ : Optional[int] = convert_examples_to_features( lowercase_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info('''Saving features into cached file %s''' ,lowercase_ ) torch.save(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : str ,lowercase_ : int ,lowercase_ : bool = False ): lowerCAmelCase__ : Tuple = '''dev''' if mode == '''test''' else mode lowerCAmelCase__ : Tuple = self._feature_file(lowercase_ ) logger.info('''Loading features from cached file %s''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = torch.load(lowercase_ ) lowerCAmelCase__ : List[Any] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) lowerCAmelCase__ : Dict = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) lowerCAmelCase__ : Optional[int] = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase__ : Optional[Any] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase__ : List[Any] = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) ,batch_size=lowercase_ ,shuffle=lowercase_ ,) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : str ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase__ : int = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowerCAmelCase__ : int = self(**lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : str = outputs[:2] lowerCAmelCase__ : Optional[Any] = logits.detach().cpu().numpy() lowerCAmelCase__ : Union[str, Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowerCAmelCase ( self : int ,lowercase_ : str ): lowerCAmelCase__ : int = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowerCAmelCase__ : Any = np.concatenate([x['''pred'''] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase__ : Any = np.argmax(lowercase_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase__ : Optional[Any] = np.squeeze(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = np.concatenate([x['''target'''] for x in outputs] ,axis=0 ) lowerCAmelCase__ : Tuple = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : str = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : Any = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task ,lowercase_ ,lowercase_ )} lowerCAmelCase__ : Optional[int] = dict(results.items() ) lowerCAmelCase__ : Any = results return ret, preds_list, out_label_list def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : list ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = self._eval_end(lowercase_ ) lowerCAmelCase__ : str = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowerCAmelCase ( self : int ,lowercase_ : Tuple ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = self._eval_end(lowercase_ ) lowerCAmelCase__ : List[str] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowerCAmelCase ( lowercase_ : Dict ,lowercase_ : int ): BaseTransformer.add_model_specific_args(lowercase_ ,lowercase_ ) parser.add_argument( '''--max_seq_length''' ,default=1_2_8 ,type=lowercase_ ,help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) ,) parser.add_argument( '''--task''' ,default='''''' ,type=lowercase_ ,required=lowercase_ ,help='''The GLUE task to run''' ,) parser.add_argument( '''--gpus''' ,default=0 ,type=lowercase_ ,help='''The number of GPUs allocated for this, it is by default 0 meaning none''' ,) parser.add_argument( '''--overwrite_cache''' ,action='''store_true''' ,help='''Overwrite the cached training and evaluation sets''' ) return parser def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : str = argparse.ArgumentParser() add_generic_args(A_ , os.getcwd() ) lowerCAmelCase__ : int = GLUETransformer.add_model_specific_args(A_ , os.getcwd() ) lowerCAmelCase__ : Tuple = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCAmelCase__ : Tuple = os.path.join( '''./results''' , f'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) lowerCAmelCase__ : Tuple = GLUETransformer(A_ ) lowerCAmelCase__ : Tuple = generic_train(A_ , A_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCAmelCase__ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=A_ ) ) lowerCAmelCase__ : Dict = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(A_ ) if __name__ == "__main__": main()
106
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
254
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __A : Dict = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __A : List[str] = TaTokenizerFast __A : str = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __A : Any = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
27
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A : Any = logging.get_logger(__name__) __A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A : Optional[Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A : Any = {'''allegro/herbert-base-cased''': 514} __A : Optional[Any] = {} class lowerCamelCase ( _UpperCAmelCase ): lowercase : Dict = VOCAB_FILES_NAMES lowercase : Any = PRETRAINED_VOCAB_FILES_MAP lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Union[str, Any] = HerbertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Dict = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Tuple = [self.sep_token_id] UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
27
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : List[str] = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "trajectory_transformer" A_ = ["past_key_values"] A_ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __a=100 , __a=5 , __a=1 , __a=1 , __a=249 , __a=6 , __a=17 , __a=25 , __a=4 , __a=4 , __a=128 , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0006 , __a=512 , __a=0.02 , __a=1E-1_2 , __a=1 , __a=True , __a=1 , __a=5_0256 , __a=5_0256 , **__a , ): '''simple docstring''' __a : List[Any] = vocab_size __a : str = action_weight __a : List[str] = reward_weight __a : Tuple = value_weight __a : Union[str, Any] = max_position_embeddings __a : List[str] = block_size __a : Optional[int] = action_dim __a : List[Any] = observation_dim __a : Union[str, Any] = transition_dim __a : List[str] = learning_rate __a : str = n_layer __a : List[Any] = n_head __a : Optional[Any] = n_embd __a : int = embd_pdrop __a : Optional[Any] = attn_pdrop __a : Optional[Any] = resid_pdrop __a : List[Any] = initializer_range __a : Optional[int] = layer_norm_eps __a : Any = kaiming_initializer_range __a : str = use_cache super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
27
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , 'embed_dim' ) ) self.parent.assertTrue(hasattr(__a , 'num_heads' ) ) class __UpperCamelCase : def __init__( self , __a , __a=13 , __a=64 , __a=3 , __a=[16, 48, 96] , __a=[1, 3, 6] , __a=[1, 2, 10] , __a=[7, 3, 3] , __a=[4, 2, 2] , __a=[2, 1, 1] , __a=[2, 2, 2] , __a=[False, False, True] , __a=[0.0, 0.0, 0.0] , __a=0.02 , __a=1E-1_2 , __a=True , __a=True , __a=2 , ): '''simple docstring''' __a : str = parent __a : List[Any] = batch_size __a : Optional[int] = image_size __a : List[str] = patch_sizes __a : str = patch_stride __a : Any = patch_padding __a : Dict = is_training __a : Union[str, Any] = use_labels __a : Dict = num_labels __a : List[Any] = num_channels __a : Any = embed_dim __a : int = num_heads __a : Optional[int] = stride_kv __a : Dict = depth __a : List[str] = cls_token __a : List[Any] = attention_drop_rate __a : Tuple = initializer_range __a : int = layer_norm_eps def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Dict = None if self.use_labels: # create a random int32 tensor of given shape __a : str = ids_tensor([self.batch_size] , self.num_labels ) __a : str = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = TFCvtModel(config=__a ) __a : Dict = model(__a , training=__a ) __a : Any = (self.image_size, self.image_size) __a , __a : Dict = image_size[0], image_size[1] for i in range(len(self.depth ) ): __a : Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __a : str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : List[Any] = self.num_labels __a : Optional[int] = TFCvtForImageClassification(__a ) __a : Dict = model(__a , labels=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.prepare_config_and_inputs() __a , __a , __a : Tuple = config_and_inputs __a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () A_ = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = TFCvtModelTester(self ) __a : List[Any] = TFCvtConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='Cvt does not output attentions' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) def __UpperCAmelCase ( self ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = tf.keras.mixed_precision.Policy('mixed_float16' ) tf.keras.mixed_precision.set_global_policy(__a ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('float32' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Dict = model_class(__a ) __a : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__a , __a , __a ): __a : List[str] = model_class(__a ) __a : Union[str, Any] = model(**self._prepare_for_class(__a , __a ) ) __a : Any = outputs.hidden_states __a : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(__a ) , __a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __a , __a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : Optional[Any] = True check_hidden_states_output(__a , __a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Optional[Any] = TFCvtModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCamelCase (): __a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __a : Tuple = self.default_image_processor __a : Any = prepare_img() __a : int = image_processor(images=__a , return_tensors='tf' ) # forward pass __a : Any = model(**__a ) # verify the logits __a : Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __a : Optional[Any] = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __a , atol=1E-4 ) )
27
1
def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a__ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
354
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: """simple docstring""" UpperCAmelCase_ : Tuple = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCAmelCase_ : str = randint(-50_00 , 50_00 ) return (arr, r) _lowerCamelCase = make_dataset() def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(_SCREAMING_SNAKE_CASE , 3 ): if sum(_SCREAMING_SNAKE_CASE ) == target: return tuple(sorted(_SCREAMING_SNAKE_CASE ) ) return (0, 0, 0) def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> tuple[int, int, int]: """simple docstring""" arr.sort() UpperCAmelCase_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: """simple docstring""" UpperCAmelCase_ : Tuple = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCAmelCase_ : Optional[Any] = "\ntriplet_sum1(*dataset)\n" UpperCAmelCase_ : str = "\ntriplet_sum2(*dataset)\n" UpperCAmelCase_ : Dict = repeat(setup=_SCREAMING_SNAKE_CASE , stmt=_SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) UpperCAmelCase_ : Dict = repeat(setup=_SCREAMING_SNAKE_CASE , stmt=_SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) return (min(_SCREAMING_SNAKE_CASE ), min(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
67
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE : str = 10 def snake_case__( self : Optional[int] , **_UpperCamelCase : str ) ->Optional[Any]: snake_case_ = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_UpperCamelCase ) return config def snake_case__( self : Optional[Any] ) ->Any: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def snake_case__( self : List[str] ) ->int: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def snake_case__( self : List[str] ) ->Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->int: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def snake_case__( self : Optional[Any] ) ->str: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) snake_case_ = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def snake_case__( self : Optional[Any] ) ->int: snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter.to(_UpperCamelCase ) * scheduler.init_noise_sigma snake_case_ = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: snake_case_ = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model(_UpperCamelCase , _UpperCamelCase ) snake_case_ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ = output.prev_sample snake_case_ = torch.sum(torch.abs(_UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(_UpperCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
8
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
1
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Optional[int] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class __UpperCamelCase ( __UpperCamelCase ): lowerCamelCase : List[Any] ="encodec" def __init__( self , lowerCAmelCase__=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase__=2_4000 , lowerCAmelCase__=1 , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=128 , lowerCAmelCase__=32 , lowerCAmelCase__=1 , lowerCAmelCase__=[8, 5, 4, 2] , lowerCAmelCase__="weight_norm" , lowerCAmelCase__=7 , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__="reflect" , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=1.0 , lowerCAmelCase__=1024 , lowerCAmelCase__=None , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Any: a : Optional[int] = target_bandwidths a : int = sampling_rate a : List[Any] = audio_channels a : str = normalize a : Union[str, Any] = chunk_length_s a : Union[str, Any] = overlap a : Union[str, Any] = hidden_size a : Union[str, Any] = num_filters a : Optional[Any] = num_residual_layers a : List[Any] = upsampling_ratios a : List[str] = norm_type a : Union[str, Any] = kernel_size a : Optional[int] = last_kernel_size a : Optional[Any] = residual_kernel_size a : Dict = dilation_growth_rate a : int = use_causal_conv a : Tuple = pad_mode a : str = compress a : Optional[Any] = num_lstm_layers a : List[Any] = trim_right_ratio a : Any = codebook_size a : int = codebook_dim if codebook_dim is not None else hidden_size a : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_lowerCAmelCase ) @property def __a ( self ) -> int: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __a ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __a ( self ) -> Any: a : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __a ( self ) -> List[str]: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
370
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE ( _lowercase : int = 100 ) ->int: '''simple docstring''' a : Dict = sum(i * i for i in range(1 , n + 1 ) ) a : Tuple = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
79
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ : Any = logging.getLogger(__name__) def _A () -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=__lowerCamelCase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=__lowerCamelCase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=__lowerCamelCase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=__lowerCamelCase , default=10_00 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=__lowerCamelCase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=__lowerCamelCase , default=5_12 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=__lowerCamelCase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() return args def _A (__a ) -> Any: """simple docstring""" def fn(__a ): return tokenizer(examples['''text'''] ) return fn def _A (__a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(len(tokenized_data['''input_ids'''] ) ): SCREAMING_SNAKE_CASE_ : str = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } SCREAMING_SNAKE_CASE_ : Optional[int] = tf.train.Features(feature=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = tf.train.Example(features=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = example.SerializeToString() records.append(__lowerCamelCase ) return records def _A (__a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = min(len(__lowerCamelCase ) , args.limit ) SCREAMING_SNAKE_CASE_ : Tuple = dataset.select(range(__lowerCamelCase ) ) print(f'Limiting the dataset to {args.limit} entries.' ) SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(args.output_dir , args.split ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. SCREAMING_SNAKE_CASE_ : Any = tokenize_function(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dataset.map(__lowerCamelCase , batched=__lowerCamelCase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__a ): # Concatenate all texts. SCREAMING_SNAKE_CASE_ : Optional[Any] = {k: sum(examples[k] , [] ) for k in examples.keys()} SCREAMING_SNAKE_CASE_ : str = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 SCREAMING_SNAKE_CASE_ : Any = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. SCREAMING_SNAKE_CASE_ : Union[str, Any] = { k: [t[i : i + args.max_length] for i in range(0 , __lowerCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result SCREAMING_SNAKE_CASE_ : Any = dataset_tokenized.map(__lowerCamelCase , batched=__lowerCamelCase , batch_size=10_00 , num_proc=4 ) SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for shard in range(0 , len(__lowerCamelCase ) , args.shard_size ): SCREAMING_SNAKE_CASE_ : int = grouped_dataset[shard : shard + args.shard_size] SCREAMING_SNAKE_CASE_ : Any = len(dataset_snapshot['''input_ids'''] ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(__lowerCamelCase , f'dataset-{shard_count}-{records_containing}.tfrecord' ) SCREAMING_SNAKE_CASE_ : Tuple = get_serialized_examples(__lowerCamelCase ) with tf.io.TFRecordWriter(__lowerCamelCase ) as out_file: for i in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ : Dict = serialized_examples[i] out_file.write(__lowerCamelCase ) print('''Wrote file {} containing {} records'''.format(__lowerCamelCase , __lowerCamelCase ) ) shard_count += 1 total_records += records_containing with open(f'split-{args.split}-records-count.txt' , '''w''' ) as f: print(f'Total {args.split} records: {total_records}' , file=__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = parse_args() main(args)
91
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __lowerCamelCase = TaTokenizerFast __lowerCamelCase = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __lowerCamelCase = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
59
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=18 ,SCREAMING_SNAKE_CASE__=30 ,SCREAMING_SNAKE_CASE__=4_00 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] ,SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] ,) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = size if size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE :Tuple = parent __SCREAMING_SNAKE_CASE :int = batch_size __SCREAMING_SNAKE_CASE :str = num_channels __SCREAMING_SNAKE_CASE :List[str] = image_size __SCREAMING_SNAKE_CASE :Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE :Union[str, Any] = max_resolution __SCREAMING_SNAKE_CASE :Dict = do_resize __SCREAMING_SNAKE_CASE :str = size __SCREAMING_SNAKE_CASE :str = do_normalize __SCREAMING_SNAKE_CASE :List[str] = image_mean __SCREAMING_SNAKE_CASE :str = image_std def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE( A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = DPTImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = DPTImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ ,'''size''' ) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'''height''': 42, '''width''': 42} ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE :List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE :List[str] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __SCREAMING_SNAKE_CASE :str = image_processing(SCREAMING_SNAKE_CASE__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE :Optional[int] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__ ,numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE :Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __SCREAMING_SNAKE_CASE :Dict = image_processing(SCREAMING_SNAKE_CASE__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE :Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=SCREAMING_SNAKE_CASE__ ,torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ ,torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE :Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,) # Test batched __SCREAMING_SNAKE_CASE :Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) ,)
