code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : str ) -> Optional[Any]: '''simple docstring''' print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(_snake_case ): for j in range(_snake_case ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' __magic_name__ : Dict = [[float("inf" ) for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): __magic_name__ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_snake_case ): # looping through rows of graph array for i in range(_snake_case ): # looping through columns of graph array for j in range(_snake_case ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __magic_name__ : str = dist[i][k] + dist[k][j] _print_dist(_snake_case , _snake_case ) return dist, v if __name__ == "__main__": snake_case : List[str] = int(input("Enter number of vertices: ")) snake_case : Dict = int(input("Enter number of edges: ")) snake_case : Any = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): snake_case : Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) snake_case : Union[str, Any] = int(input("Enter source:")) snake_case : List[str] = int(input("Enter destination:")) snake_case : Union[str, Any] = float(input("Enter weight:")) snake_case : Tuple = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
281
def lowerCAmelCase_ ( _snake_case : list[list[int | float]] ) -> int: '''simple docstring''' __magic_name__ : Any = len(_snake_case ) __magic_name__ : Optional[Any] = len(matrix[0] ) __magic_name__ : Union[str, Any] = min(_snake_case , _snake_case ) for row in range(_snake_case ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _snake_case ): __magic_name__ : Optional[Any] = matrix[col][row] / matrix[row][row] for i in range(_snake_case , _snake_case ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __magic_name__ : str = True for i in range(row + 1 , _snake_case ): if matrix[i][row] != 0: __magic_name__ , __magic_name__ : List[str] = matrix[i], matrix[row] __magic_name__ : Union[str, Any] = False break if reduce: rank -= 1 for i in range(_snake_case ): __magic_name__ : Any = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
281
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
356
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } UpperCamelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } UpperCamelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = DPRContextEncoderTokenizer class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Optional[int] = DPRQuestionEncoderTokenizer UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ : '''simple docstring''' def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) elif titles is None or texts is None: A: Union[str, Any] = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Union[str, Any] = titles if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [titles] A: Optional[Any] = texts if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [texts] A: str = len(SCREAMING_SNAKE_CASE_ ) A: List[Any] = questions if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else [questions] * n_passages assert len(SCREAMING_SNAKE_CASE_ ) == len( SCREAMING_SNAKE_CASE_ ), f"""There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE_ )} titles and {len(SCREAMING_SNAKE_CASE_ )} texts.""" A: Union[str, Any] = super().__call__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: Dict = super().__call__(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] A: str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] } if return_attention_mask is not False: A: Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A: Optional[Any] = attention_mask return self.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : BatchEncoding , SCREAMING_SNAKE_CASE_ : DPRReaderOutput , SCREAMING_SNAKE_CASE_ : int = 16 , SCREAMING_SNAKE_CASE_ : int = 64 , SCREAMING_SNAKE_CASE_ : int = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Any = reader_input['''input_ids'''] A , A , A: str = reader_output[:3] A: str = len(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = sorted(range(SCREAMING_SNAKE_CASE_ ) , reverse=SCREAMING_SNAKE_CASE_ , key=relevance_logits.__getitem__ ) A: List[DPRReaderOutput] = [] for doc_id in sorted_docs: A: List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A: Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A: Union[str, Any] = sequence_ids.index(self.pad_token_id ) else: A: int = len(SCREAMING_SNAKE_CASE_ ) A: Dict = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE_ , top_spans=SCREAMING_SNAKE_CASE_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE_ , start_index=SCREAMING_SNAKE_CASE_ , end_index=SCREAMING_SNAKE_CASE_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , ) -> List[DPRSpanPrediction]: '''simple docstring''' A: Union[str, Any] = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A: Any = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x[1] , reverse=SCREAMING_SNAKE_CASE_ ) A: Dict = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A: int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : Optional[Any] = DPRReaderTokenizer
334
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
'''simple docstring''' def snake_case ( UpperCAmelCase )-> list[int]: """simple docstring""" if length <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
161
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch snake_case : str = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = ['''pixel_values'''] def __init__( self :Any ,__snake_case :bool = True ,__snake_case :Optional[Dict[str, int]] = None ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Optional[int] ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'shortest_edge': 2_56} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = size a__ = resample a__ = do_center_crop a__ = crop_size a__ = do_rescale a__ = rescale_factor a__ = do_normalize a__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__( self :Optional[Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BICUBIC ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> np.ndarray: a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) a__ = get_resize_output_image_size(__snake_case ,size=size['shortest_edge'] ,default_to_square=__snake_case ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :int ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Tuple ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :float ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ) -> np.ndarray: return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[Any] ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Tuple ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :ImageInput ,__snake_case :Optional[bool] = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[float] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__snake_case :List[str] ,) -> str: a__ = do_resize if do_resize is not None else self.do_resize a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = resample if resample is not None else self.resample a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ) a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: a__ = [self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) for image in images] if do_center_crop: a__ = [self.center_crop(image=__snake_case ,size=__snake_case ) for image in images] if do_rescale: a__ = [self.rescale(image=__snake_case ,scale=__snake_case ) for image in images] if do_normalize: a__ = [self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) for image in images] a__ = [to_channel_dimension_format(__snake_case ,__snake_case ) for image in images] a__ = {'pixel_values': images} return BatchFeature(data=__snake_case ,tensor_type=__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :Any ,__snake_case :List[Tuple] = None ) -> Union[str, Any]: a__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__snake_case ) != len(__snake_case ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__snake_case ): a__ = target_sizes.numpy() a__ = [] for idx in range(len(__snake_case ) ): a__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=__snake_case ) a__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__snake_case ) else: a__ = logits.argmax(dim=1 ) a__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
109
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str ): a__ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('encoder.deit.cls_token', 'encoder.embeddings.cls_token'), ('encoder.deit.pos_embed', 'encoder.embeddings.position_embeddings'), ('encoder.deit.patch_embed.proj.weight', 'encoder.embeddings.patch_embeddings.projection.weight'), ('encoder.deit.patch_embed.proj.bias', 'encoder.embeddings.patch_embeddings.projection.bias'), ('encoder.deit.norm.weight', 'encoder.layernorm.weight'), ('encoder.deit.norm.bias', 'encoder.layernorm.bias'), ] ) return rename_keys def __lowercase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) a__ = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) a__ = in_proj_weight[ : encoder_config.hidden_size, : ] a__ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] a__ = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : Optional[Any] ): if "handwritten" in checkpoint_url: a__ = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = 'https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return im @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int ): a__ = ViTConfig(image_size=3_8_4 , qkv_bias=__lowerCAmelCase ) a__ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: a__ = 7_6_8 elif "large" in checkpoint_url: # use ViT-large encoder a__ = 1_0_2_4 a__ = 4_0_9_6 a__ = 2_4 a__ = 1_6 a__ = 1_0_2_4 else: raise ValueError('Should either find \'base\' or \'large\' in checkpoint URL' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: a__ = False a__ = 'relu' a__ = 1_0_2_4 a__ = True a__ = False a__ = False # load HuggingFace model a__ = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ) a__ = TrOCRForCausalLM(__lowerCAmelCase ) a__ = VisionEncoderDecoderModel(encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys a__ = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' , check_hash=__lowerCAmelCase )['model'] a__ = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): a__ = state_dict.pop(__lowerCAmelCase ) if key.startswith('decoder' ) and "output_projection" not in key: a__ = val else: a__ = val # load state dict model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image a__ = ViTImageProcessor(size=encoder_config.image_size ) a__ = RobertaTokenizer.from_pretrained('roberta-large' ) a__ = TrOCRProcessor(__lowerCAmelCase , __lowerCAmelCase ) a__ = processor(images=prepare_img(__lowerCAmelCase ) , return_tensors='pt' ).pixel_values # verify logits a__ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) a__ = model(pixel_values=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ) a__ = outputs.logits a__ = torch.Size([1, 1, 5_0_2_6_5] ) if "trocr-base-handwritten" in checkpoint_url: a__ = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: a__ = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: a__ = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: a__ = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :1_0] , __lowerCAmelCase , atol=1E-3 ), "First elements of logits not as expected" Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case : int = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
109
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { 'configuration_xlm_roberta_xl': [ 'XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaXLConfig', 'XLMRobertaXLOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ 'XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaXLForCausalLM', 'XLMRobertaXLForMaskedLM', 'XLMRobertaXLForMultipleChoice', 'XLMRobertaXLForQuestionAnswering', 'XLMRobertaXLForSequenceClassification', 'XLMRobertaXLForTokenClassification', 'XLMRobertaXLModel', 'XLMRobertaXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
235
def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
305
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase : bool = field(default=UpperCAmelCase_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _UpperCAmelCase : Optional[str] = field( default=UpperCAmelCase_ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) _UpperCAmelCase : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCAmelCase : bool = field( default=UpperCAmelCase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_: Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) SCREAMING_SNAKE_CASE_: Any = import_module("tasks" ) try: SCREAMING_SNAKE_CASE_: Union[str, Any] = getattr(_UpperCAmelCase , model_args.task_type ) SCREAMING_SNAKE_CASE_: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task SCREAMING_SNAKE_CASE_: List[str] = token_classification_task.get_labels(data_args.labels ) SCREAMING_SNAKE_CASE_: Dict[int, str] = dict(enumerate(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Any = len(_UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_: Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid={label: i for i, label in enumerate(_UpperCAmelCase )} , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) SCREAMING_SNAKE_CASE_: Any = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE_: Union[str, Any] = ( TokenClassificationDataset( token_classification_task=_UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , labels=_UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE_: Optional[Any] = ( TokenClassificationDataset( token_classification_task=_UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , labels=_UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_UpperCAmelCase , _UpperCAmelCase ) -> Tuple[List[int], List[int]]: SCREAMING_SNAKE_CASE_: List[Any] = np.argmax(_UpperCAmelCase , axis=2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = preds.shape SCREAMING_SNAKE_CASE_: List[Any] = [[] for _ in range(_UpperCAmelCase )] SCREAMING_SNAKE_CASE_: int = [[] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_UpperCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_UpperCAmelCase , _UpperCAmelCase ), "precision": precision_score(_UpperCAmelCase , _UpperCAmelCase ), "recall": recall_score(_UpperCAmelCase , _UpperCAmelCase ), "f1": fa_score(_UpperCAmelCase , _UpperCAmelCase ), } # Data collator SCREAMING_SNAKE_CASE_: Optional[Any] = DataCollatorWithPadding(_UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE_: Union[str, Any] = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , data_collator=_UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE_: Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE_: Union[str, Any] = trainer.evaluate() SCREAMING_SNAKE_CASE_: Tuple = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("%s = %s\n" % (key, value) ) results.update(_UpperCAmelCase ) # Predict if training_args.do_predict: SCREAMING_SNAKE_CASE_: Optional[int] = TokenClassificationDataset( token_classification_task=_UpperCAmelCase , data_dir=data_args.data_dir , tokenizer=_UpperCAmelCase , labels=_UpperCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = trainer.predict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = align_predictions(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , _UpperCAmelCase , _UpperCAmelCase ) writer.write("%s = %s\n" % (key, value) ) # Save predictions SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(_UpperCAmelCase , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return results def A_ ( _UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
127
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase : List[str] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def A_ ( _UpperCAmelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_: Optional[Any] = subparsers.add_parser("tpu-config" , description=_description ) else: SCREAMING_SNAKE_CASE_: Optional[int] = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments SCREAMING_SNAKE_CASE_: Any = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_UpperCAmelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_UpperCAmelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) SCREAMING_SNAKE_CASE_: Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_UpperCAmelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: SCREAMING_SNAKE_CASE_: Any = defaults.command_file if not args.command and defaults.commands is not None: SCREAMING_SNAKE_CASE_: int = defaults.commands if not args.tpu_name: SCREAMING_SNAKE_CASE_: List[str] = defaults.tpu_name if not args.tpu_zone: SCREAMING_SNAKE_CASE_: Dict = defaults.tpu_zone if args.accelerate_version == "dev": SCREAMING_SNAKE_CASE_: Tuple = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": SCREAMING_SNAKE_CASE_: str = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: SCREAMING_SNAKE_CASE_: Dict = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate SCREAMING_SNAKE_CASE_: Dict = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command SCREAMING_SNAKE_CASE_: List[str] = "; ".join(_UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess SCREAMING_SNAKE_CASE_: int = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(_UpperCAmelCase )}" ) return subprocess.run(_UpperCAmelCase ) print("Successfully setup pod." ) def A_ ( ): SCREAMING_SNAKE_CASE_: List[str] = tpu_command_parser() SCREAMING_SNAKE_CASE_: List[Any] = parser.parse_args() tpu_command_launcher(_UpperCAmelCase )
127
1
from __future__ import annotations import math lowercase : Any = '2020.9.26' lowercase : Union[str, Any] = 'xcodz-dot, cclaus, dhruvmanila' def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[float, float]: if not all(isinstance(_lowerCamelCase , (float, int) ) for val in locals().values() ): lowercase : str = f"Input values must either be float or int: {list(locals().values() )}" raise TypeError(_lowerCamelCase ) lowercase : List[str] = ((x * distance) / (z + distance)) * scale lowercase : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[float, float, float]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Axis must be a str""" ) lowercase : str = locals() del input_variables["axis"] if not all(isinstance(_lowerCamelCase , (float, int) ) for val in input_variables.values() ): lowercase : Dict = ( "Input values except axis must either be float or int: " f"{list(input_variables.values() )}" ) raise TypeError(_lowerCamelCase ) lowercase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": lowercase : Tuple = x * math.cos(_lowerCamelCase ) - y * math.sin(_lowerCamelCase ) lowercase : Union[str, Any] = y * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) lowercase : Any = z elif axis == "x": lowercase : Dict = y * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) lowercase : Any = z * math.cos(_lowerCamelCase ) + y * math.sin(_lowerCamelCase ) lowercase : List[str] = x elif axis == "y": lowercase : Any = x * math.cos(_lowerCamelCase ) - z * math.sin(_lowerCamelCase ) lowercase : Any = z * math.cos(_lowerCamelCase ) + x * math.sin(_lowerCamelCase ) lowercase : Dict = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, "y", 90.0) = }''')
20
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = '▁' lowercase : Tuple = {'vocab_file': 'spiece.model'} lowercase : Dict = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } lowercase : Any = { 'google/reformer-crime-and-punishment': 524288, } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self :int , a :List[Any] , a :Tuple="</s>" , a :str="<unk>" , a :Dict=[] , a :Optional[Dict[str, Any]] = None , **a :Union[str, Any] , ) -> None: __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : Optional[Any] = vocab_file __UpperCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def _lowerCamelCase ( self :Optional[Any] ) -> Any: return self.sp_model.get_piece_size() def _lowerCamelCase ( self :Optional[int] ) -> Dict[str, int]: __UpperCamelCase : str = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :int , a :List[str] ) -> int: __UpperCamelCase : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : int = {} __UpperCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _lowerCamelCase ( self :Optional[int] , a :Optional[Any] ) -> str: return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self :Dict , a :Union[str, Any] ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __UpperCamelCase : Optional[int] = self.sp_model.IdToPiece(a ) return token def _lowerCamelCase ( self :Dict , a :List[Any] ) -> Dict: __UpperCamelCase : Optional[int] = [] __UpperCamelCase : str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token __UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self :Optional[Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : List[Any] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
232
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( _lowerCAmelCase ): A__ : Optional[int] = ["pixel_values"] def __init__(self : Tuple , snake_case__ : str = True , snake_case__ : Union[str, Any] = None , snake_case__ : int = PILImageResampling.BILINEAR , snake_case__ : List[str] = True , snake_case__ : List[Any] = None , snake_case__ : int = True , snake_case__ : List[Any] = 1 / 2_55 , snake_case__ : Optional[Any] = True , snake_case__ : int = None , snake_case__ : Optional[Any] = None , **snake_case__ : Tuple , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_56} snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case : str = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="crop_size" ) snake_case : Union[str, Any] = do_resize snake_case : List[str] = size snake_case : List[str] = resample snake_case : Optional[int] = do_center_crop snake_case : int = crop_size snake_case : List[Any] = do_rescale snake_case : str = rescale_factor snake_case : Dict = do_normalize snake_case : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : Optional[int] = PILImageResampling.BICUBIC , snake_case__ : Dict = None , **snake_case__ : List[Any] , ) -> np.ndarray: '''simple docstring''' snake_case : int = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : List[Any] = None , **snake_case__ : List[Any] , ) -> np.ndarray: '''simple docstring''' snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[str] = None , **snake_case__ : Any ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : str , snake_case__ : Dict = None , **snake_case__ : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : Union[str, Any] , snake_case__ : int = None , snake_case__ : Any = None , snake_case__ : str = None , snake_case__ : List[Any] = None , snake_case__ : str = None , snake_case__ : List[Any] = None , snake_case__ : int = None , snake_case__ : List[str] = None , snake_case__ : Optional[Any] = None , snake_case__ : Any = None , snake_case__ : Optional[Any] = None , snake_case__ : Dict = ChannelDimension.FIRST , **snake_case__ : int , ) -> Any: '''simple docstring''' snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : List[str] = size if size is not None else self.size snake_case : Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = resample if resample is not None else self.resample snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size snake_case : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name="crop_size" ) snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize snake_case : Tuple = image_mean if image_mean is not None else self.image_mean snake_case : str = image_std if image_std is not None else self.image_std snake_case : Union[str, Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case : Any = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: snake_case : int = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: snake_case : Optional[int] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: snake_case : Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: snake_case : Any = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : List[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : List[Any] , snake_case__ : Optional[int] = None ) -> Tuple: '''simple docstring''' snake_case : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): snake_case : int = target_sizes.numpy() snake_case : Optional[int] = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): snake_case : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=SCREAMING_SNAKE_CASE_ ) snake_case : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: snake_case : str = logits.argmax(dim=1 ) snake_case : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
365
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __lowerCamelCase = Mapping[str, np.ndarray] __lowerCamelCase = Mapping[str, Any] # Is a nested dict. __lowerCamelCase = 0.01 @dataclasses.dataclass(frozen=A_ ) class UpperCAmelCase : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] = None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] = None # Chain corresponding to each parent A__ : Optional[Sequence[int]] = None def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = r"(\[[A-Z]+\]\n)" snake_case : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0] snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) snake_case : List[str] = ["N", "CA", "C"] snake_case : str = None snake_case : str = None snake_case : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: snake_case : Tuple = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: snake_case : Optional[Any] = "X" # FIXME: strings are immutable snake_case : Optional[int] = np.array( [residue_constants.restype_order.get(__lowerCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase , g[1][axis].split() ) ) ) snake_case : Union[str, Any] = np.array(__lowerCamelCase ) snake_case : str = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) snake_case : List[str] = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): snake_case : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase , atom_mask=__lowerCamelCase , aatype=__lowerCamelCase , residue_index=np.arange(len(__lowerCamelCase ) ) , b_factors=__lowerCamelCase , ) def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : int = 0 ): snake_case : List[str] = [] snake_case : str = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) snake_case : Union[str, Any] = prot.parents snake_case : Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: snake_case : Tuple = [p for i, p in zip(__lowerCamelCase , __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: snake_case : int = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def UpperCamelCase ( __lowerCamelCase : Protein , __lowerCamelCase : str ): snake_case : List[str] = [] snake_case : Any = pdb_str.split("\n" ) snake_case : int = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: snake_case : Optional[Any] = [] if prot.parents_chain_index is not None: snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ) , [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) snake_case : List[str] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): snake_case : Optional[Any] = parent_dict.get(str(__lowerCamelCase ) , ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: snake_case : Optional[Any] = [["N/A"]] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) snake_case : List[Any] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): snake_case : int = parents_per_chain[chain_counter] else: snake_case : Any = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): snake_case : str = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) snake_case : List[Any] = residue_constants.atom_types snake_case : List[str] = [] snake_case : Any = prot.atom_mask snake_case : Any = prot.aatype snake_case : Dict = prot.atom_positions snake_case : List[str] = prot.residue_index.astype(np.intaa ) snake_case : Dict = prot.b_factors snake_case : Tuple = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) snake_case : Any = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) snake_case : Dict = aatype.shape[0] snake_case : Tuple = 1 snake_case : Any = 0 snake_case : Union[str, Any] = string.ascii_uppercase snake_case : int = None # Add all atom sites. for i in range(__lowerCamelCase ): snake_case : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue snake_case : Any = "ATOM" snake_case : str = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" snake_case : Optional[Any] = "" snake_case : Dict = "" snake_case : Optional[Any] = 1.00 snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. snake_case : Dict = "" snake_case : Any = "A" if chain_index is not None: snake_case : str = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! snake_case : List[str] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 snake_case : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: snake_case : Any = True snake_case : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. snake_case : Optional[Any] = "TER" snake_case : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase , __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Protein ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def UpperCamelCase ( __lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowerCamelCase , remark=__lowerCamelCase , parents=__lowerCamelCase , parents_chain_index=__lowerCamelCase , )
10
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCAmelCase = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[Any] = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[str, Any] = "openai-gpt" __magic_name__ : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , lowerCAmelCase : Optional[Any]=40478 , lowerCAmelCase : str=512 , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : int=12 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Tuple=1E-5 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]="cls_index" , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=True , lowerCAmelCase : int=0.1 , **lowerCAmelCase : Optional[int] , )-> str: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = afn UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_first_dropout UpperCAmelCase = summary_proj_to_labels super().__init__(**lowerCAmelCase )
91
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[str] = StableDiffusionSAGPipeline __magic_name__ : str = TEXT_TO_IMAGE_PARAMS __magic_name__ : Any = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ : str = False def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple=0 )-> str: """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def a__( self : Any )-> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Union[str, Any] )-> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) UpperCAmelCase = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def a__( self : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sag_pipe.to(lowerCAmelCase ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''.''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) UpperCAmelCase = output.images assert image.shape == (1, 512, 768, 3)
91
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A: str = logging.get_logger(__name__) A: List[str] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ ): __lowerCAmelCase : List[Any] = 'focalnet' def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=[192, 384, 768, 768] , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[3, 3, 3, 3] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-4 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Dict: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Union[str, Any] = patch_size UpperCAmelCase : Any = num_channels UpperCAmelCase : Optional[int] = embed_dim UpperCAmelCase : List[str] = use_conv_embed UpperCAmelCase : Dict = hidden_sizes UpperCAmelCase : Any = depths UpperCAmelCase : str = focal_levels UpperCAmelCase : Tuple = focal_windows UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Dict = mlp_ratio UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Dict = drop_path_rate UpperCAmelCase : Tuple = use_layerscale UpperCAmelCase : Dict = layerscale_value UpperCAmelCase : Optional[int] = use_post_layernorm UpperCAmelCase : Dict = use_post_layernorm_in_modulation UpperCAmelCase : Tuple = normalize_modulator UpperCAmelCase : List[Any] = initializer_range UpperCAmelCase : Union[str, Any] = layer_norm_eps UpperCAmelCase : List[Any] = encoder_stride UpperCAmelCase : Optional[Any] = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase : Any = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
109
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A: List[str] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Tuple = ["DPTFeatureExtractor"] A: int = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A: str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=99 , snake_case__=13 , snake_case__=16 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=2 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=30 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : List[Any] = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Any = decoder_seq_length # For common tests lowerCAmelCase : Tuple = self.decoder_seq_length lowerCAmelCase : Dict = is_training lowerCAmelCase : List[str] = use_attention_mask lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Tuple = d_model lowerCAmelCase : Tuple = d_model lowerCAmelCase : List[str] = decoder_layers lowerCAmelCase : str = decoder_layers lowerCAmelCase : List[str] = decoder_ffn_dim lowerCAmelCase : Tuple = decoder_attention_heads lowerCAmelCase : str = decoder_attention_heads lowerCAmelCase : Optional[Any] = eos_token_id lowerCAmelCase : int = bos_token_id lowerCAmelCase : Optional[int] = pad_token_id lowerCAmelCase : Optional[int] = decoder_start_token_id lowerCAmelCase : int = use_cache lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Tuple = None lowerCAmelCase : Any = decoder_seq_length lowerCAmelCase : int = 2 lowerCAmelCase : Dict = 1 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowerCAmelCase : Union[str, Any] = None if self.use_attention_mask: lowerCAmelCase : str = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowerCAmelCase : Any = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowerCAmelCase : List[str] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[int] = True lowerCAmelCase : List[Any] = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() lowerCAmelCase : List[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCAmelCase : List[str] = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = model(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) lowerCAmelCase : List[Any] = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowerCAmelCase : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowerCAmelCase : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : int = model(_UpperCAmelCase )['''last_hidden_state'''] lowerCAmelCase : List[str] = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['''last_hidden_state'''] # select random slice lowerCAmelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : List[str] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCAmelCase : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase : int = config_and_inputs lowerCAmelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" a : List[Any] =(TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () a : Optional[Any] =(TrOCRForCausalLM,) if is_torch_available() else () a : int ={"text-generation": TrOCRForCausalLM} if is_torch_available() else {} a : int =True a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" return @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def lowercase__ ( self ): """simple docstring""" pass
352
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
133
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE : Dict = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = state_dict.pop(UpperCamelCase_ ) snake_case = val def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case = key.replace('''backbone.0.body''' ,'''backbone.conv_encoder.model''' ) snake_case = value else: snake_case = value return new_state_dict def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" snake_case = '''''' if is_panoptic: snake_case = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[:2_56, :] snake_case = in_proj_bias[:2_56] snake_case = in_proj_weight[2_56:5_12, :] snake_case = in_proj_bias[2_56:5_12] snake_case = in_proj_weight[-2_56:, :] snake_case = in_proj_bias[-2_56:] def UpperCAmelCase__ (): """simple docstring""" snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case = Image.open(requests.get(UpperCamelCase_ ,stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case = '''resnet101''' if "dc5" in model_name: snake_case = True snake_case = '''panoptic''' in model_name if is_panoptic: snake_case = 2_50 else: snake_case = 91 snake_case = '''huggingface/label-files''' snake_case = '''coco-detection-id2label.json''' snake_case = json.load(open(hf_hub_download(UpperCamelCase_ ,UpperCamelCase_ ,repo_type='''dataset''' ) ,'''r''' ) ) snake_case = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} # load image processor snake_case = '''coco_panoptic''' if is_panoptic else '''coco_detection''' snake_case = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image snake_case = prepare_img() snake_case = image_processor(images=UpperCamelCase_ ,return_tensors='''pt''' ) snake_case = encoding['''pixel_values'''] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub snake_case = torch.hub.load('''DeppMeng/ConditionalDETR''' ,UpperCamelCase_ ,pretrained=UpperCamelCase_ ).eval() snake_case = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case = '''conditional_detr.''' + src rename_key(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) snake_case = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ ,is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): snake_case = state_dict.pop(UpperCamelCase_ ) snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case = state_dict.pop(UpperCamelCase_ ) snake_case = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: snake_case = state_dict.pop(UpperCamelCase_ ) snake_case = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): snake_case = state_dict.pop(UpperCamelCase_ ) snake_case = val # finally, create HuggingFace model and load state dict snake_case = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ ,organization='''DepuMeng''' ,commit_message='''Add model''' ) # verify our conversion snake_case = conditional_detr(UpperCamelCase_ ) snake_case = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits ,original_outputs['''pred_logits'''] ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs['''pred_boxes'''] ,atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs['''pred_masks'''] ,atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
127
class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case ): snake_case = name snake_case = value snake_case = weight def __repr__( self ): return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def a_ ( self ): return self.value def a_ ( self ): return self.name def a_ ( self ): return self.weight def a_ ( self ): return self.value / self.weight def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [] for i in range(len(UpperCamelCase_ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = sorted(UpperCamelCase_ ,key=UpperCamelCase_ ,reverse=UpperCamelCase_ ) snake_case = [] snake_case , snake_case = 0.0, 0.0 for i in range(len(UpperCamelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase__ (): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
127
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = None _a = None _a = None _a = None class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str, lowerCamelCase : str=1, lowerCamelCase : Any=0, lowerCamelCase : Optional[int]=2, lowerCamelCase : Tuple=512, lowerCamelCase : List[str]="cls", lowerCamelCase : List[Any]=False, lowerCamelCase : Dict=True, **lowerCamelCase : Union[str, Any], )-> Tuple: super().__init__(pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : List[Any] =project_dim lowerCamelCase__ : Union[str, Any] =pooler_fn lowerCamelCase__ : Optional[int] =learn_encoder lowerCamelCase__ : Union[str, Any] =use_attention_mask class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = [r'pooler', r'logit_scale'] _a = [r'position_ids', r'predictions.decoder.bias'] _a = 'roberta' _a = RobertaSeriesConfig def __init__( self : int, lowerCamelCase : Tuple )-> Dict: super().__init__(lowerCamelCase ) lowerCamelCase__ : Any =XLMRobertaModel(lowerCamelCase ) lowerCamelCase__ : Dict =nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : List[Any] =getattr(lowerCamelCase, '''has_pre_transformation''', lowerCamelCase ) if self.has_pre_transformation: lowerCamelCase__ : int =nn.Linear(config.hidden_size, config.project_dim ) lowerCamelCase__ : List[Any] =nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps ) self.post_init() def snake_case ( self : Any, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[torch.Tensor] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, lowerCamelCase : Optional[bool] = None, )-> List[Any]: lowerCamelCase__ : List[Any] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__ : Tuple =self.base_model( input_ids=lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, position_ids=lowerCamelCase, head_mask=lowerCamelCase, inputs_embeds=lowerCamelCase, encoder_hidden_states=lowerCamelCase, encoder_attention_mask=lowerCamelCase, output_attentions=lowerCamelCase, output_hidden_states=True if self.has_pre_transformation else output_hidden_states, return_dict=lowerCamelCase, ) if self.has_pre_transformation: lowerCamelCase__ : Optional[Any] =outputs['''hidden_states'''][-2] lowerCamelCase__ : Optional[Any] =self.pre_LN(lowerCamelCase ) lowerCamelCase__ : List[str] =self.transformation_pre(lowerCamelCase ) return TransformationModelOutput( projection_state=lowerCamelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) else: lowerCamelCase__ : Union[str, Any] =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase, last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
272
"""simple docstring""" import numpy as np from PIL import Image def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : int =0 lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Union[str, Any] =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCamelCase__ : Union[str, Any] =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCamelCase__ : str =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : Optional[int] =0 return updated_arr def snake_case__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : List[Any] =np.array(__lowerCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) lowerCamelCase__ : str =0 lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : Optional[int] =0 lowerCamelCase__ : List[Any] =0 # compute the shape of the output matrix lowerCamelCase__ : Dict =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCamelCase__ : Optional[Any] =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCamelCase__ : Optional[int] =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : int =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image _lowercase : int = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
272
