code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = '''pegasus''' __lowercase : Optional[int] = ['''past_key_values'''] __lowercase : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self ,__UpperCAmelCase=5_0265 ,__UpperCAmelCase=1024 ,__UpperCAmelCase=12 ,__UpperCAmelCase=4096 ,__UpperCAmelCase=16 ,__UpperCAmelCase=12 ,__UpperCAmelCase=4096 ,__UpperCAmelCase=16 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=1024 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=0 ,__UpperCAmelCase=False ,__UpperCAmelCase=0 ,__UpperCAmelCase=1 ,__UpperCAmelCase=1 ,**__UpperCAmelCase ,) -> int: lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : Union[str, Any] = d_model lowerCAmelCase__ : str = encoder_ffn_dim lowerCAmelCase__ : Union[str, Any] = encoder_layers lowerCAmelCase__ : Optional[Any] = encoder_attention_heads lowerCAmelCase__ : List[Any] = decoder_ffn_dim lowerCAmelCase__ : Tuple = decoder_layers lowerCAmelCase__ : int = decoder_attention_heads lowerCAmelCase__ : List[str] = dropout lowerCAmelCase__ : List[Any] = attention_dropout lowerCAmelCase__ : int = activation_dropout lowerCAmelCase__ : List[Any] = activation_function lowerCAmelCase__ : Tuple = init_std lowerCAmelCase__ : List[Any] = encoder_layerdrop lowerCAmelCase__ : List[str] = decoder_layerdrop lowerCAmelCase__ : Dict = use_cache lowerCAmelCase__ : Optional[int] = encoder_layers lowerCAmelCase__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,is_encoder_decoder=__UpperCAmelCase ,decoder_start_token_id=__UpperCAmelCase ,forced_eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ,) @property def UpperCAmelCase_ ( self ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase_ ( self ) -> int: return self.d_model
37
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> str: SCREAMING_SNAKE_CASE = int(SCREAMING_SNAKE_CASE_ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(SCREAMING_SNAKE_CASE_ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE_ ) + str(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> str: SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ).strip() if not number: raise ValueError('No input value was provided' ) SCREAMING_SNAKE_CASE = '-' if number.startswith('-' ) else '' SCREAMING_SNAKE_CASE = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F'{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE_ ) )}' if __name__ == "__main__": from doctest import testmod testmod()
113
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = split_dict._to_yaml_list() assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = SplitDict._from_yaml_list(_lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : List[str] = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=_lowercase ), SplitInfo(dataset_name="""my_dataset""" )] ) def __lowerCamelCase ( _lowercase ) -> List[str]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Optional[Any] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
350
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A = None , A = None , A = False , **A , ) -> Tuple: super().__init__(features=A , cache_dir=A , keep_in_memory=A , **A ) UpperCAmelCase : Any = Sql( cache_dir=A , features=A , sql=A , con=A , **A , ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = None UpperCAmelCase : Any = None UpperCAmelCase : int = None UpperCAmelCase : int = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , ) # Build dataset for splits UpperCAmelCase : str = self.builder.as_dataset( split="""train""" , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self , A , A , A , A = None , A = None , **A , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) UpperCAmelCase : Dict = dataset UpperCAmelCase : List[Any] = name UpperCAmelCase : Any = con UpperCAmelCase : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase : Optional[Any] = num_proc UpperCAmelCase : str = to_sql_kwargs def _lowercase( self ) -> int: UpperCAmelCase : Any = self.to_sql_kwargs.pop("""sql""" , A ) UpperCAmelCase : str = self.to_sql_kwargs.pop("""con""" , A ) UpperCAmelCase : Union[str, Any] = self.to_sql_kwargs.pop("""index""" , A ) UpperCAmelCase : str = self._write(index=A , **self.to_sql_kwargs ) return written def _lowercase( self , A ) -> Any: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = args UpperCAmelCase : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs UpperCAmelCase : int = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase : Any = batch.to_pandas() UpperCAmelCase : List[Any] = df.to_sql(self.name , self.con , index=A , **A ) return num_rows or len(A ) def _lowercase( self , A , **A ) -> int: UpperCAmelCase : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase , UpperCAmelCase : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
338
0
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str]=10 ): """simple docstring""" __UpperCAmelCase : List[Any] = [] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Any=10 ): """simple docstring""" __UpperCAmelCase : List[str] = [] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = os.path.join(lowercase_ , """schedule.bin""" ) torch.save(scheduler.state_dict() , lowercase_ ) __UpperCAmelCase : List[Any] = torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class _A ( unittest.TestCase ): def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for a, b in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertAlmostEqual(UpperCAmelCase__ , UpperCAmelCase__ , delta=UpperCAmelCase__ ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase : int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase : Any = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __UpperCAmelCase : List[Any] = criterion(UpperCAmelCase__ , UpperCAmelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase__ ) __UpperCAmelCase : int = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase : int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase : List[str] = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase__ , weight_decay=0.0 , relative_step=UpperCAmelCase__ , scale_parameter=UpperCAmelCase__ , warmup_init=UpperCAmelCase__ , ) for _ in range(1_000 ): __UpperCAmelCase : int = criterion(UpperCAmelCase__ , UpperCAmelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _SCREAMING_SNAKE_CASE : List[Any] = 10 def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for