239
"""simple docstring""" from itertools import product def __lowerCamelCase ( a_ : int , a_ : int ) -> list[int]: __SCREAMING_SNAKE_CASE :Tuple = sides_number __SCREAMING_SNAKE_CASE :List[Any] = max_face_number * dice_number __SCREAMING_SNAKE_CASE :List[Any] = [0] * (max_total + 1) __SCREAMING_SNAKE_CASE :Optional[int] = 1 __SCREAMING_SNAKE_CASE :Tuple = range(a_ , max_face_number + 1 ) for dice_numbers in product(a_ , repeat=a_ ): __SCREAMING_SNAKE_CASE :Any = sum(a_ ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCamelCase ( ) -> float: __SCREAMING_SNAKE_CASE :Dict = total_frequency_distribution( sides_number=4 , dice_number=9 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __SCREAMING_SNAKE_CASE :Optional[Any] = 0 __SCREAMING_SNAKE_CASE :Any = 9 __SCREAMING_SNAKE_CASE :List[str] = 4 * 9 __SCREAMING_SNAKE_CASE :Dict = 6 for peter_total in range(a_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __SCREAMING_SNAKE_CASE :List[str] = (4**9) * (6**6) __SCREAMING_SNAKE_CASE :Union[str, Any] = peter_wins_count / total_games_number __SCREAMING_SNAKE_CASE :str = round(a_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
239
1
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCamelCase (): __a : Optional[int] = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=_SCREAMING_SNAKE_CASE ) __a : Any = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Parse args __a , __a : Dict = parser.parse_known_args() if not hasattr(_SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) __a : List[str] = parse_unknown_args(_SCREAMING_SNAKE_CASE ) # Run __a : Optional[Any] = args.func(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
27
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowercase : List[Any] = 'bart' __lowercase : Union[str, Any] = True @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __a : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __a : Optional[int] = qar_model.eval() else: __a , __a : str = (None, None) if MODEL_TYPE == "bart": __a : Union[str, Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __a : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __a : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __a : str = sas_model.eval() else: __a , __a : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Dict = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __a : int = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __a : int = faiss.IndexFlatIP(128 ) __a : Any = faiss.index_cpu_to_gpu(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(_SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __a , __a : str = (None, None) __a : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Dict = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __a : Dict = elia['train_eli5'] __a : Optional[int] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __a : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) __lowercase , __lowercase , __lowercase : Any = load_indexes() __lowercase , __lowercase , __lowercase , __lowercase : Dict = load_models() __lowercase , __lowercase : int = load_train_data() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=10 ): __a : Optional[int] = embed_questions_for_retrieval([question] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a : Union[str, Any] = eli5_train_q_index.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [elia_train[int(_SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str="wiki40b" , _SCREAMING_SNAKE_CASE : List[str]="dense" , _SCREAMING_SNAKE_CASE : Any=10 ): if source == "none": __a , __a : Any = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a : str = query_qa_dense_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a : Union[str, Any] = query_es_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index_name='english_wiki40b_snippets_100w' , n_results=_SCREAMING_SNAKE_CASE , ) __a : Dict = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a : Any = 'question: {} context: {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _SCREAMING_SNAKE_CASE : None), } ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=64 , _SCREAMING_SNAKE_CASE : Dict=256 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.9_5 , _SCREAMING_SNAKE_CASE : str=0.8 ): with torch.no_grad(): __a : Union[str, Any] = qa_sas_generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , temp=_SCREAMING_SNAKE_CASE , top_p=_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE , max_input_length=1_024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowercase : Optional[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowercase : str = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowercase : Dict = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowercase : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: __lowercase : Any = st.sidebar.selectbox( '', action_list, index=3, ) __lowercase : Tuple = action_list.index(action_st) __lowercase : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowercase : List[Any] = show_type == 'Show full text of passages' else: __lowercase : int = 3 __lowercase : str = True __lowercase : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowercase : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowercase : str = 'wiki40b' __lowercase : List[Any] = 'dense' __lowercase : Dict = 'beam' __lowercase : Optional[int] = 2 __lowercase : List[str] = 64 __lowercase : Tuple = 2_56 __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : List[Any] = st.sidebar.checkbox('Generation options') if generate_options: __lowercase : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowercase : List[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowercase : Tuple = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowercase : int = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowercase : Dict = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowercase : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowercase : List[str] = None # start main text __lowercase : int = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowercase : Any = st.text_input('Enter your question here:', '') else: __lowercase : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowercase , __lowercase : Optional[int] = make_support(question, source=wiki_source, method='dense', n_results=10) __lowercase , __lowercase : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowercase : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowercase : str = support_list[:10] __lowercase : Optional[int] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowercase , __lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowercase , __lowercase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowercase : str = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowercase : Any = res[1].strip() if sec_titles == "": __lowercase : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __lowercase : Union[str, Any] = sec_titles.split(' & ') __lowercase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowercase : str = find_nearest_training(question) __lowercase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowercase : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowercase : List[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
27
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = tempfile.mkdtemp() # fmt: off _A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _A = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } _A = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : Any , **__UpperCAmelCase : int ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowerCAmelCase ( self : int , **__UpperCAmelCase : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.get_tokenizer() _A = self.get_image_processor() _A = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _A = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _A = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) _A = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.get_image_processor() _A = self.get_tokenizer() _A = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__UpperCAmelCase , return_tensors="np" ) _A = processor(images=__UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.get_image_processor() _A = self.get_tokenizer() _A = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) _A = "lower newer" _A = processor(text=__UpperCAmelCase ) _A = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.get_image_processor() _A = self.get_tokenizer() _A = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) _A = "lower newer" _A = self.prepare_image_inputs() _A = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(__UpperCAmelCase ): processor() def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.get_image_processor() _A = self.get_tokenizer() _A = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__UpperCAmelCase ) _A = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.get_image_processor() _A = self.get_tokenizer() _A = VisionTextDualEncoderProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) _A = "lower newer" _A = self.prepare_image_inputs() _A = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
174
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCamelCase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : List[str]=18 , __UpperCAmelCase : Union[str, Any]=30 , __UpperCAmelCase : Union[str, Any]=400 , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Union[str, Any]=None , ): '''simple docstring''' _A = size if size is not None else {"height": 20, "width": 20} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = size _A = do_normalize _A = do_convert_rgb _A = [512, 1024, 2048, 4096] _A = patch_size if patch_size is not None else {"height": 16, "width": 16} def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _A = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : int ): '''simple docstring''' _A = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_convert_rgb" ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processor_tester.prepare_dummy_image() _A = self.image_processing_class(**self.image_processor_dict ) _A = 2048 _A = image_processor(__UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _A = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__UpperCAmelCase ): _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches _A = "Hello" _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase , header_text=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = PixaStructImageProcessingTester(self , num_channels=4 ) _A = 3 @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCAmelCase , "do_convert_rgb" ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( __UpperCAmelCase , return_tensors="pt" , max_patches=__UpperCAmelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
174
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
343
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
67
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str=1_3 , _lowerCAmelCase : Optional[int]=7 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : str=9_9 , _lowerCAmelCase : int=3_2 , _lowerCAmelCase : Union[str, Any]=5 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Union[str, Any]=3_7 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=1_6 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Tuple=4 , ): '''simple docstring''' __lowercase =parent __lowercase =batch_size __lowercase =seq_length __lowercase =is_training __lowercase =use_attention_mask __lowercase =use_token_type_ids __lowercase =use_labels __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =type_sequence_label_size __lowercase =initializer_range __lowercase =num_choices def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowercase =None if self.use_attention_mask: __lowercase =random_attention_mask([self.batch_size, self.seq_length]) __lowercase =None if self.use_token_type_ids: __lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __lowercase =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase =config_and_inputs __lowercase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase =config_and_inputs __lowercase =True __lowercase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __lowercase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =FlaxRobertaPreLayerNormModelTester(self) @slow def __lowerCamelCase ( self : int): '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase =model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_lowerCAmelCase) __lowercase =model(np.ones((1, 1))) self.assertIsNotNone(_lowerCAmelCase) @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_lowerCAmelCase) __lowercase =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa) __lowercase =model(_lowerCAmelCase)[0] __lowercase =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape) , _lowerCAmelCase) # compare the actual values for a slice. __lowercase =np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4)) @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=_lowerCAmelCase) __lowercase =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa) __lowercase =model(_lowerCAmelCase)[0] # compare the actual values for a slice. __lowercase =np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4))
48
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class _UpperCamelCase ( A , A ): '''simple docstring''' lowerCAmelCase__ = """resnet""" lowerCAmelCase__ = ["""basic""", """bottleneck"""] def __init__( self : Any , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Optional[int]=6_4 , _lowerCAmelCase : str=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _lowerCAmelCase : Any=[3, 4, 6, 3] , _lowerCAmelCase : List[Any]="bottleneck" , _lowerCAmelCase : List[str]="relu" , _lowerCAmelCase : int=False , _lowerCAmelCase : int=None , _lowerCAmelCase : Any=None , **_lowerCAmelCase : Any , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types)}""") __lowercase =num_channels __lowercase =embedding_size __lowercase =hidden_sizes __lowercase =depths __lowercase =layer_type __lowercase =hidden_act __lowercase =downsample_in_first_stage __lowercase =['stem'] + [f"""stage{idx}""" for idx in range(1 , len(_lowerCAmelCase) + 1)] __lowercase , __lowercase =get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __lowerCamelCase ( self : Tuple): '''simple docstring''' return 1e-3
48
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCamelCase_ = logging.getLogger(__name__) def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' if os.path.exists(__lowercase ): if os.path.exists(os.path.join(__lowercase , "config.json" ) ) and os.path.isfile( os.path.join(__lowercase , "config.json" ) ): os.remove(os.path.join(__lowercase , "config.json" ) ) if os.path.exists(os.path.join(__lowercase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__lowercase , "pytorch_model.bin" ) ): os.remove(os.path.join(__lowercase , "pytorch_model.bin" ) ) else: os.makedirs(__lowercase ) model.save_pretrained(__lowercase ) def __lowercase ( __lowercase , __lowercase=False ) -> Optional[int]: '''simple docstring''' _A = 2 if unlogit: _A = torch.pow(__lowercase , __lowercase ) _A = p * torch.log(__lowercase ) _A = 0 return -plogp.sum(dim=-1 ) def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(__lowercase ) ) ) ) for row in range(len(__lowercase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase=True , __lowercase=True , __lowercase=None , __lowercase=False ) -> int: '''simple docstring''' _A , _A = model.config.num_hidden_layers, model.config.num_attention_heads _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) if head_mask is None: _A = torch.ones(__lowercase , __lowercase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowercase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A = None _A = 0.0 _A = 0.0 for step, inputs in enumerate(tqdm(__lowercase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _A = tuple(t.to(args.device ) for t in inputs ) ((_A) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A = model(__lowercase , labels=__lowercase , head_mask=__lowercase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowercase ): _A = entropy(attn.detach() , __lowercase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowercase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A = 2 _A = torch.pow(torch.pow(__lowercase , __lowercase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _A = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__lowercase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__lowercase ) logger.info("Head ranked by importance scores" ) _A = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A = torch.arange( head_importance.numel() , device=args.device ) _A = head_ranks.view_as(__lowercase ) print_ad_tensor(__lowercase ) return attn_entropy, head_importance, total_loss def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A , _A , _A = compute_heads_importance(__lowercase , __lowercase , __lowercase , compute_entropy=__lowercase ) _A = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __lowercase , original_score * args.masking_threshold ) _A = torch.ones_like(__lowercase ) _A = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A = original_score while current_score >= original_score * args.masking_threshold: _A = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A = float("Inf" ) _A = head_importance.view(-1 ).sort()[1] if len(__lowercase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _A = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _A = new_head_mask.view(-1 ) _A = 0.0 _A = new_head_mask.view_as(__lowercase ) _A = new_head_mask.clone().detach() print_ad_tensor(__lowercase ) # Compute metric and head importance again _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , head_mask=__lowercase ) _A = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(__lowercase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase ) _A = 1 / loss _A = datetime.now() - before_time _A = sum(p.numel() for p in model.parameters() ) _A = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowercase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowercase , __lowercase ): _A = [ v, ] assert sum(len(__lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowercase ) _A = sum(p.numel() for p in model.parameters() ) _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase , actually_pruned=__lowercase , ) _A = 1 / loss _A = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __lowercase , __lowercase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __lowercase , __lowercase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(__lowercase , args.output_dir ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__lowercase , type=__lowercase , required=__lowercase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__lowercase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__lowercase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__lowercase , type=__lowercase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__lowercase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__lowercase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__lowercase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__lowercase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=__lowercase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__lowercase , help="Batch size." ) parser.add_argument("--seed" , type=__lowercase , default=42 ) parser.add_argument("--local_rank" , type=__lowercase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__lowercase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__lowercase , default="" , help="Can be used for distant debugging." ) _A = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowercase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _A = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A = torch.device("cuda" , args.local_rank ) _A = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A = nn.parallel.DistributedDataParallel( __lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowercase ) elif args.n_gpu > 1: _A = nn.DataParallel(__lowercase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowercase ) torch.save(__lowercase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __lowercase ) # Prepare dataset _A = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A = (torch.from_numpy(__lowercase ),) _A = TensorDataset(*__lowercase ) _A = RandomSampler(__lowercase ) _A = DataLoader(__lowercase , sampler=__lowercase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowercase , __lowercase , __lowercase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A = mask_heads(__lowercase , __lowercase , __lowercase ) prune_heads(__lowercase , __lowercase , __lowercase , __lowercase ) if __name__ == "__main__": main()