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''pix2struct_text_model''' __lowerCamelCase = ['''past_key_values'''] __lowerCamelCase = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _snake_case=50244 , _snake_case=768 , _snake_case=64 , _snake_case=2048 , _snake_case=12 , _snake_case=12 , _snake_case=32 , _snake_case=128 , _snake_case=0.1 , _snake_case=1e-6 , _snake_case=1.0 , _snake_case="gelu_new" , _snake_case=0 , _snake_case=False , _snake_case=0 , _snake_case=1 , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = d_kv _lowerCAmelCase = d_ff _lowerCAmelCase = num_layers _lowerCAmelCase = num_heads _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = relative_attention_max_distance _lowerCAmelCase = dropout_rate _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_factor _lowerCAmelCase = use_cache _lowerCAmelCase = eos_token_id _lowerCAmelCase = decoder_start_token_id # for backwards compatibility _lowerCAmelCase = dense_act_fn super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , tie_word_embeddings=_snake_case , is_decoder=_snake_case , **_snake_case , ) @classmethod def snake_case ( cls , _snake_case , **_snake_case ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''pix2struct_vision_model''' def __init__( self , _snake_case=768 , _snake_case=768 , _snake_case=2048 , _snake_case=64 , _snake_case=12 , _snake_case=12 , _snake_case="gelu_new" , _snake_case=1e-6 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=1e-10 , _snake_case=1.0 , _snake_case=4096 , _snake_case=32 , _snake_case=128 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) _lowerCAmelCase = hidden_size _lowerCAmelCase = patch_embed_hidden_size _lowerCAmelCase = d_ff _lowerCAmelCase = dropout_rate _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = initializer_range _lowerCAmelCase = initializer_factor _lowerCAmelCase = attention_dropout _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = dense_act_fn _lowerCAmelCase = seq_len _lowerCAmelCase = relative_attention_num_buckets _lowerCAmelCase = relative_attention_max_distance _lowerCAmelCase = d_kv @classmethod def snake_case ( cls , _snake_case , **_snake_case ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _lowerCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''pix2struct''' __lowerCamelCase = True def __init__( self , _snake_case=None , _snake_case=None , _snake_case=1.0 , _snake_case=0.02 , _snake_case=False , _snake_case=False , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(tie_word_embeddings=_snake_case , is_encoder_decoder=_snake_case , **_snake_case ) if text_config is None: _lowerCAmelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _lowerCAmelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _lowerCAmelCase = PixaStructTextConfig(**_snake_case ) _lowerCAmelCase = PixaStructVisionConfig(**_snake_case ) _lowerCAmelCase = self.text_config.decoder_start_token_id _lowerCAmelCase = self.text_config.pad_token_id _lowerCAmelCase = self.text_config.eos_token_id _lowerCAmelCase = initializer_factor _lowerCAmelCase = initializer_range _lowerCAmelCase = self.initializer_range _lowerCAmelCase = self.initializer_range _lowerCAmelCase = is_vqa @classmethod def snake_case ( cls , _snake_case , _snake_case , **_snake_case ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.text_config.to_dict() _lowerCAmelCase = self.vision_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
82
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
353
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __snake_case : Optional[Any] = TypeVar("""KEY""") __snake_case : str = TypeVar("""VAL""") @dataclass(frozen=__lowercase , slots=__lowercase) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL]): _SCREAMING_SNAKE_CASE : KEY _SCREAMING_SNAKE_CASE : VAL class __SCREAMING_SNAKE_CASE ( _Item): def __init__( self ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) def __bool__( self ): """simple docstring""" return False __snake_case : int = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL]): def __init__( self , _UpperCamelCase = 8 , _UpperCamelCase = 0.75 ): """simple docstring""" lowerCAmelCase__ = initial_block_size lowerCAmelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCAmelCase__ = capacity_factor lowerCAmelCase__ = 0 def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return hash(_UpperCamelCase ) % len(self._buckets ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return (ind + 1) % len(self._buckets ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._buckets[ind] if not stored: lowerCAmelCase__ = _Item(_UpperCamelCase , _UpperCamelCase ) self._len += 1 return True elif stored.key == key: lowerCAmelCase__ = _Item(_UpperCamelCase , _UpperCamelCase ) return True else: return False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowerCAmelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._buckets lowerCAmelCase__ = [None] * new_size lowerCAmelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._get_bucket_index(_UpperCamelCase ) for _ in range(len(self._buckets ) ): yield ind lowerCAmelCase__ = self._get_next_ind(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): if self._try_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): break def __setitem__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(_UpperCamelCase , _UpperCamelCase ) def __delitem__( self , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): lowerCAmelCase__ = self._buckets[ind] if item is None: raise KeyError(_UpperCamelCase ) if item is _deleted: continue if item.key == key: lowerCAmelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): lowerCAmelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCamelCase ) def __len__( self ): """simple docstring""" return self._len def __iter__( self ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ): """simple docstring""" lowerCAmelCase__ = ' ,'.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
122
0
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = TypeVar("""DatasetType""", Dataset, IterableDataset) def _A (__a , __a = None , __a = None , __a = None , __a = None , __a = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(__a )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__a ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) else: return _interleave_iterable_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) def _A (__a , __a = None , __a = None , __a = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(__a )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__a ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__a , info=__a , split=__a , axis=__a ) else: return _concatenate_iterable_datasets(__a , info=__a , split=__a , axis=__a )
91
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
91
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Dict )-> Union[str, Any]: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_UpperCamelCase , ) assert hasattr(self , '''env''' ) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :int )-> List[str]: __A = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings __A = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_UpperCamelCase , instance_count=_UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCamelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_UpperCamelCase , py_version='''py36''' , ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :Any )-> Any: TrainingJobAnalytics(_UpperCamelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Optional[int] )-> Any: # create estimator __A = self.create_estimator(_UpperCamelCase ) # run training estimator.fit() # result dataframe __A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __A = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _UpperCamelCase )
250
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): @slow def _lowerCAmelCase (self :Dict )-> Dict: __A = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) __A = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __A = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __A = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __A = model(input_ids.to(_UpperCamelCase ) , labels=labels.to(_UpperCamelCase ) ).loss __A = -(labels.shape[-1] * loss.item()) __A = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
250
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_=7 ): '''simple docstring''' _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) _UpperCAmelCase = "636036" _UpperCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" _UpperCAmelCase = requests.get(snake_case_ , headers=snake_case_ ).json() return result["workflow_runs"] def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_daily_ci_runs(snake_case_ ) _UpperCAmelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _UpperCAmelCase = workflow_run["id"] break return workflow_run_id def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_last_daily_ci_runs(snake_case_ ) if workflow_run_id is not None: _UpperCAmelCase = get_artifacts_links(worflow_run_id=snake_case_ , token=snake_case_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _UpperCAmelCase = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case_ , artifact_url=snake_case_ , output_dir=snake_case_ , token=snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' get_last_daily_ci_artifacts(snake_case_ , snake_case_ , snake_case_ ) _UpperCAmelCase = {} for artifact_name in artifact_names: _UpperCAmelCase = os.path.join(snake_case_ , f"""{artifact_name}.zip""" ) if os.path.isfile(snake_case_ ): _UpperCAmelCase = {} with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file with z.open(snake_case_ ) as f: _UpperCAmelCase = f.read().decode("UTF-8" ) return results
133
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase_ : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowercase_ : str = [] lowercase_ : int = [] lowercase_ : Dict = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} lowercase_ : int = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] lowercase_ : int = 0 for log in Path().glob('*.log'): lowercase_ : int = 0 with open(log, 'r') as f: for line in f: lowercase_ : List[str] = json.loads(line) if line.get('nodeid', '') != "": lowercase_ : List[str] = line['nodeid'] if line.get('duration', None) is not None: lowercase_ : Tuple = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase_ : List[Any] = [] log.unlink() lowercase_ : int = '' lowercase_ : int = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowercase_ : Optional[Any] = [] lowercase_ : Any = {} for test in failed_tests: lowercase_ : List[str] = test[0].split('::') lowercase_ : int = data[0].split('/')[-1] if data[0] not in filesafailed: lowercase_ : Dict = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase_ : Any = [test[0] for test in failed_table] lowercase_ : Optional[Any] = list(set(files)) # Count number of instances in failed_tests lowercase_ : Optional[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase_ : Optional[Any] = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowercase_ : List[Any] = 'Too many failed tests, please see the full report in the Action results.' lowercase_ : Union[str, Any] = len(err) + 10 lowercase_ : Tuple = message[: 30_00 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowercase_ : int = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowercase_ : Union[str, Any] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowercase_ : List[str] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowercase_ : Any = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowercase_ : Any = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase_ : Optional[int] = '' for i, row in enumerate(test_failures): if row[0] != test_class: lowercase_ : Tuple = row[0] else: lowercase_ : Tuple = '' lowercase_ : int = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
133
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase__ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } UpperCamelCase__ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } UpperCamelCase__ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class a__ ( snake_case_ ): _a : Union[str, Any] = VOCAB_FILES_NAMES _a : Tuple = PRETRAINED_VOCAB_FILES_MAP _a : Dict = PRETRAINED_INIT_CONFIGURATION _a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Any = RealmTokenizer def __init__( self , _A=None , _A=None , _A=True , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , _A=True , _A=None , **_A , ): """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _A ) != do_lower_case or normalizer_state.get("strip_accents" , _A ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _A ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(_A , normalizer_state.pop("type" ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**_A ) __lowerCAmelCase = do_lower_case def __SCREAMING_SNAKE_CASE( self , _A , **_A ): """simple docstring""" __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = text __lowerCAmelCase = kwargs.pop("text_pair" , _A ) __lowerCAmelCase = kwargs.pop("return_tensors" , _A ) __lowerCAmelCase = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_A ): if batch_text_pair is not None: __lowerCAmelCase = batch_text_pair[idx] else: __lowerCAmelCase = None __lowerCAmelCase = super().__call__(_A , _A , return_tensors=_A , **_A ) __lowerCAmelCase = encoded_candidates.get("input_ids" ) __lowerCAmelCase = encoded_candidates.get("attention_mask" ) __lowerCAmelCase = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(_A ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_A ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_A ) __lowerCAmelCase = {key: item for key, item in output_data.items() if len(_A ) != 0} return BatchEncoding(_A , tensor_type=_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A=None ): """simple docstring""" __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
356
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 16 UpperCamelCase__ = 32 def _a ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ): __lowerCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowerCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : str ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": __lowerCAmelCase = 2 # New Code # __lowerCAmelCase = int(args.gradient_accumulation_steps ) # Initialize accelerator __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = evaluate.load("glue" , "mrpc" ) set_seed(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = output.loss accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
102
0
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '''encodec''' def __init__( self , __lowerCAmelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , __lowerCAmelCase=24000 , __lowerCAmelCase=1 , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=128 , __lowerCAmelCase=32 , __lowerCAmelCase=1 , __lowerCAmelCase=[8, 5, 4, 2] , __lowerCAmelCase="weight_norm" , __lowerCAmelCase=7 , __lowerCAmelCase=7 , __lowerCAmelCase=3 , __lowerCAmelCase=2 , __lowerCAmelCase=True , __lowerCAmelCase="reflect" , __lowerCAmelCase=2 , __lowerCAmelCase=2 , __lowerCAmelCase=1.0 , __lowerCAmelCase=1024 , __lowerCAmelCase=None , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = target_bandwidths lowerCAmelCase = sampling_rate lowerCAmelCase = audio_channels lowerCAmelCase = normalize lowerCAmelCase = chunk_length_s lowerCAmelCase = overlap lowerCAmelCase = hidden_size lowerCAmelCase = num_filters lowerCAmelCase = num_residual_layers lowerCAmelCase = upsampling_ratios lowerCAmelCase = norm_type lowerCAmelCase = kernel_size lowerCAmelCase = last_kernel_size lowerCAmelCase = residual_kernel_size lowerCAmelCase = dilation_growth_rate lowerCAmelCase = use_causal_conv lowerCAmelCase = pad_mode lowerCAmelCase = compress lowerCAmelCase = num_lstm_layers lowerCAmelCase = trim_right_ratio lowerCAmelCase = codebook_size lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}") super().__init__(**__lowerCAmelCase) @property def a_ ( self): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def a_ ( self): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def a_ ( self): """simple docstring""" lowerCAmelCase = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def a_ ( self): """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10))
272
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
1
"""simple docstring""" __snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : str, _lowerCAmelCase : str, _lowerCAmelCase : int ): """simple docstring""" _a = [False] * len(_lowerCAmelCase ) _a = [s] _a = True while queue: _a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCAmelCase ) _a = True _a = u return visited[t] def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : List[Any], _lowerCAmelCase : Tuple ): """simple docstring""" _a = [-1] * (len(_lowerCAmelCase )) _a = 0 _a = [] _a = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): _a = float('''Inf''' ) _a = sink while s != source: # Find the minimum value in select path _a = min(_lowerCAmelCase, graph[parent[s]][s] ) _a = parent[s] max_flow += path_flow _a = sink while v != source: _a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _a = parent[v] for i in range(len(_lowerCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
153
"""simple docstring""" def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _a = remove_duplicates(key.upper() ) _a = len(_lowerCAmelCase ) # First fill cipher with key characters _a = {alphabet[i]: char for i, char in enumerate(_lowerCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_lowerCAmelCase ), 26 ): _a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _a = alphabet[i - offset] _a = char return cipher_alphabet def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : dict[str, str] ): """simple docstring""" return "".join(cipher_map.get(_lowerCAmelCase, _lowerCAmelCase ) for ch in message.upper() ) def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : dict[str, str] ): """simple docstring""" _a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_lowerCAmelCase, _lowerCAmelCase ) for ch in message.upper() ) def A_ ( ): """simple docstring""" _a = input('''Enter message to encode or decode: ''' ).strip() _a = input('''Enter keyword: ''' ).strip() _a = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: _a = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) _a = create_cipher_map(_lowerCAmelCase ) print(func(_lowerCAmelCase, _lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
153
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=4 , __A="gelu" , __A=0.0 , __A=0.1 , __A=True , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ): """simple docstring""" lowerCamelCase : List[str] = parent lowerCamelCase : Optional[int] = batch_size lowerCamelCase : Optional[Any] = seq_length lowerCamelCase : Union[str, Any] = is_training lowerCamelCase : int = use_input_mask lowerCamelCase : Optional[Any] = use_token_type_ids lowerCamelCase : Optional[Any] = use_labels lowerCamelCase : Optional[Any] = vocab_size lowerCamelCase : Optional[Any] = hidden_size lowerCamelCase : int = num_hidden_layers lowerCamelCase : Any = num_attention_heads lowerCamelCase : Any = intermediate_multiple_size lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Optional[Any] = hidden_dropout lowerCamelCase : Dict = attention_dropout lowerCamelCase : Dict = weight_tying lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : Any = type_vocab_size lowerCamelCase : Any = type_sequence_label_size lowerCamelCase : Any = initializer_range lowerCamelCase : List[Any] = num_labels lowerCamelCase : str = num_choices lowerCamelCase : int = scope def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : List[Any] = None if self.use_input_mask: lowerCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Dict = None if self.use_labels: lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : str = self.get_config() return config, input_ids, input_mask, token_labels def _snake_case ( self ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : int = self.prepare_config_and_inputs() lowerCamelCase : Tuple = True return config, input_ids, input_mask, token_labels def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Any = GPTNeoXJapaneseModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase : Tuple = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) lowerCamelCase : str = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Optional[Any] = True lowerCamelCase : Dict = GPTNeoXJapaneseModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , __A , __A , __A , __A ): """simple docstring""" lowerCamelCase : Union[str, Any] = GPTNeoXJapaneseForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowerCamelCase : Optional[int] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Optional[int] = True lowerCamelCase : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass lowerCamelCase : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) lowerCamelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase ) lowerCamelCase : str = output_from_no_past["hidden_states"][0] lowerCamelCase : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] # select random slice lowerCamelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[str] = config_and_inputs lowerCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __A : Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __A : Union[str, Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __A : List[str] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __A : Union[str, Any] = False __A : List[str] = False __A : Union[str, Any] = False __A : str = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) lowerCamelCase : List[str] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCamelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = "abeja/gpt-neox-japanese-2.7b" lowerCamelCase : Any = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] lowerCamelCase : List[str] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] lowerCamelCase : List[Any] = GPTNeoXJapaneseTokenizer.from_pretrained(__UpperCamelCase ) lowerCamelCase : Dict = GPTNeoXJapaneseForCausalLM.from_pretrained(__UpperCamelCase ) lowerCamelCase : Tuple = [] for prompt in prompts: lowerCamelCase : Any = tokenizer(__UpperCamelCase , return_tensors="pt" ).input_ids lowerCamelCase : str = model.generate(__UpperCamelCase , max_length=50 ) lowerCamelCase : Optional[int] = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) predicted_outputs += generated_string self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
283
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : int = ["""image_processor""", """tokenizer"""] A__ : Union[str, Any] = """LayoutLMv2ImageProcessor""" A__ : Optional[int] = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) UpperCamelCase_ = kwargs.pop("""feature_extractor""" ) UpperCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor UpperCamelCase_ = self.image_processor(images=__UpperCamelCase , return_tensors=__UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase_ = features["""words"""] UpperCamelCase_ = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel values UpperCamelCase_ = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase_ = self.get_overflowing_images(__UpperCamelCase , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase_ = images return encoded_inputs def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__UpperCamelCase )} and {len(__UpperCamelCase )}''' ) return images_with_overflow def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class @property def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , ) return self.image_processor
122
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) a = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" a = model(lowerCamelCase__ )["""last_hidden_state"""] a = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. a = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
357
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __A ( __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a = flax_key_tuple[:-1] + ("""weight""",) a = torch.permute(__lowerCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCamelCase ): # linear layer a = flax_key_tuple[:-1] + ("""weight""",) a = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: if "metadata" in layer: a = layer.split("""metadata""" ) a = """""".join(split_layer[0] )[:-1] a = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: a = layer.split("""kvstore""" ) a = """""".join(split_layer[0] )[:-1] a = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: a = layer.split("""/""" ) a = """/""".join(split_layer[:-1] ) a = (split_layer[-1],) if "kvstore/path" in layer: a = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: a = """file""" else: a = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __A ( __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: a = rename_keys(__lowerCamelCase ) a = {} for k, v in current_block.items(): a = v a = new_current_block torch.save(__lowerCamelCase , __lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = WEIGHTS_NAME ) -> List[str]: a = convert_file_size_to_int(__lowerCamelCase ) a = [] a = {} a = 0 a = 0 os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: a = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] a = flatten_dict(__lowerCamelCase , sep="""/""" ) a = {} for layer in checkpoint_info.keys(): a , a , a = get_key_and_tensorstore_dict( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if curr_real_layer_name in all_layers: a = content else: a = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a = torch.tensor(__lowerCamelCase ) a = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a , a = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __lowerCamelCase ) a = """/""".join(__lowerCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a = os.path.join( __lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(__lowerCamelCase , __lowerCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block a = {} a = 0 a = raw_weights.to(getattr(__lowerCamelCase , __lowerCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{len(__lowerCamelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(__lowerCamelCase , __lowerCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__lowerCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a = {} a = {} for idx, shard in enumerate(__lowerCamelCase ): a = weights_name.replace( """.bin""" , f'-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} a = os.path.join(__lowerCamelCase , weights_name.replace(""".bin""" , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) a = shard for key in shard: a = shard_file # Add the metadata a = {"""total_size""": total_size} a = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f: a = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + """\n""" f.write(__lowerCamelCase ) return metadata, index if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) __UpperCamelCase : Any = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __A ( ) -> Tuple: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) a = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) a = TaTokenizer.from_pretrained("""t5-small""" ) a = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" a = tokenizer(__lowerCamelCase , return_tensors="""pt""" ).input_ids a = model.generate(__lowerCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
347
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ReformerTokenizer _SCREAMING_SNAKE_CASE : List[Any] = ReformerTokenizerFast _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : Union[str, Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCamelCase ) , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : List[str] = self.get_tokenizer() _lowercase : int = self.get_rust_tokenizer() _lowercase : Optional[Any] = "I was born in 92000, and this is falsé." _lowercase : Union[str, Any] = tokenizer.tokenize(_UpperCamelCase ) _lowercase : int = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Tuple = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : List[str] = self.get_rust_tokenizer() _lowercase : Optional[int] = tokenizer.encode(_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # Simple input _lowercase : Union[str, Any] = "This is a simple input" _lowercase : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] _lowercase : Any = ("This is a simple input", "This is a pair") _lowercase : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : str = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = "Hello World!" _lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _lowercase : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowercase : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Tuple = " ".join(_UpperCamelCase ) _lowercase : str = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" ) _lowercase : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _lowercase : Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowercase : str = encoded_sequence["input_ids"].shape _lowercase : Dict = ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowercase : Optional[int] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
250
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase : Any = logging.get_logger(__name__) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) _snake_case = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: _snake_case = text def lowerCamelCase ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.generated_responses.append(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" _snake_case = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _snake_case = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( _lowerCamelCase , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=0 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = super().__call__(lowerCAmelCase_ , num_workers=lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=32 ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _snake_case = self.tokenizer._build_conversation_input_ids(lowerCAmelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(lowerCAmelCase_ ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=10 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) _snake_case = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs['attention_mask'][:, -trim:] _snake_case = model_inputs.pop('conversation' ) _snake_case = max_length _snake_case = self.model.generate(**lowerCAmelCase_ , **lowerCAmelCase_ ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True ): """simple docstring""" _snake_case = model_outputs['output_ids'] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) _snake_case = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowerCAmelCase_ ) return conversation def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
160
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = StableDiffusionLatentUpscalePipeline __lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __lowercase = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase = frozenset([] ) __lowercase = True @property def lowerCamelCase ( self ): """simple docstring""" _snake_case = 1 _snake_case = 4 _snake_case = (16, 16) _snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=lowerCAmelCase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=lowerCAmelCase_ , only_cross_attention=lowerCAmelCase_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) _snake_case = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) _snake_case = EulerDiscreteScheduler(prediction_type='sample' ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='quick_gelu' , projection_dim=5_12 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) _snake_case = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 2 _snake_case = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _snake_case = getattr(lowerCAmelCase_ , scheduler_enum.name ) _snake_case = scheduler_cls.from_config(pipe.scheduler.config ) _snake_case = pipe(**lowerCAmelCase_ )[0] outputs.append(lowerCAmelCase_ ) assert check_same_shape(lowerCAmelCase_ ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _snake_case = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='latent' ).images _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCamelCase ( self ): """simple docstring""" _snake_case = torch.manual_seed(33 ) _snake_case = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) _snake_case = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) _snake_case = upscaler( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowerCAmelCase_ , output_type='np' , ).images[0] _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
160
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = ["""image_processor""", """tokenizer"""] lowerCamelCase_ : Optional[Any] = """FlavaImageProcessor""" lowerCamelCase_ : Optional[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[Any]: lowerCamelCase : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase__ , ) lowerCamelCase : Dict = kwargs.pop("feature_extractor" ) lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[Any] = self.image_processor def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Optional[int]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCamelCase : Union[str, Any] = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) if images is not None: lowerCamelCase : str = self.image_processor( UpperCamelCase__ , return_image_mask=UpperCamelCase__ , return_codebook_pixels=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) if text is not None and images is not None: encoding.update(UpperCamelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _lowercase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowercase ( self ) -> str: lowerCamelCase : Tuple = self.tokenizer.model_input_names lowerCamelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self ) -> Tuple: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase__ , ) return self.image_processor_class @property def _lowercase ( self ) -> Any: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase__ , ) return self.image_processor
48
"""simple docstring""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : int ) ->List[Any]: """simple docstring""" if openai_config_file == "": __snake_case : Dict = OpenAIGPTConfig() else: __snake_case : int = OpenAIGPTConfig.from_json_file(_snake_case ) __snake_case : Tuple = OpenAIGPTModel(_snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __snake_case : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __snake_case : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _snake_case ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
102
0
def __A ( _lowercase ): '''simple docstring''' if n == 1 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return 0 elif n == 2: return 1 else: _A = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __A ( _lowercase ): '''simple docstring''' _A = 0 _A = 2 while digits < n: index += 1 _A = len(str(fibonacci(SCREAMING_SNAKE_CASE_ ) ) ) return index def __A ( _lowercase = 10_00 ): '''simple docstring''' return fibonacci_digits_index(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
366
import os __A = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def __A ( _lowercase ): '''simple docstring''' _A = 0 _A = 0 while index < len(_lowercase ) - 1: _A = SYMBOLS[numerals[index]] _A = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __A ( _lowercase ): '''simple docstring''' _A = '''''' _A = num // 10_00 numerals += m_count * "M" num %= 10_00 _A = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 _A = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __A ( _lowercase = "/p089_roman.txt" ): '''simple docstring''' _A = 0 with open(os.path.dirname(_lowercase ) + roman_numerals_filename ) as filea: _A = filea.readlines() for line in lines: _A = line.strip() _A = parse_roman_numerals(_lowercase ) _A = generate_roman_numerals(_lowercase ) savings += len(_lowercase ) - len(_lowercase ) return savings if __name__ == "__main__": print(f'{solution() = }')
75
0
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=[] ): """simple docstring""" UpperCamelCase = size[0] - overlap_pixels * 2 UpperCamelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCamelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 UpperCamelCase = np.pad(_SCREAMING_SNAKE_CASE , mode="linear_ramp" , pad_width=_SCREAMING_SNAKE_CASE , end_values=0 ) if "l" in remove_borders: UpperCamelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCamelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCamelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCamelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return max(_SCREAMING_SNAKE_CASE , min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = list(_SCREAMING_SNAKE_CASE ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCamelCase = clamp_rect(_SCREAMING_SNAKE_CASE , [0, 0] , [image_size[0], image_size[1]] ) return rect def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = Image.new("RGB" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_SCREAMING_SNAKE_CASE , (original_slice, 0) ) return result def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCamelCase = tile.crop(_SCREAMING_SNAKE_CASE ) return tile def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = n % d return n - divisor class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a , __a , __a , __a , __a , __a = 3_50 , ) -> int: super().__init__( vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , low_res_scheduler=__a , scheduler=__a , max_noise_level=__a , ) def snake_case_ (self , __a , __a , __a , __a , __a , __a , __a , **__a ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCamelCase = add_overlap_rect(__a , __a , image.size ) UpperCamelCase = image.crop(__a ) UpperCamelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCamelCase = translated_slice_x - (original_image_slice / 2) UpperCamelCase = max(0 , __a ) UpperCamelCase = squeeze_tile(__a , __a , __a , __a ) UpperCamelCase = to_input.size UpperCamelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCamelCase = super(__a , self ).__call__(image=__a , **__a ).images[0] UpperCamelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCamelCase = unsqueeze_tile(__a , __a ) UpperCamelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCamelCase = [] if x == 0: remove_borders.append("l" ) elif crop_rect[2] == image.size[0]: remove_borders.append("r" ) if y == 0: remove_borders.append("t" ) elif crop_rect[3] == image.size[1]: remove_borders.append("b" ) UpperCamelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=__a ) , mode="L" , ) final_image.paste( __a , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , __a ) @torch.no_grad() def __call__(self , __a , __a , __a = 75 , __a = 9.0 , __a = 50 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = None , __a = 1 , __a = 1_28 , __a = 32 , __a = 32 , ) -> int: UpperCamelCase = Image.new("RGB" , (image.size[0] * 4, image.size[1] * 4) ) UpperCamelCase = math.ceil(image.size[0] / tile_size ) UpperCamelCase = math.ceil(image.size[1] / tile_size ) UpperCamelCase = tcx * tcy UpperCamelCase = 0 for y in range(__a ): for x in range(__a ): self._process_tile( __a , __a , __a , __a , __a , __a , __a , prompt=__a , num_inference_steps=__a , guidance_scale=__a , noise_level=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , ) current_count += 1 if callback is not None: callback({"progress": current_count / total_tile_count, "image": final_image} ) return final_image def a__ ( ): """simple docstring""" UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" UpperCamelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(_SCREAMING_SNAKE_CASE , revision="fp16" , torch_dtype=torch.floataa ) UpperCamelCase = pipe.to("cuda" ) UpperCamelCase = Image.open("../../docs/source/imgs/diffusers_library.jpg" ) def callback(_SCREAMING_SNAKE_CASE ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save("diffusers_library_progress.jpg" ) UpperCamelCase = pipe(image=_SCREAMING_SNAKE_CASE , prompt="Black font, white background, vector" , noise_level=40 , callback=_SCREAMING_SNAKE_CASE ) final_image.save("diffusers_library.jpg" ) if __name__ == "__main__": main()
153
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowerCamelCase ( _lowercase , unittest.TestCase ): UpperCAmelCase_ = VideoToVideoSDPipeline UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} UpperCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} UpperCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase_ = False # No `output_type`. UpperCAmelCase_ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def snake_case_ (self ) -> List[Any]: torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) UpperCamelCase = CLIPTextModel(__a ) UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def snake_case_ (self , __a , __a=0 ) -> Dict: # 3 frames UpperCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): UpperCamelCase = torch.manual_seed(__a ) else: UpperCamelCase = torch.Generator(device=__a ).manual_seed(__a ) UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def snake_case_ (self ) -> List[Any]: UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = VideoToVideoSDPipeline(**__a ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCamelCase = self.get_dummy_inputs(__a ) UpperCamelCase = "np" UpperCamelCase = sd_pipe(**__a ).frames UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCamelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def snake_case_ (self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case_ (self ) -> List[Any]: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def snake_case_ (self ) -> Optional[Any]: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def snake_case_ (self ) -> Dict: pass def snake_case_ (self ) -> Optional[int]: return super().test_progress_bar() @slow @skip_mps class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> List[str]: UpperCamelCase = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCamelCase = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=__a ) UpperCamelCase = video.to("cuda" ) UpperCamelCase = "Spiderman is surfing" UpperCamelCase = pipe(__a , video=__a , generator=__a , num_inference_steps=3 , output_type="pt" ).frames UpperCamelCase = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
153
1
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase__ : Tuple = 'pytorch_model.bin' lowerCamelCase__ : Any = 'pytorch_model.bin.index.json' lowerCamelCase__ : Any = 'adapter_config.json' lowerCamelCase__ : List[str] = 'adapter_model.bin' lowerCamelCase__ : Tuple = 'adapter_model.safetensors' lowerCamelCase__ : Optional[Any] = 'tf_model.h5' lowerCamelCase__ : Tuple = 'tf_model.h5.index.json' lowerCamelCase__ : Optional[Any] = 'model.ckpt' lowerCamelCase__ : Any = 'flax_model.msgpack' lowerCamelCase__ : Dict = 'flax_model.msgpack.index.json' lowerCamelCase__ : List[str] = 'model.safetensors' lowerCamelCase__ : List[str] = 'model.safetensors.index.json' lowerCamelCase__ : Any = 'config.json' lowerCamelCase__ : int = 'preprocessor_config.json' lowerCamelCase__ : Any = FEATURE_EXTRACTOR_NAME lowerCamelCase__ : Any = 'generation_config.json' lowerCamelCase__ : Optional[int] = 'modelcard.json' lowerCamelCase__ : Optional[int] = '▁' lowerCamelCase__ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase__ : Any = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase__ : Dict = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase__ : int = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> Tuple: if version.parse(__a ) < version.parse(__a ): if "dev" in min_version: SCREAMING_SNAKE_CASE_ = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: SCREAMING_SNAKE_CASE_ = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
365
def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> dict[str, str]: SCREAMING_SNAKE_CASE_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE_ = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # First fill cipher with key characters SCREAMING_SNAKE_CASE_ = {alphabet[i]: char for i, char in enumerate(__UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__UpperCAmelCase ) , 26 ): SCREAMING_SNAKE_CASE_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE_ = alphabet[i - offset] SCREAMING_SNAKE_CASE_ = char return cipher_alphabet def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: return "".join(cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : dict[str, str] ) -> str: SCREAMING_SNAKE_CASE_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__UpperCAmelCase , __UpperCAmelCase ) for ch in message.upper() ) def UpperCAmelCase_ ( ) -> None: SCREAMING_SNAKE_CASE_ = input('Enter message to encode or decode: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Enter keyword: ' ).strip() SCREAMING_SNAKE_CASE_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: SCREAMING_SNAKE_CASE_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) SCREAMING_SNAKE_CASE_ = create_cipher_map(__UpperCAmelCase ) print(func(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
210
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: __lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowerCamelCase__ , default=lowerCamelCase__ , required=lowerCamelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowerCamelCase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowerCamelCase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowerCamelCase__ , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowerCamelCase__ , default=0 , help='cuda_id.' , ) __lowerCamelCase : Any = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: if not len(lowerCamelCase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) __lowerCamelCase , __lowerCamelCase : Optional[int] = imgs[0].size __lowerCamelCase : List[Any] = Image.new('RGB' , size=(cols * w, rows * h) ) __lowerCamelCase , __lowerCamelCase : List[str] = grid.size for i, img in enumerate(lowerCamelCase__ ): grid.paste(lowerCamelCase__ , box=(i % cols * w, i // cols * h) ) return grid def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__="robotic cat with wings" , lowerCamelCase__=7.5 , lowerCamelCase__=5_0 , lowerCamelCase__=1 , lowerCamelCase__=4_2 , ) -> int: __lowerCamelCase : Any = torch.Generator(pipeline.device ).manual_seed(lowerCamelCase__ ) __lowerCamelCase : int = pipeline( lowerCamelCase__ , guidance_scale=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , ).images __lowerCamelCase : Union[str, Any] = int(math.sqrt(lowerCamelCase__ ) ) __lowerCamelCase : str = image_grid(lowerCamelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images a =parse_args() # Load models and create wrapper for stable diffusion a =CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") a =CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") a =AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") a =UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") a =StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) a =lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): a =load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: a =unet.to(torch.device("""cuda""", args.cuda_id)) a =pipeline.to(unet.device) a , a =generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) a =os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