a, b in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertAlmostEqual(UpperCAmelCase__ , UpperCAmelCase__ , delta=UpperCAmelCase__ , msg=UpperCAmelCase__ ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __UpperCAmelCase : List[str] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __UpperCAmelCase , __UpperCAmelCase : str = data __UpperCAmelCase : Union[str, Any] = scheduler_func(self.optimizer , **UpperCAmelCase__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __UpperCAmelCase : List[str] = unwrap_schedule(UpperCAmelCase__ , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase__ , UpperCAmelCase__ , tol=1E-2 , msg=f'failed for {scheduler_func} in normal scheduler' , ) __UpperCAmelCase : Any = scheduler_func(self.optimizer , **UpperCAmelCase__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase__ ) # wrap to test picklability of the schedule __UpperCAmelCase : List[str] = unwrap_and_save_reload_schedule(UpperCAmelCase__ , self.num_steps ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ , msg=f'failed for {scheduler_func} in save and reload' ) class _A : def __init__( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : str = fn def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.fn(*UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def __A ( self , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = list(map(self , scheduler.lr_lambdas ) )
254
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
from torch import nn def UpperCamelCase ( __lowercase : List[Any] ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
371
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''lilt''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase=None , lowercase=4 , lowercase=1_0_2_4 , **lowercase , ): """simple docstring""" super().__init__(pad_token_id=lowercase , **lowercase ) A_ : str = vocab_size A_ : Tuple = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Union[str, Any] = hidden_act A_ : int = intermediate_size A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : List[str] = type_vocab_size A_ : Any = initializer_range A_ : str = layer_norm_eps A_ : Optional[int] = position_embedding_type A_ : Union[str, Any] = classifier_dropout A_ : Optional[Any] = channel_shrink_ratio A_ : int = max_ad_position_embeddings
192
0
def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 while i * i <= n: SCREAMING_SNAKE_CASE_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def A__ ( ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 while True: i += 1 t_num += i if count_divisors(__lowerCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
299
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a :Tuple = None a :int = logging.get_logger(__name__) a :Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} a :Optional[Any] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 a :Optional[int] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :int = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :Optional[int] = ["""input_ids""", """attention_mask"""] _SCREAMING_SNAKE_CASE :List[str] = TaTokenizer _SCREAMING_SNAKE_CASE :List[int] = [] def __init__( self , _a=None , _a=None , _a="</s>" , _a="<unk>" , _a="<pad>" , _a=100 , _a=None , **_a , ) -> Any: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE__ : Dict = [f'''<extra_id_{i}>''' for i in range(_a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE__ : Dict = len(set(filter(lambda _a : bool("""extra_id_""" in str(_a ) ) , _a ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( _a , tokenizer_file=_a , eos_token=_a , unk_token=_a , pad_token=_a , extra_ids=_a , additional_special_tokens=_a , **_a , ) SCREAMING_SNAKE_CASE__ : int = vocab_file SCREAMING_SNAKE_CASE__ : List[str] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE__ : Any = extra_ids @staticmethod def _a ( _a , _a , _a ) -> Tuple: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE__ : Tuple = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , _a , ) return max_model_length def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE__ : Optional[int] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _a ( self ) -> int: """simple docstring""" return list( set(filter(lambda _a : bool(re.search(r"""<extra_id_\d+>""" , _a ) ) is not None , self.additional_special_tokens ) ) ) def _a ( self ) -> Optional[Any]: """simple docstring""" return [self.convert_tokens_to_ids(_a ) for token in self.get_sentinel_tokens()]
56
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowercase ( __lowerCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( ) -> Iterator[int]: SCREAMING_SNAKE_CASE__ : List[Any] = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def _lowercase ( __lowerCAmelCase = 200_0000 ) -> int: return sum(takewhile(lambda __lowerCAmelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'{solution() = }')
56
1
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase : Any = "" UpperCamelCase : List[Any] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase , UpperCamelCase : List[str] = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase : Any = [1 for i in range(len(_lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase : Optional[Any] = 0 for j in range(len(_lowerCAmelCase ) ): UpperCamelCase : str = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase : Optional[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase : List[str] = j - k + 1 # noqa: E741 UpperCamelCase : Union[str, Any] = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase : Union[str, Any] = length[j] UpperCamelCase : List[Any] = j # create that string UpperCamelCase : Optional[Any] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
52
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __UpperCamelCase : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) __UpperCamelCase : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) __UpperCamelCase : str = "question" __UpperCamelCase : str = "context" __UpperCamelCase : str = "answers" @property def __magic_name__ ( self : List[str] ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
121
0