79
0
from __future__ import annotations def __UpperCamelCase ( _A : int , _A : int ) ->list[str]: """simple docstring""" if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) lowerCamelCase_ =number_of_bytes // partitions lowerCamelCase_ =[] for i in range(snake_case__ ): lowerCamelCase_ =i * bytes_per_partition + 1 lowerCamelCase_ =( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
364
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , )-> str: lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_token_type_ids lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =type_sequence_label_size lowerCamelCase_ =initializer_range lowerCamelCase_ =num_labels lowerCamelCase_ =num_choices lowerCamelCase_ =scope def _snake_case ( self )-> int: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self )-> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def _snake_case ( self )-> Tuple: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.prepare_config_and_inputs() lowerCamelCase_ =True lowerCamelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: lowerCamelCase_ =NezhaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )-> Tuple: lowerCamelCase_ =True lowerCamelCase_ =NezhaModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> List[str]: lowerCamelCase_ =NezhaForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =NezhaForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =NezhaForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =NezhaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =self.num_labels lowerCamelCase_ =NezhaForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Dict: lowerCamelCase_ =self.num_labels lowerCamelCase_ =NezhaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: lowerCamelCase_ =self.num_choices lowerCamelCase_ =NezhaForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCamelCase_ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ =model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =config_and_inputs lowerCamelCase_ ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Optional[int] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase:int = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase:Tuple = True def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )-> Optional[Any]: lowerCamelCase_ =super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): lowerCamelCase_ =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _snake_case ( self )-> Dict: lowerCamelCase_ =NezhaModelTester(self ) lowerCamelCase_ =ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )-> List[str]: self.config_tester.run_common_tests() def _snake_case ( self )-> str: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) =self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase_ =None self.model_tester.create_and_check_model_as_decoder( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def _snake_case ( self )-> Dict: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Any: lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> Union[str, Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =NezhaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def _snake_case ( self )-> Any: lowerCamelCase_ , lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCamelCase_ =True lowerCamelCase_ =model_class(config=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) ) lowerCamelCase_ =torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): @slow def _snake_case ( self )-> Dict: lowerCamelCase_ =NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowerCamelCase_ =torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ =model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowerCamelCase_ =torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
49
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase : Dict = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
239
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __magic_name__ ( _UpperCAmelCase): def __init__( self : Optional[Any] , lowercase_ : str ): lowercase_ : int = data def __iter__( self : int ): for element in self.data: yield element def lowerCamelCase ( UpperCAmelCase__ : Any=True ) -> Any: lowercase_ : Optional[int] = Accelerator(even_batches=UpperCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : bool = False ) -> Optional[Any]: if iterable: lowercase_ : Dict = DummyIterableDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) else: lowercase_ : Union[str, Any] = TensorDataset(torch.as_tensor(range(UpperCAmelCase__ ) ) ) lowercase_ : Any = DataLoader(UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) return dl def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , ) -> int: lowercase_ : List[str] = create_dataloader(accelerator=UpperCAmelCase__ , dataset_size=UpperCAmelCase__ , batch_size=UpperCAmelCase__ ) lowercase_ : Tuple = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowerCamelCase ( ) -> int: lowercase_ : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowerCamelCase ( ) -> Optional[int]: lowercase_ : Optional[int] = create_accelerator(even_batches=UpperCAmelCase__ ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( UpperCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowerCamelCase ( ) -> List[str]: lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Dict = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[Any] = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(UpperCAmelCase__ ): lowercase_ : Any = ddp_model(batch[0].float() ) lowercase_ : List[str] = output.sum() loss.backward() batch_idxs.append(UpperCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> List[str]: with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowerCamelCase ( ) -> Any: lowercase_ : str = True lowercase_ : Tuple = False lowercase_ : str = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Union[str, Any] = torch.nn.Linear(1 , 1 ) lowercase_ : Any = accelerator.prepare(UpperCAmelCase__ ) lowercase_ : Optional[int] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) lowercase_ : List[Any] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Union[str, Any] = train_dl.batch_sampler.even_batches lowercase_ : List[str] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> Dict: lowercase_ : str = True lowercase_ : Optional[Any] = False lowercase_ : Union[str, Any] = create_accelerator(even_batches=UpperCAmelCase__ ) lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : Optional[int] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) lowercase_ : List[str] = create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("""ignore""" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): lowercase_ : Optional[Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowerCamelCase ( ) -> List[Any]: lowercase_ : Optional[Any] = create_accelerator() lowercase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowercase_ : List[Any] = accelerator.prepare(UpperCAmelCase__ ) create_dataloader(UpperCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=UpperCAmelCase__ ) with warnings.catch_warnings(record=UpperCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=UpperCAmelCase__ ): pass assert issubclass(w[-1].category , UpperCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowerCamelCase ( ) -> List[str]: lowercase_ : List[Any] = create_accelerator() accelerator.print("""Test that even_batches variable ensures uniform batches across processes""" ) test_default_ensures_even_batch_sizes() accelerator.print("""Run tests with even_batches disabled""" ) test_can_disable_even_batches() accelerator.print("""Test joining uneven inputs""" ) test_can_join_uneven_inputs() accelerator.print("""Test overriding even_batches when joining uneven inputs""" ) test_join_can_override_even_batches() accelerator.print("""Test overriding even_batches for mixed dataloader types""" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("""Test overriding even_batches raises a warning for iterable dataloaders""" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("""Test join with non DDP distributed raises warning""" ) lowercase_ : List[Any] = accelerator.state.distributed_type lowercase_ : Union[str, Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(UpperCAmelCase__ ) lowercase_ : str = original_state if __name__ == "__main__": main()
239
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=None , ) -> str: '''simple docstring''' A_ = size if size is not None else {"""shortest_edge""": 20} A_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_center_crop A_ = crop_size def snake_case_ ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class A__ ( _snake_case , unittest.TestCase ): lowercase = MobileNetVaImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = MobileNetVaImageProcessingTester(self ) @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """crop_size""" ) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' pass def snake_case_ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
101
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00 ) -> int: A_ = n * (n + 1) * (2 * n + 1) / 6 A_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
101
1
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = MgpstrTokenizer __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Any = {} __UpperCamelCase : Union[str, Any] = False def _snake_case (self ): super().setUp() # fmt: off __lowerCAmelCase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) def _snake_case (self , **__lowercase ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = '''tester''' __lowerCAmelCase = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def _snake_case (self ): pass def _snake_case (self ): __lowerCAmelCase = self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __lowerCAmelCase = tokenizer.encode([special_token] , add_special_tokens=__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) __lowerCAmelCase = tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) self.assertTrue(special_token not in decoded ) def _snake_case (self ): __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase , __lowerCAmelCase = self.get_input_output_texts(__lowercase ) __lowerCAmelCase = tokenizer.tokenize(__lowercase ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowercase ) __lowerCAmelCase = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertNotEqual(len(__lowercase ) , 0 ) __lowerCAmelCase = tokenizer.decode(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , __lowercase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def _snake_case (self ): pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def _snake_case (self ): pass
174
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _UpperCAmelCase : int = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a__ ( datasets.BuilderConfig ): """simple docstring""" __UpperCamelCase : Optional[datasets.Features] = None def __magic_name__( lowerCamelCase, lowerCamelCase, ): import pyspark def generate_fn(): __lowerCAmelCase = df.select('''*''', pyspark.sql.functions.spark_partition_id().alias('''part_id''')) for partition_id in partition_order: __lowerCAmelCase = df_with_partition_id.select('''*''').where(F"""part_id = {partition_id}""").drop('''part_id''') __lowerCAmelCase = partition_df.collect() __lowerCAmelCase = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class a__ ( _BaseExamplesIterable ): """simple docstring""" def __init__(self , __lowercase , __lowercase=None , ): __lowerCAmelCase = df __lowerCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__(self ): yield from self.generate_examples_fn() def _snake_case (self , __lowercase ): __lowerCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__lowercase ) return SparkExamplesIterable(self.df , partition_order=__lowercase ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = self.split_shard_indices_by_worker(__lowercase , __lowercase ) return SparkExamplesIterable(self.df , partition_order=__lowercase ) @property def _snake_case (self ): return len(self.partition_order ) class a__ ( datasets.DatasetBuilder ): """simple docstring""" __UpperCamelCase : int = SparkConfig def __init__(self , __lowercase , __lowercase = None , __lowercase = None , **__lowercase , ): import pyspark __lowerCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCAmelCase = df __lowerCAmelCase = working_dir super().__init__( cache_dir=__lowercase , config_name=str(self.df.semanticHash() ) , **__lowercase , ) def _snake_case (self ): # Returns the path of the created file. def create_cache_and_write_probe(__lowercase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__lowercase ) __lowerCAmelCase = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__lowercase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__lowercase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def _snake_case (self ): return datasets.DatasetInfo(features=self.config.features ) def _snake_case (self , __lowercase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _snake_case (self , __lowercase ): import pyspark def get_arrow_batch_size(__lowercase ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) __lowerCAmelCase = self.df.count() __lowerCAmelCase = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCAmelCase = ( self.df.limit(__lowercase ) .repartition(1 ) .mapInArrow(__lowercase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCAmelCase = min(__lowercase , int(approx_total_size / max_shard_size ) ) __lowerCAmelCase = self.df.repartition(__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , ): import pyspark __lowerCAmelCase = ParquetWriter if file_format == '''parquet''' else ArrowWriter __lowerCAmelCase = os.path.join(self._working_dir , os.path.basename(__lowercase ) ) if self._working_dir else fpath __lowerCAmelCase = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCAmelCase = self.config.features __lowerCAmelCase = self._writer_batch_size __lowerCAmelCase = self._fs.storage_options def write_arrow(__lowercase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCAmelCase = pyspark.TaskContext().taskAttemptId() __lowerCAmelCase = next(__lowercase , __lowercase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) __lowerCAmelCase = 0 __lowerCAmelCase = writer_class( features=__lowercase , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=__lowercase , storage_options=__lowercase , embed_local_files=__lowercase , ) __lowerCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(__lowercase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 __lowerCAmelCase = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , writer_batch_size=__lowercase , storage_options=__lowercase , embed_local_files=__lowercase , ) __lowerCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(__lowercase ) if writer._num_bytes > 0: __lowerCAmelCase , __lowerCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__lowercase ) ): __lowerCAmelCase = os.path.join(os.path.dirname(__lowercase ) , os.path.basename(__lowercase ) ) shutil.move(__lowercase , __lowercase ) __lowerCAmelCase = ( self.df.mapInArrow(__lowercase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _snake_case (self , __lowercase , __lowercase = "arrow" , __lowercase = None , __lowercase = None , **__lowercase , ): self._validate_cache_dir() __lowerCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__lowercase ) __lowerCAmelCase = not is_remote_filesystem(self._fs ) __lowerCAmelCase = os.path.join if is_local else posixpath.join __lowerCAmelCase = '''-TTTTT-SSSSS-of-NNNNN''' __lowerCAmelCase = F"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" __lowerCAmelCase = path_join(self._output_dir , __lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [] for task_id, content in self._prepare_split_single(__lowercase , __lowercase , __lowercase ): ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__lowercase ) __lowerCAmelCase = total_num_examples __lowerCAmelCase = total_num_bytes # should rename everything at the end logger.debug(F"""Renaming {total_shards} shards.""" ) if total_shards > 1: __lowerCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowercase , __lowercase , __lowercase , ): rename( __lowercase , fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace('''TTTTT-SSSSS''' , F"""{global_shard_id:05d}""" ).replace('''NNNNN''' , F"""{total_shards:05d}""" ) , ) __lowerCAmelCase = [] __lowerCAmelCase = 0 for i in range(len(__lowercase ) ): __lowerCAmelCase , __lowerCAmelCase = task_id_and_num_shards[i] for shard_id in range(__lowercase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__lowercase , len(__lowercase ) ).map(lambda __lowercase : _rename_shard(*__lowercase ) ).collect() else: # don't use any pattern __lowerCAmelCase = 0 __lowerCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , F"""{shard_id:05d}""" ).replace('''TTTTT''' , F"""{task_id:05d}""" ) , fpath.replace(__lowercase , '''''' ) , ) def _snake_case (self , __lowercase , ): return SparkExamplesIterable(self.df )