73
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' def __init__( self : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
347
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """camembert""" def __init__( self , _snake_case=3_0522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=1 , _snake_case=0 , _snake_case=2 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class lowercase ( A__ ): '''simple docstring''' @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
363
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __magic_name__ = logging.getLogger() def _lowerCAmelCase ( A__: Path , A__: list ): '''simple docstring''' UpperCAmelCase = '''\n'''.join(A__ ) Path(A__ ).open('''w''' ).writelines(A__ ) __magic_name__ = "patrickvonplaten/t5-tiny-random" __magic_name__ = "sshleifer/bart-tiny-random" __magic_name__ = "sshleifer/tiny-mbart" __magic_name__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class lowercase ( A__ ): '''simple docstring''' def snake_case_ ( self , _snake_case ) -> int: """simple docstring""" UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCAmelCase = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCAmelCase = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(_snake_case , _snake_case ) UpperCAmelCase = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) UpperCAmelCase = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCAmelCase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(_snake_case , '''argv''' , _snake_case ): run_generate() assert Path(_snake_case ).exists() # os.remove(Path(output_file_name)) def snake_case_ ( self ) -> Dict: """simple docstring""" self.run_eval_tester(_snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def snake_case_ ( self , _snake_case ) -> Any: """simple docstring""" self.run_eval_tester(_snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' UpperCAmelCase = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCAmelCase = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } UpperCAmelCase = Path(self.get_auto_remove_tmp_dir() ) UpperCAmelCase = str(tmp_dir / '''scores.json''' ) UpperCAmelCase = str(tmp_dir / '''val.target''' ) _dump_articles(_snake_case , text['''en'''] ) _dump_articles(_snake_case , text['''de'''] ) UpperCAmelCase = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCAmelCase = f""" run_eval_search.py {model} {str(_snake_case )} {str(_snake_case )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(_snake_case , '''argv''' , _snake_case ): with CaptureStdout() as cs: run_search() UpperCAmelCase = [''' num_beams | length_penalty''', model, '''Best score args'''] UpperCAmelCase = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(_snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_snake_case ).exists() os.remove(Path(_snake_case ) )
152
0
"""simple docstring""" A = 9.80665 def __A ( a_ :float , a_ :float , a_ :float = g) -> float: if fluid_density <= 0: raise ValueError('''Impossible fluid density''') if volume < 0: raise ValueError('''Impossible Object volume''') if gravity <= 0: raise ValueError('''Impossible Gravity''') return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
160
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A = logging.get_logger('''transformers.models.encodec''') A = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } A = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } A = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } A = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } A = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A = [] A = [] def __A ( a_ :Optional[int] , a_ :str , a_ :Optional[Any] , a_ :Optional[Any] , a_ :Tuple) -> str: for attribute in key.split('''.'''): __a : Union[str, Any] = getattr(a_ , a_) if weight_type is not None: __a : Optional[Any] = getattr(a_ , a_).shape else: __a : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""") if weight_type == "weight": __a : Tuple = value elif weight_type == "weight_g": __a : List[str] = value elif weight_type == "weight_v": __a : Optional[int] = value elif weight_type == "bias": __a : List[str] = value elif weight_type == "running_mean": __a : List[str] = value elif weight_type == "running_var": __a : List[Any] = value elif weight_type == "num_batches_tracked": __a : List[Any] = value elif weight_type == "weight_ih_l0": __a : Optional[int] = value elif weight_type == "weight_hh_l0": __a : Any = value elif weight_type == "bias_ih_l0": __a : Union[str, Any] = value elif weight_type == "bias_hh_l0": __a : Optional[Any] = value elif weight_type == "weight_ih_l1": __a : Dict = value elif weight_type == "weight_hh_l1": __a : str = value elif weight_type == "bias_ih_l1": __a : Union[str, Any] = value elif weight_type == "bias_hh_l1": __a : Union[str, Any] = value else: __a : str = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""") def __A ( a_ :Dict , a_ :Any) -> Tuple: for key in ignore_keys: if key.endswith('''.*'''): if name.startswith(key[:-1]): return True elif ".*." in key: __a , __a : Union[str, Any] = key.split('''.*.''') if prefix in name and suffix in name: return True elif key in name: return True return False def __A ( a_ :Optional[Any] , a_ :Tuple , a_ :List[str]) -> Any: __a : Tuple = [] if model_name == "encodec_24khz" or "encodec_32khz": __a : int = MAPPING_24K elif model_name == "encodec_48khz": __a : List[str] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""") for name, value in orig_dict.items(): if should_ignore(a_ , a_): logger.info(F"""{name} was ignored""") continue __a : Tuple = False for key, mapped_key in MAPPING.items(): if "*" in key: __a , __a : Optional[Any] = key.split('''.*.''') if prefix in name and suffix in name: __a : int = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''') and name.endswith('''embed_avg'''): continue __a : List[str] = True if "*" in mapped_key: __a : Optional[Any] = name.split(a_)[0].split('''.''')[-2] __a : str = mapped_key.replace('''*''' , a_) if "weight_g" in name: __a : Optional[Any] = '''weight_g''' elif "weight_v" in name: __a : Optional[Any] = '''weight_v''' elif "weight_ih_l0" in name: __a : Tuple = '''weight_ih_l0''' elif "weight_hh_l0" in name: __a : Tuple = '''weight_hh_l0''' elif "bias_ih_l0" in name: __a : List[str] = '''bias_ih_l0''' elif "bias_hh_l0" in name: __a : int = '''bias_hh_l0''' elif "weight_ih_l1" in name: __a : Optional[int] = '''weight_ih_l1''' elif "weight_hh_l1" in name: __a : List[str] = '''weight_hh_l1''' elif "bias_ih_l1" in name: __a : List[str] = '''bias_ih_l1''' elif "bias_hh_l1" in name: __a : str = '''bias_hh_l1''' elif "bias" in name: __a : Union[str, Any] = '''bias''' elif "weight" in name: __a : Any = '''weight''' elif "running_mean" in name: __a : List[Any] = '''running_mean''' elif "running_var" in name: __a : int = '''running_var''' elif "num_batches_tracked" in name: __a : int = '''num_batches_tracked''' else: __a : List[str] = None set_recursively(a_ , a_ , a_ , a_ , a_) continue if not is_used: unused_weights.append(a_) logger.warning(F"""Unused weights: {unused_weights}""") @torch.no_grad() def __A ( a_ :Dict , a_ :Optional[int] , a_ :Union[str, Any] , a_ :Any=None , a_ :Tuple=None , ) -> List[Any]: if config_path is not None: __a : List[str] = EncodecConfig.from_pretrained(a_) else: __a : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __a : List[Any] = [8, 5, 4, 4] __a : int = [2.2] __a : int = 64 __a : List[Any] = 3_20_00 __a : Union[str, Any] = 20_48 __a : Optional[int] = False __a : str = False __a : Dict = False elif model_name == "encodec_48khz": __a : Any = [8, 5, 4, 2] __a : Dict = [3.0, 6.0, 1_2.0, 2_4.0] __a : List[Any] = 4_80_00 __a : Dict = 2 __a : int = False __a : List[str] = '''time_group_norm''' __a : str = True __a : Dict = 1.0 __a : Optional[Any] = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""") __a : Union[str, Any] = EncodecModel(a_) __a : List[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(a_) __a : List[Any] = torch.load(a_) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __a : Optional[Any] = original_checkpoint['''best_state'''] recursively_load_weights(a_ , a_ , a_) model.save_pretrained(a_) if repo_id: print('''Pushing to the hub...''') feature_extractor.push_to_hub(a_) model.push_to_hub(a_) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
160
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __SCREAMING_SNAKE_CASE : Dict = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __SCREAMING_SNAKE_CASE : str = json.load(f) @require_torch class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ ): return FSMTTokenizer.from_pretrained(snake_case__ ) def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ] ) @slow def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = F"""facebook/wmt19-{pair}""" _lowerCamelCase = self.get_tokenizer(snake_case__ ) _lowerCamelCase = self.get_model(snake_case__ ) _lowerCamelCase = bleu_data[pair]["src"] _lowerCamelCase = bleu_data[pair]["tgt"] _lowerCamelCase = tokenizer(snake_case__ , return_tensors='''pt''' , truncation=snake_case__ , padding='''longest''' ).to(snake_case__ ) _lowerCamelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _lowerCamelCase = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) _lowerCamelCase = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores['''bleu'''] , snake_case__ )
360
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_( lowercase_ : list , lowercase_ : int ) -> Tuple: # Checks if the entire collection has been sorted if len(lowercase_ ) <= 1 or n <= 1: return insert_next(lowercase_ , n - 1 ) rec_insertion_sort(lowercase_ , n - 1 ) def lowerCAmelCase_( lowercase_ : list , lowercase_ : int ) -> Any: # Checks order between adjacent elements if index >= len(lowercase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _lowerCamelCase , _lowerCamelCase = ( collection[index], collection[index - 1], ) insert_next(lowercase_ , index + 1 ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = input('''Enter integers separated by spaces: ''') __SCREAMING_SNAKE_CASE : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
73
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10**-10 ): '''simple docstring''' _lowerCAmelCase : Dict = a while True: _lowerCAmelCase : List[Any] = Decimal(_lowerCamelCase ) - ( Decimal(eval(_lowerCamelCase ) ) / Decimal(eval(str(diff(_lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_lowerCamelCase ) ) < precision: # noqa: S307 return float(_lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
36
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def lowercase__ ( *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __UpperCamelCase ( unittest.TestCase ): lowercase : int =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =pipeline( '''zero-shot-object-detection''', model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase_ =[ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =object_detector(examples[0], threshold=0.0 ) lowerCamelCase_ =len(lowerCAmelCase ) self.assertGreater(lowerCAmelCase, 0 ) self.assertEqual( lowerCAmelCase, [ { '''score''': ANY(lowerCAmelCase ), '''label''': ANY(lowerCAmelCase ), '''box''': {'''xmin''': ANY(lowerCAmelCase ), '''ymin''': ANY(lowerCAmelCase ), '''xmax''': ANY(lowerCAmelCase ), '''ymax''': ANY(lowerCAmelCase )}, } for i in range(lowerCAmelCase ) ], ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline( '''zero-shot-object-detection''', model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCamelCase_ =object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''', candidate_labels=['''cat''', '''remote''', '''couch'''], threshold=0.6_4, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ], ) lowerCamelCase_ =object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ], threshold=0.6_4, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ [ {'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ], ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =pipeline('''zero-shot-object-detection''' ) lowerCamelCase_ =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''', candidate_labels=['''cat''', '''remote''', '''couch'''], ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ) lowerCamelCase_ =object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ], ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ], ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase__ ( self ): """simple docstring""" pass @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =0.2 lowerCamelCase_ =pipeline('''zero-shot-object-detection''' ) lowerCamelCase_ =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''', candidate_labels=['''cat''', '''remote''', '''couch'''], threshold=lowerCAmelCase, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ], ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =2 lowerCamelCase_ =pipeline('''zero-shot-object-detection''' ) lowerCamelCase_ =object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''', candidate_labels=['''cat''', '''remote''', '''couch'''], top_k=lowerCAmelCase, ) self.assertEqual( nested_simplify(lowerCAmelCase, decimals=4 ), [ {'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ], )
75
0
def _A ( __magic_name__ ): return "".join([hex(__magic_name__ )[2:].zfill(2 ).upper() for byte in list(__magic_name__ )] ) def _A ( __magic_name__ ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(__magic_name__ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__magic_name__ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__magic_name__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
366
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
201
0
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = XGLMConfig lowercase_ = {} lowercase_ = "gelu" def __init__(self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : List[str]=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =parent lowerCamelCase__: int =batch_size lowerCamelCase__: List[str] =seq_length lowerCamelCase__: int =is_training lowerCamelCase__: int =use_input_mask lowerCamelCase__: Tuple =use_labels lowerCamelCase__: Any =vocab_size lowerCamelCase__: Dict =d_model lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Tuple =num_attention_heads lowerCamelCase__: Dict =ffn_dim lowerCamelCase__: Optional[int] =activation_function lowerCamelCase__: str =activation_dropout lowerCamelCase__: int =attention_dropout lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: Optional[int] =initializer_range lowerCamelCase__: str =None lowerCamelCase__: List[Any] =0 lowerCamelCase__: str =2 lowerCamelCase__: Union[str, Any] =1 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' return XGLMConfig.from_pretrained("facebook/xglm-564M") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' lowerCamelCase__: Dict =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) lowerCamelCase__: str =None if self.use_input_mask: lowerCamelCase__: Tuple =random_attention_mask([self.batch_size, self.seq_length]) lowerCamelCase__: Dict =self.get_config() lowerCamelCase__: Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): Union[str, Any] =config_and_inputs lowerCamelCase__: str ={ "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowercase_ = (TFXGLMForCausalLM,) if is_tf_available() else () lowercase_ = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =TFXGLMModelTester(self) lowerCamelCase__: str =ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Dict =TFXGLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str=True) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Optional[int] =tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase__: Union[str, Any] =[2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowerCamelCase__: List[str] =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =XGLMTokenizer.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Tuple =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tf.random.set_seed(0) lowerCamelCase__: Union[str, Any] =tokenizer("Today is a nice day and" , return_tensors="tf") lowerCamelCase__: Dict =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0"): lowerCamelCase__: str =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , seed=[7, 0]) lowerCamelCase__: str =tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Tuple =XGLMTokenizer.from_pretrained("facebook/xglm-564M") lowerCamelCase__: str ="left" # use different length sentences to test batching lowerCamelCase__: List[Any] =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] lowerCamelCase__: Optional[Any] =tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_) lowerCamelCase__: Optional[int] =inputs["input_ids"] lowerCamelCase__: str =model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12) lowerCamelCase__: Tuple =tokenizer(sentences[0] , return_tensors="tf").input_ids lowerCamelCase__: Union[str, Any] =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12) lowerCamelCase__: Optional[Any] =tokenizer(sentences[1] , return_tensors="tf").input_ids lowerCamelCase__: Union[str, Any] =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12) lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence])
10
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''num_attention_heads''' ) ) class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=16 , lowerCAmelCase__=[1_28, 2_56, 3_84] , lowerCAmelCase__=[4, 6, 8] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=[16, 16, 16] , lowerCAmelCase__=0 , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = kernel_size __lowercase = stride __lowercase = padding __lowercase = hidden_sizes __lowercase = num_attention_heads __lowercase = depths __lowercase = key_dim __lowercase = drop_path_rate __lowercase = patch_size __lowercase = attention_ratio __lowercase = mlp_ratio __lowercase = initializer_range __lowercase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = initializer_range def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' __lowercase = LevitModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' __lowercase = self.num_labels __lowercase = LevitForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __a : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __a : int = False __a : Dict = False __a : Optional[Any] = False __a : Optional[int] = False __a : Dict = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = LevitModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCAmelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __lowercase = (self.model_tester.image_size, self.model_tester.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> str: '''simple docstring''' __lowercase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowercase = False __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowercase = model_class(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __lowercase = model(**lowerCAmelCase__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowercase = problem_type['''title'''] __lowercase = problem_type['''num_labels'''] __lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() __lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if problem_type["num_labels"] > 1: __lowercase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) __lowercase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase__ ) as warning_list: __lowercase = model(**lowerCAmelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = LevitModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): """simple docstring""" __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCAmelCase__ ) # verify the logits __lowercase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __lowercase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
210
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 16 UpperCamelCase__ = 32 def _UpperCamelCase (a__ :Accelerator , a__ :int = 16 ): """simple docstring""" UpperCamelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(a__ :Any ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ = datasets.map( a__ , batched=a__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(a__ :List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ = 8 else: UpperCamelCase__ = None return tokenizer.pad( a__ , padding="""longest""" , max_length=a__ , pad_to_multiple_of=a__ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) UpperCamelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def _UpperCamelCase (a__ :List[Any] , a__ :Optional[Any] ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , a__ ) == "1": UpperCamelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCamelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: UpperCamelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ = config["""lr"""] UpperCamelCase__ = int(config["""num_epochs"""] ) UpperCamelCase__ = int(config["""seed"""] ) UpperCamelCase__ = int(config["""batch_size"""] ) set_seed(a__ ) UpperCamelCase__ , UpperCamelCase__ = get_dataloaders(a__ , a__ ) UpperCamelCase__ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation UpperCamelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ = AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler UpperCamelCase__ = get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=100 , num_training_steps=(len(a__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCamelCase__ = os.path.split(a__ )[-1].split(""".""" )[0] accelerator.init_trackers(a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCamelCase__ = 0 for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase__ = model(**a__ ) UpperCamelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCamelCase__ = loss / gradient_accumulation_steps accelerator.backward(a__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ = model(**a__ ) UpperCamelCase__ = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=a__ , references=a__ , ) UpperCamelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , a__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(a__ ), """epoch""": epoch, } , step=a__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _UpperCamelCase (): """simple docstring""" UpperCamelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=a__ , default=a__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=a__ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(a__ , a__ ) if __name__ == "__main__": main()
87
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : List[Any] = """upernet""" def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=512 , __lowerCAmelCase=0.02 , __lowerCAmelCase=[1, 2, 3, 6] , __lowerCAmelCase=True , __lowerCAmelCase=0.4 , __lowerCAmelCase=384 , __lowerCAmelCase=256 , __lowerCAmelCase=1 , __lowerCAmelCase=False , __lowerCAmelCase=255 , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = backbone_config.get("""model_type""" ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(__lowerCAmelCase ) UpperCamelCase__ = backbone_config UpperCamelCase__ = hidden_size UpperCamelCase__ = initializer_range UpperCamelCase__ = pool_scales UpperCamelCase__ = use_auxiliary_head UpperCamelCase__ = auxiliary_loss_weight UpperCamelCase__ = auxiliary_in_channels UpperCamelCase__ = auxiliary_channels UpperCamelCase__ = auxiliary_num_convs UpperCamelCase__ = auxiliary_concat_input UpperCamelCase__ = loss_ignore_index def _lowerCamelCase ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
87
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , UpperCAmelCase , ) class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Any =RobertaConfig UpperCAmelCase__ : List[Any] ="""roberta""" def __init__( self : Any , UpperCAmelCase__ : Union[str, Any] ) ->Optional[int]: """simple docstring""" super().__init__(__lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = RobertaEmbeddings(__lowercase ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """ , UpperCAmelCase , ) class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Tuple =RobertaConfig UpperCAmelCase__ : Tuple ="""roberta""" def __init__( self : Tuple , UpperCAmelCase__ : Dict ) ->Dict: """simple docstring""" super().__init__(__lowercase ) SCREAMING_SNAKE_CASE : List[str] = config.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = config.num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = DeeRobertaModel(__lowercase ) SCREAMING_SNAKE_CASE : int = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE : Dict = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__lowercase ) def _lowercase ( self : str , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[int]=-1 , UpperCAmelCase__ : str=False , ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_layers try: SCREAMING_SNAKE_CASE : List[str] = self.roberta( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs[1] SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowercase ) SCREAMING_SNAKE_CASE : Tuple = self.classifier(__lowercase ) SCREAMING_SNAKE_CASE : Any = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE : Union[str, Any] = e.message SCREAMING_SNAKE_CASE : Any = e.exit_layer SCREAMING_SNAKE_CASE : List[Any] = outputs[0] if not self.training: SCREAMING_SNAKE_CASE : Union[str, Any] = entropy(__lowercase ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : Optional[int] = MSELoss() SCREAMING_SNAKE_CASE : str = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : List[Any] = CrossEntropyLoss() SCREAMING_SNAKE_CASE : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE : Any = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(__lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE : List[str] = MSELoss() SCREAMING_SNAKE_CASE : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE : Dict = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowercase ) if train_highway: SCREAMING_SNAKE_CASE : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE : List[str] = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE : str = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
245
'''simple docstring''' from PIL import Image def _a( UpperCamelCase__ : Image, UpperCamelCase__ : float ): '''simple docstring''' def brightness(UpperCamelCase__ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(UpperCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 a_ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
152
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self : Tuple , *snake_case : Optional[Any] , **snake_case : Optional[int] ) -> Dict: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self : Tuple , *snake_case : str , **snake_case : Optional[Any] ) -> Any: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self : str , *snake_case : Optional[Any] , **snake_case : Optional[int] ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ["sentencepiece"] def __init__( self : Dict , *snake_case : Optional[int] , **snake_case : str ) -> Dict: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self : Optional[Any] , *snake_case : int , **snake_case : Any ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = ["sentencepiece"] def __init__( self : List[Any] , *snake_case : Dict , **snake_case : Tuple ) -> Optional[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self : Dict , *snake_case : Any , **snake_case : Any ) -> List[str]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self : int , *snake_case : Tuple , **snake_case : Union[str, Any] ) -> str: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self : List[str] , *snake_case : Dict , **snake_case : Tuple ) -> str: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Tuple , **snake_case : Optional[Any] ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case : Optional[Any] , **snake_case : Optional[int] ) -> str: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self : Dict , *snake_case : Optional[int] , **snake_case : Any ) -> Optional[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self : int , *snake_case : Any , **snake_case : List[Any] ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ["sentencepiece"] def __init__( self : Tuple , *snake_case : str , **snake_case : Tuple ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ["sentencepiece"] def __init__( self : Dict , *snake_case : List[Any] , **snake_case : int ) -> Union[str, Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case : List[Any] , **snake_case : List[Any] ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self : Any , *snake_case : str , **snake_case : List[str] ) -> Union[str, Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self : Union[str, Any] , *snake_case : Any , **snake_case : Any ) -> List[str]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self : Dict , *snake_case : Any , **snake_case : Dict ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self : Dict , *snake_case : Any , **snake_case : Optional[Any] ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ["sentencepiece"] def __init__( self : Dict , *snake_case : List[Any] , **snake_case : List[str] ) -> Any: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self : List[str] , *snake_case : int , **snake_case : Optional[int] ) -> Union[str, Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ["sentencepiece"] def __init__( self : Optional[Any] , *snake_case : Tuple , **snake_case : Optional[int] ) -> Any: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self : Tuple , *snake_case : List[Any] , **snake_case : Union[str, Any] ) -> int: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ["sentencepiece"] def __init__( self : Tuple , *snake_case : Tuple , **snake_case : Any ) -> int: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = ["sentencepiece"] def __init__( self : Optional[int] , *snake_case : Optional[Any] , **snake_case : List[Any] ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ["sentencepiece"] def __init__( self : Any , *snake_case : Any , **snake_case : Any ) -> Optional[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ["sentencepiece"] def __init__( self : int , *snake_case : List[str] , **snake_case : Dict ) -> int: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ["sentencepiece"] def __init__( self : List[str] , *snake_case : int , **snake_case : int ) -> str: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ["sentencepiece"] def __init__( self : Dict , *snake_case : Tuple , **snake_case : str ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class a ( metaclass=_a ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ["sentencepiece"] def __init__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Optional[int] ) -> Any: requires_backends(self , ['''sentencepiece'''] )
240
'''simple docstring''' from __future__ import annotations __UpperCAmelCase :Tuple = "Muhammad Umer Farooq" __UpperCAmelCase :Tuple = "MIT" __UpperCAmelCase :Union[str, Any] = "1.0.0" __UpperCAmelCase :Optional[int] = "Muhammad Umer Farooq" __UpperCAmelCase :Optional[Any] = "contact@muhammadumerfarooq.me" __UpperCAmelCase :Any = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class a ( _a ): """simple docstring""" def __init__( self : Tuple , snake_case : str ) -> None: super().__init__() __UpperCAmelCase : list[str] = [] __UpperCAmelCase : Optional[int] = domain def lowerCamelCase__ ( self : Union[str, Any] , snake_case : str , snake_case : list[tuple[str, str | None]] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __UpperCAmelCase : Optional[Any] = parse.urljoin(self.domain , snake_case ) self.urls.append(snake_case ) def _a ( _lowercase : str ): '''simple docstring''' return ".".join(get_sub_domain_name(_lowercase ).split('''.''' )[-2:] ) def _a ( _lowercase : str ): '''simple docstring''' return parse.urlparse(_lowercase ).netloc def _a ( _lowercase : str = "https://github.com" ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = get_domain_name(_lowercase ) # Initialize the parser __UpperCAmelCase : Dict = Parser(_lowercase ) try: # Open URL __UpperCAmelCase : Dict = requests.get(_lowercase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __UpperCAmelCase : str = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __UpperCAmelCase : Tuple = requests.get(_lowercase ) # Get the valid email. __UpperCAmelCase : Dict = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_lowercase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_lowercase ) if __name__ == "__main__": __UpperCAmelCase :List[str] = emails_from_url("https://github.com") print(f"""{len(emails)} emails found:""") print("\n".join(sorted(emails)))
240
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = DPTConfig() if "large" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = [5, 11, 17, 23] snake_case_ = [256, 512, 1024, 1024] snake_case_ = (1, 384, 384) if "ade" in checkpoint_url: snake_case_ = True snake_case_ = 150 snake_case_ = '''huggingface/label-files''' snake_case_ = '''ade20k-id2label.json''' snake_case_ = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = [1, 150, 480, 480] return config, expected_shape def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): snake_case_ = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: snake_case_ = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: snake_case_ = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: snake_case_ = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: snake_case_ = name.replace('''proj''' , '''projection''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: snake_case_ = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: snake_case_ = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: snake_case_ = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: snake_case_ = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: snake_case_ = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: snake_case_ = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: snake_case_ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 snake_case_ = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: snake_case_ = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: snake_case_ = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: snake_case_ = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: snake_case_ = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: snake_case_ = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: snake_case_ = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: snake_case_ = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: snake_case_ = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: snake_case_ = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: snake_case_ = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: snake_case_ = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) snake_case_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[: config.hidden_size, :] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE (): snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_, snake_case_ = get_dpt_config(SCREAMING_SNAKE_CASE__ ) # load original state_dict from URL snake_case_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) # rename keys for key in state_dict.copy().keys(): snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load HuggingFace model snake_case_ = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Check outputs on an image snake_case_ = 480 if '''ade''' in checkpoint_url else 384 snake_case_ = DPTImageProcessor(size=SCREAMING_SNAKE_CASE__ ) snake_case_ = prepare_img() snake_case_ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) # forward pass snake_case_ = model(**SCREAMING_SNAKE_CASE__ ).logits if '''ade''' in checkpoint_url else model(**SCREAMING_SNAKE_CASE__ ).predicted_depth # Assert logits snake_case_ = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: snake_case_ = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE__ ) ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) lowerCAmelCase_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
8
import csv import tweepy # Twitter API credentials a ="""""" a ="""""" a ="""""" a ="""""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: # authorize twitter, initialize tweepy __lowerCamelCase : Tuple = tweepy.OAuthHandler(lowerCamelCase__ , lowerCamelCase__ ) auth.set_access_token(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Optional[int] = tweepy.API(lowerCamelCase__ ) # initialize a list to hold all the tweepy Tweets __lowerCamelCase : str = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowerCamelCase : Union[str, Any] = api.user_timeline(screen_name=lowerCamelCase__ , count=2_0_0 ) # save most recent tweets alltweets.extend(lowerCamelCase__ ) # save the id of the oldest tweet less one __lowerCamelCase : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCamelCase__ ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __lowerCamelCase : str = api.user_timeline( screen_name=lowerCamelCase__ , count=2_0_0 , max_id=lowerCamelCase__ ) # save most recent tweets alltweets.extend(lowerCamelCase__ ) # update the id of the oldest tweet less one __lowerCamelCase : Optional[int] = alltweets[-1].id - 1 print(F"...{len(lowerCamelCase__ )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __lowerCamelCase : str = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , 'w' ) as f: __lowerCamelCase : Any = csv.writer(lowerCamelCase__ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCamelCase__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
73
0
from math import factorial class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> List[str]: """simple docstring""" a__ : str = real if isinstance(__lowercase , __lowercase ): a__ : Optional[int] = [1] * rank else: a__ : Dict = rank def __repr__( self ) -> Tuple: """simple docstring""" return ( F'''{self.real}+''' F'''{'+'.join(str(__lowercase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __lowercase ) def __add__( self , __lowercase ) -> str: """simple docstring""" if not isinstance(__lowercase , __lowercase ): return Dual(self.real + other , self.duals ) a__ : Any = self.duals.copy() a__ : str = other.duals.copy() if len(__lowercase ) > len(__lowercase ): o_dual.extend([1] * (len(__lowercase ) - len(__lowercase )) ) elif len(__lowercase ) < len(__lowercase ): s_dual.extend([1] * (len(__lowercase ) - len(__lowercase )) ) a__ : Any = [] for i in range(len(__lowercase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __lowercase ) __lowerCAmelCase :Union[str, Any] = __add__ def __sub__( self , __lowercase ) -> Dict: """simple docstring""" return self + other * -1 def __mul__( self , __lowercase ) -> str: """simple docstring""" if not isinstance(__lowercase , __lowercase ): a__ : Union[str, Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __lowercase ) a__ : List[Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __lowercase ) __lowerCAmelCase :Union[str, Any] = __mul__ def __truediv__( self , __lowercase ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): a__ : List[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __lowercase ) raise ValueError def __floordiv__( self , __lowercase ) -> Optional[int]: """simple docstring""" if not isinstance(__lowercase , __lowercase ): a__ : int = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __lowercase ) raise ValueError def __pow__( self , __lowercase ) -> int: """simple docstring""" if n < 0 or isinstance(__lowercase , __lowercase ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self a__ : int = self for _ in range(n - 1 ): x *= self return x def lowerCAmelCase_ ( _lowercase : int , _lowercase : Dict , _lowercase : Optional[int]) -> Any: """simple docstring""" if not callable(_lowercase): raise ValueError("""differentiate() requires a function as input for func""") if not isinstance(_lowercase , (float, int)): raise ValueError("""differentiate() requires a float as input for position""") if not isinstance(_lowercase , _lowercase): raise ValueError("""differentiate() requires an int as input for order""") a__ : List[Any] = Dual(_lowercase , 1) a__ : Dict = func(_lowercase) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase) if __name__ == "__main__": import doctest doctest.testmod() def lowerCAmelCase_ ( _lowercase : str) -> int: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
354
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _lowercase : int =( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) _lowercase : Dict =logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = """https://pypi.org/pypi/diffusers/json""" a__ : Tuple = json.loads(request.urlopen(_lowercase).read())["""releases"""].keys() return sorted(_lowercase , key=lambda _lowercase: version.Version(_lowercase)) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(_lowercase) os.makedirs(_lowercase , exist_ok=_lowercase) a__ : Tuple = Path(_lowercase) / """__init__.py""" if not init_path.exists(): init_path.touch() def lowerCAmelCase_ ( _lowercase : Union[str, os.PathLike]) -> Optional[Any]: """simple docstring""" init_hf_modules() a__ : Optional[int] = Path(_lowercase) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent) os.makedirs(_lowercase , exist_ok=_lowercase) a__ : Any = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> Optional[int]: """simple docstring""" with open(_lowercase , """r""" , encoding="""utf-8""") as f: a__ : Union[str, Any] = f.read() # Imports of the form `import .xxx` a__ : Optional[Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , _lowercase , flags=re.MULTILINE) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , _lowercase , flags=re.MULTILINE) # Unique-ify return list(set(_lowercase)) def lowerCAmelCase_ ( _lowercase : List[Any]) -> Dict: """simple docstring""" a__ : Dict = False a__ : str = [module_file] a__ : List[Any] = [] # Let's recurse through all relative imports while not no_change: a__ : Optional[Any] = [] for f in files_to_check: new_imports.extend(get_relative_imports(_lowercase)) a__ : Dict = Path(_lowercase).parent a__ : Any = [str(module_path / m) for m in new_imports] a__ : Any = [f for f in new_import_files if f not in all_relative_imports] a__ : List[Any] = [F'''{f}.py''' for f in new_import_files] a__ : List[Any] = len(_lowercase) == 0 all_relative_imports.extend(_lowercase) return all_relative_imports def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Any: """simple docstring""" with open(_lowercase , """r""" , encoding="""utf-8""") as f: a__ : Optional[Any] = f.read() # Imports of the form `import xxx` a__ : Optional[int] = re.findall("""^\s*import\s+(\S+)\s*$""" , _lowercase , flags=re.MULTILINE) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , _lowercase , flags=re.MULTILINE) # Only keep the top-level module a__ : Any = [imp.split(""".""")[0] for imp in imports if not imp.startswith(""".""")] # Unique-ify and test we got them all a__ : Optional[Any] = list(set(_lowercase)) a__ : Union[str, Any] = [] for imp in imports: try: importlib.import_module(_lowercase) except ImportError: missing_packages.append(_lowercase) if len(_lowercase) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'''{', '.join(_lowercase)}. Run `pip install {' '.join(_lowercase)}`''') return get_relative_imports(_lowercase) def lowerCAmelCase_ ( _lowercase : int , _lowercase : Tuple) -> Union[str, Any]: """simple docstring""" a__ : Dict = module_path.replace(os.path.sep , """.""") a__ : List[Any] = importlib.import_module(_lowercase) if class_name is None: return find_pipeline_class(_lowercase) return getattr(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : Union[str, Any]) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline a__ : Any = dict(inspect.getmembers(_lowercase , inspect.isclass)) a__ : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _lowercase) and cls.__module__.split(""".""")[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''') a__ : str = cls return pipeline_class def lowerCAmelCase_ ( _lowercase : Union[str, os.PathLike] , _lowercase : str , _lowercase : Optional[Union[str, os.PathLike]] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : Optional[Dict[str, str]] = None , _lowercase : Optional[Union[bool, str]] = None , _lowercase : Optional[str] = None , _lowercase : bool = False , ) -> Optional[int]: """simple docstring""" a__ : Union[str, Any] = str(_lowercase) a__ : Union[str, Any] = os.path.join(_lowercase , _lowercase) if os.path.isfile(_lowercase): a__ : Dict = module_file_or_url a__ : List[str] = """local""" elif pretrained_model_name_or_path.count("""/""") == 0: a__ : Optional[Any] = get_diffusers_versions() # cut ".dev0" a__ : Union[str, Any] = """v""" + """.""".join(__version__.split(""".""")[:3]) # retrieve github version that matches if revision is None: a__ : List[str] = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'''Defaulting to latest_version: {revision}.''') elif revision in available_versions: a__ : str = F'''v{revision}''' elif revision == "main": a__ : List[str] = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {', '.join(available_versions + ['main'])}.''') # community pipeline on GitHub a__ : Any = COMMUNITY_PIPELINES_URL.format(revision=_lowercase , pipeline=_lowercase) try: a__ : Optional[int] = cached_download( _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) a__ : Any = """git""" a__ : int = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''') raise else: try: # Load from URL or cache if already cached a__ : Any = hf_hub_download( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , proxies=_lowercase , resume_download=_lowercase , local_files_only=_lowercase , use_auth_token=_lowercase , ) a__ : Optional[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/"""))) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''') raise # Check we have all the requirements in our environment a__ : List[str] = check_imports(_lowercase) # Now we move the module inside our cached dynamic modules. a__ : int = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_lowercase) a__ : Tuple = Path(_lowercase) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_lowercase , submodule_path / module_file) for module_needed in modules_needed: a__ : Dict = F'''{module_needed}.py''' shutil.copy(os.path.join(_lowercase , _lowercase) , submodule_path / module_needed) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_lowercase , _lowercase): a__ : Optional[Any] = use_auth_token elif use_auth_token is True: a__ : Dict = HfFolder.get_token() else: a__ : str = None a__ : Any = model_info(_lowercase , revision=_lowercase , token=_lowercase).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. a__ : Optional[int] = submodule_path / commit_hash a__ : Tuple = full_submodule + os.path.sep + commit_hash create_dynamic_module(_lowercase) if not (submodule_path / module_file).exists(): shutil.copy(_lowercase , submodule_path / module_file) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _lowercase , F'''{module_needed}.py''' , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return os.path.join(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : Union[str, os.PathLike] , _lowercase : str , _lowercase : Optional[str] = None , _lowercase : Optional[Union[str, os.PathLike]] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : Optional[Dict[str, str]] = None , _lowercase : Optional[Union[bool, str]] = None , _lowercase : Optional[str] = None , _lowercase : bool = False , **_lowercase : Union[str, Any] , ) -> List[str]: """simple docstring""" a__ : int = get_cached_module_file( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) return get_class_in_module(_lowercase , final_module.replace(""".py""" , """"""))