174
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = ["pixel_values"] def __init__(self , __a = True , __a = None , __a = 0.9 , __a = PILImageResampling.BICUBIC , __a = True , __a = None , __a = 1 / 2_55 , __a = True , __a = True , __a = None , __a = None , **__a , ) -> None: super().__init__(**__a ) UpperCamelCase = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase = get_size_dict(__a , default_to_square=__a ) UpperCamelCase = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCamelCase = get_size_dict(__a , param_name="crop_size" ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = resample UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ (self , __a , __a , __a = None , __a = PILImageResampling.BICUBIC , __a = None , **__a , ) -> np.ndarray: UpperCamelCase = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: UpperCamelCase = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: UpperCamelCase = int(size["height"] / crop_pct ) else: UpperCamelCase = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(__a ) ) UpperCamelCase = get_resize_output_image_size(__a , size=__a , default_to_square=__a ) else: if "shortest_edge" in size: UpperCamelCase = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) elif "height" in size and "width" in size: UpperCamelCase = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(__a ) ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def snake_case_ (self , __a , __a , __a = None , **__a , ) -> np.ndarray: UpperCamelCase = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def snake_case_ (self , __a , __a , __a = None , **__a , ) -> List[Any]: return rescale(__a , scale=__a , data_format=__a , **__a ) def snake_case_ (self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def snake_case_ (self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> PIL.Image.Image: UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(__a , default_to_square=__a ) UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(__a , param_name="crop_size" ) UpperCamelCase = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(__a ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=__a , size=__a , crop_pct=__a , resample=__a ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] UpperCamelCase = [to_channel_dimension_format(__a , __a ) for image in images] UpperCamelCase = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
350
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return (position - 1) // 2 def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return (2 * position) + 1 def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return (2 * position) + 2 class _lowerCamelCase ( Generic[T] ): def __init__(self ) -> None: UpperCamelCase = [] UpperCamelCase = {} UpperCamelCase = 0 def __len__(self ) -> int: return self.elements def __repr__(self ) -> str: return str(self.heap ) def snake_case_ (self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ (self , __a , __a ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase = self.elements self.elements += 1 self._bubble_up(__a ) def snake_case_ (self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase , UpperCamelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase , UpperCamelCase = self.heap[0] self._bubble_down(__a ) return elem def snake_case_ (self , __a , __a ) -> None: # Update the weight of the given key UpperCamelCase = self.position_map[elem] UpperCamelCase = (elem, weight) if position > 0: UpperCamelCase = get_parent_position(__a ) UpperCamelCase , UpperCamelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__a ) else: self._bubble_down(__a ) else: self._bubble_down(__a ) def snake_case_ (self , __a ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase = get_parent_position(__a ) UpperCamelCase , UpperCamelCase = self.heap[curr_pos] UpperCamelCase , UpperCamelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__a , __a ) return self._bubble_up(__a ) return None def snake_case_ (self , __a ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase = self.position_map[elem] UpperCamelCase , UpperCamelCase = self.heap[curr_pos] UpperCamelCase = get_child_left_position(__a ) UpperCamelCase = get_child_right_position(__a ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase , UpperCamelCase = self.heap[child_left_position] UpperCamelCase , UpperCamelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) if child_left_position < self.elements: UpperCamelCase , UpperCamelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) else: return None if child_right_position < self.elements: UpperCamelCase , UpperCamelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) return None def snake_case_ (self , __a , __a ) -> None: # Swap the nodes at the given positions UpperCamelCase = self.heap[nodea_pos][0] UpperCamelCase = self.heap[nodea_pos][0] UpperCamelCase , UpperCamelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase = nodea_pos UpperCamelCase = nodea_pos class _lowerCamelCase ( Generic[T] ): def __init__(self ) -> None: UpperCamelCase = {} UpperCamelCase = 0 def __repr__(self ) -> str: return str(self.connections ) def __len__(self ) -> int: return self.nodes def snake_case_ (self , __a ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase = {} self.nodes += 1 def snake_case_ (self , __a , __a , __a ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__a ) self.add_node(__a ) UpperCamelCase = weight UpperCamelCase = weight def a__ ( _SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase = {node: maxsize for node in graph.connections} UpperCamelCase = {node: None for node in graph.connections} UpperCamelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase = priority_queue.extract_min() UpperCamelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) UpperCamelCase = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) UpperCamelCase = node return dist, parent
244
0
from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE__ : Optional[int] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' SCREAMING_SNAKE_CASE__ : Dict = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' SCREAMING_SNAKE_CASE__ : Optional[int] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ (datasets.Metric ): '''simple docstring''' def _lowercase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__="binary" , UpperCamelCase__=None ) -> Union[str, Any]: lowerCamelCase : Dict = fa_score( UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ , pos_label=UpperCamelCase__ , average=UpperCamelCase__ , sample_weight=UpperCamelCase__ ) return {"f1": float(UpperCamelCase__ ) if score.size == 1 else score}
48
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> list: lowerCamelCase : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowerCamelCase : Dict = True for j in range(_SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowerCamelCase : Optional[int] = False break if match_found: position.append(_SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
48
1
import os def SCREAMING_SNAKE_CASE ( snake_case_ : str = "input.txt" ): with open(os.path.join(os.path.dirname(snake_case_ ) , snake_case_ ) ) as input_file: snake_case__ : Dict = [ [int(snake_case_ ) for element in line.split("," )] for line in input_file.readlines() ] snake_case__ : Optional[int] = len(snake_case_ ) snake_case__ : Any = len(matrix[0] ) snake_case__ : Optional[int] = [[-1 for _ in range(snake_case_ )] for _ in range(snake_case_ )] for i in range(snake_case_ ): snake_case__ : str = matrix[i][0] for j in range(1 , snake_case_ ): for i in range(snake_case_ ): snake_case__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , snake_case_ ): snake_case__ : List[str] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): snake_case__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
286
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "xmod" def __init__( self : List[str] , __A : List[str]=3_0_5_2_2 , __A : Tuple=7_6_8 , __A : str=1_2 , __A : List[Any]=1_2 , __A : List[str]=3_0_7_2 , __A : List[str]="gelu" , __A : List[Any]=0.1 , __A : Tuple=0.1 , __A : str=5_1_2 , __A : Union[str, Any]=2 , __A : List[Any]=0.0_2 , __A : List[str]=1e-1_2 , __A : Tuple=1 , __A : List[Any]=0 , __A : Optional[Any]=2 , __A : Optional[int]="absolute" , __A : Optional[int]=True , __A : Dict=None , __A : Optional[int]=False , __A : Dict=2 , __A : List[str]=False , __A : Dict=True , __A : Union[str, Any]=True , __A : Tuple=("en_XX",) , __A : Optional[Any]=None , **__A : Tuple , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Optional[Any] = intermediate_size snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : List[str] = use_cache snake_case__ : Tuple = classifier_dropout snake_case__ : Any = pre_norm snake_case__ : List[str] = adapter_reduction_factor snake_case__ : List[Any] = adapter_layer_norm snake_case__ : str = adapter_reuse_layer_norm snake_case__ : Union[str, Any] = ln_before_adapter snake_case__ : Tuple = list(__A ) snake_case__ : int = default_language class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : int ): if self.task == "multiple-choice": snake_case__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = StableDiffusionPanoramaPipeline snake_case = TEXT_TO_IMAGE_PARAMS snake_case = TEXT_TO_IMAGE_BATCH_PARAMS snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _A = DDIMScheduler() torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A = CLIPTextModel(__UpperCAmelCase ) _A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _A = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any]=0 ): '''simple docstring''' _A = torch.manual_seed(__UpperCAmelCase ) _A = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = StableDiffusionPanoramaPipeline(**__UpperCAmelCase ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = sd_pipe(**__UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = StableDiffusionPanoramaPipeline(**__UpperCAmelCase ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = "french fries" _A = sd_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = StableDiffusionPanoramaPipeline(**__UpperCAmelCase ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = sd_pipe(**__UpperCAmelCase , view_batch_size=2 ) _A = output.images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" ) _A = StableDiffusionPanoramaPipeline(**__UpperCAmelCase ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = sd_pipe(**__UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = "cpu" # ensure determinism for the device-dependent torch.Generator _A = self.get_dummy_components() _A = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=__UpperCAmelCase ) _A = StableDiffusionPanoramaPipeline(**__UpperCAmelCase ) _A = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _A = self.get_dummy_inputs(__UpperCAmelCase ) _A = sd_pipe(**__UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any]=0 ): '''simple docstring''' _A = torch.manual_seed(__UpperCAmelCase ) _A = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = "stabilityai/stable-diffusion-2-base" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = self.get_inputs() _A = pipe(**__UpperCAmelCase ).images _A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _A = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=__UpperCAmelCase ) _A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = self.get_inputs() _A = pipe(**__UpperCAmelCase ).images _A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _A = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = 0 def callback_fn(__UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor ) -> None: _A = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _A = latents[0, -3:, -3:, -1] _A = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _A = latents[0, -3:, -3:, -1] _A = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _A = False _A = "stabilityai/stable-diffusion-2-base" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _A = self.get_inputs() pipe(**__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase ( self : Dict ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = "stabilityai/stable-diffusion-2-base" _A = DDIMScheduler.from_pretrained(__UpperCAmelCase , subfolder="scheduler" ) _A = StableDiffusionPanoramaPipeline.from_pretrained(__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase ) _A = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A = self.get_inputs() _A = pipe(**__UpperCAmelCase ) _A = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
79
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case :List[str] = '''\ Text data. Second line of data.''' __snake_case :Optional[Any] = '''file''' @pytest.fixture(scope='''session''' ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __a = bytes(_UpperCAmelCase , '''utf-8''' ) with zstd.open(_UpperCAmelCase , '''wb''' ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture def __snake_case ( _UpperCAmelCase ): with open(os.path.join(tmpfs.local_root_dir , _UpperCAmelCase ) , '''w''' ) as f: f.write(_UpperCAmelCase ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __a = input_paths[compression_format] __a = tmp_path / '''cache''' __a = DownloadConfig(cache_dir=_UpperCAmelCase , extract_compressed_file=_UpperCAmelCase ) __a = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) with open(_UpperCAmelCase ) as f: __a = f.read() with open(_UpperCAmelCase ) as f: __a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = '''custom_cache''' __a = '''custom_extracted_dir''' __a = tmp_path / '''custom_extracted_path''' if default_extracted: __a = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , _UpperCAmelCase ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_UpperCAmelCase ) ) __a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a = xz_file __a = ( DownloadConfig(extract_compressed_file=_UpperCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCAmelCase ) ) __a = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) assert Path(_UpperCAmelCase ).parent.parts[-2:] == expected def __snake_case ( _UpperCAmelCase ): # absolute path __a = str(Path(_UpperCAmelCase ).resolve() ) assert cached_path(_UpperCAmelCase ) == text_file # relative path __a = str(Path(_UpperCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_UpperCAmelCase ) == text_file def __snake_case ( _UpperCAmelCase ): # absolute path __a = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) # relative path __a = '''./__missing_file__.txt''' with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = get_from_cache(f'tmp://{tmpfs_file}' ) with open(_UpperCAmelCase ) as f: __a = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( ): with pytest.raises(_UpperCAmelCase ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): http_get('''https://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): ftp_get('''ftp://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , _UpperCAmelCase ) def __snake_case ( _UpperCAmelCase ): __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(_UpperCAmelCase ): fsspec_get('''s3://huggingface.co''' , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): fsspec_head('''s3://huggingface.co''' )
49
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : str = TypeVar('''T''') class snake_case_( Generic[T] ): __UpperCamelCase = 42 # Cache store of keys __UpperCamelCase = 42 # References of the keys in cache __UpperCamelCase = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , UpperCamelCase_ : int ): lowerCAmelCase : List[str] = deque() lowerCAmelCase : Optional[Any] = set() if not n: lowerCAmelCase : Tuple = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase : Union[str, Any] = n def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase : Tuple = self.dq_store.pop() self.key_reference.remove(UpperCamelCase_ ) else: self.dq_store.remove(UpperCamelCase_ ) self.dq_store.appendleft(UpperCamelCase_ ) self.key_reference.add(UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): for k in self.dq_store: print(UpperCamelCase_ ) def __repr__( self : Union[str, Any] ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
314
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class snake_case_: def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=sys.maxsize ): lowerCAmelCase : Tuple = '''bilinear''' lowerCAmelCase : List[Any] = max_size lowerCAmelCase : Optional[int] = short_edge_length def __call__( self : Optional[int] , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Tuple = [] for img in imgs: lowerCAmelCase, lowerCAmelCase : List[str] = img.shape[:2] # later: provide list and randomly choose index for resize lowerCAmelCase : int = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCAmelCase : Optional[Any] = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowerCAmelCase, lowerCAmelCase : List[str] = size, scale * w else: lowerCAmelCase, lowerCAmelCase : int = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowerCAmelCase : Union[str, Any] = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Tuple = newh * scale lowerCAmelCase : str = neww * scale lowerCAmelCase : Union[str, Any] = int(neww + 0.5 ) lowerCAmelCase : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCAmelCase : Tuple = Image.fromarray(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCAmelCase : Union[str, Any] = np.asarray(UpperCamelCase_ ) else: lowerCAmelCase : List[str] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCAmelCase : Optional[int] = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class snake_case_: def __init__( self : Tuple , UpperCamelCase_ : Any ): lowerCAmelCase : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCAmelCase : List[Any] = cfg.INPUT.FORMAT lowerCAmelCase : Tuple = cfg.SIZE_DIVISIBILITY lowerCAmelCase : int = cfg.PAD_VALUE lowerCAmelCase : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowerCAmelCase : Union[str, Any] = cfg.MODEL.DEVICE lowerCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : List[Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCAmelCase : Optional[int] = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowerCAmelCase : Dict = [im.shape[-2:] for im in images] lowerCAmelCase : Dict = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase : List[Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCAmelCase : Dict = torch.tensor([im.shape[:2] for im in images] ) lowerCAmelCase : str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCAmelCase : int = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowerCAmelCase, lowerCAmelCase : Optional[Any] = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCAmelCase : Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _snake_case ( _snake_case : str , _snake_case : List[Any] ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _snake_case ( _snake_case : Any , _snake_case : Tuple[int, int] ): assert torch.isfinite(_snake_case ).all(), "Box tensor contains infinite or NaN!" lowerCAmelCase, lowerCAmelCase : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=_snake_case ) tensor[:, 1].clamp_(min=0 , max=_snake_case ) tensor[:, 2].clamp_(min=0 , max=_snake_case ) tensor[:, 3].clamp_(min=0 , max=_snake_case )
314
1
import math import unittest def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowercase ( unittest.TestCase ): def A__ ( self): self.assertTrue(is_prime(2)) self.assertTrue(is_prime(3)) self.assertTrue(is_prime(5)) self.assertTrue(is_prime(7)) self.assertTrue(is_prime(1_1)) self.assertTrue(is_prime(1_3)) self.assertTrue(is_prime(1_7)) self.assertTrue(is_prime(1_9)) self.assertTrue(is_prime(2_3)) self.assertTrue(is_prime(2_9)) def A__ ( self): with self.assertRaises(A__): is_prime(-1_9) self.assertFalse( is_prime(0) ,'''Zero doesn\'t have any positive factors, primes must have exactly two.''' ,) self.assertFalse( is_prime(1) ,'''One only has 1 positive factor, primes must have exactly two.''' ,) self.assertFalse(is_prime(2 * 2)) self.assertFalse(is_prime(2 * 3)) self.assertFalse(is_prime(3 * 3)) self.assertFalse(is_prime(3 * 5)) self.assertFalse(is_prime(3 * 5 * 7)) if __name__ == "__main__": unittest.main()
101
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ :str = 2 class lowercase : def __init__( self ,*, # begin keyword-only arguments A__="<s>" ,A__="<pad>" ,A__="</s>" ,A__="<unk>" ,A__=None ,): lowercase , lowercase , lowercase , lowercase = bos, unk, pad, eos lowercase = [] lowercase = [] lowercase = {} lowercase = self.add_symbol(A__) lowercase = self.add_symbol(A__) lowercase = self.add_symbol(A__) lowercase = self.add_symbol(A__) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A__) lowercase = len(self.symbols) def __eq__( self ,A__): return self.indices == other.indices def __getitem__( self ,A__): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self): return len(self.symbols) def __contains__( self ,A__): return sym in self.indices @classmethod def A__ ( cls ,A__): lowercase = cls() d.add_from_file(A__) return d def A__ ( self ,A__ ,A__=1 ,A__=False): if word in self.indices and not overwrite: lowercase = self.indices[word] lowercase = self.count[idx] + n return idx else: lowercase = len(self.symbols) lowercase = idx self.symbols.append(A__) self.count.append(A__) return idx def A__ ( self ,A__): return 0 def A__ ( self ,A__): if isinstance(A__ ,A__): try: with open(A__ ,'''r''' ,encoding='''utf-8''') as fd: self.add_from_file(A__) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(A__)) return lowercase = f.readlines() lowercase = self._load_meta(A__) for line in lines[indices_start_line:]: try: lowercase , lowercase = line.rstrip().rsplit(''' ''' ,1) if field == "#fairseq:overwrite": lowercase = True lowercase , lowercase = line.rsplit(''' ''' ,1) else: lowercase = False lowercase = int(A__) lowercase = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(A__)) self.add_symbol(A__ ,n=A__ ,overwrite=A__) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''') def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase = dict((re.sub(R'''@@$''' , '''''' , lowerCAmelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , lowerCAmelCase__ ), v) for k, v in d.items() ) lowercase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] lowercase = d[k] # restore return da def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' # prep if not os.path.exists(lowerCAmelCase__ ): raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase = os.path.join(lowerCAmelCase__ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'path to the file {checkpoint_file} does not exist!' ) lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) lowercase = chkpt['''cfg''']['''model'''] # dicts lowercase = os.path.join(lowerCAmelCase__ , '''dict.txt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'path to the file {dict_file} does not exist!' ) lowercase = Dictionary.load(lowerCAmelCase__ ) lowercase = rewrite_dict_keys(src_dict.indices ) lowercase = len(lowerCAmelCase__ ) lowercase = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(f'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # merges_file (bpecodes) lowercase = os.path.join(lowerCAmelCase__ , '''bpecodes''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(f'path to the file {bpecodes_file} does not exist!' ) lowercase = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) # model config lowercase = os.path.join(lowerCAmelCase__ , '''config.json''' ) lowercase = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f'Generating {biogpt_model_config_file}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # tokenizer config lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # model lowercase = chkpt['''model'''] # remove unneeded keys lowercase = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): lowercase = model_state_dict.pop(lowerCAmelCase__ ) else: lowercase = model_state_dict.pop(lowerCAmelCase__ ) lowercase = BioGptConfig.from_pretrained(lowerCAmelCase__ ) lowercase = BioGptForCausalLM(lowerCAmelCase__ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase__ ) # save lowercase = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print('''Conversion is done!''' ) if __name__ == "__main__": lowercase__ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--biogpt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ :Any = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
101
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _UpperCAmelCase : Union[str, Any] = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _UpperCAmelCase : Tuple = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _UpperCAmelCase : Union[str, Any] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase = CHRF.CHAR_ORDER , __lowercase = CHRF.WORD_ORDER , __lowercase = CHRF.BETA , __lowercase = False , __lowercase = False , __lowercase = False , ): __lowerCAmelCase = len(references[0] ) if any(len(__lowercase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__lowercase )] __lowerCAmelCase = CHRF(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __lowerCAmelCase = sb_chrf.corpus_score(__lowercase , __lowercase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
370
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase : Dict = """true""" def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=1_6): set_seed(4_2) __lowerCAmelCase = RegressionModel() __lowerCAmelCase = deepcopy(lowerCamelCase) __lowerCAmelCase = RegressionDataset(length=lowerCamelCase) __lowerCAmelCase = DataLoader(lowerCamelCase, batch_size=lowerCamelCase) model.to(accelerator.device) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return model, ddp_model, dataloader def __magic_name__( lowerCamelCase, lowerCamelCase=False): __lowerCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''') __lowerCAmelCase = load_dataset('''glue''', '''mrpc''', split='''validation''') def tokenize_function(lowerCamelCase): __lowerCAmelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowerCamelCase, max_length=lowerCamelCase) return outputs with accelerator.main_process_first(): __lowerCAmelCase = dataset.map( lowerCamelCase, batched=lowerCamelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) __lowerCAmelCase = tokenized_datasets.rename_column('''label''', '''labels''') def collate_fn(lowerCamelCase): if use_longest: return tokenizer.pad(lowerCamelCase, padding='''longest''', return_tensors='''pt''') return tokenizer.pad(lowerCamelCase, padding='''max_length''', max_length=1_2_8, return_tensors='''pt''') return DataLoader(lowerCamelCase, shuffle=lowerCamelCase, collate_fn=lowerCamelCase, batch_size=1_6) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = Accelerator(dispatch_batches=lowerCamelCase, split_batches=lowerCamelCase) __lowerCAmelCase = get_dataloader(lowerCamelCase, not dispatch_batches) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''', return_dict=lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(lowerCamelCase, lowerCamelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = [] for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch.values() with torch.no_grad(): __lowerCAmelCase = model(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) __lowerCAmelCase , __lowerCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase) targs.append(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = torch.cat(lowerCamelCase), torch.cat(lowerCamelCase) return logits, targs def __magic_name__( lowerCamelCase, lowerCamelCase=8_2, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=1_6): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = get_basic_setup(lowerCamelCase, lowerCamelCase, lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = generate_predictions(lowerCamelCase, lowerCamelCase, lowerCamelCase) assert ( len(lowerCamelCase) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase)}""" def __magic_name__( lowerCamelCase = False, lowerCamelCase = False): __lowerCAmelCase = evaluate.load('''glue''', '''mrpc''') __lowerCAmelCase , __lowerCAmelCase = get_mrpc_setup(lowerCamelCase, lowerCamelCase) # First do baseline __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''no'''] model.to(lowerCamelCase) model.eval() for batch in dataloader: batch.to(lowerCamelCase) with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=lowerCamelCase, references=batch['''labels''']) __lowerCAmelCase = metric.compute() # Then do distributed __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(dim=-1) __lowerCAmelCase = batch['''labels'''] __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=lowerCamelCase, references=lowerCamelCase) __lowerCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key]), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __magic_name__( ): __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""") test_mrpc(lowerCamelCase, lowerCamelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''') for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCAmelCase = Accelerator(split_batches=lowerCamelCase, dispatch_batches=lowerCamelCase) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""") test_torch_metrics(lowerCamelCase, 9_9) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''') __lowerCAmelCase = Accelerator() test_torch_metrics(lowerCamelCase, 5_1_2) accelerator.state._reset_state() def __magic_name__( lowerCamelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowercase__ : Dict = 'path-to-your-trained-model' lowercase__ : List[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') lowercase__ : Tuple = 'A photo of sks dog in a bucket' lowercase__ : List[str] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
324
def __magic_name__ ( __a : str ): '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__a ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
244
0
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Dict ): _snake_case = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(__lowercase ) != 0: _snake_case = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__lowercase ) != cols: raise error for value in row: if not isinstance(__lowercase , (int, float) ): raise error _snake_case = rows else: _snake_case = [] def lowercase ( self : str ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase ( self : List[str] ): return len(self.rows ) @property def lowercase ( self : int ): return len(self.rows[0] ) @property def lowercase ( self : Dict ): return (self.num_rows, self.num_columns) @property def lowercase ( self : int ): return self.order[0] == self.order[1] def lowercase ( self : str ): _snake_case = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__lowercase ) def lowercase ( self : Union[str, Any] ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase ( self : Optional[Any] ): return bool(self.determinant() ) def lowercase ( self : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Dict ): _snake_case = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__lowercase ).determinant() def lowercase ( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] ): if (row + column) % 2 == 0: return self.get_minor(__lowercase , __lowercase ) return -1 * self.get_minor(__lowercase , __lowercase ) def lowercase ( self : Any ): return Matrix( [ [self.get_minor(__lowercase , __lowercase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase ( self : Tuple ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase ( self : Optional[Any] ): _snake_case = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__lowercase ) def lowercase ( self : Optional[Any] ): _snake_case = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self : int ): return str(self.rows ) def __str__( self : Optional[int] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(__lowercase ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : str = None ): _snake_case = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(__lowercase , __lowercase ): raise type_error for value in row: if not isinstance(__lowercase , (int, float) ): raise type_error if len(__lowercase ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(__lowercase ) else: _snake_case = self.rows[0:position] + [row] + self.rows[position:] def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : List[str] = None ): _snake_case = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(__lowercase , __lowercase ): raise type_error for value in column: if not isinstance(__lowercase , (int, float) ): raise type_error if len(__lowercase ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: _snake_case = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _snake_case = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): if not isinstance(__lowercase , __lowercase ): return NotImplemented return self.rows == other.rows def __ne__( self : List[Any] , _lowerCamelCase : List[Any] ): return not self == other def __neg__( self : str ): return self * -1 def __add__( self : Optional[int] , _lowerCamelCase : Dict ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Any , _lowerCamelCase : List[str] ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : int , _lowerCamelCase : Optional[Any] ): if isinstance(__lowercase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__lowercase , __lowercase ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(__lowercase , __lowercase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self : Any , _lowerCamelCase : List[str] ): if not isinstance(__lowercase , __lowercase ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) _snake_case = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase ( cls : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any ): return sum(row[i] * column[i] for i in range(len(__lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : def __init__( self : Optional[int] , _lowerCamelCase : int = 0 ): _snake_case = key def lowercase ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : int ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : int ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_lowerCamelCase ) ^ key ) for ch in content] def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : int = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _snake_case = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : int = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) _snake_case = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _snake_case = '''''' for ch in content: ans += chr(ord(_lowerCamelCase ) ^ key ) return ans def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : int = 0 ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True def lowercase ( self : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : int ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) try: with open(_lowerCamelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_lowerCamelCase , _lowerCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
40
0
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" assert x is not None assert y is not None A_ : int = len(_UpperCAmelCase ) A_ : List[Any] = len(_UpperCAmelCase ) # declaring the array for storing the dp values A_ : int = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): A_ : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 A_ : Dict = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) A_ : str = '' A_ , A_ : Any = m, n while i > 0 and j > 0: A_ : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: A_ : Union[str, Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase_ : str = 'AGGTAB' lowerCamelCase_ : str = 'GXTXAYB' lowerCamelCase_ : List[str] = 4 lowerCamelCase_ : Tuple = 'GTAB' lowerCamelCase_ , lowerCamelCase_ : List[str] = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
286
"""simple docstring""" from copy import deepcopy class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ = None , snake_case_ = None ): """simple docstring""" if arr is None and size is not None: A_ : Union[str, Any] = size A_ : List[str] = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError('Either arr or size must be specified' ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = len(snake_case_ ) A_ : Optional[int] = deepcopy(snake_case_ ) for i in range(1 , self.size ): A_ : Optional[Any] = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): A_ : Optional[int] = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCamelCase_ ( snake_case_ ): """simple docstring""" return index + (index & (-index)) @staticmethod def lowerCamelCase_ ( snake_case_ ): """simple docstring""" return index - (index & (-index)) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A_ : List[str] = self.next_(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" self.add(snake_case_ , value - self.get(snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if right == 0: return 0 A_ : Any = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A_ : Tuple = self.prev(snake_case_ ) return result def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" return self.query(snake_case_ , index + 1 ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 A_ : List[Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A_ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
286