266
0
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) ,1 ) self.assertEqual(x.component(2 ) ,3 ) UpperCAmelCase__ = Vector() def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(lowerCamelCase__ ) ,'(0,0,0,0,0,1)' ) def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(lowerCamelCase__ ) ,4 ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = Vector([1, 2] ) UpperCAmelCase__ = Vector([1, 2, 3, 4, 5] ) UpperCAmelCase__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) UpperCAmelCase__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() ,2.2_3_6 ,3 ) self.assertAlmostEqual(y.euclidean_length() ,7.4_1_6 ,3 ) self.assertEqual(z.euclidean_length() ,0 ) self.assertAlmostEqual(w.euclidean_length() ,7.6_1_6 ,3 ) def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = Vector([1, 2, 3] ) UpperCAmelCase__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) ,2 ) self.assertEqual((x + y).component(1 ) ,3 ) self.assertEqual((x + y).component(2 ) ,4 ) def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = Vector([1, 2, 3] ) UpperCAmelCase__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) ,0 ) self.assertEqual((x - y).component(1 ) ,1 ) self.assertEqual((x - y).component(2 ) ,2 ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = Vector([1, 2, 3] ) UpperCAmelCase__ = Vector([2, -1, 4] ) # for test of dot product UpperCAmelCase__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) ,'(3.0,6.0,9.0)' ) self.assertEqual((a * b) ,0 ) def __lowerCAmelCase ( self : str ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) ,10 ) def __lowerCAmelCase ( self : str ): self.assertEqual(str(unit_basis_vector(3 ,1 ) ) ,'(0,1,0)' ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = Vector([1, 2, 3] ) UpperCAmelCase__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 ,lowerCamelCase__ ,lowerCamelCase__ ) ) ,'(3,4,7)' ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = Vector([1, 0, 0, 0, 0, 0] ) UpperCAmelCase__ = x.copy() self.assertEqual(str(lowerCamelCase__ ) ,str(lowerCamelCase__ ) ) def __lowerCAmelCase ( self : str ): UpperCAmelCase__ = Vector([1, 0, 0] ) x.change_component(0 ,0 ) x.change_component(1 ,1 ) self.assertEqual(str(lowerCamelCase__ ) ,'(0,1,0)' ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' ,str(lowerCamelCase__ ) ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) UpperCAmelCase__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] ,a.minor(lowerCamelCase__ ,lowerCamelCase__ ) ) def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) UpperCAmelCase__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] ,a.cofactor(lowerCamelCase__ ,lowerCamelCase__ ) ) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(-5 ,a.determinant() ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ,3 ,3 ) UpperCAmelCase__ = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' ,str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' ,str(a * 2 ) ) def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) a.change_component(0 ,2 ,5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' ,str(lowerCamelCase__ ) ) def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) self.assertEqual(7 ,a.component(2 ,1 ) ,0.0_1 ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) UpperCAmelCase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' ,str(a + b ) ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] ,3 ,3 ) UpperCAmelCase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] ,3 ,3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' ,str(a - b ) ) def __lowerCAmelCase ( self : Optional[int] ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' ,str(square_zero_matrix(5 ) ) ,) if __name__ == "__main__": unittest.main()
98
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = 256 class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = ["melgan"] def __init__( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__, __magic_name__, ) -> None: """simple docstring""" super().__init__() # From MELGAN UpperCamelCase__ : Optional[int] = math.log(1E-5 ) # Matches MelGAN training. UpperCamelCase__ : int = 4.0 # Largest value for most examples UpperCamelCase__ : Optional[int] = 128 self.register_modules( notes_encoder=__magic_name__, continuous_encoder=__magic_name__, decoder=__magic_name__, scheduler=__magic_name__, melgan=__magic_name__, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__=(-1.0, 1.0), __magic_name__=False ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : str = output_range if clip: UpperCamelCase__ : Union[str, Any] = torch.clip(__magic_name__, self.min_value, self.max_value ) # Scale to [0, 1]. UpperCamelCase__ : List[str] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self, __magic_name__, __magic_name__=(-1.0, 1.0), __magic_name__=False ) -> Optional[int]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[str] = input_range UpperCamelCase__ : Any = torch.clip(__magic_name__, __magic_name__, __magic_name__ ) if clip else outputs # Scale to [0, 1]. UpperCamelCase__ : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = input_tokens > 0 UpperCamelCase__ ,UpperCamelCase__ : Any = self.notes_encoder( encoder_input_tokens=__magic_name__, encoder_inputs_mask=__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self.continuous_encoder( encoder_inputs=__magic_name__, encoder_inputs_mask=__magic_name__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Any = noise_time if not torch.is_tensor(__magic_name__ ): UpperCamelCase__ : Tuple = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device ) elif torch.is_tensor(__magic_name__ ) and len(timesteps.shape ) == 0: UpperCamelCase__ : Union[str, Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : Dict = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device ) UpperCamelCase__ : List[str] = self.decoder( encodings_and_masks=__magic_name__, decoder_input_tokens=__magic_name__, decoder_noise_time=__magic_name__ ) return logits @torch.no_grad() def __call__( self, __magic_name__, __magic_name__ = None, __magic_name__ = 100, __magic_name__ = True, __magic_name__ = "numpy", __magic_name__ = None, __magic_name__ = 1, ) -> Union[AudioPipelineOutput, Tuple]: """simple docstring""" if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__, __magic_name__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__magic_name__ )}." ) UpperCamelCase__ : Dict = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.floataa ) UpperCamelCase__ : Tuple = np.zeros([1, 0, self.n_dims], np.floataa ) UpperCamelCase__ : List[Any] = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=__magic_name__, device=self.device ) for i, encoder_input_tokens in enumerate(__magic_name__ ): if i == 0: UpperCamelCase__ : str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device, dtype=self.decoder.dtype ) # The first chunk has no previous context. UpperCamelCase__ : Any = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=__magic_name__, device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase__ : List[str] = ones UpperCamelCase__ : int = self.scale_features( __magic_name__, output_range=[-1.0, 1.0], clip=__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ), continuous_inputs=__magic_name__, continuous_mask=__magic_name__, ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase__ : Optional[int] = randn_tensor( shape=encoder_continuous_inputs.shape, generator=__magic_name__, device=self.device, dtype=self.decoder.dtype, ) # set step values self.scheduler.set_timesteps(__magic_name__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase__ : Union[str, Any] = self.decode( encodings_and_masks=__magic_name__, input_tokens=__magic_name__, noise_time=t / self.scheduler.config.num_train_timesteps, ) # Compute previous output: x_t -> x_t-1 UpperCamelCase__ : List[Any] = self.scheduler.step(__magic_name__, __magic_name__, __magic_name__, generator=__magic_name__ ).prev_sample UpperCamelCase__ : List[Any] = self.scale_to_features(__magic_name__, input_range=[-1.0, 1.0] ) UpperCamelCase__ : List[Any] = mel[:1] UpperCamelCase__ : int = mel.cpu().float().numpy() UpperCamelCase__ : Union[str, Any] = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__, __magic_name__ ) logger.info('''Generated segment''', __magic_name__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": UpperCamelCase__ : Optional[int] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: UpperCamelCase__ : Any = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__magic_name__ )
201
0
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
154
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): lowerCAmelCase__ : Dict = StableDiffusionLDMaDPipeline lowerCAmelCase__ : List[Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self ) -> str: torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) A__ = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=__UpperCAmelCase ,set_alpha_to_one=__UpperCAmelCase ,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) A__ = CLIPTextModel(__UpperCAmelCase ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> Dict: if str(__UpperCAmelCase ).startswith('mps' ): A__ = torch.manual_seed(__UpperCAmelCase ) else: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> str: A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1] A__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A__ = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) A__ = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def snake_case__ ( self ) -> List[str]: A__ = self.get_dummy_components() A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 3 * [inputs['prompt']] # forward A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb_slice_a[0, -3:, -3:, -1] A__ = depth_slice_a[0, -3:, -1] A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 3 * [inputs.pop('prompt' )] A__ = ldmad_pipe.tokenizer( __UpperCAmelCase ,padding='max_length' ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=__UpperCAmelCase ,return_tensors='pt' ,) A__ = text_inputs['input_ids'].to(__UpperCAmelCase ) A__ = ldmad_pipe.text_encoder(__UpperCAmelCase )[0] A__ = prompt_embeds # forward A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb_slice_a[0, -3:, -3:, -1] A__ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def snake_case__ ( self ) -> int: A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 'french fries' A__ = ldmad_pipe(**__UpperCAmelCase ,negative_prompt=__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1] A__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A__ = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) A__ = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="cpu" ,__UpperCAmelCase=torch.floataa ,__UpperCAmelCase=0 ) -> Optional[int]: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) A__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) A__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> Optional[Any]: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1].flatten() A__ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) A__ = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) A__ = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="cpu" ,__UpperCAmelCase=torch.floataa ,__UpperCAmelCase=0 ) -> int: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) A__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) A__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> str: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = 0.4_9_5_5_8_6 A__ = 0.3_3_7_9_5_5_1_5 A__ = 1_1_2.4_8_5_1_8 A__ = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def snake_case__ ( self ) -> Optional[int]: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = 0.4_1_9_4_1_2_7 A__ = 0.3_5_3_7_5_5_8_6 A__ = 0.5_6_3_8_5_0_2 A__ = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
154
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.txt'''} UpperCamelCase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } UpperCamelCase = { '''openbmb/cpm-ant-10b''': 1024, } def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = collections.OrderedDict() with open(_lowerCamelCase , "r" , encoding="utf-8") as reader: lowercase__ : Tuple = reader.readlines() for index, token in enumerate(_lowerCamelCase): lowercase__ : Optional[int] = token.rstrip("\n") lowercase__ : Optional[int] = index return vocab class snake_case_ ( __A ): def __init__( self : str , lowercase_ : int , lowercase_ : str="<unk>" , lowercase_ : List[Any]=2_00 ) -> Union[str, Any]: lowercase__ : Any = vocab lowercase__ : int = unk_token lowercase__ : Union[str, Any] = max_input_chars_per_word def __UpperCamelCase ( self : Dict , lowercase_ : Any ) -> List[Any]: lowercase__ : List[str] = list(lowercase_ ) if len(lowercase_ ) > self.max_input_chars_per_word: return [self.unk_token] lowercase__ : int = 0 lowercase__ : Union[str, Any] = [] while start < len(lowercase_ ): lowercase__ : int = len(lowercase_ ) lowercase__ : List[Any] = None while start < end: lowercase__ : int = "".join(chars[start:end] ) if substr in self.vocab: lowercase__ : Tuple = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowercase_ ) lowercase__ : Dict = end return sub_tokens class snake_case_ ( __A ): __A : List[str] = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = ["input_ids", "attention_mask"] __A : Optional[Any] = False def __init__( self : Optional[Any] , lowercase_ : str , lowercase_ : str="<d>" , lowercase_ : Dict="</d>" , lowercase_ : str="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : Tuple="<pad>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Optional[Any]="</n>" , lowercase_ : int="</_>" , lowercase_ : List[Any]="left" , **lowercase_ : Union[str, Any] , ) -> Dict: requires_backends(self , ["jieba"] ) super().__init__( bod_token=lowercase_ , eod_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , unk_token=lowercase_ , line_token=lowercase_ , space_token=lowercase_ , padding_side=lowercase_ , **lowercase_ , ) lowercase__ : Dict = bod_token lowercase__ : List[Any] = eod_token lowercase__ : List[str] = load_vocab(lowercase_ ) lowercase__ : Tuple = self.encoder[space_token] lowercase__ : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase__ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase_ : x[1] ) ) lowercase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} lowercase__ : Dict = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: return self.encoder[self.bod_token] @property def __UpperCamelCase ( self : List[str] ) -> List[Any]: return self.encoder[self.eod_token] @property def __UpperCamelCase ( self : Optional[Any] ) -> int: return self.encoder["\n"] @property def __UpperCamelCase ( self : Any ) -> int: return len(self.encoder ) def __UpperCamelCase ( self : List[str] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int ) -> Tuple: lowercase__ : Any = [] for x in jieba.cut(lowercase_ , cut_all=lowercase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowercase_ ) ) return output_tokens def __UpperCamelCase ( self : Any , lowercase_ : Union[str, Any] , **lowercase_ : str ) -> Dict: lowercase__ : str = [i for i in token_ids if i >= 0] lowercase__ : List[str] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : List[str] , lowercase_ : Dict ) -> int: return token in self.encoder def __UpperCamelCase ( self : str , lowercase_ : List[str] ) -> str: return "".join(lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] ) -> List[str]: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Any , lowercase_ : List[str] ) -> Optional[int]: return self.decoder.get(lowercase_ , self.unk_token ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(lowercase_ ): lowercase__ : Dict = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowercase__ : Optional[Any] = (filename_prefix + "-" if filename_prefix else "") + save_directory lowercase__ : int = 0 if " " in self.encoder: lowercase__ : Tuple = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowercase__ : List[str] = self.encoder["\n"] del self.encoder["\n"] lowercase__ : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowercase_ : x[1] ) ) with open(lowercase_ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowercase__ : Union[str, Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCamelCase ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) return [1] + ([0] * len(lowercase_ ))
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder): """simple docstring""" def lowercase__ ( self : Union[str, Any] )->Dict: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__UpperCamelCase , ) def lowercase__ ( self : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] )->Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] )->int: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) class _a ( datasets.BeamBasedBuilder): """simple docstring""" def lowercase__ ( self : Optional[int] )->Optional[Any]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__UpperCamelCase , ) def lowercase__ ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str )->Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def lowercase__ ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : str )->str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) def lowercase ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowercase ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class _a ( lowerCAmelCase): """simple docstring""" @require_beam def lowercase__ ( self : int )->str: _UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase__ ( self : Any )->int: import apache_beam as beam _UpperCAmelCase = beam.io.parquetio.WriteToParquet _UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: _UpperCAmelCase = partial(__UpperCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase__ ( self : Dict )->Dict: with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = NestedBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
from queue import PriorityQueue from typing import Any import numpy as np def __lowercase ( __lowerCAmelCase : dict , __lowerCAmelCase : str , __lowerCAmelCase : set , __lowerCAmelCase : set , __lowerCAmelCase : dict , __lowerCAmelCase : dict , __lowerCAmelCase : PriorityQueue , __lowerCAmelCase : dict , __lowerCAmelCase : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue a__ = cst_fwd.get(__lowerCAmelCase , np.inf ) a__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) a__ = new_cost_f a__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: a__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : dict , __lowerCAmelCase : dict ): a__ = -1 a__ = set() a__ = set() a__ = {source: 0} a__ = {destination: 0} a__ = {source: None} a__ = {destination: None} a__ = PriorityQueue() a__ = PriorityQueue() a__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): a__ , a__ = queue_forward.get() visited_forward.add(__lowerCAmelCase ) a__ , a__ = queue_backward.get() visited_backward.add(__lowerCAmelCase ) a__ = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) a__ = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: a__ = shortest_distance return shortest_path_distance snake_case : Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } snake_case : Optional[int] = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
240
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Any ,__snake_case :List[Any] ) -> Union[str, Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): a__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__snake_case ) def lowerCamelCase__( self :List[str] ) -> Union[str, Any]: a__ = 'sshleifer/tiny-gpt2' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :List[Any] ) -> Union[str, Any]: a__ = 'sgugger/tiny-distilbert-classification' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,only_pretrain_model=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: a__ = 'sshleifer/tiny-gpt2' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,torchscript=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def lowerCamelCase__( self :int ) -> str: a__ = 'sshleifer/tiny-gpt2' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,fpaa=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: a__ = 'sshleifer/tiny-gpt2' a__ = AutoConfig.from_pretrained(__snake_case ) # set architectures equal to `None` a__ = None a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :Dict ) -> int: a__ = 'sshleifer/tiny-gpt2' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' ,'Can\'t do half precision' ) def lowerCamelCase__( self :int ) -> List[str]: a__ = 'sshleifer/tiny-gpt2' a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=__snake_case ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__( self :str ) -> Union[str, Any]: a__ = 'sshleifer/tiny-gpt2' a__ = AutoConfig.from_pretrained(__snake_case ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :List[Any] ) -> Any: a__ = 'sshleifer/tinier_bart' a__ = AutoConfig.from_pretrained(__snake_case ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCamelCase__( self :Tuple ) -> Dict: a__ = 'sshleifer/tiny-gpt2' a__ = AutoConfig.from_pretrained(__snake_case ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__( self :Union[str, Any] ) -> Optional[int]: a__ = 'sshleifer/tinier_bart' a__ = AutoConfig.from_pretrained(__snake_case ) a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ,configs=[config] ) a__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCamelCase__( self :Optional[int] ) -> List[Any]: a__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,save_to_csv=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__snake_case ,'inf_time.csv' ) ,train_memory_csv_file=os.path.join(__snake_case ,'train_mem.csv' ) ,inference_memory_csv_file=os.path.join(__snake_case ,'inf_mem.csv' ) ,train_time_csv_file=os.path.join(__snake_case ,'train_time.csv' ) ,env_info_csv_file=os.path.join(__snake_case ,'env.csv' ) ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) benchmark.run() self.assertTrue(Path(os.path.join(__snake_case ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case ,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case ,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case ,'env.csv' ) ).exists() ) def lowerCamelCase__( self :Optional[int] ) -> List[str]: a__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__snake_case :List[str] ): self.assertTrue(hasattr(__snake_case ,'sequential' ) ) self.assertTrue(hasattr(__snake_case ,'cumulative' ) ) self.assertTrue(hasattr(__snake_case ,'current' ) ) self.assertTrue(hasattr(__snake_case ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: a__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__snake_case ,inference=__snake_case ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__snake_case ,'log.txt' ) ,log_print=__snake_case ,trace_memory_line_by_line=__snake_case ,multi_process=__snake_case ,) a__ = PyTorchBenchmark(__snake_case ) a__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__snake_case ,'log.txt' ) ).exists() )
240
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __A = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Tuple = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase :Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _UpperCAmelCase :Any = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _UpperCAmelCase :Optional[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = ZeroShotClassificationPipeline( model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Any = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) # No kwarg lowercase__: int = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) lowercase__: Dict = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) lowercase__: List[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( _UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__: Optional[Any] = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( _UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__: Tuple = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(_UpperCAmelCase , {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase__: Union[str, Any] = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( _UpperCAmelCase , [ {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(1 ) ] , ) lowercase__: Any = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( _UpperCAmelCase , [ {'''sequence''': ANY(_UpperCAmelCase ), '''labels''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )], '''scores''': [ANY(_UpperCAmelCase ), ANY(_UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_UpperCAmelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(_UpperCAmelCase ): classifier(_UpperCAmelCase , candidate_labels='''politics''' ) with self.assertRaises(_UpperCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(_UpperCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(_UpperCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_UpperCAmelCase , ) self.run_entailment_id(_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = zero_shot_classifier.model.config lowercase__: Optional[Any] = config.labelaid lowercase__: Dict = zero_shot_classifier.entailment_id lowercase__: Optional[int] = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowercase__: Union[str, Any] = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__: Union[str, Any] = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__: Optional[int] = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowercase__: List[str] = original_labelaid self.assertEqual(_UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def _snake_case ( self ): lowercase__: Tuple = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def _snake_case ( self ): lowercase__: Tuple = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowercase__: List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def _snake_case ( self ): lowercase__: List[Any] = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowercase__: List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def _snake_case ( self ): lowercase__: List[Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowercase__: Optional[int] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) lowercase__: Optional[int] = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def _snake_case ( self ): lowercase__: Union[str, Any] = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowercase__: List[Any] = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) lowercase__: Tuple = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_UpperCAmelCase , ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
2
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Union[str, Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: Dict = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowercase__: Any = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowercase__: Dict = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''9b8c223''' ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , '''snapshots''' , _UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): lowercase__: int = cached_file('''tiny-random-bert''' , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): lowercase__: List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' ) def _snake_case ( self ): with self.assertRaisesRegex(_UpperCAmelCase , '''does not appear to have a file named''' ): lowercase__: Optional[Any] = cached_file(_UpperCAmelCase , '''conf''' ) with open(os.path.join(_UpperCAmelCase , '''refs''' , '''main''' ) ) as f: lowercase__: int = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '''.no_exist''' , _UpperCAmelCase , '''conf''' ) ) ) lowercase__: Dict = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: List[str] = cached_file(_UpperCAmelCase , '''conf''' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowercase__: Union[str, Any] = mock.Mock() lowercase__: str = 500 lowercase__: Union[str, Any] = {} lowercase__: List[str] = HTTPError lowercase__: int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_UpperCAmelCase ) as mock_head: lowercase__: Any = cached_file(_UpperCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCAmelCase ) ) def _snake_case ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase , revision='''ahaha''' ) lowercase__: Optional[Any] = get_file_from_repo('''bert-base-cased''' , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__: Optional[Any] = json.loads(open(_UpperCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def _snake_case ( self ): with tempfile.TemporaryDirectory() as tmp_dir: lowercase__: Any = Path(_UpperCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , '''a.txt''' ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , '''b.txt''' ) )
2
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = """camembert""" def __init__( self : Any , __lowerCamelCase : Tuple=3_05_22 , __lowerCamelCase : Optional[Any]=7_68 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Any=30_72 , __lowerCamelCase : str="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[Any]=5_12 , __lowerCamelCase : Any=2 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : int=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Dict , ) -> Tuple: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = position_embedding_type a = use_cache a = classifier_dropout class snake_case__ (_UpperCamelCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a = {0: "batch", 1: "choice", 2: "sequence"} else: a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
107
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Tuple, _lowerCamelCase : List[str]=13, _lowerCamelCase : Optional[Any]=7, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : int=True, _lowerCamelCase : List[str]=True, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : int=99, _lowerCamelCase : Optional[int]=32, _lowerCamelCase : Tuple=5, _lowerCamelCase : Tuple=4, _lowerCamelCase : str=37, _lowerCamelCase : Union[str, Any]="gelu", _lowerCamelCase : int=0.1, _lowerCamelCase : List[Any]=0.1, _lowerCamelCase : Dict=5_12, _lowerCamelCase : List[Any]=16, _lowerCamelCase : Any=2, _lowerCamelCase : Any=0.02, _lowerCamelCase : Dict=4, ): '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_attention_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_choices def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __A = None if self.use_attention_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) __A = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_lowerCamelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Dict = True A_ : Tuple = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = FlaxRoFormerModelTester(self ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''', from_pt=_lowerCamelCase ) __A = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __A = jnp.array([[0, 1, 2, 3, 4, 5]] ) __A = model(_lowerCamelCase )[0] __A = 5_00_00 __A = (1, 6, vocab_size) self.assertEqual(output.shape, _lowerCamelCase ) __A = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], _lowerCamelCase, atol=1e-4 ) )
266
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE :Optional[int] = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE :List[str] = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = RobertaTokenizer def __init__( self : Tuple ,A : int=None ,A : Dict=None ,A : Optional[int]=None ,A : Tuple="replace" ,A : str="<s>" ,A : str="</s>" ,A : Union[str, Any]="</s>" ,A : int="<s>" ,A : str="<unk>" ,A : int="<pad>" ,A : Union[str, Any]="<mask>" ,A : List[Any]=False ,A : Tuple=True ,**A : Dict ,): super().__init__( A ,A ,tokenizer_file=A ,errors=A ,bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,unk_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,trim_offsets=A ,**A ,) __A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,A ) != add_prefix_space: __A = getattr(A ,pre_tok_state.pop("type" ) ) __A = add_prefix_space __A = pre_tok_class(**A ) __A = add_prefix_space __A = "post_processor" __A = getattr(self.backend_tokenizer ,A ,A ) if tokenizer_component_instance: __A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __A = tuple(state["sep"] ) if "cls" in state: __A = tuple(state["cls"] ) __A = False if state.get("add_prefix_space" ,A ) != add_prefix_space: __A = add_prefix_space __A = True if state.get("trim_offsets" ,A ) != trim_offsets: __A = trim_offsets __A = True if changes_to_apply: __A = getattr(A ,state.pop("type" ) ) __A = component_class(**A ) setattr(self.backend_tokenizer ,A ,A ) @property def UpperCamelCase_ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase_ ( self : Tuple ,A : List[Any] ): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else value __A = value def UpperCamelCase_ ( self : Dict ,*A : List[str] ,**A : List[str] ): __A = kwargs.get("is_split_into_words" ,A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,*A : str ,**A : int ): __A = kwargs.get("is_split_into_words" ,A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A ,**A ) def UpperCamelCase_ ( self : str ,A : str ,A : Optional[str] = None ): __A = self._tokenizer.model.save(A ,name=A ) return tuple(A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple ,A : Tuple=None ): __A = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
363
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "bloom" snake_case_ = ["past_key_values"] snake_case_ = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Optional[Any] ,A : List[Any]=25_08_80 ,A : Optional[int]=64 ,A : List[Any]=2 ,A : Optional[int]=8 ,A : str=1E-5 ,A : str=0.02 ,A : int=True ,A : Optional[Any]=1 ,A : int=2 ,A : str=False ,A : Dict=0.0 ,A : List[Any]=0.0 ,A : str=1 ,A : List[Any]=False ,**A : List[Any] ,): __A = vocab_size # Backward compatibility with n_embed kwarg __A = kwargs.pop("n_embed" ,A ) __A = hidden_size if n_embed is None else n_embed __A = n_layer __A = n_head __A = layer_norm_epsilon __A = initializer_range __A = use_cache __A = pretraining_tp __A = apply_residual_connection_post_layernorm __A = hidden_dropout __A = attention_dropout __A = bos_token_id __A = eos_token_id __A = slow_but_exact super().__init__(bos_token_id=A ,eos_token_id=A ,**A ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.12" ) def __init__( self : str ,A : PretrainedConfig ,A : str = "default" ,A : List[PatchingSpec] = None ,A : bool = False ,): super().__init__(A ,task=A ,patching_specs=A ,use_past=A ) if not getattr(self._config ,"pad_token_id" ,A ): # TODO: how to do that better? __A = 0 @property def UpperCamelCase_ ( self : Union[str, Any] ): __A = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A ,direction="inputs" ,inverted_values_shape=A ) __A = {0: "batch", 1: "past_sequence + sequence"} else: __A = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCamelCase_ ( self : Optional[Any] ): return self._config.n_layer @property def UpperCamelCase_ ( self : List[Any] ): return self._config.n_head @property def UpperCamelCase_ ( self : Optional[int] ): return 1E-3 def UpperCamelCase_ ( self : Any ,A : "PreTrainedTokenizer" ,A : int = -1 ,A : int = -1 ,A : bool = False ,A : Optional["TensorType"] = None ,): __A = super(A ,self ).generate_dummy_inputs( A ,batch_size=A ,seq_length=A ,is_pair=A ,framework=A ) # We need to order the input in the way they appears in the forward() __A = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __A , __A = common_inputs["input_ids"].shape # Not using the same length for past_key_values __A = seqlen + 2 __A = self._config.hidden_size // self.num_attention_heads __A = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __A = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __A = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] __A = common_inputs["attention_mask"] if self.use_past: __A = ordered_inputs["attention_mask"].dtype __A = torch.cat( [ordered_inputs["attention_mask"], torch.ones(A ,A ,dtype=A )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : int ): return 13
124
0
def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowerCamelCase_ =0 lowerCamelCase_ =str(_A ) while len(_A ) != 1: lowerCamelCase_ =[int(_A ) for i in num_string] lowerCamelCase_ =1 for i in range(0 , len(_A ) ): total *= numbers[i] lowerCamelCase_ =str(_A ) steps += 1 return steps def __UpperCamelCase ( _A : int ) ->int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowerCamelCase_ =0 lowerCamelCase_ =str(_A ) while len(_A ) != 1: lowerCamelCase_ =[int(_A ) for i in num_string] lowerCamelCase_ =0 for i in range(0 , len(_A ) ): total += numbers[i] lowerCamelCase_ =str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
154
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __A : List[Any] = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __snake_case ( _lowercase): snake_case__ : torch.FloatTensor class __snake_case ( _lowercase , _lowercase): @register_to_config def __init__( self : int , __lowerCAmelCase : int = 3_2 , __lowerCAmelCase : int = 6_4 , __lowerCAmelCase : int = 2_0 , __lowerCAmelCase : int = 7_6_8 , __lowerCAmelCase : Tuple=7_7 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : float = 0.0 , __lowerCAmelCase : str = "silu" , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : Optional[str] = "linear" , __lowerCAmelCase : Optional[str] = "prd" , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[int] = None , ): """simple docstring""" super().__init__() _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Optional[int] = attention_head_dim _lowerCamelCase : Dict = num_attention_heads * attention_head_dim _lowerCamelCase : Optional[Any] = additional_embeddings _lowerCamelCase : List[Any] = time_embed_dim or inner_dim _lowerCamelCase : Optional[Any] = embedding_proj_dim or embedding_dim _lowerCamelCase : Tuple = clip_embed_dim or embedding_dim _lowerCamelCase : int = Timesteps(__lowerCAmelCase , __lowerCAmelCase , 0 ) _lowerCamelCase : str = TimestepEmbedding(__lowerCAmelCase , __lowerCAmelCase , out_dim=__lowerCAmelCase , act_fn=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) if embedding_proj_norm_type is None: _lowerCamelCase : Dict = None elif embedding_proj_norm_type == "layer": _lowerCamelCase : Any = nn.LayerNorm(__lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _lowerCamelCase : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) if encoder_hid_proj_type is None: _lowerCamelCase : Any = None elif encoder_hid_proj_type == "linear": _lowerCamelCase : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _lowerCamelCase : Optional[int] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __lowerCAmelCase ) ) if added_emb_type == "prd": _lowerCamelCase : Optional[Any] = nn.Parameter(torch.zeros(1 , 1 , __lowerCAmelCase ) ) elif added_emb_type is None: _lowerCamelCase : Union[str, Any] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _lowerCamelCase : Tuple = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , activation_fn='''gelu''' , attention_bias=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) if norm_in_type == "layer": _lowerCamelCase : Any = nn.LayerNorm(__lowerCAmelCase ) elif norm_in_type is None: _lowerCamelCase : Any = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) _lowerCamelCase : str = nn.LayerNorm(__lowerCAmelCase ) _lowerCamelCase : List[Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 ) causal_attention_mask.triu_(1 ) _lowerCamelCase : Dict = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , __lowerCAmelCase , persistent=__lowerCAmelCase ) _lowerCamelCase : int = nn.Parameter(torch.zeros(1 , __lowerCAmelCase ) ) _lowerCamelCase : Tuple = nn.Parameter(torch.zeros(1 , __lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Any = {} def fn_recursive_add_processors(__lowerCAmelCase : str , __lowerCAmelCase : torch.nn.Module , __lowerCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(__lowerCAmelCase , '''set_processor''' ): _lowerCamelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __lowerCAmelCase , __lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return processors def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): """simple docstring""" _lowerCamelCase : Optional[Any] = len(self.attn_processors.keys() ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__lowerCAmelCase : str , __lowerCAmelCase : torch.nn.Module , __lowerCAmelCase : Tuple ): if hasattr(__lowerCAmelCase , '''set_processor''' ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.set_processor(__lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __lowerCAmelCase , __lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[torch.Tensor, float, int] , __lowerCAmelCase : torch.FloatTensor , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : Optional[torch.BoolTensor] = None , __lowerCAmelCase : bool = True , ): """simple docstring""" _lowerCamelCase : Optional[int] = hidden_states.shape[0] _lowerCamelCase : Union[str, Any] = timestep if not torch.is_tensor(__lowerCAmelCase ): _lowerCamelCase : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _lowerCamelCase : str = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCamelCase : Tuple = timesteps * torch.ones(__lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) _lowerCamelCase : Tuple = self.time_proj(__lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCamelCase : Union[str, Any] = timesteps_projected.to(dtype=self.dtype ) _lowerCamelCase : Any = self.time_embedding(__lowerCAmelCase ) if self.embedding_proj_norm is not None: _lowerCamelCase : str = self.embedding_proj_norm(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.embedding_proj(__lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCamelCase : Optional[Any] = self.encoder_hidden_states_proj(__lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) _lowerCamelCase : str = self.proj_in(__lowerCAmelCase ) _lowerCamelCase : Tuple = self.positional_embedding.to(hidden_states.dtype ) _lowerCamelCase : Tuple = [] _lowerCamelCase : Dict = 0 if encoder_hidden_states is not None: additional_embeds.append(__lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowerCamelCase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowerCamelCase : Dict = hidden_states[:, None, :] _lowerCamelCase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCamelCase : int = self.prd_embedding.to(hidden_states.dtype ).expand(__lowerCAmelCase , -1 , -1 ) additional_embeds.append(__lowerCAmelCase ) _lowerCamelCase : str = torch.cat( __lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCamelCase : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCamelCase : List[Any] = F.pad( __lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _lowerCamelCase : Any = hidden_states + positional_embeddings if attention_mask is not None: _lowerCamelCase : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0 _lowerCamelCase : Tuple = F.pad(__lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) _lowerCamelCase : Any = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowerCamelCase : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _lowerCamelCase : List[str] = self.norm_in(__lowerCAmelCase ) for block in self.transformer_blocks: _lowerCamelCase : List[str] = block(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.norm_out(__lowerCAmelCase ) if self.prd_embedding is not None: _lowerCamelCase : Any = hidden_states[:, -1] else: _lowerCamelCase : Dict = hidden_states[:, additional_embeddings_len:] _lowerCamelCase : str = self.proj_to_clip_embeddings(__lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