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase_ : Any = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase=1_6 , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=1_4 , UpperCAmelCase=1_0 , UpperCAmelCase=1_9 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=2_5 , UpperCAmelCase=5 , ) -> Any: __a = d_model __a = parent __a = batch_size __a = prediction_length __a = context_length __a = cardinality __a = num_time_features __a = lags_sequence __a = embedding_dimension __a = is_training __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = context_length __a = prediction_length + label_length __a = label_length __a = moving_average __a = autocorrelation_factor def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[int]: __a = config.context_length + max(config.lags_sequence ) __a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __a = floats_tensor([self.batch_size, _past_length] ) __a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __a = floats_tensor([self.batch_size, config.prediction_length] ) __a = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.get_config() __a = self.prepare_autoformer_inputs_dict(_a ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a , __a = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: __a = AutoformerModel(config=_a ).to(_a ).eval() __a = model(**_a ) __a = outputs.encoder_last_hidden_state __a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __a = model.get_encoder() encoder.save_pretrained(_a ) __a = AutoformerEncoder.from_pretrained(_a ).to(_a ) __a , __a , __a , __a , __a = model.create_network_inputs(**_a ) __a , __a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __a = encoder(inputs_embeds=_a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __a = model.get_decoder() decoder.save_pretrained(_a ) __a = AutoformerDecoder.from_pretrained(_a ).to(_a ) __a = decoder( trend=_a , inputs_embeds=_a , encoder_hidden_states=_a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a__ ( __lowercase , __lowercase , unittest.TestCase ): A__ : Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () A__ : Any = (AutoformerForPrediction,) if is_torch_available() else () A__ : Any = {'feature-extraction': AutoformerModel} if is_torch_available() else {} A__ : Any = False A__ : List[str] = False A__ : Dict = False A__ : int = False A__ : Union[str, Any] = False A__ : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = AutoformerModelTester(self ) __a = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a , __a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __a = model_class(_a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) __a , __a = model_class.from_pretrained(_a , output_loading_info=_a ) self.assertEqual(info['missing_keys'] , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_a ) @unittest.skip(reason='Model has no tokens embeddings' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = inspect.signature(getattr(_a , 'forward' ) ) # The main input is the name of the argument after `self` __a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _a ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(_a )] , _a ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True __a = getattr(self.model_tester , 'seq_length' , _a ) __a = getattr(self.model_tester , 'decoder_seq_length' , _a ) __a = getattr(self.model_tester , 'encoder_seq_length' , _a ) __a = getattr(self.model_tester , 'd_model' , _a ) __a = getattr(self.model_tester , 'num_attention_heads' , _a ) __a = d_model // num_attention_heads for model_class in self.all_model_classes: __a = True __a = False __a = True __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.encoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __a = len(_a ) __a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_a , _a ) # decoder attentions __a = outputs.decoder_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __a = outputs.cross_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + 2 , len(_a ) ) __a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase( __lowerCamelCase="train-batch.pt" ): __a = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=__a , repo_type='dataset' ) __a = torch.load(__a , map_location=__a ) return batch @require_torch @slow class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_a ) __a = prepare_batch() with torch.no_grad(): __a = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] __a = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _a ) __a = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_a ) __a = prepare_batch('val-batch.pt' ) with torch.no_grad(): __a = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state __a = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _a ) __a = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_a ) __a = prepare_batch('val-batch.pt' ) with torch.no_grad(): __a = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) __a = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _a ) __a = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=_a ) __a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _a , rtol=1e-1 ) )
350
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # Return True if there is node that has not iterated. __a = [False] * len(__lowerCamelCase ) __a = [] queue.append(__lowerCamelCase ) __a = True while queue: __a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__lowerCamelCase ) __a = True __a = u return visited[t] def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # This array is filled by BFS and to store path __a = [-1] * (len(__lowerCamelCase )) __a = 0 while bfs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = float('Inf' ) __a = sink while s != source: # Find the minimum value in select path __a = min(__lowerCamelCase , graph[parent[s]][s] ) __a = parent[s] max_flow += path_flow __a = sink while v != source: __a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a = parent[v] return max_flow lowerCamelCase_ : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
197
0
def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1] for i in range(2 , _A ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = list(range(_A ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE__ = factorials.pop() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = divmod(_A , _A ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
314
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Dict , **__lowerCamelCase : Dict ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : Optional[Any] , **__lowerCamelCase : Dict ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : Any ) -> int: SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(__lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE__ = processor(images=__lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def lowercase_ ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
314
1
def __UpperCamelCase ( _A : Any ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =len(_A ) for i in range(length - 1 ): lowerCamelCase_ =i for k in range(i + 1 , _A ): if collection[k] < collection[least]: lowerCamelCase_ =k if least != i: lowerCamelCase_ , lowerCamelCase_ =(collection[i], collection[least]) return collection if __name__ == "__main__": __A : str = input('Enter numbers separated by a comma:\n').strip() __A : Tuple = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
49
import unittest from knapsack import greedy_knapsack as kp class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =[10, 20, 30, 40, 50, 60] lowerCamelCase_ =[2, 4, 6, 8, 10, 12] lowerCamelCase_ =100 self.assertEqual(kp.calc_profit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 210 ) def _snake_case ( self )-> Any: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """max_weight must greater than zero.""" ) def _snake_case ( self )-> Dict: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """Weight can not be negative.""" ) def _snake_case ( self )-> Dict: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """Profit can not be negative.""" ) def _snake_case ( self )-> Tuple: self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , """max_weight must greater than zero.""" ) def _snake_case ( self )-> Any: self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
49
1
'''simple docstring''' from math import factorial def a__ ( a__ = 20 ): """simple docstring""" __SCREAMING_SNAKE_CASE = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __SCREAMING_SNAKE_CASE = n // 2 return int(factorial(lowercase__ ) / (factorial(lowercase__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: UpperCAmelCase : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
267
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowerCamelCase : Dict = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , ) -> List[Any]: if attention_mask is None: UpperCAmelCase : List[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase : Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __UpperCAmelCase : def __init__( self : Optional[int], __A : Dict, __A : Union[str, Any]=1_3, __A : Any=7, __A : Union[str, Any]=True, __A : Optional[Any]=False, __A : int=9_9, __A : List[Any]=1_6, __A : Optional[int]=2, __A : Union[str, Any]=4, __A : List[Any]=4, __A : Dict="gelu", __A : int=0.1, __A : Union[str, Any]=0.1, __A : int=3_2, __A : Dict=2, __A : str=1, __A : Union[str, Any]=0, __A : Optional[Any]=0.0_2, ): UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Dict = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : int = hidden_size UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : str = eos_token_id UpperCAmelCase : int = pad_token_id UpperCAmelCase : int = bos_token_id UpperCAmelCase : Optional[Any] = initializer_range def __magic_name__ ( self : List[str] ): UpperCAmelCase : Dict = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) UpperCAmelCase : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) UpperCAmelCase : Optional[Any] = shift_tokens_right(__lowerCAmelCase, 1, 2 ) UpperCAmelCase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=__lowerCAmelCase, ) UpperCAmelCase : List[Any] = prepare_blenderbot_inputs_dict(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) return config, inputs_dict def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase , UpperCAmelCase : str = self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__ ( self : str, __A : Dict, __A : Optional[int], __A : Optional[int] ): UpperCAmelCase : Dict = 2_0 UpperCAmelCase : Optional[Any] = model_class_name(__lowerCAmelCase ) UpperCAmelCase : Optional[int] = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0], __lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' ) UpperCAmelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) UpperCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1], __lowerCAmelCase, decoder_attention_mask=__lowerCAmelCase, past_key_values=__lowerCAmelCase, decoder_position_ids=__lowerCAmelCase, ) UpperCAmelCase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:], __lowerCAmelCase, decoder_attention_mask=__lowerCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=__lowerCAmelCase, ) UpperCAmelCase : Tuple = model.decode(__lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) def __magic_name__ ( self : List[Any], __A : Union[str, Any], __A : int, __A : str ): UpperCAmelCase : List[Any] = 2_0 UpperCAmelCase : List[str] = model_class_name(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase , UpperCAmelCase : List[str] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) UpperCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0], __lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) UpperCAmelCase : str = model.decode( decoder_input_ids[:, :-1], __lowerCAmelCase, decoder_attention_mask=__lowerCAmelCase, past_key_values=__lowerCAmelCase, decoder_position_ids=__lowerCAmelCase, ) UpperCAmelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) UpperCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, -1:], __lowerCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=__lowerCAmelCase, decoder_position_ids=__lowerCAmelCase, ) UpperCAmelCase : int = model.decode(__lowerCAmelCase, __lowerCAmelCase, decoder_attention_mask=__lowerCAmelCase ) UpperCAmelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = 9_9 def __magic_name__ ( self : Tuple ): UpperCAmelCase : Any = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ], dtype=np.intaa, ) UpperCAmelCase : Dict = input_ids.shape[0] UpperCAmelCase : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=2_4, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=3_2, decoder_ffn_dim=3_2, max_position_embeddings=4_8, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def __magic_name__ ( self : Optional[int] ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self._get_config_and_data() UpperCAmelCase : Dict = FlaxBlenderbotSmallForConditionalGeneration(__lowerCAmelCase ) UpperCAmelCase : str = lm_model(input_ids=__lowerCAmelCase ) UpperCAmelCase : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape, __lowerCAmelCase ) def __magic_name__ ( self : Dict ): UpperCAmelCase : str = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=1_4, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=4_8, ) UpperCAmelCase : str = FlaxBlenderbotSmallForConditionalGeneration(__lowerCAmelCase ) UpperCAmelCase : Optional[int] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]], dtype=np.intaa ) UpperCAmelCase : Union[str, Any] = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]], dtype=np.intaa ) UpperCAmelCase : Optional[int] = lm_model(input_ids=__lowerCAmelCase, decoder_input_ids=__lowerCAmelCase ) UpperCAmelCase : Optional[int] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape, __lowerCAmelCase ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : int = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]], dtype=np.intaa ) UpperCAmelCase : Optional[int] = shift_tokens_right(__lowerCAmelCase, 1, 2 ) UpperCAmelCase : Union[str, Any] = np.equal(__lowerCAmelCase, 1 ).astype(np.floataa ).sum() UpperCAmelCase : List[str] = np.equal(__lowerCAmelCase, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(__lowerCAmelCase, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class __UpperCAmelCase ( _a , unittest.TestCase , _a ): UpperCamelCase = True UpperCamelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __magic_name__ ( self : List[Any] ): UpperCAmelCase : Tuple = FlaxBlenderbotSmallModelTester(self ) def __magic_name__ ( self : Dict ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase : str = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(__A : Dict, __A : Union[str, Any]=None, **__A : Any ): return model.encode(input_ids=__lowerCAmelCase, attention_mask=__lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase : Any = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase : Tuple = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ), len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase, __lowerCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Tuple = model_class(__lowerCAmelCase ) UpperCAmelCase : List[str] = model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] ) UpperCAmelCase : str = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__A : Optional[Any], __A : Dict, __A : Union[str, Any] ): return model.decode( decoder_input_ids=__lowerCAmelCase, decoder_attention_mask=__lowerCAmelCase, encoder_outputs=__lowerCAmelCase, ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase : str = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase : int = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ), len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase, __lowerCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) @slow def __magic_name__ ( self : Any ): for model_class_name in self.all_model_classes: UpperCAmelCase : List[str] = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase : Optional[int] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase : List[str] = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase )
371
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowerCamelCase : Optional[Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ) -> List[Any]: UpperCAmelCase : Dict = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase : List[Any] = get_sagemaker_input() else: UpperCAmelCase : Optional[Any] = get_cluster_input() return config def a__ ( UpperCAmelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: UpperCAmelCase : Optional[Any] = subparsers.add_parser('''config''' , description=UpperCAmelCase ) else: UpperCAmelCase : List[str] = argparse.ArgumentParser('''Accelerate config command''' , description=UpperCAmelCase ) parser.add_argument( '''--config_file''' , default=UpperCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : List[Any] ) -> Optional[int]: UpperCAmelCase : str = get_user_input() if args.config_file is not None: UpperCAmelCase : Any = args.config_file else: if not os.path.isdir(UpperCAmelCase ): os.makedirs(UpperCAmelCase ) UpperCAmelCase : List[str] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(UpperCAmelCase ) else: config.to_yaml_file(UpperCAmelCase ) print(f'''accelerate configuration saved at {config_file}''' ) def a__ ( ) -> Dict: UpperCAmelCase : str = config_command_parser() UpperCAmelCase : str = parser.parse_args() config_command(UpperCAmelCase ) if __name__ == "__main__": main()
99
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '''▁''' lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase_ = { '''facebook/xglm-564M''': 20_48, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : int="<s>" , _UpperCamelCase : int="</s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Tuple="<s>" , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<pad>" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Optional[Any] , ) ->None: snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer snake_case_ = 7 snake_case_ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] snake_case_ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case_ = 1 # Mimic fairseq token-to-id alignment for the first 4 token snake_case_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} snake_case_ = len(self.sp_model ) snake_case_ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCamelCase ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) ->str: snake_case_ = self.__dict__.copy() snake_case_ = None snake_case_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , _UpperCamelCase : Union[str, Any] ) ->Optional[Any]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case__( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a snake_case_ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case__( self : int ) ->Union[str, Any]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case__( self : Any ) ->int: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__( self : int , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[Any] ) ->Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case__( self : Dict , _UpperCamelCase : List[str] ) ->int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__( self : Tuple , _UpperCamelCase : int ) ->str: snake_case_ = ''''''.join(_UpperCamelCase ).replace(_UpperCamelCase , ''' ''' ).strip() return out_string def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
8
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = LayoutLMTokenizer UpperCAmelCase : int = LayoutLMTokenizerFast UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Optional[Any] = True def __snake_case ( self : Optional[int]): super().setUp() a : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def __snake_case ( self : Optional[int] , **__UpperCAmelCase : Tuple): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str): a : Tuple = "UNwant\u00E9d,running" a : Dict = "unwanted, running" return input_text, output_text def __snake_case ( self : Any): a : List[Any] = self.tokenizer_class(self.vocab_file) a : str = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [7, 4, 5, 10, 8, 9]) def __snake_case ( self : Dict): pass
40
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __a ( __lowerCamelCase ): UpperCAmelCase_ : str = prime_factors(__lowerCamelCase ) if is_square_free(__lowerCamelCase ): return -1 if len(__lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
1
from __future__ import annotations def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple ): # noqa: E741 """simple docstring""" while r - l > 1: SCREAMING_SNAKE_CASE_ : str = (l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE_ : Optional[Any] = m else: SCREAMING_SNAKE_CASE_ : Tuple = m # noqa: E741 return r def _snake_case ( lowerCAmelCase : list[int] ): """simple docstring""" if len(lowerCAmelCase ) == 0: return 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = [0] * len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = v[0] for i in range(1 , len(lowerCAmelCase ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE_ : int = v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE_ : str = v[i] length += 1 else: SCREAMING_SNAKE_CASE_ : Tuple = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
18
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Union[str, Any] = 'open-llama' def __init__( self , __lowerCAmelCase=10_0000 , __lowerCAmelCase=4096 , __lowerCAmelCase=1_1008 , __lowerCAmelCase=32 , __lowerCAmelCase=32 , __lowerCAmelCase="silu" , __lowerCAmelCase=2048 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = initializer_range lowercase = rms_norm_eps lowercase = use_cache lowercase = kwargs.pop( """use_memorry_efficient_attention""" , __lowerCAmelCase ) lowercase = hidden_dropout_prob lowercase = attention_dropout_prob lowercase = use_stable_embedding lowercase = shared_input_output_embedding lowercase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase , ) def A__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'got {self.rope_scaling}' ) lowercase = self.rope_scaling.get("""type""" , __lowerCAmelCase ) lowercase = self.rope_scaling.get("""factor""" , __lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
197
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests __A = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __A = BASE_URL + '/user' # https://github.com/settings/tokens __A = os.environ.get('USER_TOKEN', '') def _lowerCamelCase(__UpperCamelCase ) -> dict[Any, Any]: _lowerCAmelCase ={ """Authorization""": F'''token {auth_token}''', """Accept""": """application/vnd.github.v3+json""", } return requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
341
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ) -> Any: _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =decoder_seq_length # For common tests _lowerCAmelCase =self.decoder_seq_length _lowerCAmelCase =is_training _lowerCAmelCase =use_attention_mask _lowerCAmelCase =use_labels _lowerCAmelCase =vocab_size _lowerCAmelCase =d_model _lowerCAmelCase =d_model _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_layers _lowerCAmelCase =decoder_ffn_dim _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =decoder_attention_heads _lowerCAmelCase =eos_token_id _lowerCAmelCase =bos_token_id _lowerCAmelCase =pad_token_id _lowerCAmelCase =decoder_start_token_id _lowerCAmelCase =use_cache _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =None _lowerCAmelCase =decoder_seq_length _lowerCAmelCase =2 _lowerCAmelCase =1 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_attention_mask: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowerCAmelCase =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _lowerCAmelCase =True _lowerCAmelCase =TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() _lowerCAmelCase =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase ) _lowerCAmelCase =model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _lowerCAmelCase =outputs["""past_key_values"""] # create hypothetical next token and extent to next_input_ids _lowerCAmelCase =ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowerCAmelCase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase =model(__UpperCAmelCase )["""last_hidden_state"""] _lowerCAmelCase =model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )["""last_hidden_state"""] # select random slice _lowerCAmelCase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowerCAmelCase =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) def _lowerCAmelCase ( self ) -> List[str]: _lowerCAmelCase =self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase = True lowerCamelCase = False def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase =TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) _lowerCAmelCase =ConfigTester(self , config_class=__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> List[str]: pass def _lowerCAmelCase ( self ) -> List[Any]: pass def _lowerCAmelCase ( self ) -> Any: pass def _lowerCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Any: _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> Tuple: return @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _lowerCAmelCase ( self ) -> str: pass
341
1
from __future__ import annotations import pandas as pd def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = [0] * no_of_processes __a = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_UpperCAmelCase ): __a = burst_time[i] __a = 0 __a = 0 __a = 999999999 __a = 0 __a = False # Process until all processes are completed while complete != no_of_processes: for j in range(_UpperCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __a = remaining_time[j] __a = j __a = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __a = remaining_time[short] if minm == 0: __a = 999999999 if remaining_time[short] == 0: complete += 1 __a = False # Find finish time of current process __a = increment_time + 1 # Calculate waiting time __a = finish_time - arrival_time[short] __a = finar - burst_time[short] if waiting_time[short] < 0: __a = 0 # Increment time increment_time += 1 return waiting_time def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = [0] * no_of_processes for i in range(_UpperCAmelCase ): __a = burst_time[i] + waiting_time[i] return turn_around_time def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = 0 __a = 0 for i in range(_UpperCAmelCase ): __a = total_waiting_time + waiting_time[i] __a = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __snake_case :List[Any] = int(input()) __snake_case :Any = [0] * no_of_processes __snake_case :List[Any] = [0] * no_of_processes __snake_case :List[str] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __snake_case ,__snake_case :Union[str, Any] = map(int, input().split()) __snake_case :List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __snake_case :Union[str, Any] = burst_time __snake_case :Union[str, Any] = no_of_processes __snake_case :List[str] = waiting_time __snake_case :Dict = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __snake_case :List[str] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
49
from __future__ import annotations from typing import Any def __snake_case ( _UpperCAmelCase ): if not postfix_notation: return 0 __a = {'''+''', '''-''', '''*''', '''/'''} __a = [] for token in postfix_notation: if token in operations: __a , __a = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_UpperCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
49
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def _A ( _lowerCAmelCase , _lowerCAmelCase=1_000 ): """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __lowercase =n - 1 __lowercase =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __lowercase =0 while count < prec: __lowercase =random.randint(2 , n - 1 ) __lowercase =bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: __lowercase =True for _ in range(_lowerCAmelCase ): if b == n - 1: __lowercase =False break __lowercase =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCamelCase = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
48
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =SwinConfig(image_size=192 ) if "base" in model_name: __lowercase =6 __lowercase =128 __lowercase =(2, 2, 18, 2) __lowercase =(4, 8, 16, 32) elif "large" in model_name: __lowercase =12 __lowercase =192 __lowercase =(2, 2, 18, 2) __lowercase =(6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) __lowercase =window_size __lowercase =embed_dim __lowercase =depths __lowercase =num_heads return config def _A ( _lowerCAmelCase ): """simple docstring""" if "encoder.mask_token" in name: __lowercase =name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: __lowercase =name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: __lowercase =name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: __lowercase =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __lowercase =name.replace('attn' , 'attention.self' ) if "norm1" in name: __lowercase =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __lowercase =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __lowercase =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __lowercase =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __lowercase ='layernorm.weight' if name == "encoder.norm.bias": __lowercase ='layernorm.bias' if "decoder" in name: pass else: __lowercase ='swin.' + name return name def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): __lowercase =orig_state_dict.pop(_lowerCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: __lowercase =key.split('.' ) __lowercase =int(key_split[2] ) __lowercase =int(key_split[4] ) __lowercase =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase =val[:dim, :] __lowercase =val[ dim : dim * 2, : ] __lowercase =val[-dim:, :] else: __lowercase =val[ :dim ] __lowercase =val[ dim : dim * 2 ] __lowercase =val[ -dim: ] else: __lowercase =val return orig_state_dict def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =torch.load(_lowerCAmelCase , map_location='cpu' )['model'] __lowercase =get_swin_config(_lowerCAmelCase ) __lowercase =SwinForMaskedImageModeling(_lowerCAmelCase ) model.eval() __lowercase =convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) __lowercase ='http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase =ViTImageProcessor(size={'height': 192, 'width': 192} ) __lowercase =Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) __lowercase =image_processor(images=_lowerCAmelCase , return_tensors='pt' ) with torch.no_grad(): __lowercase =model(**_lowerCAmelCase ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
48
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' with self.assertRaises(a__ ): snake_case_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' with self.assertRaises(a__ ): snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' import PIL.Image snake_case_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=a__ ) as mock_cast_to_python_objects: snake_case_ = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) snake_case_ , snake_case_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , a__ ) self.assertFalse(kwargs["optimize_list_casting"] ) def UpperCamelCase_( snake_case : Any , snake_case : int ): '''simple docstring''' snake_case_ = pa.BufferReader(snake_case ) if isinstance(snake_case , pa.Buffer ) else pa.memory_map(snake_case ) snake_case_ = pa.ipc.open_stream(snake_case ) snake_case_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : Dict , snake_case : Dict ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=snake_case , features=snake_case ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pa.ipc.open_stream(snake_case ) snake_case_ = f.read_all() snake_case_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(snake_case ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) def UpperCamelCase_( snake_case : Optional[Any] ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer: with pytest.raises(snake_case ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) snake_case_ , snake_case_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def UpperCamelCase_( snake_case : Dict ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer: with pytest.raises(snake_case ): writer.write({"col_1": "foo", "col_2": 1} , key=1_0 ) writer.write({"col_1": "bar", "col_2": 2} , key=1_0 ) snake_case_ , snake_case_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 1_0] ) def UpperCamelCase_( snake_case : Any ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ArrowWriter( stream=snake_case , writer_batch_size=snake_case , hash_salt="split_name" , check_duplicates=snake_case , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str] ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : str , snake_case : Dict ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 1_0] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() snake_case_ = pa.schema(snake_case ) if fields else None with ArrowWriter(stream=snake_case , schema=snake_case , writer_batch_size=snake_case ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase_( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = {"col_1": pa.string(), "col_2": pa.intaa()} snake_case_ = os.path.join(snake_case , "test.arrow" ) with ArrowWriter(path=snake_case , schema=pa.schema(snake_case ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(snake_case , metadata=writer._schema.metadata ) _check_output(snake_case , 1 ) def UpperCamelCase_( snake_case : Tuple ): '''simple docstring''' if pa.types.is_list(snake_case ): return get_base_dtype(arr_type.value_type ) else: return arr_type def UpperCamelCase_( snake_case : Tuple , snake_case : Dict ): '''simple docstring''' if isinstance(lst[0] , snake_case ): change_first_primitive_element_in_list(lst[0] , snake_case ) else: snake_case_ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase_( snake_case : List[Any] , snake_case : Dict , snake_case : int ): '''simple docstring''' snake_case_ = pa.array(TypedSequence(snake_case , optimized_int_type=snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Any , snake_case : Dict ): '''simple docstring''' snake_case_ = pa.array(OptimizedTypedSequence(snake_case , col=snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case_ = copy.deepcopy(snake_case ) snake_case_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(snake_case , snake_case ) snake_case_ = pa.array(OptimizedTypedSequence(snake_case , col=snake_case ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def UpperCamelCase_( snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=snake_case ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def UpperCamelCase_( snake_case : Union[str, Any] ): '''simple docstring''' snake_case_ = "mock://dataset-train.arrow" with ArrowWriter(path=snake_case , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(snake_case ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(snake_case ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = pa.BufferOutputStream() with ParquetWriter(stream=snake_case ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) snake_case_ , snake_case_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(snake_case ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : List[str] ): '''simple docstring''' import PIL.Image snake_case_ = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(snake_case , format="png" ) snake_case_ = pa.BufferOutputStream() with ParquetWriter( stream=snake_case , features=Features({"image": Image()} ) , embed_local_files=snake_case ) as writer: writer.write({"image": image_path} ) writer.finalize() snake_case_ = pa.BufferReader(output.getvalue() ) snake_case_ = pq.read_table(snake_case ) snake_case_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , snake_case ) with open(snake_case , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def UpperCamelCase_( ): '''simple docstring''' snake_case_ = pa.schema([pa.field("col_1" , pa.string() , nullable=snake_case )] ) snake_case_ = pa.BufferOutputStream() with ArrowWriter(stream=snake_case ) as writer: writer._build_writer(inferred_schema=snake_case ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
85
from math import loga def A_ ( A__ ) -> int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(A__ , A__ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: if not is_accelerate_available(): return method __lowerCamelCase : Tuple = version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCamelCase ) < version.parse('0.17.0' ): return method def wrapper(self , *lowerCamelCase__ , **lowerCamelCase__ ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCamelCase , **__lowerCamelCase ) return wrapper
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
113
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase__: Union[str, Any] = None UpperCamelCase__: List[Any] = logging.get_logger(__name__) UpperCamelCase__: Dict = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase__: int = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCamelCase__: List[str] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off UpperCamelCase__: Optional[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ["""input_ids""", """attention_mask"""] lowerCamelCase__ = MBartTokenizer lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self : int , __snake_case : List[Any]=None , __snake_case : Optional[Any]=None , __snake_case : Optional[int]="<s>" , __snake_case : List[Any]="</s>" , __snake_case : Optional[int]="</s>" , __snake_case : List[str]="<s>" , __snake_case : List[str]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Optional[Any]="<mask>" , __snake_case : Tuple=None , __snake_case : List[str]=None , __snake_case : Any=None , **__snake_case : Tuple , ) -> int: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Optional[int] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( vocab_file=__snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase : Tuple = vocab_file UpperCAmelCase : Union[str, Any] = False if not self.vocab_file else True UpperCAmelCase : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCAmelCase : int = { lang_code: self.convert_tokens_to_ids(__snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A ( self : Tuple ) -> str: return self._src_lang @src_lang.setter def A ( self : List[Any] , __snake_case : str ) -> None: UpperCAmelCase : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Union[str, Any] = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : Tuple , __snake_case : Any , __snake_case : str , __snake_case : Optional[str] , __snake_case : Optional[str] , **__snake_case : Any ) -> Tuple: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase : List[Any] = src_lang UpperCAmelCase : Union[str, Any] = self(__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , **__snake_case ) UpperCAmelCase : str = self.convert_tokens_to_ids(__snake_case ) UpperCAmelCase : Union[str, Any] = tgt_lang_id return inputs def A ( self : str , __snake_case : List[str] , __snake_case : str = "en_XX" , __snake_case : Optional[List[str]] = None , __snake_case : str = "ro_RO" , **__snake_case : List[Any] , ) -> BatchEncoding: UpperCAmelCase : Dict = src_lang UpperCAmelCase : List[str] = tgt_lang return super().prepare_seqaseq_batch(__snake_case , __snake_case , **__snake_case ) def A ( self : Any ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def A ( self : Optional[int] ) -> Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : Any , __snake_case : str ) -> None: UpperCAmelCase : Optional[int] = self.convert_tokens_to_ids(__snake_case ) UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : str = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : Dict , __snake_case : str ) -> None: UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(__snake_case ) UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : Any , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCAmelCase : List[str] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