350
"""simple docstring""" def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case_ ( A_ : float ): '''simple docstring''' if edge <= 0 or not isinstance(A_, A_ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
175
0
def __lowercase ( a__ ) -> Any: __SCREAMING_SNAKE_CASE = 0 while len(lowerCamelCase_ ) > 1: __SCREAMING_SNAKE_CASE = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __SCREAMING_SNAKE_CASE = files.index(min(lowerCamelCase_ ) ) temp += files[min_index] files.pop(lowerCamelCase_ ) files.append(lowerCamelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
257
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
0
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: List[str] , lowerCAmelCase: Dict )-> Optional[int]: return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: int , lowerCAmelCase: int="attention" )-> Optional[Any]: _snake_case : str = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _snake_case : Any = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _snake_case : List[str] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _snake_case : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _snake_case : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _snake_case : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _snake_case : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _snake_case : Any = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple , lowerCAmelCase: Optional[int] , lowerCAmelCase: Union[str, Any]=False )-> Dict: if split_mlp_wi: _snake_case : Optional[Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _snake_case : int = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _snake_case : int = (wi_a, wi_a) else: _snake_case : Any = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _snake_case : Dict = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Tuple , lowerCAmelCase: Tuple , lowerCAmelCase: Optional[int] )-> Optional[Any]: return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def lowerCamelCase_ ( lowerCAmelCase: dict , *, lowerCAmelCase: int , lowerCAmelCase: bool , lowerCAmelCase: bool = False )-> Union[str, Any]: _snake_case : Optional[int] = traverse_util.flatten_dict(variables['target'] ) _snake_case : int = {'/'.join(lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _snake_case : List[Any] = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , lowerCAmelCase ) _snake_case : Union[str, Any] = collections.OrderedDict() # Shared embeddings. _snake_case : List[str] = old['token_embedder/embedding'] # Encoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _snake_case : Optional[Any] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'pre_attention_layer_norm' ) _snake_case : Dict = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'attention' ) _snake_case : Optional[Any] = layer_norm _snake_case : List[Any] = k.T _snake_case : Optional[Any] = o.T _snake_case : Tuple = q.T _snake_case : List[Any] = v.T # Block i, layer 1 (MLP). _snake_case : Tuple = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , 'pre_mlp_layer_norm' ) _snake_case : Any = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , 'encoder' , lowerCAmelCase ) _snake_case : Dict = layer_norm if split_mlp_wi: _snake_case : Union[str, Any] = wi[0].T _snake_case : Union[str, Any] = wi[1].T else: _snake_case : List[str] = wi.T _snake_case : List[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case : int = tax_relpos_bias_lookup( lowerCAmelCase , lowerCAmelCase , 'encoder' ).T _snake_case : List[str] = old['encoder/encoder_norm/scale'] if not scalable_attention: _snake_case : Optional[Any] = tax_relpos_bias_lookup( lowerCAmelCase , 0 , 'encoder' ).T _snake_case : int = tax_relpos_bias_lookup( lowerCAmelCase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _snake_case : Optional[Any] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_self_attention_layer_norm' ) _snake_case : Tuple = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'self_attention' ) _snake_case : Optional[Any] = layer_norm _snake_case : str = k.T _snake_case : List[str] = o.T _snake_case : int = q.T _snake_case : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). _snake_case : Optional[Any] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_cross_attention_layer_norm' ) _snake_case : Optional[int] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'encoder_decoder_attention' ) _snake_case : Dict = layer_norm _snake_case : Optional[Any] = k.T _snake_case : List[Any] = o.T _snake_case : List[str] = q.T _snake_case : str = v.T # Block i, layer 2 (MLP). _snake_case : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , 'pre_mlp_layer_norm' ) _snake_case : Dict = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' , lowerCAmelCase ) _snake_case : List[Any] = layer_norm if split_mlp_wi: _snake_case : Optional[Any] = wi[0].T _snake_case : str = wi[1].T else: _snake_case : Optional[int] = wi.T _snake_case : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer _snake_case : Optional[Any] = tax_relpos_bias_lookup(lowerCAmelCase , lowerCAmelCase , 'decoder' ).T _snake_case : List[Any] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _snake_case : List[str] = old['decoder/logits_dense/kernel'].T return new def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool )-> Optional[int]: _snake_case : Optional[int] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _snake_case : Tuple = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _snake_case : int = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _snake_case : List[Any] = state_dict['shared.weight'] return state_dict def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Optional[int] , lowerCAmelCase: str , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] )-> List[str]: _snake_case : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) _snake_case : int = convert_tax_to_pytorch( lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase , scalable_attention=lowerCAmelCase ) _snake_case : Tuple = make_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Optional[Any] , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , )-> Union[str, Any]: _snake_case : Dict = MTaConfig.from_json_file(lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _snake_case : Dict = UMTaEncoderModel(lowerCAmelCase ) else: _snake_case : Optional[Any] = UMTaForConditionalGeneration(lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase ) print('Done' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
371
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: str )-> List[str]: # Initialise PyTorch model _snake_case : Optional[Any] = MobileBertConfig.from_json_file(lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _snake_case : Optional[int] = MobileBertForPreTraining(lowerCAmelCase ) # Load weights from tf checkpoint _snake_case : Optional[int] = load_tf_weights_in_mobilebert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
260
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase : Dict = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase__ : Dict = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCAmelCase__ : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCAmelCase__ : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = ZeroShotClassificationPipeline( model=UpperCamelCase , tokenizer=UpperCamelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase__ (self : Any , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) # No kwarg lowercase__ = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) lowercase__ = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(UpperCamelCase , {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowercase__ = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( UpperCamelCase , [ {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(1 ) ] , ) lowercase__ = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( UpperCamelCase , [ {'''sequence''': ANY(UpperCamelCase ), '''labels''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )], '''scores''': [ANY(UpperCamelCase ), ANY(UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCamelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(UpperCamelCase ): classifier(UpperCamelCase , candidate_labels='''politics''' ) with self.assertRaises(UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(UpperCamelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=UpperCamelCase ) with self.assertRaises(UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(UpperCamelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=UpperCamelCase , ) self.run_entailment_id(UpperCamelCase ) def UpperCamelCase__ (self : List[str] , UpperCamelCase : Pipeline ): '''simple docstring''' lowercase__ = zero_shot_classifier.model.config lowercase__ = config.labelaid lowercase__ = zero_shot_classifier.entailment_id lowercase__ = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowercase__ = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowercase__ = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowercase__ = original_labelaid self.assertEqual(UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase__ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) lowercase__ = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_76, 0.0_15, 0.0_09], } , ) lowercase__ = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
2
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A , A ) -> list[list[int]]: """simple docstring""" lowercase__ = [] create_all_state(1 , A , A , [] , A ) return result def _SCREAMING_SNAKE_CASE (A , A , A , A , A , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(A , total_number - level + 2 ): current_list.append(A ) create_all_state(i + 1 , A , level - 1 , A , A ) current_list.pop() def _SCREAMING_SNAKE_CASE (A ) -> None: """simple docstring""" for i in total_list: print(*A ) if __name__ == "__main__": lowerCamelCase : Tuple = 4 lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
2
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : Tuple = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowerCamelCase : Any = 10 lowerCamelCase : Union[str, Any] = 256 def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' if len(lowercase ) < MIN_NUM_TOKENS: return None lowerCamelCase_ = MinHash(num_perm=lowercase ) for token in set(lowercase ): min_hash.update(token.encode() ) return min_hash def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' return {t for t in NON_ALPHA.split(lowercase ) if len(t.strip() ) > 0} class A: '''simple docstring''' def __init__( self : Optional[int] , *, A_ : float = 0.85 , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = duplication_jaccard_threshold lowerCamelCase_ = NUM_PERM lowerCamelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase_ = defaultdict(A_ ) def a__ ( self : Optional[int] , A_ : Tuple , A_ : MinHash ) -> None: """simple docstring""" lowerCamelCase_ = self._index.query(A_ ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(A_ , A_ ) if len(A_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(A_ ) def a__ ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" lowerCamelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase_ = [base] + list(A_ ) # reformat the cluster to be a list of dict lowerCamelCase_ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(A_ ) return duplicate_clusters def a__ ( self : Optional[Any] , A_ : Optional[Any] ) -> None: """simple docstring""" lowerCamelCase_ = self.get_duplicate_clusters() with open(A_ , 'w' ) as f: json.dump(A_ , A_ ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = element lowerCamelCase_ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _SCREAMING_SNAKE_CASE ( lowercase : Type[Dataset] ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowercase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _SCREAMING_SNAKE_CASE ( lowercase : Type[Dataset] , lowercase : float ): '''simple docstring''' lowerCamelCase_ = DuplicationIndex(duplication_jaccard_threshold=lowercase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowercase ) ) , max_queue_size=1_00 ) ): di.add(lowercase , lowercase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_tokens(lowercase ) lowerCamelCase_ = get_tokens(lowercase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : Optional[int] = None def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = [] for elementa in cluster: lowerCamelCase_ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowerCamelCase_ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(lowercase , lowercase ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase_ = 1 extremes.append(lowercase ) return extremes def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int , lowercase : List[str] ): '''simple docstring''' global _shared_dataset lowerCamelCase_ = dataset lowerCamelCase_ = [] lowerCamelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=lowercase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowercase , lowercase , ) , total=len(lowercase ) , ): extremes_list.append(lowercase ) return extremes_list def _SCREAMING_SNAKE_CASE ( lowercase : Type[Dataset] , lowercase : float = 0.85 ): '''simple docstring''' lowerCamelCase_ = make_duplicate_clusters(lowercase , lowercase ) lowerCamelCase_ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowerCamelCase_ = {} lowerCamelCase_ = find_extremes(lowercase , lowercase , lowercase ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase_ = element lowerCamelCase_ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase_ = dataset.filter(lambda lowercase , lowercase : idx not in remove_indices , with_indices=lowercase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase_ = element['base_index'] in extreme_dict if element["is_extreme"]: lowerCamelCase_ = extreme_dict[element['base_index']]['copies'] print(f"""Original dataset size: {len(lowercase )}""" ) print(f"""Number of duplicate clusters: {len(lowercase )}""" ) print(f"""Files in duplicate cluster: {len(lowercase )}""" ) print(f"""Unique files in duplicate cluster: {len(lowercase )}""" ) print(f"""Filtered dataset size: {len(lowercase )}""" ) return ds_filter, duplicate_clusters
208
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : dict , lowercase : str ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = set(lowercase ), [start] while stack: lowerCamelCase_ = stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored lowerCamelCase : int = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
208
1
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCamelCase__ , unittest.TestCase ): lowercase = LayoutLMTokenizer lowercase = LayoutLMTokenizerFast lowercase = True lowercase = True def snake_case_ ( self ) -> Any: '''simple docstring''' super().setUp() A_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def snake_case_ ( self , **UpperCamelCase__ ) -> int: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = """UNwant\u00E9d,running""" A_ = """unwanted, running""" return input_text, output_text def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.tokenizer_class(self.vocab_file ) A_ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCamelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass
162
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case : Optional[Any] = getattr(lowercase ,lowercase ) if weight_type is not None: snake_case : Any = getattr(lowercase ,lowercase ).shape else: snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : str = value elif weight_type == "weight_g": snake_case : Optional[int] = value elif weight_type == "weight_v": snake_case : List[str] = value elif weight_type == "bias": snake_case : int = value else: snake_case : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Optional[Any] = [] snake_case : Optional[Any] = fairseq_model.state_dict() snake_case : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowercase ,lowercase ,lowercase ,lowercase ,hf_model.config.feat_extract_norm == """group""" ,) snake_case : Any = True else: for key, mapped_key in MAPPING.items(): snake_case : Optional[int] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case : Union[str, Any] = True if "*" in mapped_key: snake_case : Dict = name.split(lowercase )[0].split(""".""" )[-2] snake_case : str = mapped_key.replace("""*""" ,lowercase ) if "weight_g" in name: snake_case : int = """weight_g""" elif "weight_v" in name: snake_case : Optional[int] = """weight_v""" elif "weight" in name: snake_case : Tuple = """weight""" elif "bias" in name: snake_case : List[Any] = """bias""" else: snake_case : List[str] = None set_recursively(lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Dict: snake_case : str = full_name.split("""conv_layers.""" )[-1] snake_case : Dict = name.split(""".""" ) snake_case : Any = int(items[0] ) snake_case : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=None ,lowercase=None ,lowercase=True ) -> Union[str, Any]: if config_path is not None: snake_case : Optional[int] = HubertConfig.from_pretrained(lowercase ) else: snake_case : Tuple = HubertConfig() if is_finetuned: if dict_path: snake_case : List[str] = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case : Optional[int] = target_dict.pad_index snake_case : Any = target_dict.bos_index snake_case : Dict = target_dict.eos_index snake_case : List[str] = len(target_dict.symbols ) snake_case : Union[str, Any] = os.path.join(lowercase ,"""vocab.json""" ) if not os.path.isdir(lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) ) return os.makedirs(lowercase ,exist_ok=lowercase ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices ,lowercase ) snake_case : Union[str, Any] = WavaVecaCTCTokenizer( lowercase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=lowercase ,) snake_case : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False snake_case : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=lowercase ,return_attention_mask=lowercase ,) snake_case : Dict = WavaVecaProcessor(feature_extractor=lowercase ,tokenizer=lowercase ) processor.save_pretrained(lowercase ) snake_case : List[Any] = HubertForCTC(lowercase ) else: snake_case : Any = HubertModel(lowercase ) if is_finetuned: snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case : Any = model[0].eval() recursively_load_weights(lowercase ,lowercase ,lowercase ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCamelCase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
124
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = """ResNetConfig""" # Base docstring _snake_case = """microsoft/resnet-50""" _snake_case = [1, 2048, 7, 7] # Image classification docstring _snake_case = """microsoft/resnet-50""" _snake_case = """tiger cat""" _snake_case = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowerCAmelCase ( nn.Module ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :int , _lowercase :int = 3 , _lowercase :int = 1 , _lowercase :str = "relu" ): '''simple docstring''' super().__init__() lowercase__ = nn.Convad( _lowercase , _lowercase , kernel_size=_lowercase , stride=_lowercase , padding=kernel_size // 2 , bias=_lowercase ) lowercase__ = nn.BatchNormad(_lowercase ) lowercase__ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase ( self :Optional[Any] , _lowercase :Tensor ): '''simple docstring''' lowercase__ = self.convolution(_lowercase ) lowercase__ = self.normalization(_lowercase ) lowercase__ = self.activation(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :Optional[Any] , _lowercase :ResNetConfig ): '''simple docstring''' super().__init__() lowercase__ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowercase__ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowercase__ = config.num_channels def UpperCAmelCase ( self :Optional[Any] , _lowercase :Tensor ): '''simple docstring''' lowercase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowercase__ = self.embedder(_lowercase ) lowercase__ = self.pooler(_lowercase ) return embedding class lowerCAmelCase ( nn.Module ): def __init__( self :List[Any] , _lowercase :int , _lowercase :int , _lowercase :int = 2 ): '''simple docstring''' super().__init__() lowercase__ = nn.Convad(_lowercase , _lowercase , kernel_size=1 , stride=_lowercase , bias=_lowercase ) lowercase__ = nn.BatchNormad(_lowercase ) def UpperCAmelCase ( self :List[str] , _lowercase :Tensor ): '''simple docstring''' lowercase__ = self.convolution(_lowercase ) lowercase__ = self.normalization(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :List[str] , _lowercase :int , _lowercase :int , _lowercase :int = 1 , _lowercase :str = "relu" ): '''simple docstring''' super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = ( ResNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( ResNetConvLayer(_lowercase , _lowercase , stride=_lowercase ) , ResNetConvLayer(_lowercase , _lowercase , activation=_lowercase ) , ) lowercase__ = ACTaFN[activation] def UpperCAmelCase ( self :int , _lowercase :Tuple ): '''simple docstring''' lowercase__ = hidden_state lowercase__ = self.layer(_lowercase ) lowercase__ = self.shortcut(_lowercase ) hidden_state += residual lowercase__ = self.activation(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :int , _lowercase :int = 1 , _lowercase :str = "relu" , _lowercase :int = 4 ): '''simple docstring''' super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = out_channels // reduction lowercase__ = ( ResNetShortCut(_lowercase , _lowercase , stride=_lowercase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( ResNetConvLayer(_lowercase , _lowercase , kernel_size=1 ) , ResNetConvLayer(_lowercase , _lowercase , stride=_lowercase ) , ResNetConvLayer(_lowercase , _lowercase , kernel_size=1 , activation=_lowercase ) , ) lowercase__ = ACTaFN[activation] def UpperCAmelCase ( self :int , _lowercase :Tuple ): '''simple docstring''' lowercase__ = hidden_state lowercase__ = self.layer(_lowercase ) lowercase__ = self.shortcut(_lowercase ) hidden_state += residual lowercase__ = self.activation(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :List[str] , _lowercase :ResNetConfig , _lowercase :int , _lowercase :int , _lowercase :int = 2 , _lowercase :int = 2 , ): '''simple docstring''' super().__init__() lowercase__ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer lowercase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_lowercase , _lowercase , stride=_lowercase , activation=config.hidden_act ) , *[layer(_lowercase , _lowercase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def UpperCAmelCase ( self :int , _lowercase :Tensor ): '''simple docstring''' lowercase__ = input for layer in self.layers: lowercase__ = layer(_lowercase ) return hidden_state class lowerCAmelCase ( nn.Module ): def __init__( self :List[str] , _lowercase :ResNetConfig ): '''simple docstring''' super().__init__() lowercase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowercase , config.depths[1:] ): self.stages.append(ResNetStage(_lowercase , _lowercase , _lowercase , depth=_lowercase ) ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :Tensor , _lowercase :bool = False , _lowercase :bool = True ): '''simple docstring''' lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(_lowercase ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_lowercase , hidden_states=_lowercase , ) class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = ResNetConfig __lowerCamelCase = 'resnet' __lowerCamelCase = 'pixel_values' __lowerCamelCase = True def UpperCAmelCase ( self :Optional[int] , _lowercase :Optional[Any] ): '''simple docstring''' if isinstance(_lowercase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(_lowercase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :List[Any] , _lowercase :str=False ): '''simple docstring''' if isinstance(_lowercase , _lowercase ): lowercase__ = value _snake_case = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _snake_case = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , lowercase_ , ) class lowerCAmelCase ( lowercase_ ): def __init__( self :List[str] , _lowercase :str ): '''simple docstring''' super().__init__(_lowercase ) lowercase__ = config lowercase__ = ResNetEmbeddings(_lowercase ) lowercase__ = ResNetEncoder(_lowercase ) lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase ( self :Tuple , _lowercase :Tensor , _lowercase :Optional[bool] = None , _lowercase :Optional[bool] = None ): '''simple docstring''' lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(_lowercase ) lowercase__ = self.encoder( _lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(_lowercase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowercase , pooler_output=_lowercase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowercase_ , ) class lowerCAmelCase ( lowercase_ ): def __init__( self :Optional[Any] , _lowercase :Tuple ): '''simple docstring''' super().__init__(_lowercase ) lowercase__ = config.num_labels lowercase__ = ResNetModel(_lowercase ) # classification head lowercase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase ( self :List[str] , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[torch.LongTensor] = None , _lowercase :Optional[bool] = None , _lowercase :Optional[bool] = None , ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.resnet(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier(_lowercase ) lowercase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ = "single_label_classification" else: lowercase__ = "multi_label_classification" if self.config.problem_type == "regression": lowercase__ = MSELoss() if self.num_labels == 1: lowercase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ = loss_fct(_lowercase , _lowercase ) elif self.config.problem_type == "single_label_classification": lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ = BCEWithLogitsLoss() lowercase__ = loss_fct(_lowercase , _lowercase ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowercase , logits=_lowercase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , lowercase_ , ) class lowerCAmelCase ( lowercase_ , lowercase_ ): def __init__( self :List[Any] , _lowercase :List[str] ): '''simple docstring''' super().__init__(_lowercase ) super()._init_backbone(_lowercase ) lowercase__ = [config.embedding_size] + config.hidden_sizes lowercase__ = ResNetEmbeddings(_lowercase ) lowercase__ = ResNetEncoder(_lowercase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowercase ) @replace_return_docstrings(output_type=_lowercase , config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase ( self :Optional[int] , _lowercase :Tensor , _lowercase :Optional[bool] = None , _lowercase :Optional[bool] = None ): '''simple docstring''' lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = self.embedder(_lowercase ) lowercase__ = self.encoder(_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase ) lowercase__ = outputs.hidden_states lowercase__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_lowercase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_lowercase , )
355
from __future__ import annotations def _A ( __magic_name__ , __magic_name__ ): lowercase__ = [] create_all_state(1 , __magic_name__ , __magic_name__ , [] , __magic_name__ ) return result def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(__magic_name__ , total_number - level + 2 ): current_list.append(__magic_name__ ) create_all_state(i + 1 , __magic_name__ , level - 1 , __magic_name__ , __magic_name__ ) current_list.pop() def _A ( __magic_name__ ): for i in total_list: print(*__magic_name__ ) if __name__ == "__main__": _snake_case = 4 _snake_case = 2 _snake_case = generate_all_combinations(n, k) print_all_state(total_list)
201
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_337 , num_examples=42 , dataset_name="my_dataset")}), SplitDict({"train": SplitInfo(name="train" , num_bytes=1_337 , num_examples=42)}), SplitDict({"train": SplitInfo()}), ] , ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : SplitDict) -> str: '''simple docstring''' __UpperCamelCase : Tuple = split_dict._to_yaml_list() assert len(_lowerCamelCase) == len(_lowerCamelCase) __UpperCamelCase : Optional[int] = SplitDict._from_yaml_list(_lowerCamelCase) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __UpperCamelCase : Tuple = None # the split name of split_dict takes over the name of the split info object __UpperCamelCase : Any = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=_lowerCamelCase), SplitInfo(dataset_name="my_dataset")]) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Dict = asdict(SplitDict({"train": split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
232
from torch import nn class _lowercase ( nn.Module ): def __init__( self : Any , snake_case : Dict , snake_case : Union[str, Any] ) -> Dict: """simple docstring""" super().__init__() UpperCamelCase_ : List[Any] = class_size UpperCamelCase_ : List[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCamelCase_ : int = nn.Linear(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Any ) -> str: """simple docstring""" UpperCamelCase_ : Dict = self.mlp(snake_case ) return logits
175
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Dict = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
272
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata _lowercase : List[str] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class __SCREAMING_SNAKE_CASE ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : str = " " )-> List[str]: lowerCamelCase__ : List[str] =sentence_delimiter def snake_case ( self : Any, lowerCamelCase : str )-> Optional[Any]: return list(lowerCamelCase ) def snake_case ( self : Optional[Any], lowerCamelCase : List[str] )-> Tuple: lowerCamelCase__ : Optional[int] =[] for sent_idx, sentence in enumerate(lowerCamelCase ): chars.extend(self.process_string(lowerCamelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase ) - 1: chars.append(self.sentence_delimiter ) return chars _lowercase : Optional[int] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _lowercase : List[str] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _lowercase : Dict = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _lowercase : List[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" _lowercase : Dict = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def snake_case ( self : Dict )-> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/jitsi/jiwer/'''], reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ], ) def snake_case ( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Dict=False )-> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase, lowerCamelCase, truth_transform=lowerCamelCase, hypothesis_transform=lowerCamelCase, )["wer"] lowerCamelCase__ : Optional[Any] =0 lowerCamelCase__ : Union[str, Any] =0 for prediction, reference in zip(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : int =jiwer.compute_measures( lowerCamelCase, lowerCamelCase, truth_transform=lowerCamelCase, hypothesis_transform=lowerCamelCase, ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
272
1
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A : int = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int = 1_6000 ): '''simple docstring''' _UpperCAmelCase = int(round(sample_rate * max_length ) ) if len(_SCREAMING_SNAKE_CASE ) <= sample_length: return wav _UpperCAmelCase = randint(0 , len(_SCREAMING_SNAKE_CASE ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _a : """simple docstring""" UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """Name of a dataset from the datasets package"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the training audio paths and labels."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """A file containing the validation audio paths and labels."""}) UpperCamelCase__ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) UpperCamelCase__ = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) UpperCamelCase__ = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) UpperCamelCase__ = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase__ = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""}) UpperCamelCase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowercase__ ( self : Optional[Any] )->int: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __UpperCamelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. _UpperCAmelCase = DatasetDict() _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' f'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' '''Make sure to set `--label_column_name` to the correct text column - one of ''' f'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCAmelCase = feature_extractor.model_input_names[0] def train_transforms(_SCREAMING_SNAKE_CASE : Tuple ): _UpperCAmelCase = [] for audio in batch[data_args.audio_column_name]: _UpperCAmelCase = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = [audio['''array'''] for audio in batch[data_args.audio_column_name]] _UpperCAmelCase = feature_extractor(_SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) _UpperCAmelCase = {model_input_name: inputs.get(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCAmelCase = raw_datasets['''train'''].features[data_args.label_column_name].names _UpperCAmelCase , _UpperCAmelCase = {}, {} for i, label in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = label # Load the accuracy metric from the datasets package _UpperCAmelCase = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(_SCREAMING_SNAKE_CASE : List[str] ): _UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=eval_pred.label_ids ) _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_SCREAMING_SNAKE_CASE ) , labelaid=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCAmelCase = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCAmelCase = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_SCREAMING_SNAKE_CASE , output_all_columns=_SCREAMING_SNAKE_CASE ) # Initialize our trainer _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase = trainer.evaluate() trainer.log_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub _UpperCAmelCase = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
260
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __snake_case : Union[str, Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(_a ) def __snake_case ( self : List[Any] ) -> str: __snake_case : Optional[int] = "sshleifer/tiny-gpt2" __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_a , multi_process=_a , ) __snake_case : List[str] = TensorFlowBenchmark(_a ) __snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __snake_case ( self : str ) -> Optional[Any]: __snake_case : Optional[int] = "sgugger/tiny-distilbert-classification" __snake_case : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , only_pretrain_model=_a , ) __snake_case : Tuple = TensorFlowBenchmark(_a ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __snake_case ( self : str ) -> Any: __snake_case : Optional[Any] = "sshleifer/tiny-gpt2" __snake_case : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __snake_case : List[str] = TensorFlowBenchmark(_a ) __snake_case : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __snake_case ( self : str ) -> str: __snake_case : Optional[int] = "sshleifer/tiny-gpt2" __snake_case : Any = AutoConfig.from_pretrained(_a ) __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_a , multi_process=_a , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(_a , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __snake_case ( self : Tuple ) -> Union[str, Any]: __snake_case : Union[str, Any] = "sshleifer/tiny-gpt2" __snake_case : Dict = AutoConfig.from_pretrained(_a ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(_a , [config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __snake_case ( self : List[str] ) -> Optional[Any]: __snake_case : Optional[Any] = "sshleifer/tiny-gpt2" __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __snake_case : Any = TensorFlowBenchmark(_a ) __snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __snake_case ( self : Dict ) -> Tuple: __snake_case : Union[str, Any] = "sshleifer/tiny-gpt2" __snake_case : List[str] = AutoConfig.from_pretrained(_a ) __snake_case : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __snake_case : List[Any] = TensorFlowBenchmark(_a , [config] ) __snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __snake_case ( self : Dict ) -> Union[str, Any]: __snake_case : List[Any] = "patrickvonplaten/t5-tiny-random" __snake_case : Optional[Any] = AutoConfig.from_pretrained(_a ) __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_a , ) __snake_case : str = TensorFlowBenchmark(_a , configs=[config] ) __snake_case : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def __snake_case ( self : Optional[Any] ) -> Dict: __snake_case : Union[str, Any] = "sshleifer/tiny-gpt2" __snake_case : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_a , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_a , multi_process=_a , ) __snake_case : List[Any] = TensorFlowBenchmark(_a ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __snake_case ( self : Tuple ) -> int: __snake_case : Dict = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_a , save_to_csv=_a , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_a , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(_a , "inf_mem.csv" ) , env_info_csv_file=os.path.join(_a , "env.csv" ) , multi_process=_a , ) __snake_case : List[str] = TensorFlowBenchmark(_a ) benchmark.run() self.assertTrue(Path(os.path.join(_a , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(_a , "env.csv" ) ).exists() ) def __snake_case ( self : str ) -> List[Any]: __snake_case : Optional[Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(lowerCamelCase : Tuple ): self.assertTrue(hasattr(_a , "sequential" ) ) self.assertTrue(hasattr(_a , "cumulative" ) ) self.assertTrue(hasattr(_a , "current" ) ) self.assertTrue(hasattr(_a , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_a , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_a , "log.txt" ) , log_print=_a , trace_memory_line_by_line=_a , eager_mode=_a , multi_process=_a , ) __snake_case : Optional[Any] = TensorFlowBenchmark(_a ) __snake_case : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_a , "log.txt" ) ).exists() )
361
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return x if y == 0 else greatest_common_divisor(__lowerCamelCase , x % y ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return (x * y) // greatest_common_divisor(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase = 2_0 ): __snake_case : Optional[Any] = 1 for i in range(1 , n + 1 ): __snake_case : Any = lcm(__lowerCamelCase , __lowerCamelCase ) return g if __name__ == "__main__": print(f'''{solution() = }''')
134
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , _a : str , _a : Any=7 , _a : Optional[Any]=3 , _a : Any=30 , _a : str=400 , _a : str=True , _a : Any=None , _a : List[str]=True , _a : Tuple=[0.5, 0.5, 0.5] , _a : Union[str, Any]=[0.5, 0.5, 0.5] , _a : Optional[int]=True , _a : List[Any]=1 / 255 , _a : Any=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowerCamelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __lowerCamelCase : Optional[int] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : str = num_channels __lowerCamelCase : int = min_resolution __lowerCamelCase : str = max_resolution __lowerCamelCase : Optional[int] = do_resize __lowerCamelCase : Tuple = size __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : int = image_mean __lowerCamelCase : Tuple = image_std __lowerCamelCase : str = do_rescale __lowerCamelCase : Union[str, Any] = rescale_factor __lowerCamelCase : List[Any] = do_pad def _lowercase ( self : Any ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : List[str] , _a : int , _a : Any=False ) -> Optional[int]: if not batched: __lowerCamelCase : Union[str, Any] = image_inputs[0] if isinstance(_a , Image.Image ): __lowerCamelCase ,__lowerCamelCase : Any = image.size else: __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = image.shape[1], image.shape[2] if w < h: __lowerCamelCase : int = int(self.size['shortest_edge'] * h / w ) __lowerCamelCase : List[str] = self.size['shortest_edge'] elif w > h: __lowerCamelCase : Optional[Any] = self.size['shortest_edge'] __lowerCamelCase : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: __lowerCamelCase : Dict = self.size['shortest_edge'] __lowerCamelCase : Union[str, Any] = self.size['shortest_edge'] else: __lowerCamelCase : Dict = [] for image in image_inputs: __lowerCamelCase ,__lowerCamelCase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase : Dict = max(_a , key=lambda _a : item[0] )[0] __lowerCamelCase : Any = max(_a , key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =ConditionalDetrImageProcessor if is_vision_available() else None def _lowercase ( self : Union[str, Any] ) -> Dict: __lowerCamelCase : List[str] = ConditionalDetrImageProcessingTester(self ) @property def _lowercase ( self : str ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Tuple ) -> str: __lowerCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , 'image_mean' ) ) self.assertTrue(hasattr(_a , 'image_std' ) ) self.assertTrue(hasattr(_a , 'do_normalize' ) ) self.assertTrue(hasattr(_a , 'do_resize' ) ) self.assertTrue(hasattr(_a , 'size' ) ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _a ) __lowerCamelCase : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_a ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _a ) def _lowercase ( self : Tuple ) -> List[Any]: pass def _lowercase ( self : str ) -> Any: # Initialize image_processing __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input __lowerCamelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCamelCase ,__lowerCamelCase : int = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase ,__lowerCamelCase : str = self.image_processor_tester.get_expected_values(_a , batched=_a ) __lowerCamelCase : Any = image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : List[str] ) -> Dict: # Initialize image_processing __lowerCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input __lowerCamelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCamelCase ,__lowerCamelCase : List[str] = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : Optional[Any] = image_processing(_a , return_tensors='pt' ).pixel_values __lowerCamelCase ,__lowerCamelCase : str = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : List[Any] ) -> Any: # Initialize image_processing __lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input __lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __lowerCamelCase ,__lowerCamelCase : Tuple = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase : Dict = image_processing(_a , return_tensors='pt' ).pixel_values __lowerCamelCase ,__lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : Optional[Any] ) -> Optional[Any]: # prepare image and target __lowerCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __lowerCamelCase : int = json.loads(f.read() ) __lowerCamelCase : Tuple = {'image_id': 3_9769, 'annotations': target} # encode them __lowerCamelCase : int = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) __lowerCamelCase : Dict = image_processing(images=_a , annotations=_a , return_tensors='pt' ) # verify pixel values __lowerCamelCase : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _a ) __lowerCamelCase : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area __lowerCamelCase : str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _a ) ) # verify boxes __lowerCamelCase : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _a ) __lowerCamelCase : List[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _a , atol=1e-3 ) ) # verify image_id __lowerCamelCase : Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _a ) ) # verify is_crowd __lowerCamelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _a ) ) # verify class_labels __lowerCamelCase : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _a ) ) # verify orig_size __lowerCamelCase : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _a ) ) # verify size __lowerCamelCase : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _a ) ) @slow def _lowercase ( self : Optional[int] ) -> Optional[Any]: # prepare image, target and masks_path __lowerCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __lowerCamelCase : int = json.loads(f.read() ) __lowerCamelCase : int = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __lowerCamelCase : str = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __lowerCamelCase : List[str] = ConditionalDetrImageProcessor(format='coco_panoptic' ) __lowerCamelCase : Dict = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors='pt' ) # verify pixel values __lowerCamelCase : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _a ) __lowerCamelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _a , atol=1e-4 ) ) # verify area __lowerCamelCase : int = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _a ) ) # verify boxes __lowerCamelCase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _a ) __lowerCamelCase : List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _a , atol=1e-3 ) ) # verify image_id __lowerCamelCase : Optional[Any] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _a ) ) # verify is_crowd __lowerCamelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _a ) ) # verify class_labels __lowerCamelCase : int = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _a ) ) # verify masks __lowerCamelCase : Any = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _a ) # verify orig_size __lowerCamelCase : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _a ) ) # verify size __lowerCamelCase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _a ) )