23
'''simple docstring''' from math import isclose, sqrt def snake_case_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> tuple[float, float, float]: UpperCAmelCase : Optional[int] = point_y / 4 / point_x UpperCAmelCase : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) UpperCAmelCase : Any = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) UpperCAmelCase : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 UpperCAmelCase : Union[str, Any] = outgoing_gradient**2 + 4 UpperCAmelCase : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) UpperCAmelCase : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 UpperCAmelCase : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) UpperCAmelCase : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point UpperCAmelCase : Optional[Any] = x_minus if isclose(_lowerCAmelCase , _lowerCAmelCase ) else x_plus UpperCAmelCase : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case_ ( _lowerCAmelCase : float = 1.4 , _lowerCAmelCase : float = -9.6 ) -> int: UpperCAmelCase : int = 0 UpperCAmelCase : float = first_x_coord UpperCAmelCase : float = first_y_coord UpperCAmelCase : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = next_point(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
23
1
from ...processing_utils import ProcessorMixin class a_ ( a_ ): '''simple docstring''' __a: Any = '''SpeechT5FeatureExtractor''' __a: Tuple = '''SpeechT5Tokenizer''' def __init__( self , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' super().__init__(lowercase_ , lowercase_ ) def __call__( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' lowerCAmelCase_ = kwargs.pop('audio' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('text' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('text_target' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('audio_target' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('sampling_rate' , lowercase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: lowerCAmelCase_ = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) elif text is not None: lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ ) else: lowerCAmelCase_ = None if audio_target is not None: lowerCAmelCase_ = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) lowerCAmelCase_ = targets['input_values'] elif text_target is not None: lowerCAmelCase_ = self.tokenizer(lowercase_ , **lowercase_ ) lowerCAmelCase_ = targets['input_ids'] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = kwargs.pop('input_values' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('input_ids' , lowercase_ ) lowerCAmelCase_ = kwargs.pop('labels' , lowercase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: lowerCAmelCase_ = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) elif input_ids is not None: lowerCAmelCase_ = self.tokenizer.pad(lowercase_ , **lowercase_ ) else: lowerCAmelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_ ) and "input_ids" in labels[0]): lowerCAmelCase_ = self.tokenizer.pad(lowercase_ , **lowercase_ ) lowerCAmelCase_ = targets['input_ids'] else: lowerCAmelCase_ = self.feature_extractor.feature_size lowerCAmelCase_ = self.feature_extractor.num_mel_bins lowerCAmelCase_ = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) lowerCAmelCase_ = feature_size_hack lowerCAmelCase_ = targets['input_values'] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get('attention_mask' ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def _lowercase ( self , *lowercase_ , **lowercase_ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def _lowercase ( self , *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ )
351
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( a_ , a_ , a_ , a_ ) -> Tuple[int, int]: def constraint_to_multiple_of(a_ , a_ , a_=0 , a_=None ): lowerCAmelCase_ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowerCAmelCase_ = math.floor(val / multiple ) * multiple if x < min_val: lowerCAmelCase_ = math.ceil(val / multiple ) * multiple return x lowerCAmelCase_ = (output_size, output_size) if isinstance(a_ , a_ ) else output_size lowerCAmelCase_ , lowerCAmelCase_ = get_image_size(a_ ) lowerCAmelCase_ , lowerCAmelCase_ = output_size # determine new height and width lowerCAmelCase_ = output_height / input_height lowerCAmelCase_ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowerCAmelCase_ = scale_width else: # fit height lowerCAmelCase_ = scale_height lowerCAmelCase_ = constraint_to_multiple_of(scale_height * input_height , multiple=a_ ) lowerCAmelCase_ = constraint_to_multiple_of(scale_width * input_width , multiple=a_ ) return (new_height, new_width) class a_ ( a_ ): '''simple docstring''' __a: Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = False , lowercase_ = 1 , lowercase_ = True , lowercase_ = 1 / 2_5_5 , lowercase_ = True , lowercase_ = None , lowercase_ = None , **lowercase_ , ) -> None: '''simple docstring''' super().__init__(**lowercase_ ) lowerCAmelCase_ = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = 1 , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase_ = get_resize_output_image_size( lowercase_ , output_size=(size['height'], size['width']) , keep_aspect_ratio=lowercase_ , multiple=lowercase_ , ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> Dict: '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ) -> PIL.Image.Image: '''simple docstring''' lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(lowercase_ ) lowerCAmelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowerCAmelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowerCAmelCase_ = {'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowercase_ ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
14
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowerCAmelCase = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowerCAmelCase = BASE_URL + '/user' # https://github.com/settings/tokens __lowerCAmelCase = os.environ.get('USER_TOKEN', '') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = { """Authorization""": f"""token {auth_token}""", """Accept""": """application/vnd.github.v3+json""", } return requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase__ = 0 UpperCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase__ = tuple[int, int] class lowerCamelCase_ : def __init__( self : int , _A : int , _A : int , _A : int , _A : int , _A : int , _A : Node | None , ): '''simple docstring''' UpperCAmelCase__ : List[str] = pos_x UpperCAmelCase__ : Dict = pos_y UpperCAmelCase__ : List[str] = (pos_y, pos_x) UpperCAmelCase__ : List[str] = goal_x UpperCAmelCase__ : List[Any] = goal_y UpperCAmelCase__ : int = g_cost UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[Any] = self.calculate_heuristic() UpperCAmelCase__ : str = self.g_cost + self.h_cost def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.pos_x - self.goal_x UpperCAmelCase__ : Any = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_A ) + abs(_A ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : str , _A : Node ): '''simple docstring''' return self.f_cost < other.f_cost class lowerCamelCase_ : def __init__( self : Dict , _A : TPosition , _A : TPosition ): '''simple docstring''' UpperCAmelCase__ : str = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _A ) UpperCAmelCase__ : Optional[int] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _A ) UpperCAmelCase__ : str = [self.start] UpperCAmelCase__ : list[Node] = [] UpperCAmelCase__ : Any = False def lowercase_ ( self : Optional[Any] ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase__ : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_A ) self.closed_nodes.append(_A ) UpperCAmelCase__ : Dict = self.get_successors(_A ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_A ) else: # retrieve the best current path UpperCAmelCase__ : str = self.open_nodes.pop(self.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_A ) else: self.open_nodes.append(_A ) return [self.start.pos] def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for action in delta: UpperCAmelCase__ : int = parent.pos_x + action[1] UpperCAmelCase__ : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _A , _A , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _A , ) ) return successors def lowercase_ ( self : str , _A : Node | None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = node UpperCAmelCase__ : Optional[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase__ : str = current_node.parent path.reverse() return path class lowerCamelCase_ : def __init__( self : Dict , _A : TPosition , _A : TPosition ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = AStar(_A , _A ) UpperCAmelCase__ : List[Any] = AStar(_A , _A ) UpperCAmelCase__ : int = False def lowercase_ ( self : int ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCAmelCase__ : str = self.fwd_astar.open_nodes.pop(0 ) UpperCAmelCase__ : int = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _A , _A ) self.fwd_astar.closed_nodes.append(_A ) self.bwd_astar.closed_nodes.append(_A ) UpperCAmelCase__ : List[Any] = current_bwd_node UpperCAmelCase__ : Any = current_fwd_node UpperCAmelCase__ : Any = { self.fwd_astar: self.fwd_astar.get_successors(_A ), self.bwd_astar: self.bwd_astar.get_successors(_A ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_A ) else: # retrieve the best current path UpperCAmelCase__ : List[str] = astar.open_nodes.pop( astar.open_nodes.index(_A ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_A ) else: astar.open_nodes.append(_A ) return [self.fwd_astar.start.pos] def lowercase_ ( self : Any , _A : Node , _A : Node ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.fwd_astar.retrace_path(_A ) UpperCAmelCase__ : List[Any] = self.bwd_astar.retrace_path(_A ) bwd_path.pop() bwd_path.reverse() UpperCAmelCase__ : Dict = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase__ = (0, 0) UpperCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase__ = time.time() UpperCamelCase__ = AStar(init, goal) UpperCamelCase__ = a_star.search() UpperCamelCase__ = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") UpperCamelCase__ = time.time() UpperCamelCase__ = BidirectionalAStar(init, goal) UpperCamelCase__ = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
299
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
1
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase : str = (boundary[1] - boundary[0]) / steps lowerCamelCase : List[str] = boundary[0] lowerCamelCase : Union[str, Any] = boundary[1] lowerCamelCase : int = make_points(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : int = a + h while x < (b - h): yield x lowerCamelCase : List[str] = x + h def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # enter your function here lowerCamelCase : str = (x - 0) * (x - 0) return y def A ( ) -> int: lowerCamelCase : int = 0.0 # Lower bound of integration lowerCamelCase : int = 1.0 # Upper bound of integration lowerCamelCase : Dict = 10.0 # define number of steps or resolution lowerCamelCase : int = [a, b] # define boundary of integration lowerCamelCase : str = method_a(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
48
import argparse import os import re SCREAMING_SNAKE_CASE__ : List[Any] = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r'\s*\(\s*"(\S[^"]+)"') def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = False ) -> int: with open(_SCREAMING_SNAKE_CASE ,"r" ,encoding="utf-8" ) as f: lowerCamelCase : List[Any] = f.read() lowerCamelCase : str = content.split("\n" ) lowerCamelCase : int = [] lowerCamelCase : List[Any] = 0 while line_idx < len(_SCREAMING_SNAKE_CASE ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowerCamelCase : Optional[int] = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 lowerCamelCase : Optional[int] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowerCamelCase : List[str] = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowerCamelCase : Union[str, Any] = sorted(_SCREAMING_SNAKE_CASE ,key=lambda _SCREAMING_SNAKE_CASE : _re_identifier.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_SCREAMING_SNAKE_CASE ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(_SCREAMING_SNAKE_CASE ) ) elif "\n".join(_SCREAMING_SNAKE_CASE ) != content: return True def A ( _SCREAMING_SNAKE_CASE = False ) -> List[str]: lowerCamelCase : str = [os.path.join(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for f in os.listdir(_SCREAMING_SNAKE_CASE ) if f.endswith(".py" )] lowerCamelCase : Union[str, Any] = [sort_auto_mapping(_SCREAMING_SNAKE_CASE ,overwrite=_SCREAMING_SNAKE_CASE ) for fname in fnames] if not overwrite and any(_SCREAMING_SNAKE_CASE ): lowerCamelCase : str = [f for f, d in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(_SCREAMING_SNAKE_CASE )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[str] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
48
1
from queue import PriorityQueue from typing import Any import numpy as np def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue lowercase__ : str = cst_fwd.get(lowerCamelCase__ , np.inf ) lowercase__ : int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowercase__ : Union[str, Any] = new_cost_f lowercase__ : Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowercase__ : Optional[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = -1 lowercase__ : Dict = set() lowercase__ : int = set() lowercase__ : List[Any] = {source: 0} lowercase__ : List[Any] = {destination: 0} lowercase__ : Optional[int] = {source: None} lowercase__ : Dict = {destination: None} lowercase__ : List[Any] = PriorityQueue() lowercase__ : str = PriorityQueue() lowercase__ : Optional[int] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowercase__ , lowercase__ : int = queue_forward.get() visited_forward.add(lowerCamelCase__ ) lowercase__ , lowercase__ : Any = queue_backward.get() visited_backward.add(lowerCamelCase__ ) lowercase__ : List[Any] = pass_and_relaxation( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) lowercase__ : Union[str, Any] = pass_and_relaxation( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowercase__ : Dict = shortest_distance return shortest_path_distance lowerCAmelCase__ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowerCAmelCase__ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
361
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower_vision_model""" def __init__( self : str , SCREAMING_SNAKE_CASE : Dict=768 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Dict=16 , SCREAMING_SNAKE_CASE : List[Any]=288 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : List[str]=1E-0_5 , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Tuple=False , **SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : str = num_channels lowercase__ : Optional[int] = patch_size lowercase__ : Dict = image_size lowercase__ : List[Any] = initializer_factor lowercase__ : int = layer_norm_eps lowercase__ : List[str] = stop_gradient lowercase__ : Optional[int] = share_layernorm lowercase__ : Optional[int] = remove_last_layer @classmethod def snake_case ( cls : Tuple , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : str ): lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if config_dict.get("model_type" ) == "bridgetower": lowercase__ : Optional[int] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower_text_model""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any]=50_265 , SCREAMING_SNAKE_CASE : Optional[int]=768 , SCREAMING_SNAKE_CASE : List[str]=12 , SCREAMING_SNAKE_CASE : Union[str, Any]=12 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : Any=3_072 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Tuple=514 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : Dict=1E-0_5 , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : str=0 , SCREAMING_SNAKE_CASE : List[Any]=2 , SCREAMING_SNAKE_CASE : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE : int=True , **SCREAMING_SNAKE_CASE : int , ): super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Any = vocab_size lowercase__ : Optional[Any] = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : int = hidden_act lowercase__ : Optional[Any] = initializer_factor lowercase__ : Dict = intermediate_size lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : str = type_vocab_size lowercase__ : str = layer_norm_eps lowercase__ : Dict = position_embedding_type lowercase__ : Optional[Any] = use_cache lowercase__ : List[str] = pad_token_id lowercase__ : Optional[Any] = bos_token_id lowercase__ : Optional[Any] = eos_token_id @classmethod def snake_case ( cls : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE : str ): lowercase__ , lowercase__ : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if config_dict.get("model_type" ) == "bridgetower": lowercase__ : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """bridgetower""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Dict="gelu" , SCREAMING_SNAKE_CASE : Any=768 , SCREAMING_SNAKE_CASE : Dict=1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1E-0_5 , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : List[Any]="add" , SCREAMING_SNAKE_CASE : Any=12 , SCREAMING_SNAKE_CASE : Any=6 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : List[Any] , ): # TODO: remove this once the Hub files are updated. lowercase__ : int = kwargs.pop("text_config_dict" , SCREAMING_SNAKE_CASE ) lowercase__ : int = kwargs.pop("vision_config_dict" , SCREAMING_SNAKE_CASE ) super().__init__(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = share_cross_modal_transformer_layers lowercase__ : int = hidden_act lowercase__ : int = hidden_size lowercase__ : Optional[int] = initializer_factor lowercase__ : Optional[int] = layer_norm_eps lowercase__ : str = share_link_tower_layers lowercase__ : Optional[int] = link_tower_type lowercase__ : List[Any] = num_attention_heads lowercase__ : Dict = num_hidden_layers lowercase__ : Dict = tie_word_embeddings lowercase__ : Optional[Any] = init_layernorm_from_vision_encoder if text_config is None: lowercase__ : Optional[Any] = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: lowercase__ : List[Any] = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) lowercase__ : Any = BridgeTowerTextConfig(**SCREAMING_SNAKE_CASE ) lowercase__ : Dict = BridgeTowerVisionConfig(**SCREAMING_SNAKE_CASE ) @classmethod def snake_case ( cls : Optional[int] , SCREAMING_SNAKE_CASE : BridgeTowerTextConfig , SCREAMING_SNAKE_CASE : BridgeTowerVisionConfig , **SCREAMING_SNAKE_CASE : List[str] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[int] ): lowercase__ : List[str] = copy.deepcopy(self.__dict__ ) lowercase__ : Dict = self.text_config.to_dict() lowercase__ : Tuple = self.vision_config.to_dict() lowercase__ : Optional[Any] = self.__class__.model_type return output
121
0