208
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> np.array: __lowerCamelCase : Any = F'{sampling_rate}' __lowerCamelCase : List[str] = '1' __lowerCamelCase : int = 'f32le' __lowerCamelCase : Dict = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(_lowerCAmelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCamelCase : Tuple = ffmpeg_process.communicate(_lowerCAmelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error __lowerCamelCase : Any = output_stream[0] __lowerCamelCase : Union[str, Any] = np.frombuffer(_lowerCAmelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = "f32le" ,) -> Dict: __lowerCamelCase : Optional[Any] = F'{sampling_rate}' __lowerCamelCase : Optional[int] = '1' if format_for_conversion == "s16le": __lowerCamelCase : List[Any] = 2 elif format_for_conversion == "f32le": __lowerCamelCase : Tuple = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) __lowerCamelCase : Any = platform.system() if system == "Linux": __lowerCamelCase : Tuple = 'alsa' __lowerCamelCase : Optional[Any] = 'default' elif system == "Darwin": __lowerCamelCase : Union[str, Any] = 'avfoundation' __lowerCamelCase : Tuple = ':0' elif system == "Windows": __lowerCamelCase : List[str] = 'dshow' __lowerCamelCase : Optional[Any] = 'default' __lowerCamelCase : Optional[int] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] __lowerCamelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCamelCase : int = _ffmpeg_stream(_lowerCAmelCase ,_lowerCAmelCase ) for item in iterator: yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "f32le" ,) -> List[str]: if stream_chunk_s is not None: __lowerCamelCase : int = stream_chunk_s else: __lowerCamelCase : List[Any] = chunk_length_s __lowerCamelCase : Dict = ffmpeg_microphone(_lowerCAmelCase ,_lowerCAmelCase ,format_for_conversion=_lowerCAmelCase ) if format_for_conversion == "s16le": __lowerCamelCase : List[str] = np.intaa __lowerCamelCase : Union[str, Any] = 2 elif format_for_conversion == "f32le": __lowerCamelCase : Union[str, Any] = np.floataa __lowerCamelCase : Optional[Any] = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: __lowerCamelCase : Any = chunk_length_s / 6 __lowerCamelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowerCAmelCase ,(int, float) ): __lowerCamelCase : Tuple = [stride_length_s, stride_length_s] __lowerCamelCase : Union[str, Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCamelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCamelCase : Dict = datetime.datetime.now() __lowerCamelCase : Any = datetime.timedelta(seconds=_lowerCAmelCase ) for item in chunk_bytes_iter(_lowerCAmelCase ,_lowerCAmelCase ,stride=(stride_left, stride_right) ,stream=_lowerCAmelCase ): # Put everything back in numpy scale __lowerCamelCase : Optional[int] = np.frombuffer(item['raw'] ,dtype=_lowerCAmelCase ) __lowerCamelCase : Tuple = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) __lowerCamelCase : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = False ) -> str: __lowerCamelCase : Optional[int] = b'' __lowerCamelCase ,__lowerCamelCase : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) __lowerCamelCase : str = 0 for raw in iterator: acc += raw if stream and len(_lowerCAmelCase ) < chunk_len: __lowerCamelCase : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowerCAmelCase ) >= chunk_len: # We are flushing the accumulator __lowerCamelCase : Any = (_stride_left, stride_right) __lowerCamelCase : Optional[int] = {'raw': acc[:chunk_len], 'stride': stride} if stream: __lowerCamelCase : List[str] = False yield item __lowerCamelCase : Tuple = stride_left __lowerCamelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowerCAmelCase ) > stride_left: __lowerCamelCase : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: __lowerCamelCase : List[str] = False yield item def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> Tuple: __lowerCamelCase : int = 2**24 # 16Mo try: with subprocess.Popen(_lowerCAmelCase ,stdout=subprocess.PIPE ,bufsize=_lowerCAmelCase ) as ffmpeg_process: while True: __lowerCamelCase : Union[str, Any] = ffmpeg_process.stdout.read(_lowerCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
208
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
339
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any]=12 ,lowerCamelCase__ : Tuple=7 ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Optional[int]=99 ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : str=4 ,lowerCamelCase__ : Dict=37 ,lowerCamelCase__ : List[str]=0.1 ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : int=512 ,lowerCamelCase__ : Union[str, Any]=0.0_2 ,lowerCamelCase__ : Optional[Any]=0 ,lowerCamelCase__ : Any=None ,): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = projection_dim UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = bos_token_id def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase__ = input_mask.numpy() UpperCAmelCase__ = input_mask.shape UpperCAmelCase__ = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = 1 UpperCAmelCase__ = 0 UpperCAmelCase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str ): UpperCAmelCase__ = TFBlipTextModel(config=lowerCamelCase__ ) UpperCAmelCase__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,training=lowerCamelCase__ ) UpperCAmelCase__ = model(lowerCamelCase__ ,training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = (TFBlipTextModel,) if is_tf_available() else () snake_case__ = False snake_case__ = False snake_case__ = False def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = BlipTextModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def __lowerCAmelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ): pass def __lowerCAmelCase ( self : int ): pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def __lowerCAmelCase ( self : str ): pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def __lowerCAmelCase ( self : List[Any] ): pass @slow def __lowerCAmelCase ( self : Tuple ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFBlipTextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Optional[Any]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCamelCase__ )
98
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: PreTrainedTokenizer , __UpperCAmelCase: int , __UpperCAmelCase: Optional[int] = None , ) -> List[Any]: UpperCamelCase__ : Dict = {} if train_file is not None: UpperCamelCase__ : str = [train_file] if eval_file is not None: UpperCamelCase__ : Union[str, Any] = [eval_file] if test_file is not None: UpperCamelCase__ : Tuple = [test_file] UpperCamelCase__ : Optional[Any] = datasets.load_dataset('''csv''' , data_files=__UpperCAmelCase ) UpperCamelCase__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) UpperCamelCase__ : str = features_name.pop(__UpperCAmelCase ) UpperCamelCase__ : List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCamelCase__ : Optional[Any] = {label: i for i, label in enumerate(__UpperCAmelCase )} UpperCamelCase__ : Union[str, Any] = tokenizer.model_input_names UpperCamelCase__ : str = {} if len(__UpperCAmelCase ) == 1: for k in files.keys(): UpperCamelCase__ : Optional[int] = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' ) , batched=__UpperCAmelCase , ) elif len(__UpperCAmelCase ) == 2: for k in files.keys(): UpperCamelCase__ : Dict = ds[k].map( lambda __UpperCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' , ) , batched=__UpperCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCamelCase__ : Any = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCamelCase__ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : str = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCamelCase__ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase__ : int = labelaid[ex[label_name]] yield (d, label) UpperCamelCase__ : Tuple = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCamelCase__ : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCamelCase__ : int = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCamelCase__ : Dict = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCamelCase__ : Optional[Any] = ( tf.data.Dataset.from_generator( __UpperCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCamelCase__ : Union[str, Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' a : int = field(metadata={"help": "Which column contains the label"} ) a : str = field(default=__lowerCamelCase , metadata={"help": "The path of the training file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the development file"} ) a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The path of the test file"} ) a : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a : bool = field( default=__lowerCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowercase__ : '''simple docstring''' a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : bool = field(default=__lowerCamelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowerCAmelCase_ ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__UpperCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCamelCase__ : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__UpperCAmelCase ) , labelaid=__UpperCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCamelCase__ : str = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(__UpperCAmelCase: EvalPrediction ) -> Dict: UpperCamelCase__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCamelCase__ : Union[str, Any] = TFTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase__ : List[str] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase__ : Tuple = trainer.evaluate() UpperCamelCase__ : Optional[int] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(__UpperCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(__UpperCAmelCase ) return results if __name__ == "__main__": main()
201
0
from __future__ import annotations def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(__a ): print(F"""{i}\t\t{d}""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple: """simple docstring""" for j in range(__a ): lowerCamelCase__: str =(graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( __a , __a , __a , __a ) -> list[float]: """simple docstring""" lowerCamelCase__: List[str] =[float("inf" )] * vertex_count lowerCamelCase__: List[str] =0.0 for _ in range(vertex_count - 1 ): for j in range(__a ): lowerCamelCase__: Union[str, Any] =(graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: lowerCamelCase__: int =distance[u] + w lowerCamelCase__: Tuple =check_negative_cycle(__a , __a , __a ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __A = int(input("Enter number of vertices: ").strip()) __A = int(input("Enter number of edges: ").strip()) __A = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __A , __A , __A = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __A = {"src": src, "dst": dest, "weight": weight} __A = int(input("\nEnter shortest path source:").strip()) __A = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
363
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =[] def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' self.events.append("on_init_end") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' self.events.append("on_train_begin") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str) ->int: '''simple docstring''' self.events.append("on_train_end") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int]) ->List[Any]: '''simple docstring''' self.events.append("on_epoch_begin") def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , **UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' self.events.append("on_epoch_end") def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]) ->Optional[int]: '''simple docstring''' self.events.append("on_step_begin") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str]) ->Tuple: '''simple docstring''' self.events.append("on_step_end") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str) ->Optional[int]: '''simple docstring''' self.events.append("on_evaluate") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->int: '''simple docstring''' self.events.append("on_predict") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any]) ->Any: '''simple docstring''' self.events.append("on_save") def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' self.events.append("on_log") def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str]) ->Optional[int]: '''simple docstring''' self.events.append("on_prediction_step") @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Tuple =tempfile.mkdtemp() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' shutil.rmtree(self.output_dir) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : List[Any]=64 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=False , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =RegressionDataset(length=UpperCAmelCase_) lowerCamelCase__: int =RegressionDataset(length=UpperCAmelCase_) lowerCamelCase__: str =RegressionModelConfig(a=UpperCAmelCase_ , b=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =RegressionPreTrainedModel(UpperCAmelCase_) lowerCamelCase__: int =TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase_ , report_to=[] , **UpperCAmelCase_) return Trainer( UpperCAmelCase_ , UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , callbacks=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str]) ->Dict: '''simple docstring''' self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) # Order doesn't matter lowerCamelCase__: Dict =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cb.__class__.__name__) lowerCamelCase__: Optional[int] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: cb.__name__ if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cb.__class__.__name__) for cba, cba in zip(UpperCAmelCase_ , UpperCAmelCase_): if isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_) and not isinstance(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(UpperCAmelCase_ , cba.__class__) elif not isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(cba.__class__ , UpperCAmelCase_) else: self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =["on_init_end", "on_train_begin"] lowerCamelCase__: List[str] =0 lowerCamelCase__: List[Any] =len(trainer.get_eval_dataloader()) lowerCamelCase__: Dict =["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs): expected_events.append("on_epoch_begin") for _ in range(UpperCAmelCase_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save") expected_events.append("on_epoch_end") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.get_trainer() lowerCamelCase__: Any =DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) # Callbacks passed at init are added to the default callbacks lowerCamelCase__: Dict =self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowerCamelCase__: int =self.get_trainer(disable_tqdm=UpperCAmelCase_) lowerCamelCase__: Tuple =DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowerCamelCase__: Optional[int] =self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCAmelCase_) expected_callbacks.remove(UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) lowerCamelCase__: Dict =self.get_trainer() lowerCamelCase__: str =trainer.pop_callback(UpperCAmelCase_) self.assertEqual(cb.__class__ , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) trainer.add_callback(UpperCAmelCase_) expected_callbacks.insert(0 , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) # We can also add, pop, or remove by instance lowerCamelCase__: List[str] =self.get_trainer() lowerCamelCase__: List[str] =trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCAmelCase_) expected_callbacks.remove(UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) lowerCamelCase__: str =self.get_trainer() lowerCamelCase__: List[Any] =trainer.callback_handler.callbacks[0] lowerCamelCase__: Dict =trainer.pop_callback(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) trainer.add_callback(UpperCAmelCase_) expected_callbacks.insert(0 , UpperCAmelCase_) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowerCamelCase__: int =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) # Independent log/save/eval lowerCamelCase__: Dict =self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowerCamelCase__: Optional[int] =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) lowerCamelCase__: Any =self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowerCamelCase__: List[Any] =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) lowerCamelCase__: int =self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps") trainer.train() lowerCamelCase__: str =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) lowerCamelCase__: Dict =self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch") trainer.train() lowerCamelCase__: Tuple =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) # A bit of everything lowerCamelCase__: Tuple =self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() lowerCamelCase__: int =trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase_ , self.get_expected_events(UpperCAmelCase_)) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning") as warn_mock: lowerCamelCase__: Optional[int] =self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCAmelCase_) in warn_mock.call_args[0][0]
273
0
'''simple docstring''' def snake_case__ ( _A: int ) -> list: '''simple docstring''' lowerCAmelCase = int(_A ) if n_element < 1: lowerCAmelCase = ValueError("""a should be a positive number""" ) raise my_error lowerCAmelCase = [1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = (0, 0, 0) lowerCAmelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') __lowercase = hamming(int(n)) print('''-----------------------------------------------------''') print(f'The list with nth numbers is: {hamming_numbers}') print('''-----------------------------------------------------''')
272
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
1
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', '''emoji''': True, }, } ] UpperCamelCase = 0 for log in Path().glob('''*.log'''): UpperCamelCase = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase = f'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase = [] log.unlink() UpperCamelCase = '''''' UpperCamelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase = [] UpperCamelCase = {} for test in failed_tests: UpperCamelCase = test[0].split('''::''') UpperCamelCase = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase = [test[0] for test in failed_table] UpperCamelCase = list(set(files)) # Count number of instances in failed_tests UpperCamelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCamelCase = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase = len(err) + 10 UpperCamelCase = message[: 3000 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: UpperCamelCase = '''No failed tests! 🤗''' print(f'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) UpperCamelCase = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) UpperCamelCase = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase = row[0] else: UpperCamelCase = '''''' UpperCamelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
352
'''simple docstring''' import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[Any]: for e in env_keys: A: Dict = int(os.environ.get(__lowercase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False ) -> List[str]: A: str = os.environ.get(__lowercase , str(__lowercase ) ) return strtobool(__lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE( __lowercase , __lowercase="no" ) -> str: A: Optional[int] = os.environ.get(__lowercase , str(__lowercase ) ) return value
334
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase_ = logging.getLogger() def __SCREAMING_SNAKE_CASE (): snake_case_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) snake_case_ = parser.parse_args() return args.f def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''all_results.json''' ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = json.load(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(F'''can\'t find {path}''' ) return results def __SCREAMING_SNAKE_CASE (): snake_case_ = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Optional[int] ) ->List[Any]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) snake_case_ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__( cls : Dict ) ->str: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : int ) ->Optional[int]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Any ) ->int: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : str ) ->Union[str, Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertLess(result['''perplexity'''] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Tuple ) ->Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case_ = 7 if get_gpu_count() > 1 else 2 snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 2_8 ) self.assertGreaterEqual(result['''eval_exact'''] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : List[str] ) ->List[str]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : str ) ->Any: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Any ) ->List[str]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_bleu'''] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''translation_no_trainer''' ) ) ) @slow def snake_case__( self : Optional[Any] ) ->Union[str, Any]: snake_case_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__( self : Any ) ->Union[str, Any]: snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) snake_case_ = get_results(_UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , '''image_classification_no_trainer''' ) ) )
8
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(__snake_case : int, __snake_case : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A__ : int =update_area_of_max_square(__snake_case, col + 1 ) A__ : int =update_area_of_max_square(row + 1, col + 1 ) A__ : int =update_area_of_max_square(row + 1, __snake_case ) if mat[row][col]: A__ : Optional[Any] =1 + min([right, diagonal, down] ) A__ : Dict =max(largest_square_area[0], __snake_case ) return sub_problem_sol else: return 0 A__ : List[Any] =[0] update_area_of_max_square(0, 0 ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A__ : str =update_area_of_max_square_using_dp_array(__snake_case, col + 1, __snake_case ) A__ : Any =update_area_of_max_square_using_dp_array(row + 1, col + 1, __snake_case ) A__ : List[str] =update_area_of_max_square_using_dp_array(row + 1, __snake_case, __snake_case ) if mat[row][col]: A__ : Optional[int] =1 + min([right, diagonal, down] ) A__ : Any =max(largest_square_area[0], __snake_case ) A__ : Union[str, Any] =sub_problem_sol return sub_problem_sol else: return 0 A__ : Any =[0] A__ : Optional[Any] =[[-1] * cols for _ in range(__snake_case )] update_area_of_max_square_using_dp_array(0, 0, __snake_case ) return largest_square_area[0] def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[int] =[[0] * (cols + 1) for _ in range(rows + 1 )] A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : List[Any] =dp_array[row][col + 1] A__ : List[str] =dp_array[row + 1][col + 1] A__ : str =dp_array[row + 1][col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Optional[Any] =max(dp_array[row][col], __snake_case ) else: A__ : Tuple =0 return largest_square_area def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : list[list[int]] ) -> int: """simple docstring""" A__ : Union[str, Any] =[0] * (cols + 1) A__ : int =[0] * (cols + 1) A__ : str =0 for row in range(rows - 1, -1, -1 ): for col in range(cols - 1, -1, -1 ): A__ : Union[str, Any] =current_row[col + 1] A__ : List[str] =next_row[col + 1] A__ : str =next_row[col] if mat[row][col] == 1: A__ : str =1 + min(__snake_case, __snake_case, __snake_case ) A__ : Dict =max(current_row[col], __snake_case ) else: A__ : str =0 A__ : Optional[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
134
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class __snake_case ( __lowerCAmelCase ): def __init__( self , *lowercase , **lowercase) -> List[Any]: '''simple docstring''' super().__init__(*lowercase , **lowercase) a__: Union[str, Any] = {} def lowerCamelCase_ ( self , lowercase , *lowercase , **lowercase) -> List[str]: '''simple docstring''' a__: str = super().add_tokens(lowercase , *lowercase , **lowercase) if num_added_tokens == 0: raise ValueError( f'The tokenizer already contains the token {placeholder_token}. Please pass a different' ' `placeholder_token` that is not already in the tokenizer.') def lowerCamelCase_ ( self , lowercase , *lowercase , lowercase=1 , **lowercase) -> int: '''simple docstring''' a__: int = [] if num_vec_per_token == 1: self.try_adding_tokens(lowercase , *lowercase , **lowercase) output.append(lowercase) else: a__: Optional[int] = [] for i in range(lowercase): a__: Optional[int] = placeholder_token + f'_{i}' self.try_adding_tokens(lowercase , *lowercase , **lowercase) output.append(lowercase) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'The tokenizer already has placeholder token {token} that can get confused with' f' {placeholder_token}keep placeholder tokens independent') a__: Tuple = output def lowerCamelCase_ ( self , lowercase , lowercase=False , lowercase=1.0) -> List[Any]: '''simple docstring''' if isinstance(lowercase , lowercase): a__: Union[str, Any] = [] for i in range(len(lowercase)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowercase)) return output for placeholder_token in self.token_map: if placeholder_token in text: a__: Optional[int] = self.token_map[placeholder_token] a__: Optional[int] = tokens[: 1 + int(len(lowercase) * prop_tokens_to_load)] if vector_shuffle: a__: Dict = copy.copy(lowercase) random.shuffle(lowercase) a__: int = text.replace(lowercase , ' '.join(lowercase)) return text def __call__( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase) -> int: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase) , *lowercase , **lowercase , ) def lowerCamelCase_ ( self , lowercase , *lowercase , lowercase=False , lowercase=1.0 , **lowercase) -> Tuple: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowercase , vector_shuffle=lowercase , prop_tokens_to_load=lowercase) , *lowercase , **lowercase , )
203
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __snake_case : def __init__( self , lowercase , lowercase=13 , lowercase=10 , lowercase=3 , lowercase=2 , lowercase=2 , lowercase=2 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=0.9 , lowercase=None , ) -> Optional[Any]: '''simple docstring''' a__: int = parent a__: int = batch_size a__: int = image_size a__: Optional[int] = num_channels a__: List[str] = patch_size a__: List[str] = tubelet_size a__: Any = num_frames a__: Any = is_training a__: Dict = use_labels a__: Optional[Any] = hidden_size a__: Optional[int] = num_hidden_layers a__: Optional[Any] = num_attention_heads a__: Optional[Any] = intermediate_size a__: Any = hidden_act a__: Dict = hidden_dropout_prob a__: Union[str, Any] = attention_probs_dropout_prob a__: List[Any] = type_sequence_label_size a__: Optional[Any] = initializer_range a__: List[str] = mask_ratio a__: Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame a__: Dict = (image_size // patch_size) ** 2 a__: Tuple = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos a__: Tuple = int(mask_ratio * self.seq_length) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) a__: Any = None if self.use_labels: a__: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__: Optional[int] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__: Any = VideoMAEModel(config=lowercase) model.to(lowercase) model.eval() a__: Optional[Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__: List[str] = VideoMAEForPreTraining(lowercase) model.to(lowercase) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__: int = torch.ones((self.num_masks,)) a__: Any = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) a__: int = mask.expand(self.batch_size , -1).bool() a__: Union[str, Any] = model(lowercase , lowercase) # model only returns predictions for masked patches a__: List[str] = mask.sum().item() a__: str = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Dict = self.prepare_config_and_inputs() a__ , a__ , a__: Dict = config_and_inputs a__: Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a__ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[str] = VideoMAEModelTester(self) a__: str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase=False) -> Any: '''simple docstring''' a__: Optional[int] = copy.deepcopy(lowercase) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__: List[Any] = torch.ones((self.model_tester.num_masks,)) a__: List[Any] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) a__: Optional[int] = mask.expand(self.model_tester.batch_size , -1).bool() a__: Union[str, Any] = bool_masked_pos.to(lowercase) if return_labels: if model_class in [ *get_values(lowercase), ]: a__: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase) return inputs_dict def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds') def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__ , a__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Union[str, Any] = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Any = model_class(lowercase) a__: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Optional[Any] = [*signature.parameters.keys()] a__: Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase) @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: int = VideoMAEModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' if not self.has_attentions: pass else: a__ , a__: Any = self.model_tester.prepare_config_and_inputs_for_common() a__: str = True for model_class in self.all_model_classes: a__: Optional[int] = self.model_tester.seq_length - self.model_tester.num_masks a__: List[str] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) a__: Tuple = True a__: str = False a__: Dict = True a__: List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: int = model(**self._prepare_for_class(lowercase , lowercase)) a__: Any = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__: Tuple = True a__: List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: str = model(**self._prepare_for_class(lowercase , lowercase)) a__: int = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a__: Optional[Any] = len(lowercase) # Check attention is always last and order is fine a__: str = True a__: Dict = True a__: Tuple = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__: int = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__: Union[str, Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Tuple = model(**self._prepare_for_class(lowercase , lowercase)) a__: Dict = outputs.hidden_states a__: Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase) , lowercase) a__: Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks a__: Optional[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) a__ , a__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Dict = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__: List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCamelCase_ ( self) -> int: '''simple docstring''' pass def __a ( ) ->List[Any]: a__: List[str] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) a__: Dict = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Dict = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics').to( lowercase) a__: Dict = self.default_image_processor a__: str = prepare_video() a__: Tuple = image_processor(lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__: List[Any] = model(**lowercase) # verify the logits a__: str = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , lowercase) a__: Optional[Any] = torch.tensor([0.3669, -0.0688, -0.2421]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short').to(lowercase) a__: Optional[Any] = self.default_image_processor a__: List[Any] = prepare_video() a__: Union[str, Any] = image_processor(lowercase , return_tensors='pt').to(lowercase) # add boolean mask, indicating which patches to mask a__: Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt') a__: Any = torch.load(lowercase) # forward pass with torch.no_grad(): a__: Any = model(**lowercase) # verify the logits a__: Union[str, Any] = torch.Size([1, 14_08, 15_36]) a__: Union[str, Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=lowercase) self.assertEqual(outputs.logits.shape , lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) a__: Optional[int] = torch.tensor([0.5142] , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) a__: int = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowercase).to( lowercase) with torch.no_grad(): a__: Union[str, Any] = model(**lowercase) a__: Optional[int] = torch.tensor(torch.tensor([0.6469]) , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4))
203
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): def __init__( self : List[str] , *A : int , **A : int) -> None: """simple docstring""" warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , A , ) super().__init__(*A , **A)
339
import sys from collections import defaultdict class __lowerCAmelCase : def __init__( self : int) -> str: """simple docstring""" _UpperCAmelCase = [] def _lowerCamelCase ( self : Any , A : List[str]) -> int: """simple docstring""" return self.node_position[vertex] def _lowerCamelCase ( self : Optional[Any] , A : Optional[int] , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = pos def _lowerCamelCase ( self : Tuple , A : Tuple , A : Dict , A : List[str] , A : Optional[Any]) -> Dict: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase = 2 * start + 1 else: _UpperCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase = temp, tempa _UpperCAmelCase = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , A) self.top_to_bottom(A , A , A , A) def _lowerCamelCase ( self : Optional[int] , A : str , A : Optional[Any] , A : Optional[int] , A : str) -> Any: """simple docstring""" _UpperCAmelCase = position[index] while index != 0: _UpperCAmelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: _UpperCAmelCase = heap[parent] _UpperCAmelCase = position[parent] self.set_position(position[parent] , A) else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , A) break _UpperCAmelCase = parent else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , 0) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = len(A) // 2 - 1 for i in range(A , -1 , -1): self.top_to_bottom(A , A , len(A) , A) def _lowerCamelCase ( self : Optional[int] , A : int , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = positions[0] _UpperCAmelCase = sys.maxsize self.top_to_bottom(A , 0 , len(A) , A) return temp def A ( _UpperCAmelCase : int ) -> Any: '''simple docstring''' _UpperCAmelCase = Heap() _UpperCAmelCase = [0] * len(_UpperCAmelCase ) _UpperCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = 1 _UpperCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase = 0 _UpperCAmelCase = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): _UpperCAmelCase = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
339
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.dummy_uncond_unet __snake_case : Optional[int] = PNDMScheduler() __snake_case : List[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Dict = pndm(generator=a_ , num_inference_steps=20 , output_type='''numpy''' ).images __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : List[str] = pndm(generator=a_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=a_ )[0] __snake_case : Any = image[0, -3:, -3:, -1] __snake_case : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : str = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''google/ddpm-cifar10-32''' __snake_case : str = UNetaDModel.from_pretrained(a_ ) __snake_case : List[Any] = PNDMScheduler() __snake_case : Optional[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : str = pndm(generator=a_ , output_type='''numpy''' ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : List[Any] = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
24
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class A ( unittest.TestCase ): '''simple docstring''' def a_ (self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=_A , ) assert hasattr(self , "env" ) def a_ (self , _UpperCAmelCase=1 ) -> Dict: return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def a_ (self , _UpperCAmelCase ) -> List[Any]: TrainingJobAnalytics(_A ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) def a_ (self ) -> List[str]: __UpperCamelCase : Union[str, Any] = self.create_estimator() # run training estimator.fit() # result dataframe __UpperCamelCase : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __UpperCamelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __UpperCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCamelCase : Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _A )
298
from datetime import datetime import requests def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> bytes: '''simple docstring''' UpperCAmelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' UpperCAmelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(UpperCamelCase__ ).content if __name__ == "__main__": __A : Union[str, Any] = input("Enter Video/IGTV url: ").strip() __A : Tuple = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
273
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 3 UpperCAmelCase__ : Optional[int] = 2_5_0 UpperCAmelCase__ : Union[str, Any] = ids_tensor((batch_size, length) , lowercase_ ) UpperCAmelCase__ : Dict = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self._get_tensors(5 ) UpperCAmelCase__ : Any = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_tensors(1_0 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = MaxLengthCriteria(max_length=1_0 ) UpperCAmelCase__ , UpperCAmelCase__ : str = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._get_tensors(1_0 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_tensors(1_0 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ : int = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._get_tensors(5 ) UpperCAmelCase__ : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) UpperCAmelCase__ : int = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def __a ( self : List[str] ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) UpperCAmelCase__ : Tuple = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(lowercase_ ) , 1 )
356
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_) class _lowercase ( lowerCamelCase_): """simple docstring""" A__ = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True}) A__ = Features({"text": Value("string")}) A__ = Features({"summary": Value("string")}) A__ = "text" A__ = "summary" @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
184
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a ( _lowerCamelCase ): def __init__( self : Dict , lowercase_ : List[str] , lowercase_ : Optional[Any] ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : Optional[int] , lowercase_ : int = 1 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : int = 50 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , **lowercase_ : int , ): snake_case_ = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=lowercase_ , ) snake_case_ = image.to(self.device ) # set step values self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=lowercase_ ), "This is a local test"
72
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def A_ ( self : Tuple ): torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def A_ ( self : Dict ): snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a ( unittest.TestCase ): def A_ ( self : Optional[int] ): snake_case_ = '''google/ncsnpp-church-256''' snake_case_ = UNetaDModel.from_pretrained(lowercase_ ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) snake_case_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowercase_ ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
72
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __snake_case = random.Random() if is_torch_available(): import torch def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : str=1.0 , lowercase : Any=None , lowercase : str=None ) -> Union[str, Any]: """simple docstring""" if rng is None: snake_case : Any = global_rng snake_case : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCAmelCase ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=400 , UpperCamelCase__=2000 , UpperCamelCase__=1 , UpperCamelCase__=0.0 , UpperCamelCase__=1_6000 , UpperCamelCase__=True , UpperCamelCase__=True , ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = parent snake_case : Any = batch_size snake_case : Any = min_seq_length snake_case : int = max_seq_length snake_case : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case : str = feature_size snake_case : Optional[int] = padding_value snake_case : Optional[int] = sampling_rate snake_case : List[Any] = return_attention_mask snake_case : List[Any] = do_normalize def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self , UpperCamelCase__=False , UpperCamelCase__=False ) -> Any: '''simple docstring''' def _flatten(UpperCamelCase__ ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: snake_case : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case : Any = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : Tuple = ASTFeatureExtractor def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Tuple = ASTFeatureExtractionTester(self ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case : Tuple = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input snake_case : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values snake_case : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched snake_case : List[str] = feat_extract(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="np" ).input_values snake_case : Tuple = feat_extract(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case : List[str] = np.asarray(UpperCamelCase__ ) snake_case : Optional[int] = feat_extract(UpperCamelCase__ , return_tensors="np" ).input_values snake_case : Any = feat_extract(UpperCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) @require_torch def lowerCamelCase ( self ) -> str: '''simple docstring''' import torch snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = np.random.rand(100 ).astype(np.floataa ) snake_case : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case : Union[str, Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' from datasets import load_dataset snake_case : Optional[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech snake_case : Optional[int] = ds.sort("id" ).select(range(UpperCamelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[str] = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on snake_case : Dict = self._load_datasamples(1 ) snake_case : Union[str, Any] = ASTFeatureExtractor() snake_case : Optional[Any] = feature_extractor(UpperCamelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) )
203
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=12 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=0 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Dict = batch_size snake_case : List[str] = seq_length snake_case : Dict = is_training snake_case : Optional[Any] = use_input_mask snake_case : Optional[int] = use_labels snake_case : Tuple = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Optional[Any] = projection_dim snake_case : List[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : int = intermediate_size snake_case : str = dropout snake_case : List[Any] = attention_dropout snake_case : Any = max_position_embeddings snake_case : List[Any] = initializer_range snake_case : Any = scope snake_case : Union[str, Any] = bos_token_id def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = None if self.use_input_mask: snake_case : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case : Tuple = input_mask.numpy() snake_case ,snake_case : str = input_mask.shape snake_case : Tuple = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase__ ): snake_case : int = 1 snake_case : Tuple = 0 snake_case : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = TFBlipTextModel(config=UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , training=UpperCamelCase__ ) snake_case : Optional[int] = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Tuple = config_and_inputs snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( snake_case_ , unittest.TestCase ): __UpperCAmelCase : Any = (TFBlipTextModel,) if is_tf_available() else () __UpperCAmelCase : Any = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[Any] = BlipTextModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' pass @slow def lowerCamelCase ( self ) -> int: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = TFBlipTextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__=True ) -> Optional[int]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase__ )
203
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['onnx'] def __init__( self : str , *snake_case : Optional[int] , **snake_case : int ): '''simple docstring''' requires_backends(self , ["""onnx"""] ) @classmethod def _UpperCamelCase ( cls : int , *snake_case : Optional[int] , **snake_case : List[str] ): '''simple docstring''' requires_backends(cls , ["""onnx"""] ) @classmethod def _UpperCamelCase ( cls : Any , *snake_case : Dict , **snake_case : List[Any] ): '''simple docstring''' requires_backends(cls , ["""onnx"""] )
296
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def a (self : Dict ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def a (self : int ): """simple docstring""" torch.manual_seed(0 ) __snake_case = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def a (self : List[str] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a__ ) def a (self : int ): """simple docstring""" __snake_case = self.dummy_uncond_unet __snake_case = DDIMScheduler() __snake_case = self.dummy_vq_model __snake_case = LDMPipeline(unet=a__ , vqvae=a__ , scheduler=a__ ) ldm.to(a__ ) ldm.set_progress_bar_config(disable=a__ ) __snake_case = torch.manual_seed(0 ) __snake_case = ldm(generator=a__ , num_inference_steps=2 , output_type='''numpy''' ).images __snake_case = torch.manual_seed(0 ) __snake_case = ldm(generator=a__ , num_inference_steps=2 , output_type='''numpy''' , return_dict=a__ )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) __snake_case = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Optional[int] ): """simple docstring""" __snake_case = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(a__ ) ldm.set_progress_bar_config(disable=a__ ) __snake_case = torch.manual_seed(0 ) __snake_case = ldm(generator=a__ , num_inference_steps=5 , output_type='''numpy''' ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __snake_case = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) __snake_case = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
24
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Optional[int]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : List[str] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Optional[Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Any ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : int ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : str ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : str ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[int] ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> Tuple: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Optional[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : str ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : Optional[int] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
40
"""simple docstring""" import requests from bsa import BeautifulSoup def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : dict ) -> str: _snake_case = BeautifulSoup(requests.get(__lowerCamelCase , params=__lowerCamelCase ).content , '''html.parser''' ) _snake_case = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) _snake_case = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": UpperCAmelCase__ = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
40
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class A ( datasets.BeamBasedBuilder ): '''simple docstring''' def a_ (self ) -> Tuple: return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=_UpperCAmelCase , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> int: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class A ( datasets.BeamBasedBuilder ): '''simple docstring''' def a_ (self ) -> str: return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=_UpperCAmelCase , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def __lowerCAmelCase ( ): return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def __lowerCAmelCase ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @require_beam def a_ (self ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : str = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __UpperCamelCase : Optional[int] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _UpperCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def a_ (self ) -> Optional[Any]: import apache_beam as beam __UpperCamelCase : Optional[int] = beam.io.parquetio.WriteToParquet __UpperCamelCase : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Optional[int] = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: __UpperCamelCase : List[str] = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __UpperCamelCase : List[str] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _UpperCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def a_ (self ) -> str: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Optional[Any] = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def a_ (self ) -> List[str]: __UpperCamelCase : Tuple = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : str = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) __UpperCamelCase : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _UpperCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __UpperCamelCase ( _UpperCAmelCase ): if "cls_token" in name: __UpperCAmelCase : Tuple = name.replace("cls_token", "vit.embeddings.cls_token" ) if "mask_token" in name: __UpperCAmelCase : str = name.replace("mask_token", "decoder.mask_token" ) if "decoder_pos_embed" in name: __UpperCAmelCase : int = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: __UpperCAmelCase : int = name.replace("pos_embed", "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: __UpperCAmelCase : int = name.replace("patch_embed.proj", "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __UpperCAmelCase : Union[str, Any] = name.replace("patch_embed.norm", "vit.embeddings.norm" ) if "decoder_blocks" in name: __UpperCAmelCase : int = name.replace("decoder_blocks", "decoder.decoder_layers" ) if "blocks" in name: __UpperCAmelCase : Union[str, Any] = name.replace("blocks", "vit.encoder.layer" ) if "attn.proj" in name: __UpperCAmelCase : Any = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: __UpperCAmelCase : Dict = name.replace("attn", "attention.self" ) if "norm1" in name: __UpperCAmelCase : List[str] = name.replace("norm1", "layernorm_before" ) if "norm2" in name: __UpperCAmelCase : Dict = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: __UpperCAmelCase : Dict = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: __UpperCAmelCase : List[str] = name.replace("mlp.fc2", "output.dense" ) if "decoder_embed" in name: __UpperCAmelCase : Tuple = name.replace("decoder_embed", "decoder.decoder_embed" ) if "decoder_norm" in name: __UpperCAmelCase : Union[str, Any] = name.replace("decoder_norm", "decoder.decoder_norm" ) if "decoder_pred" in name: __UpperCAmelCase : int = name.replace("decoder_pred", "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: __UpperCAmelCase : str = name.replace("norm.weight", "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: __UpperCAmelCase : Optional[int] = name.replace("norm.bias", "vit.layernorm.bias" ) return name def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : str = int(key_split[1] ) if "decoder_blocks" in key: __UpperCAmelCase : Optional[int] = config.decoder_hidden_size __UpperCAmelCase : Optional[int] = "decoder.decoder_layers." if "weight" in key: __UpperCAmelCase : Tuple = val[:dim, :] __UpperCAmelCase : List[Any] = val[dim : dim * 2, :] __UpperCAmelCase : Dict = val[-dim:, :] elif "bias" in key: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Union[str, Any] = val[dim : dim * 2] __UpperCAmelCase : str = val[-dim:] else: __UpperCAmelCase : Union[str, Any] = config.hidden_size __UpperCAmelCase : Union[str, Any] = "vit.encoder.layer." if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : List[Any] = val[dim : dim * 2, :] __UpperCAmelCase : int = val[-dim:, :] elif "bias" in key: __UpperCAmelCase : Tuple = val[:dim] __UpperCAmelCase : Dict = val[dim : dim * 2] __UpperCAmelCase : List[str] = val[-dim:] else: __UpperCAmelCase : Dict = val return orig_state_dict def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = ViTMAEConfig() if "large" in checkpoint_url: __UpperCAmelCase : Optional[Any] = 1024 __UpperCAmelCase : int = 4096 __UpperCAmelCase : List[str] = 24 __UpperCAmelCase : Any = 16 elif "huge" in checkpoint_url: __UpperCAmelCase : str = 14 __UpperCAmelCase : Optional[int] = 1280 __UpperCAmelCase : Optional[int] = 5120 __UpperCAmelCase : Dict = 32 __UpperCAmelCase : Dict = 16 __UpperCAmelCase : List[str] = ViTMAEForPreTraining(_UpperCAmelCase ) __UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location="cpu" )["model"] __UpperCAmelCase : Optional[int] = ViTMAEImageProcessor(size=config.image_size ) __UpperCAmelCase : List[Any] = convert_state_dict(_UpperCAmelCase, _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" __UpperCAmelCase : Any = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) __UpperCAmelCase : Tuple = ViTMAEImageProcessor(size=config.image_size ) __UpperCAmelCase : Dict = image_processor(images=_UpperCAmelCase, return_tensors="pt" ) # forward pass torch.manual_seed(2 ) __UpperCAmelCase : Dict = model(**_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = outputs.logits if "large" in checkpoint_url: __UpperCAmelCase : List[Any] = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: __UpperCAmelCase : Optional[Any] = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: __UpperCAmelCase : Dict = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3], _UpperCAmelCase, atol=1E-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase__ : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
37
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Dict=[1, 2, 1] , UpperCAmelCase_ : str=[2, 2, 4] , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[Any]=2.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[Any]=1e-5 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : List[Any]=8 , ): """simple docstring""" __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : int = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : int = embed_dim __UpperCAmelCase : Dict = depths __UpperCAmelCase : int = num_heads __UpperCAmelCase : List[str] = window_size __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[Any] = qkv_bias __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Optional[Any] = use_absolute_embeddings __UpperCAmelCase : List[str] = patch_norm __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : str = is_training __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : int = use_labels __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : List[str] = SwinvaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase_ ) __UpperCAmelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[str] = SwinvaForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.type_sequence_label_size __UpperCAmelCase : Dict = SwinvaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Dict = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = SwinvaModelTester(self ) __UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Any = False __UpperCAmelCase : Tuple = True __UpperCAmelCase : str = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Union[str, Any] = outputs.attentions __UpperCAmelCase : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = config.window_size**2 __UpperCAmelCase : Union[str, Any] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) # Check attention is always last and order is fine __UpperCAmelCase : Tuple = True __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): __UpperCAmelCase : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase_ ) ) __UpperCAmelCase : List[str] = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = outputs.hidden_states __UpperCAmelCase : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # Swinv2 has a different seq_length __UpperCAmelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = reshaped_hidden_states[0].shape __UpperCAmelCase : Dict = ( reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = 3 __UpperCAmelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = SwinvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( UpperCAmelCase_ ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __UpperCAmelCase : Any = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**UpperCAmelCase_ ) # verify the logits __UpperCAmelCase : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) __UpperCAmelCase : str = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) )
37
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __snake_case ( _lowercase): snake_case__ : str = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) snake_case__ : Any = "CIDAS/clipseg-rd64-refined" snake_case__ : Union[str, Any] = "image_segmenter" snake_case__ : Union[str, Any] = CLIPSegForImageSegmentation snake_case__ : int = ["image", "text"] snake_case__ : List[str] = ["image"] def __init__( self : str , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : int ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : "Image" , __lowerCAmelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=__lowerCAmelCase , return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[Any] ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : List[Any] = self.model(**__lowerCAmelCase ).logits return logits def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : str = outputs.cpu().detach().numpy() _lowerCamelCase : Dict = 0 _lowerCamelCase : Any = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
72
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def snake_case_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : int = 9, 14 # noqa: F841 _lowerCamelCase : List[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCamelCase : Any = defaultdict(A_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _lowerCamelCase : List[str] = mst(A_ ) _lowerCamelCase : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _lowerCamelCase : int = tuple(answer[:2] ) _lowerCamelCase : int = tuple(edge[::-1] ) assert edge in result or reverse in result
72
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'linear' _A = 'cosine' _A = 'cosine_with_restarts' _A = 'polynomial' _A = 'constant' _A = 'constant_with_warmup' _A = 'piecewise_constant' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optimizer , _lowerCamelCase : int = -1) -> Tuple: '''simple docstring''' return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase: 1 , last_epoch=_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int = -1) -> Union[str, Any]: '''simple docstring''' def lr_lambda(_lowerCamelCase : int): if current_step < num_warmup_steps: return float(_lowerCamelCase) / float(max(1.0 , _lowerCamelCase)) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optimizer , _lowerCamelCase : str , _lowerCamelCase : int = -1) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = {} __UpperCamelCase : int = step_rules.split(",") for rule_str in rule_list[:-1]: __UpperCamelCase , __UpperCamelCase : Dict = rule_str.split(":") __UpperCamelCase : Union[str, Any] = int(_lowerCamelCase) __UpperCamelCase : int = float(_lowerCamelCase) __UpperCamelCase : Tuple = value __UpperCamelCase : str = float(rule_list[-1]) def create_rules_function(_lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]): def rule_func(_lowerCamelCase : int) -> float: __UpperCamelCase : List[str] = sorted(rules_dict.keys()) for i, sorted_step in enumerate(_lowerCamelCase): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCamelCase : int = create_rules_function(_lowerCamelCase , _lowerCamelCase) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any]=-1) -> str: '''simple docstring''' def lr_lambda(_lowerCamelCase : int): if current_step < num_warmup_steps: return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase)) return max( 0.0 , float(num_training_steps - current_step) / float(max(1 , num_training_steps - num_warmup_steps))) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = -1) -> Optional[int]: '''simple docstring''' def lr_lambda(_lowerCamelCase : int): if current_step < num_warmup_steps: return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase)) __UpperCamelCase : List[str] = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase) * 2.0 * progress))) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , _lowerCamelCase : int = -1) -> List[Any]: '''simple docstring''' def lr_lambda(_lowerCamelCase : str): if current_step < num_warmup_steps: return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase)) __UpperCamelCase : Optional[int] = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps)) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase) * progress) % 1.0)))) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=1e-7 , _lowerCamelCase : List[str]=1.0 , _lowerCamelCase : Union[str, Any]=-1) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : str = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})') def lr_lambda(_lowerCamelCase : int): if current_step < num_warmup_steps: return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase)) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCamelCase : int = lr_init - lr_end __UpperCamelCase : int = num_training_steps - num_warmup_steps __UpperCamelCase : str = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCamelCase : int = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase : str = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, SchedulerType] , _lowerCamelCase : Optimizer , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : int = -1 , ) -> Dict: '''simple docstring''' __UpperCamelCase : int = SchedulerType(_lowerCamelCase) __UpperCamelCase : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.') if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.') if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase)
151
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 22) -> int: '''simple docstring''' __UpperCamelCase : Any = range(1 , _lowerCamelCase) __UpperCamelCase : int = range(1 , _lowerCamelCase) return sum( 1 for power in powers for base in bases if len(str(base**power)) == power) if __name__ == "__main__": print(f"{solution(10, 22) = }")
151
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCamelCase__ : '''simple docstring''' def __init__( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any=13 ,lowerCamelCase__ : Tuple=7 ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[Any]=False ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : List[Any]=99 ,lowerCamelCase__ : Dict=64 ,lowerCamelCase__ : List[Any]=5 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : Optional[Any]=64 ,lowerCamelCase__ : Union[str, Any]="gelu" ,lowerCamelCase__ : Optional[int]=0.1 ,lowerCamelCase__ : List[str]=0.1 ,lowerCamelCase__ : Tuple=512 ,lowerCamelCase__ : Tuple=16 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Tuple=0.02 ,lowerCamelCase__ : Any=3 ,lowerCamelCase__ : str=4 ,lowerCamelCase__ : List[Any]=None ,) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: '''simple docstring''' return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = MPNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = MPNetForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,start_positions=lowerCamelCase__ ,end_positions=lowerCamelCase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MPNetForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = MPNetForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MPNetForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE), (SCREAMING_SNAKE_CASE)) = config_and_inputs SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __snake_case : str = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) __snake_case : Tuple = False __snake_case : Tuple = True def SCREAMING_SNAKE_CASE__ ( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = MPNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCamelCase__ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768) ) self.assertEqual(output.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
296
import random class UpperCamelCase__ : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : str ) -> tuple[list[int], list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE = [ord(lowerCamelCase__ ) for i in text] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i in plain: SCREAMING_SNAKE_CASE = random.randint(1 ,300 ) SCREAMING_SNAKE_CASE = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for i in range(len(lowerCamelCase__ ) ): SCREAMING_SNAKE_CASE = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
296
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } UpperCAmelCase = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_60_00, 'return_attention_mask': False, 'do_normalize': True, } UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join(self.tmpdirname , lowercase_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) # load decoder from hub UpperCAmelCase = 'hf-internal-testing/ngram-beam-search-decoder' def UpperCAmelCase__ ( self :int , **lowercase_ :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(lowercase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :Dict , **lowercase_ :Optional[int] ) -> int: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] , **lowercase_ :List[str] ) -> List[Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self :Dict ) -> List[str]: UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> Union[str, Any]: UpperCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(lowercase_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=lowercase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Any: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) UpperCAmelCase = floats_list((3, 10_00) ) UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='np' ) UpperCAmelCase = processor(lowercase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self :List[Any] ) -> Tuple: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) UpperCAmelCase = 'This is a test string' UpperCAmelCase = processor(text=lowercase_ ) UpperCAmelCase = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str]=(2, 10, 16) , lowercase_ :str=77 ) -> Union[str, Any]: np.random.seed(lowercase_ ) return np.random.rand(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Dict: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase = processor.decode(lowercase_ ) UpperCAmelCase = decoder.decode_beams(lowercase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[Any] ) -> str: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) UpperCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase = processor.batch_decode(lowercase_ ) else: with get_context(lowercase_ ).Pool() as pool: UpperCAmelCase = processor.batch_decode(lowercase_ , lowercase_ ) UpperCAmelCase = list(lowercase_ ) with get_context('fork' ).Pool() as p: UpperCAmelCase = decoder.decode_beams_batch(lowercase_ , lowercase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowercase_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(lowercase_ , decoded_processor.logit_score ) self.assertListEqual(lowercase_ , decoded_processor.lm_score ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = 15 UpperCAmelCase = -20.0 UpperCAmelCase = -4.0 UpperCAmelCase = processor.batch_decode( lowercase_ , beam_width=lowercase_ , beam_prune_logp=lowercase_ , token_min_logp=lowercase_ , ) UpperCAmelCase = decoded_processor_out.text UpperCAmelCase = list(lowercase_ ) with get_context('fork' ).Pool() as pool: UpperCAmelCase = decoder.decode_beams_batch( lowercase_ , lowercase_ , beam_width=lowercase_ , beam_prune_logp=lowercase_ , token_min_logp=lowercase_ , ) UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , lowercase_ ) self.assertTrue(np.array_equal(lowercase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , lowercase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowercase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , lowercase_ , atol=1E-3 ) ) def UpperCAmelCase__ ( self :Any ) -> List[Any]: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = 2.0 UpperCAmelCase = 5.0 UpperCAmelCase = -20.0 UpperCAmelCase = True UpperCAmelCase = processor.batch_decode( lowercase_ , alpha=lowercase_ , beta=lowercase_ , unk_score_offset=lowercase_ , lm_score_boundary=lowercase_ , ) UpperCAmelCase = decoded_processor_out.text UpperCAmelCase = list(lowercase_ ) decoder.reset_params( alpha=lowercase_ , beta=lowercase_ , unk_score_offset=lowercase_ , lm_score_boundary=lowercase_ , ) with get_context('fork' ).Pool() as pool: UpperCAmelCase = decoder.decode_beams_batch( lowercase_ , lowercase_ , ) UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , lowercase_ ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> int: UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() UpperCAmelCase = os.listdir(lowercase_ ) UpperCAmelCase = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :List[str] ) -> int: UpperCAmelCase = snapshot_download('hf-internal-testing/processor_with_lm' ) UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(lowercase_ ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() UpperCAmelCase = os.listdir(lowercase_ ) UpperCAmelCase = os.listdir(lowercase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Tuple ) -> List[str]: UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase = floats_list((3, 10_00) ) UpperCAmelCase = processor_wavaveca(lowercase_ , return_tensors='np' ) UpperCAmelCase = processor_auto(lowercase_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = processor_wavaveca.batch_decode(lowercase_ ) UpperCAmelCase = processor_auto.batch_decode(lowercase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def UpperCAmelCase__ ( self :str ) -> Dict: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=lowercase_ , feature_extractor=lowercase_ , decoder=lowercase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def UpperCAmelCase__ ( lowercase_ :List[str] , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self :str ) -> Tuple: UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase = self._get_dummy_logits()[0] UpperCAmelCase = processor.decode(lowercase_ , output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def UpperCAmelCase__ ( self :int ) -> List[str]: UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = processor.batch_decode(lowercase_ , output_word_offsets=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(lowercase_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def UpperCAmelCase__ ( self :Optional[int] ) -> str: import torch UpperCAmelCase = load_dataset('common_voice' , 'en' , split='train' , streaming=lowercase_ ) UpperCAmelCase = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00 ) ) UpperCAmelCase = iter(lowercase_ ) UpperCAmelCase = next(lowercase_ ) UpperCAmelCase = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) UpperCAmelCase = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): UpperCAmelCase = model(lowercase_ ).logits.cpu().numpy() UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=lowercase_ ) UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] UpperCAmelCase = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(lowercase_ , 'word' ) ) , lowercase_ ) self.assertEqual(' '.join(self.get_from_offsets(lowercase_ , 'word' ) ) , output.text ) # output times UpperCAmelCase = torch.tensor(self.get_from_offsets(lowercase_ , 'start_time' ) ) UpperCAmelCase = torch.tensor(self.get_from_offsets(lowercase_ , 'end_time' ) ) # fmt: off UpperCAmelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) UpperCAmelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=0.01 ) )
181
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
181
1
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( )-> List[Any]: '''simple docstring''' a : Any = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=A_ , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=A_ , default=5 ) parser.add_argument("--batch_size" , type=A_ , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=A_ , default=1 ) parser.add_argument("--freeze" , type=A_ , default=A_ ) parser.add_argument("--learning_rate" , type=A_ , default=5e-4 ) parser.add_argument("--seed" , type=A_ , default=0 ) parser.add_argument("--lr_scheduler_type" , type=A_ , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=A_ , default=10 ) parser.add_argument("--weight_decay" , type=A_ , default=0.0_1 ) parser.add_argument("--output_dir" , type=A_ , default="./results" ) return parser.parse_args() __lowercase = load("""accuracy""") def lowercase ( A_ )-> Tuple: '''simple docstring''' a , a : List[str] = eval_pred a : str = np.argmax(A_ , axis=1 ) return metric.compute(predictions=A_ , references=A_ ) class _A ( _a ): """simple docstring""" def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any]): super().__init__() a : int = trainer def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , **__UpperCAmelCase : List[Any]): if control.should_evaluate: a : Union[str, Any] = deepcopy(__UpperCAmelCase) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train") return control_copy def lowercase ( )-> Union[str, Any]: '''simple docstring''' a : List[str] = get_args() set_seed(args.seed ) a : int = load_dataset("codeparrot/codecomplex" , split="train" ) a : Dict = dataset.train_test_split(test_size=0.2 ) a : int = train_test["test"].train_test_split(test_size=0.5 ) a : Union[str, Any] = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) a : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) a : Optional[int] = tokenizer.eos_token a : Any = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a : Any = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a : Optional[Any] = False a : Union[str, Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(A_ ): a : List[str] = tokenizer(example["src"] , truncation=A_ , max_length=1_024 ) a : Optional[int] = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a : Optional[Any] = train_test_validation.map( A_ , batched=A_ , remove_columns=train_test_validation["train"].column_names , ) a : Dict = DataCollatorWithPadding(tokenizer=A_ ) a : Optional[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) a : Union[str, Any] = Trainer( model=A_ , args=A_ , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=A_ , data_collator=A_ , compute_metrics=A_ , ) print("Training..." ) trainer.add_callback(CustomCallback(A_ ) ) trainer.train() if __name__ == "__main__": main()
40
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowercase ( A_ , A_ , A_ = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(A_ ), magnitude * sin(A_ )] return [magnitude * cos(radians(A_ ) ), magnitude * sin(radians(A_ ) )] def lowercase ( A_ , A_ , A_ = 10**-1 )-> bool: '''simple docstring''' a : NDArray[floataa] = cross(A_ , A_ ) a : float = sum(A_ ) return abs(A_ ) < eps if __name__ == "__main__": # Test to check if it works __lowercase = array( [ polar_force(7_18.4, 180 - 30), polar_force(8_79.54, 45), polar_force(100, -90), ] ) __lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __lowercase = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) __lowercase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __lowercase = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) __lowercase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
40
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __snake_case : __lowerCamelCase : torch.Tensor # [batch_size x 3] __lowerCamelCase : torch.Tensor # [batch_size x 3] __lowerCamelCase : torch.Tensor # [batch_size x 3] __lowerCamelCase : torch.Tensor # [batch_size x 3] __lowerCamelCase : int __lowerCamelCase : int __lowerCamelCase : float __lowerCamelCase : float __lowerCamelCase : Tuple[int] def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCAmelCase__ ( self ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase : str =torch.arange(self.height * self.width ) UpperCAmelCase : Tuple =torch.stack( [ pixel_indices % self.width, torch.div(snake_case__ , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase , *UpperCAmelCase : List[str] =self.shape UpperCAmelCase : List[Any] =int(np.prod(snake_case__ ) ) UpperCAmelCase : List[str] =self.get_image_coords() UpperCAmelCase : Optional[int] =torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase : Any =self.get_camera_rays(snake_case__ ) UpperCAmelCase : Union[str, Any] =rays.view(snake_case__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCAmelCase__ ( self , snake_case__ ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase , *UpperCAmelCase , UpperCAmelCase : List[Any] =coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase : Optional[Any] =coords.view(snake_case__ , -1 , 2 ) UpperCAmelCase : str =self.resolution() UpperCAmelCase : List[str] =self.fov() UpperCAmelCase : Any =(flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase : int =fracs * torch.tan(fov / 2 ) UpperCAmelCase : Optional[int] =fracs.view(snake_case__ , -1 , 2 ) UpperCAmelCase : List[str] =( self.z.view(snake_case__ , 1 , 3 ) + self.x.view(snake_case__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(snake_case__ , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase : Union[str, Any] =directions / directions.norm(dim=-1 , keepdim=snake_case__ ) UpperCAmelCase : List[Any] =torch.stack( [ torch.broadcast_to(self.origin.view(snake_case__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(snake_case__ , *snake_case__ , 2 , 3 ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=snake_case__ , height=snake_case__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCAmelCase_ ( __lowerCAmelCase )-> DifferentiableProjectiveCamera: '''simple docstring''' UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : str =[] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCAmelCase : Union[str, Any] =np.array([np.sin(__lowerCAmelCase ), np.cos(__lowerCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase : Union[str, Any] =-z * 4 UpperCAmelCase : Union[str, Any] =np.array([np.cos(__lowerCAmelCase ), -np.sin(__lowerCAmelCase ), 0.0] ) UpperCAmelCase : str =np.cross(__lowerCAmelCase , __lowerCAmelCase ) origins.append(__lowerCAmelCase ) xs.append(__lowerCAmelCase ) ys.append(__lowerCAmelCase ) zs.append(__lowerCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowerCAmelCase , axis=0 ) ).float() , width=__lowerCAmelCase , height=__lowerCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowerCAmelCase )) , )
78
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __snake_case ( lowerCamelCase__ ): @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Tuple =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : List[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[Any] =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Optional[Any] ='''1''' UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Any =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : Union[str, Any] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Union[str, Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] =self.get_env() UpperCAmelCase : Any =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' UpperCAmelCase : int =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Any =self.get_env() UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =''' from transformers import pipeline ''' UpperCAmelCase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' UpperCAmelCase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[int] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] UpperCAmelCase : List[str] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any =''' from transformers import AutoModel ''' UpperCAmelCase : Optional[Any] =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Any ='''1''' UpperCAmelCase : Dict =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
78
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[int] = (32, 32) lowerCAmelCase__ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def UpperCAmelCase_ ( self ) -> str: torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def UpperCAmelCase_ ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def UpperCAmelCase_ ( self ) -> str: torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5006 ,) return RobertaSeriesModelWithTransformation(__UpperCAmelCase ) @property def UpperCAmelCase_ ( self ) -> int: def extract(*__UpperCAmelCase ,**__UpperCAmelCase ): class lowerCAmelCase_: '''simple docstring''' def __init__( self ) -> Optional[int]: lowerCAmelCase__ : Any = torch.ones([0] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: self.pixel_values.to(__UpperCAmelCase ) return self return Out() return extract def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : List[Any] = self.dummy_cond_unet lowerCAmelCase__ : Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.dummy_vae lowerCAmelCase__ : Tuple = self.dummy_text_encoder lowerCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase__ : str = 77 lowerCAmelCase__ : List[str] = self.dummy_image.to(__UpperCAmelCase ) lowerCAmelCase__ : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCAmelCase__ : Dict = AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ,vae=__UpperCAmelCase ,text_encoder=__UpperCAmelCase ,tokenizer=__UpperCAmelCase ,safety_checker=__UpperCAmelCase ,feature_extractor=self.dummy_extractor ,) lowerCAmelCase__ : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : int = """A painting of a squirrel eating a burger""" lowerCAmelCase__ : Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = alt_pipe( [prompt] ,generator=__UpperCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,image=__UpperCAmelCase ,) lowerCAmelCase__ : List[Any] = output.images lowerCAmelCase__ : Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) lowerCAmelCase__ : Dict = alt_pipe( [prompt] ,generator=__UpperCAmelCase ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,image=__UpperCAmelCase ,return_dict=__UpperCAmelCase ,)[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Optional[Any] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = self.dummy_cond_unet lowerCAmelCase__ : Any = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) lowerCAmelCase__ : int = self.dummy_vae lowerCAmelCase__ : Union[str, Any] = self.dummy_text_encoder lowerCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase__ : Tuple = 77 lowerCAmelCase__ : Union[str, Any] = self.dummy_image.to(__UpperCAmelCase ) # put models in fp16 lowerCAmelCase__ : Tuple = unet.half() lowerCAmelCase__ : str = vae.half() lowerCAmelCase__ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase__ : Dict = AltDiffusionImgaImgPipeline( unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ,vae=__UpperCAmelCase ,text_encoder=__UpperCAmelCase ,tokenizer=__UpperCAmelCase ,safety_checker=__UpperCAmelCase ,feature_extractor=self.dummy_extractor ,) lowerCAmelCase__ : Optional[int] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = alt_pipe.to(__UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : str = """A painting of a squirrel eating a burger""" lowerCAmelCase__ : int = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = alt_pipe( [prompt] ,generator=__UpperCAmelCase ,num_inference_steps=2 ,output_type="""np""" ,image=__UpperCAmelCase ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase__ : List[Any] = init_image.resize((760, 504) ) lowerCAmelCase__ : Tuple = """BAAI/AltDiffusion""" lowerCAmelCase__ : str = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase ,safety_checker=__UpperCAmelCase ,) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ : Union[str, Any] = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = pipe( prompt=__UpperCAmelCase ,image=__UpperCAmelCase ,strength=0.7_5 ,guidance_scale=7.5 ,generator=__UpperCAmelCase ,output_type="""np""" ,) lowerCAmelCase__ : List[Any] = output.images[0] lowerCAmelCase__ : str = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowerCAmelCase__ : Any = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase__ : Optional[int] = init_image.resize((768, 512) ) lowerCAmelCase__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowerCAmelCase__ : List[str] = """BAAI/AltDiffusion""" lowerCAmelCase__ : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCAmelCase ,safety_checker=__UpperCAmelCase ,) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase__ : int = """A fantasy landscape, trending on artstation""" lowerCAmelCase__ : List[str] = torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = pipe( prompt=__UpperCAmelCase ,image=__UpperCAmelCase ,strength=0.7_5 ,guidance_scale=7.5 ,generator=__UpperCAmelCase ,output_type="""np""" ,) lowerCAmelCase__ : List[Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
37
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowerCAmelCase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
37
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: lowercase :Tuple = os.path.abspath(lowerCamelCase ) logger.info(F"Loading PyTorch weights from {pt_path}" ) lowercase :str = torch.load(lowerCamelCase, map_location="cpu" ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) lowercase :int = convert_pytorch_state_dict_to_flax(lowerCamelCase, lowerCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase :Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(lowerCamelCase, lowerCamelCase ) return flax_state_dict def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ): def is_key_or_prefix_key_in_dict(lowerCamelCase ) -> bool: return len(set(lowerCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase :Optional[int] = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase :List[Any] = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase :Optional[Any] = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase :int = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowerCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase :int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowerCamelCase ): lowercase :str = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase :Dict = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowerCamelCase ): lowercase :List[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase :Tuple = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase :Tuple = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase :str = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase :Any = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase :List[Any] = pt_tuple_key[-2] + "_v" if name is not None: lowercase :List[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): # convert pytorch tensor to numpy lowercase :str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase :List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase :Any = flax_model.params["params"] else: lowercase :Union[str, Any] = flax_model.params lowercase :Dict = flatten_dict(lowerCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase :Tuple = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(lowerCamelCase ) lowercase :Union[str, Any] = {} lowercase :Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowercase :Dict = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase :Any = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowercase :Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase :Tuple = pt_tuple_key[1:] # Correctly rename weight parameters lowercase , lowercase :List[Any] = rename_key_and_reshape_tensor( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # add model prefix if necessary lowercase :Tuple = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase :Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase :Optional[Any] = jnp.asarray(lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCamelCase, lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase :int = jnp.asarray(lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase :List[str] = jnp.asarray(lowerCamelCase ) return unflatten_dict(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): import torch # Load the index lowercase :Tuple = {} for shard_file in shard_filenames: # load using msgpack utils lowercase :List[Any] = torch.load(lowerCamelCase ) lowercase :Optional[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase :Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase :Dict = flax_model.params["params"] lowercase :Tuple = flatten_dict(lowerCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: lowercase :str = flax_model.params lowercase :List[str] = flatten_dict(lowerCamelCase ) lowercase :Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowercase :Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase :str = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowercase :Any = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase :Optional[int] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase , lowercase :Optional[int] = rename_key_and_reshape_tensor( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # add model prefix if necessary lowercase :Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase :str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase :Union[str, Any] = jnp.asarray(lowerCamelCase ) continue if "var" in flax_key[-1]: lowercase :Tuple = jnp.asarray(lowerCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowerCamelCase, lowerCamelCase ) continue # also add unexpected weight so that warning is thrown lowercase :Tuple = jnp.asarray(lowerCamelCase ) else: # also add unexpected weight so that warning is thrown lowercase :str = jnp.asarray(lowerCamelCase ) return unflatten_dict(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :str = os.path.abspath(lowerCamelCase ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class lowercase :Tuple = getattr(lowerCamelCase, "Flax" + model.__class__.__name__ ) # load flax weight dict with open(lowerCamelCase, "rb" ) as state_f: try: lowercase :Any = from_bytes(lowerCamelCase, state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights lowercase :Optional[Any] = flatten_dict(jax.tree_util.tree_map(lambda lowerCamelCase : x.dtype == jnp.bfloataa, lowerCamelCase ) ).values() if any(lowerCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) lowercase :Union[str, Any] = jax.tree_util.tree_map( lambda lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, lowerCamelCase ) lowercase :Optional[Any] = flatten_dict(lowerCamelCase ) lowercase :Tuple = pt_model.state_dict() lowercase :int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) lowercase :int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase :str = [] lowercase :str = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase :str = flax_key_tuple[0] == pt_model.base_model_prefix lowercase :Dict = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase :Union[str, Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase :Optional[int] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowerCamelCase ) not in pt_model_dict: # conv layer lowercase :str = flax_key_tuple[:-1] + ("weight",) lowercase :int = jnp.transpose(lowerCamelCase, (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCamelCase ) not in pt_model_dict: # linear layer lowercase :Dict = flax_key_tuple[:-1] + ("weight",) lowercase :Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase :List[str] = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase :Union[str, Any] = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: lowercase :Optional[Any] = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: lowercase :List[str] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase :int = ".".join(lowerCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase :List[str] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase :Optional[int] = key.split("." ) lowercase :Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase :int = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase :Union[str, Any] = key_components[-2] + "_v" if name is not None: lowercase :str = key_components[:-3] + [name] lowercase :Tuple = ".".join(lowerCamelCase ) lowercase :List[Any] = key if flax_key in special_pt_names: lowercase :Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict lowercase :Union[str, Any] = np.asarray(lowerCamelCase ) if not isinstance(lowerCamelCase, np.ndarray ) else flax_tensor lowercase :Optional[Any] = torch.from_numpy(lowerCamelCase ) # remove from missing keys missing_keys.remove(lowerCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCamelCase ) pt_model.load_state_dict(lowerCamelCase ) # re-transform missing_keys to list lowercase :List[Any] = list(lowerCamelCase ) if len(lowerCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(lowerCamelCase ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
158
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCAmelCase): _a = (DDIMParallelScheduler,) _a = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self: Any , **_lowerCAmelCase: Optional[Any] ): lowercase :List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self: str , **_lowerCAmelCase: Any ): lowercase :Optional[int] = self.scheduler_classes[0] lowercase :Dict = self.get_scheduler_config(**_lowerCAmelCase ) lowercase :List[str] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :str = 10, 0.0 lowercase :List[Any] = self.dummy_model() lowercase :int = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: lowercase :Optional[int] = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase :Dict = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) lowercase :Optional[Any] = self.scheduler_classes[0] lowercase :List[str] = self.get_scheduler_config(steps_offset=1 ) lowercase :Optional[int] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def SCREAMING_SNAKE_CASE ( self: Tuple ): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict ): self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Dict = self.scheduler_classes[0] lowercase :Tuple = self.get_scheduler_config() lowercase :Optional[Any] = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = self.scheduler_classes[0] lowercase :Union[str, Any] = self.get_scheduler_config() lowercase :Union[str, Any] = scheduler_class(**_lowerCAmelCase ) lowercase , lowercase :Union[str, Any] = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) lowercase :Dict = self.dummy_model() lowercase :Dict = self.dummy_sample_deter lowercase :Union[str, Any] = self.dummy_sample_deter + 0.1 lowercase :int = self.dummy_sample_deter - 0.1 lowercase :Dict = samplea.shape[0] lowercase :Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase :Optional[Any] = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) lowercase :Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase :Optional[int] = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :int = self.full_loop() lowercase :Optional[int] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Any = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Dict = self.full_loop(prediction_type="v_prediction" ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowercase :List[Any] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :List[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): # We specify different beta, so that the first alpha is 0.99 lowercase :Tuple = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :str = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :List[str] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
158
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowercase__ = logging.get_logger(__name__) enable_full_determinism() class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : int = UNetaDModel UpperCAmelCase_ : Any = """sample""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Tuple = 4 UpperCAmelCase : Any = 3 UpperCAmelCase : List[str] = (32, 32) UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : List[Any] = torch.tensor([10] ).to(lowercase_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: return (3, 32, 32) @property def UpperCAmelCase_ ( self : str ) -> Optional[int]: return (3, 32, 32) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: UpperCAmelCase : Tuple = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } UpperCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = UNetaDModel UpperCAmelCase_ : List[Any] = """sample""" @property def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Tuple = 4 UpperCAmelCase : List[str] = (32, 32) UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : str = torch.tensor([10] ).to(lowercase_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: return (4, 32, 32) @property def UpperCAmelCase_ ( self : Any ) -> List[str]: return (4, 32, 32) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } UpperCAmelCase : str = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowercase_ ) UpperCAmelCase : Any = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ ) model.to(lowercase_ ) UpperCAmelCase : List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def UpperCAmelCase_ ( self : List[str] ) -> int: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` UpperCAmelCase , UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ ) model_accelerate.to(lowercase_ ) model_accelerate.eval() UpperCAmelCase : Dict = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase : int = noise.to(lowercase_ ) UpperCAmelCase : List[Any] = torch.tensor([10] * noise.shape[0] ).to(lowercase_ ) UpperCAmelCase : List[str] = model_accelerate(lowercase_ , lowercase_ )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase , UpperCAmelCase : int = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=lowercase_ , low_cpu_mem_usage=lowercase_ ) model_normal_load.to(lowercase_ ) model_normal_load.eval() UpperCAmelCase : str = model_normal_load(lowercase_ , lowercase_ )['sample'] assert torch_all_close(lowercase_ , lowercase_ , rtol=1E-3 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: UpperCAmelCase : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(lowercase_ ) UpperCAmelCase : Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase : Optional[Any] = noise.to(lowercase_ ) UpperCAmelCase : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(lowercase_ ) with torch.no_grad(): UpperCAmelCase : Tuple = model(lowercase_ , lowercase_ ).sample UpperCAmelCase : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase : Optional[Any] = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-3 ) ) class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = UNetaDModel UpperCAmelCase_ : int = """sample""" @property def UpperCAmelCase_ ( self : str , lowercase_ : List[str]=(32, 32) ) -> Optional[int]: UpperCAmelCase : int = 4 UpperCAmelCase : int = 3 UpperCAmelCase : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : int = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=lowercase_ ) return {"sample": noise, "timestep": time_step} @property def UpperCAmelCase_ ( self : Any ) -> Any: return (3, 32, 32) @property def UpperCAmelCase_ ( self : Tuple ) -> Tuple: return (3, 32, 32) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: UpperCAmelCase : Tuple = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } UpperCAmelCase : Any = self.dummy_input return init_dict, inputs_dict @slow def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase , UpperCAmelCase : Optional[int] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowercase_ ) UpperCAmelCase : Tuple = self.dummy_input UpperCAmelCase : Tuple = floats_tensor((4, 3) + (256, 256) ).to(lowercase_ ) UpperCAmelCase : Optional[int] = noise UpperCAmelCase : Any = model(**lowercase_ ) assert image is not None, "Make sure output is not None" @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: UpperCAmelCase : Optional[Any] = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(lowercase_ ) UpperCAmelCase : Tuple = 4 UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : Optional[int] = (256, 256) UpperCAmelCase : str = torch.ones((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : Any = torch.tensor(batch_size * [1E-4] ).to(lowercase_ ) with torch.no_grad(): UpperCAmelCase : Optional[int] = model(lowercase_ , lowercase_ ).sample UpperCAmelCase : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(lowercase_ ) UpperCAmelCase : Any = 4 UpperCAmelCase : int = 3 UpperCAmelCase : Optional[Any] = (32, 32) UpperCAmelCase : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = torch.tensor(batch_size * [1E-4] ).to(lowercase_ ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(lowercase_ , lowercase_ ).sample UpperCAmelCase : Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase : int = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: # not required for this model pass
151
'''simple docstring''' import numpy as np def UpperCamelCase( UpperCAmelCase_ ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
151
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
275
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase :str = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :List[str] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
275
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLNetTokenizer lowerCAmelCase__ = XLNetTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Tuple = XLNetTokenizer(_A , keep_accents=_A ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<s>''' UpperCAmelCase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(_A ) , 1_006 ) def lowercase_ ( self : Any ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = XLNetTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [285, 46, 10, 170, 382] ) UpperCAmelCase__ : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual(_A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) UpperCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLNetTokenizer(_A , do_lower_case=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = XLNetTokenizer(_A , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) UpperCAmelCase__ : Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) UpperCAmelCase__ : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_A ) UpperCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = {'''input_ids''': [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
181
'''simple docstring''' # Algorithm for the pigeonhole sorting def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Any = min(lowerCAmelCase__ ) # min() finds the minimum value UpperCAmelCase__ : Optional[int] = max(lowerCAmelCase__ ) # max() finds the maximum value UpperCAmelCase__ : int = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size UpperCAmelCase__ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. UpperCAmelCase__ : Optional[int] = 0 for count in range(lowerCAmelCase__ ): while holes[count] > 0: holes[count] -= 1 UpperCAmelCase__ : Dict = count + min_val i += 1 def a__ ( ) -> Union[str, Any]: UpperCAmelCase__ : List[str] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase__ ) print('''Sorted order is:''' , ''' '''.join(lowerCAmelCase__ ) ) if __name__ == "__main__": main()
181
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """cvt""" def __init__( self : int , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : Optional[int]=[7, 3, 3] , __UpperCamelCase : List[str]=[4, 2, 2] , __UpperCamelCase : Optional[int]=[2, 1, 1] , __UpperCamelCase : Optional[int]=[6_4, 1_9_2, 3_8_4] , __UpperCamelCase : Tuple=[1, 3, 6] , __UpperCamelCase : Optional[Any]=[1, 2, 1_0] , __UpperCamelCase : str=[4.0, 4.0, 4.0] , __UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , __UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , __UpperCamelCase : List[Any]=[0.0, 0.0, 0.1] , __UpperCamelCase : str=[True, True, True] , __UpperCamelCase : Union[str, Any]=[False, False, True] , __UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , __UpperCamelCase : Tuple=[3, 3, 3] , __UpperCamelCase : Tuple=[1, 1, 1] , __UpperCamelCase : List[Any]=[2, 2, 2] , __UpperCamelCase : Tuple=[1, 1, 1] , __UpperCamelCase : List[str]=[1, 1, 1] , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Any=1e-12 , **__UpperCamelCase : Tuple , )->Tuple: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = depth _UpperCAmelCase = mlp_ratio _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = drop_rate _UpperCAmelCase = drop_path_rate _UpperCAmelCase = qkv_bias _UpperCAmelCase = cls_token _UpperCAmelCase = qkv_projection_method _UpperCAmelCase = kernel_qkv _UpperCAmelCase = padding_kv _UpperCAmelCase = stride_kv _UpperCAmelCase = padding_q _UpperCAmelCase = stride_q _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps
326
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ = 16000 ): UpperCAmelCase = int(round(sample_rate * max_length ) ) if len(lowercase_ ) <= sample_length: return wav UpperCAmelCase = randint(0 , len(lowercase_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class A_ : """simple docstring""" __UpperCamelCase = field(default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """A file containing the training audio paths and labels."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) __UpperCamelCase = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) __UpperCamelCase = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) __UpperCamelCase = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) __UpperCamelCase = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __UpperCamelCase = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class A_ : """simple docstring""" __UpperCamelCase = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) __UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Name or path of preprocessor config."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __UpperCamelCase = field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def UpperCAmelCase__ ( self :Dict ) -> Union[str, Any]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowercase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase = DatasetDict() UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ 'Make sure to set `--audio_column_name` to the correct audio column - one of ' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ 'Make sure to set `--label_column_name` to the correct text column - one of ' F"""{', '.join(raw_datasets['train'].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase = feature_extractor.model_input_names[0] def train_transforms(lowercase_ ): UpperCAmelCase = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowercase_ ) UpperCAmelCase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(lowercase_ )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowercase_ ): UpperCAmelCase = [audio['array'] for audio in batch[data_args.audio_column_name]] UpperCAmelCase = feature_extractor(lowercase_ , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase = {model_input_name: inputs.get(lowercase_ )} UpperCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase = raw_datasets['train'].features[data_args.label_column_name].names UpperCAmelCase , UpperCAmelCase = {}, {} for i, label in enumerate(lowercase_ ): UpperCAmelCase = str(lowercase_ ) UpperCAmelCase = label # Load the accuracy metric from the datasets package UpperCAmelCase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowercase_ ): UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowercase_ , references=eval_pred.label_ids ) UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowercase_ ) , labelaid=lowercase_ , idalabel=lowercase_ , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowercase_ , output_all_columns=lowercase_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowercase_ , output_all_columns=lowercase_ ) # Initialize our trainer UpperCAmelCase = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase = trainer.evaluate() trainer.log_metrics('eval' , lowercase_ ) trainer.save_metrics('eval' , lowercase_ ) # Write model card and (optionally) push to hub UpperCAmelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) if __name__ == "__main__": main()
78
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = x UpperCAmelCase = y for step in range(lowercase_ ): # noqa: B007 UpperCAmelCase = a * a - b * b + x UpperCAmelCase = 2 * a * b + y UpperCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase_ , 1 , 1 ) ) def _lowerCAmelCase ( lowercase_ = 800 , lowercase_ = 600 , lowercase_ = -0.6 , lowercase_ = 0 , lowercase_ = 3.2 , lowercase_ = 50 , lowercase_ = True , ): UpperCAmelCase = Image.new('RGB' , (image_width, image_height) ) UpperCAmelCase = img.load() # loop through the image-coordinates for image_x in range(lowercase_ ): for image_y in range(lowercase_ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase = figure_width / image_width * image_height UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase = get_distance(lowercase_ , lowercase_ , lowercase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase = get_color_coded_rgb(lowercase_ ) else: UpperCAmelCase = get_black_and_white_rgb(lowercase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
78
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: List[Any] ): __lowerCamelCase : int = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase : str = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(a ) , torch_builtin(a ) ) ) self.assertFalse(torch.allclose(gelu_python(a ) , gelu_new(a ) ) ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase : int = get_activation('gelu' ) __lowerCamelCase : Tuple = get_activation('gelu_10' ) __lowerCamelCase : Dict = torch_builtin(a ) __lowerCamelCase : List[str] = geluaa(a ) __lowerCamelCase : Dict = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(a ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self: List[str] ): get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(a ): get_activation('bogus' ) with self.assertRaises(a ): get_activation(a ) def _snake_case ( self: List[Any] ): __lowerCamelCase : Optional[int] = get_activation('gelu' ) __lowerCamelCase : Optional[int] = 1 __lowerCamelCase : Tuple = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(a ): __lowerCamelCase : List[str] = acta.a
194
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = prime_factors(SCREAMING_SNAKE_CASE__ ) if is_square_free(SCREAMING_SNAKE_CASE__ ): return -1 if len(SCREAMING_SNAKE_CASE__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
194
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _SCREAMING_SNAKE_CASE = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
'''simple docstring''' import math import unittest def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> str: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _snake_case ( self ) -> List[Any]: with self.assertRaises(_lowerCAmelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
158
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" ,[ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" ,num_bytes=13_37 ,num_examples=42 ,dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" ,num_bytes=13_37 ,num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ] ,) def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = split_dict._to_yaml_list() assert len(snake_case__ ) == len(snake_case__ ) _SCREAMING_SNAKE_CASE = SplitDict._from_yaml_list(snake_case__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _SCREAMING_SNAKE_CASE = None # the split name of split_dict takes over the name of the split info object _SCREAMING_SNAKE_CASE = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" ,[SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
125
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = "naver-clova-ix/donut-base-finetuned-docvqa" __snake_case : Dict = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) __snake_case : Dict = "document_qa" __snake_case : Any = AutoProcessor __snake_case : int = VisionEncoderDecoderModel __snake_case : Union[str, Any] = ["image", "text"] __snake_case : Optional[int] = ["text"] def __init__( self: List[Any] , *UpperCAmelCase_: Optional[int] , **UpperCAmelCase_: List[str] ): '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: "Image" , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _SCREAMING_SNAKE_CASE = task_prompt.replace("""{user_input}""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.pre_processor.tokenizer( UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors="""pt""" ).input_ids _SCREAMING_SNAKE_CASE = self.pre_processor(UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase ( self: Dict , UpperCAmelCase_: str ): '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCAmelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCAmelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCAmelCase_ , ).sequences def UpperCamelCase ( self: Dict , UpperCAmelCase_: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.pre_processor.batch_decode(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) _SCREAMING_SNAKE_CASE = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) _SCREAMING_SNAKE_CASE = re.sub(R"""<.*?>""" , """""" , UpperCAmelCase_ , count=1 ).strip() # remove first task start token _SCREAMING_SNAKE_CASE = self.pre_processor.tokenajson(UpperCAmelCase_ ) return sequence["answer"]
125
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = jnp.floataa _UpperCamelCase = True def UpperCamelCase__ ( self ) ->str: '''simple docstring''' super().setup() __lowerCAmelCase : int = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *A_ , **A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = super().__call__(*A_ , **A_ ) __lowerCAmelCase : List[str] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __lowercase (_UpperCAmelCase ): _UpperCamelCase = FlaxBigBirdForNaturalQuestionsModule def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def cross_entropy(lowercase__ , lowercase__ , lowercase__=None ): __lowerCAmelCase : int = logits.shape[-1] __lowerCAmelCase : Union[str, Any] = (labels[..., None] == jnp.arange(lowercase__ )[None]).astype('''f4''' ) __lowerCAmelCase : Optional[Any] = jax.nn.log_softmax(lowercase__ , axis=-1 ) __lowerCAmelCase : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __lowerCAmelCase : Union[str, Any] = reduction(lowercase__ ) return loss __lowerCAmelCase : str = partial(lowercase__ , reduction=jnp.mean ) __lowerCAmelCase : List[str] = cross_entropy(lowercase__ , lowercase__ ) __lowerCAmelCase : str = cross_entropy(lowercase__ , lowercase__ ) __lowerCAmelCase : Dict = cross_entropy(lowercase__ , lowercase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __lowercase : _UpperCamelCase = "google/bigbird-roberta-base" _UpperCamelCase = 3000 _UpperCamelCase = 10500 _UpperCamelCase = 128 _UpperCamelCase = 3 _UpperCamelCase = 1 _UpperCamelCase = 5 # tx_args _UpperCamelCase = 3E-5 _UpperCamelCase = 0.0 _UpperCamelCase = 20000 _UpperCamelCase = 0.0095 _UpperCamelCase = "bigbird-roberta-natural-questions" _UpperCamelCase = "training-expt" _UpperCamelCase = "data/nq-training.jsonl" _UpperCamelCase = "data/nq-validation.jsonl" def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=A_ ) __lowerCAmelCase : Optional[Any] = os.path.join(self.base_dir , self.save_dir ) __lowerCAmelCase : str = self.batch_size_per_device * jax.device_count() @dataclass class __lowercase : _UpperCamelCase = 42 _UpperCamelCase = 4096 # no dynamic padding on TPUs def __call__( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.collate_fn(A_ ) __lowerCAmelCase : int = jax.tree_util.tree_map(A_ , A_ ) return batch def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = self.fetch_inputs(features['''input_ids'''] ) __lowerCAmelCase : Dict = { '''input_ids''': jnp.array(A_ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(A_ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase__ ( self , A_ ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = [self._fetch_inputs(A_ ) for ids in input_ids] return zip(*A_ ) def UpperCamelCase__ ( self , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = [1 for _ in range(len(A_ ) )] while len(A_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _lowercase ( lowercase__ , lowercase__ , lowercase__=None ): if seed is not None: __lowerCAmelCase : List[str] = dataset.shuffle(seed=lowercase__ ) for i in range(len(lowercase__ ) // batch_size ): __lowerCAmelCase : Tuple = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase__ ) @partial(jax.pmap , axis_name='''batch''' ) def _lowercase ( lowercase__ , lowercase__ , **lowercase__ ): def loss_fn(lowercase__ ): __lowerCAmelCase : Any = model_inputs.pop('''start_labels''' ) __lowerCAmelCase : Tuple = model_inputs.pop('''end_labels''' ) __lowerCAmelCase : str = model_inputs.pop('''pooled_labels''' ) __lowerCAmelCase : Any = state.apply_fn(**lowercase__ , params=lowercase__ , dropout_rng=lowercase__ , train=lowercase__ ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[int] = outputs return state.loss_fn( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) __lowerCAmelCase, __lowerCAmelCase : List[str] = jax.random.split(lowercase__ ) __lowerCAmelCase : Dict = jax.value_and_grad(lowercase__ ) __lowerCAmelCase, __lowerCAmelCase : Tuple = grad_fn(state.params ) __lowerCAmelCase : List[Any] = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __lowerCAmelCase : List[Any] = jax.lax.pmean(lowercase__ , '''batch''' ) __lowerCAmelCase : Optional[int] = state.apply_gradients(grads=lowercase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _lowercase ( lowercase__ , **lowercase__ ): __lowerCAmelCase : int = model_inputs.pop('''start_labels''' ) __lowerCAmelCase : List[Any] = model_inputs.pop('''end_labels''' ) __lowerCAmelCase : str = model_inputs.pop('''pooled_labels''' ) __lowerCAmelCase : Dict = state.apply_fn(**lowercase__ , params=state.params , train=lowercase__ ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Tuple = outputs __lowerCAmelCase : Optional[int] = state.loss_fn(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCAmelCase : List[str] = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class __lowercase (train_state.TrainState ): _UpperCamelCase = struct.field(pytree_node=_UpperCAmelCase ) @dataclass class __lowercase : _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = 42 _UpperCamelCase = None def UpperCamelCase__ ( self , A_ , A_ , A_ , A_=None ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[str] = model.params __lowerCAmelCase : Optional[int] = TrainState.create( apply_fn=model.__call__ , params=A_ , tx=A_ , loss_fn=A_ , ) if ckpt_dir is not None: __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : Optional[int] = restore_checkpoint(A_ , A_ ) __lowerCAmelCase : str = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __lowerCAmelCase, __lowerCAmelCase : Tuple = build_tx(**A_ ) __lowerCAmelCase : Optional[Any] = train_state.TrainState( step=A_ , apply_fn=model.__call__ , params=A_ , tx=A_ , opt_state=A_ , ) __lowerCAmelCase : str = args __lowerCAmelCase : Tuple = data_collator __lowerCAmelCase : Union[str, Any] = lr __lowerCAmelCase : Dict = params __lowerCAmelCase : Any = jax_utils.replicate(A_ ) return state def UpperCamelCase__ ( self , A_ , A_ , A_ ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : str = self.args __lowerCAmelCase : Dict = len(A_ ) // args.batch_size __lowerCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) __lowerCAmelCase : Union[str, Any] = jax.random.split(A_ , jax.device_count() ) for epoch in range(args.max_epochs ): __lowerCAmelCase : Optional[Any] = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase : List[Any] = get_batched_dataset(A_ , args.batch_size , seed=A_ ) __lowerCAmelCase : Dict = 0 for batch in tqdm(A_ , total=A_ , desc=f"""Running EPOCH-{epoch}""" ): __lowerCAmelCase : Optional[int] = self.data_collator(A_ ) __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : List[str] = self.train_step_fn(A_ , A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __lowerCAmelCase : str = jax_utils.unreplicate(state.step ) __lowerCAmelCase : Any = running_loss.item() / i __lowerCAmelCase : str = self.scheduler_fn(state_step - 1 ) __lowerCAmelCase : Union[str, Any] = self.evaluate(A_ , A_ ) __lowerCAmelCase : int = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(A_ ) ) self.logger.log(A_ , commit=A_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=A_ ) def UpperCamelCase__ ( self , A_ , A_ ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Dict = get_batched_dataset(A_ , self.args.batch_size ) __lowerCAmelCase : Dict = len(A_ ) // self.args.batch_size __lowerCAmelCase : Any = jnp.array(0 , dtype=jnp.floataa ) __lowerCAmelCase : Optional[Any] = 0 for batch in tqdm(A_ , total=A_ , desc='''Evaluating ... ''' ): __lowerCAmelCase : Optional[int] = self.data_collator(A_ ) __lowerCAmelCase : int = self.val_step_fn(A_ , **A_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase__ ( self , A_ , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = jax_utils.unreplicate(A_ ) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(A_ , params=state.params ) with open(os.path.join(A_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(A_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(A_ , '''data_collator.joblib''' ) ) with open(os.path.join(A_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , A_ ) print('''DONE''' ) def _lowercase ( lowercase__ , lowercase__ ): print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=''' ... ''' ) with open(os.path.join(lowercase__ , '''flax_model.msgpack''' ) , '''rb''' ) as f: __lowerCAmelCase : str = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase__ , '''opt_state.msgpack''' ) , '''rb''' ) as f: __lowerCAmelCase : Optional[Any] = from_bytes(state.opt_state , f.read() ) __lowerCAmelCase : Any = joblib.load(os.path.join(lowercase__ , '''args.joblib''' ) ) __lowerCAmelCase : List[Any] = joblib.load(os.path.join(lowercase__ , '''data_collator.joblib''' ) ) with open(os.path.join(lowercase__ , '''training_state.json''' ) , '''r''' ) as f: __lowerCAmelCase : int = json.load(lowercase__ ) __lowerCAmelCase : List[Any] = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Optional[int] = num_train_steps - warmup_steps __lowerCAmelCase : List[Any] = optax.linear_schedule(init_value=lowercase__ , end_value=lowercase__ , transition_steps=lowercase__ ) __lowerCAmelCase : int = optax.linear_schedule(init_value=lowercase__ , end_value=1E-7 , transition_steps=lowercase__ ) __lowerCAmelCase : str = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def weight_decay_mask(lowercase__ ): __lowerCAmelCase : Optional[Any] = traverse_util.flatten_dict(lowercase__ ) __lowerCAmelCase : str = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase__ ) __lowerCAmelCase : Optional[int] = scheduler_fn(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowerCAmelCase : List[str] = optax.adamw(learning_rate=lowercase__ , weight_decay=lowercase__ , mask=lowercase__ ) return tx, lr
275
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ ) else: __lowerCAmelCase : Optional[int] = np.full((len(lowercase__ ), sequence_length) , lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : int = tensor[:sequence_length] else: if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = ord(lowercase__ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __lowerCAmelCase : int = unicodedata.category(lowercase__ ) if cat.startswith('''P''' ): return True return False @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = -100 _UpperCamelCase = "pt" def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' import torch __lowerCAmelCase : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCAmelCase : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCAmelCase : List[Any] = self.tokenizer.pad( A_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCAmelCase : Dict = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCAmelCase : Optional[int] = self.tokenizer.padding_side if padding_side == "right": __lowerCAmelCase : Any = [ list(A_ ) + [self.label_pad_token_id] * (sequence_length - len(A_ )) for label in labels ] else: __lowerCAmelCase : Optional[int] = [ [self.label_pad_token_id] * (sequence_length - len(A_ )) + list(A_ ) for label in labels ] __lowerCAmelCase : Tuple = [feature['''ner_tags'''] for feature in features] __lowerCAmelCase : List[Any] = padding_tensor(A_ , -1 , A_ , A_ ) __lowerCAmelCase : Optional[int] = [feature['''original_entity_spans'''] for feature in features] __lowerCAmelCase : Any = padding_tensor(A_ , (-1, -1) , A_ , A_ ) __lowerCAmelCase : Optional[Any] = {k: torch.tensor(A_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
275
1
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase : int = TransfoXLTokenizer UpperCAmelCase : Any = False UpperCAmelCase : int = False def _lowercase (self : str) -> Dict: super().setUp() __snake_case : List[Any] = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def _lowercase (self : Any , **_A : Optional[int]) -> int: __snake_case : Tuple = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_) def _lowercase (self : Optional[Any] , _A : str) -> List[Any]: __snake_case : List[str] = '<unk> UNwanted , running' __snake_case : List[Any] = '<unk> unwanted, running' return input_text, output_text def _lowercase (self : str) -> Optional[Any]: __snake_case : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase_) __snake_case : int = tokenizer.tokenize('<unk> UNwanted , running') self.assertListEqual(lowerCAmelCase_ , ['<unk>', 'unwanted', ',', 'running']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_) , [0, 4, 8, 7]) def _lowercase (self : Optional[int]) -> List[str]: __snake_case : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase_) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ') , ['hello', '!', 'how', 'are', 'you', '?']) def _lowercase (self : Union[str, Any]) -> str: __snake_case : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase_) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def _lowercase (self : List[str]) -> Dict: __snake_case : Optional[Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase_) __snake_case : Any = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' __snake_case : str = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_) , lowerCAmelCase_) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase_) , lowerCAmelCase_) def _lowercase (self : str) -> str: __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : List[Any] = len(lowerCAmelCase_) tokenizer.add_tokens(['new1', 'new2']) tokenizer.move_added_token('new1' , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase_) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1') , [1]) self.assertEqual(tokenizer.decode([1]) , 'new1')
365
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Union[str, Any]) -> Optional[int]: __snake_case : Optional[Any] = 0 def _lowercase (self : Tuple) -> int: __snake_case : Optional[Any] = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(_A , _A) def _lowercase (self : str) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[str] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Optional[int] = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : Any) -> Optional[int]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Any = Path(_A) / 'preprocessor_config.json' __snake_case : List[Any] = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : List[Any]) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : str = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case : List[Any] = Path(_A) / 'preprocessor_config.json' __snake_case : Optional[Any] = Path(_A) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case : List[str] = AutoImageProcessor.from_pretrained(_A).to_dict() config_dict.pop('image_processor_type') __snake_case : Optional[int] = CLIPImageProcessor(**_A) # save in new folder model_config.save_pretrained(_A) config.save_pretrained(_A) __snake_case : Optional[int] = AutoImageProcessor.from_pretrained(_A) # make sure private variable is not incorrectly saved __snake_case : int = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(_A , _A) def _lowercase (self : Union[str, Any]) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : int = Path(_A) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) __snake_case : List[str] = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) def _lowercase (self : Optional[int]) -> Dict: with self.assertRaisesRegex( _A , 'clip-base is not a local folder and is not a valid model identifier'): __snake_case : Tuple = AutoImageProcessor.from_pretrained('clip-base') def _lowercase (self : str) -> int: with self.assertRaisesRegex( _A , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __snake_case : str = AutoImageProcessor.from_pretrained(_A , revision='aaaaaa') def _lowercase (self : List[Any]) -> str: with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __snake_case : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def _lowercase (self : Optional[int]) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A): __snake_case : Any = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(_A): __snake_case : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Optional[int] = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor') def _lowercase (self : int) -> Optional[int]: try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): AutoImageProcessor.register(_A , _A) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Tuple = Path(_A) / 'preprocessor_config.json' __snake_case : Dict = Path(_A) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_A , 'w') , ) json.dump({'model_type': 'clip'} , open(_A , 'w')) __snake_case : Tuple = CustomImageProcessor.from_pretrained(_A) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A) __snake_case : Tuple = AutoImageProcessor.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowercase (self : List[Any]) -> Tuple: class UpperCamelCase ( lowercase ): UpperCAmelCase : str = True try: AutoConfig.register('custom' , _A) AutoImageProcessor.register(_A , _A) # If remote code is not set, the default is to use local __snake_case : Tuple = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __snake_case : Optional[int] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __snake_case : List[Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_A) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(not hasattr(_A , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
95
0