'''simple docstring''' from math import ceil def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =list(range(0 , _UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _SCREAMING_SNAKE_CASE =[] for i in device_map_blocks: if device_map_blocks.count(_UpperCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_UpperCamelCase ) # Missing blocks _SCREAMING_SNAKE_CASE =[i for i in blocks if i not in device_map_blocks] _SCREAMING_SNAKE_CASE =[i for i in device_map_blocks if i not in blocks] if len(_UpperCamelCase ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_UpperCamelCase ) ) if len(_UpperCamelCase ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_UpperCamelCase ) ) if len(_UpperCamelCase ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_UpperCamelCase ) ) def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =list(range(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =int(ceil(n_layers / len(_UpperCamelCase ) ) ) _SCREAMING_SNAKE_CASE =[layers[i : i + n_blocks] for i in range(0 , _UpperCamelCase , _UpperCamelCase )] return dict(zip(_UpperCamelCase , _UpperCamelCase ) )
114
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "T5Config" class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig
114
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = BlenderbotSmallTokenizer a : Tuple = False def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" super().setUp() UpperCamelCase__ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCamelCase__ : Tuple = dict(zip(__SCREAMING_SNAKE_CASE, range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase__ : str = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCamelCase__ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCamelCase__ : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def UpperCamelCase__ ( self, **__magic_name__ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = '''adapt act apte''' UpperCamelCase__ : List[str] = '''adapt act apte''' return input_text, output_text def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase__ : Any = '''adapt act apte''' UpperCamelCase__ : int = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCamelCase__ : Union[str, Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCamelCase__ : Union[str, Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ), __SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] UpperCamelCase__ : Optional[int] = '''I am a small frog.''' UpperCamelCase__ : int = tok([src_text], padding=__SCREAMING_SNAKE_CASE, truncation=__SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCamelCase__ : Tuple = tok.batch_decode(__SCREAMING_SNAKE_CASE, skip_special_tokens=__SCREAMING_SNAKE_CASE, clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCamelCase__ : int = '''I am a small frog .''' UpperCamelCase__ : Union[str, Any] = '''.''' UpperCamelCase__ : Union[str, Any] = tok(__SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCamelCase__ : Optional[int] = tok(__SCREAMING_SNAKE_CASE )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
201
import os import re import shutil import sys import tempfile import unittest import black lowercase__ : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase__ : Dict = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(__SCREAMING_SNAKE_CASE , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]: lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCAmelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(__SCREAMING_SNAKE_CASE , '''w''' , newline='''\n''' ) as f: f.write(__SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __SCREAMING_SNAKE_CASE , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with a really long name lowerCAmelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('''Bert''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __SCREAMING_SNAKE_CASE ) , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: lowerCAmelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] ) self.assertFalse(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) lowerCAmelCase , lowerCAmelCase = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
338
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : List[str] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['''OwlViTFeatureExtractor'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : Optional[int] ) -> int: _lowerCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""encoder.deit.blocks.{i}.norm1.weight""", F"""encoder.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm1.bias""", F"""encoder.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.weight""", F"""encoder.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.attn.proj.bias""", F"""encoder.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.norm2.weight""", F"""encoder.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.norm2.bias""", F"""encoder.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.weight""", F"""encoder.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc1.bias""", F"""encoder.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append( (F"""encoder.deit.blocks.{i}.mlp.fc2.weight""", F"""encoder.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""encoder.deit.blocks.{i}.mlp.fc2.bias""", F"""encoder.encoder.layer.{i}.output.dense.bias""") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[str] ) -> List[str]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _lowerCamelCase = state_dict.pop(F"""encoder.deit.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _lowerCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _lowerCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCAmelCase_( lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict ) -> str: _lowerCamelCase = dct.pop(lowercase_ ) _lowerCamelCase = val def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: _lowerCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _lowerCamelCase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Dict ) -> List[str]: _lowerCamelCase = ViTConfig(image_size=3_84 , qkv_bias=lowercase_ ) _lowerCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _lowerCamelCase = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _lowerCamelCase = 10_24 _lowerCamelCase = 40_96 _lowerCamelCase = 24 _lowerCamelCase = 16 _lowerCamelCase = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _lowerCamelCase = False _lowerCamelCase = '''relu''' _lowerCamelCase = 10_24 _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False # load HuggingFace model _lowerCamelCase = ViTModel(lowercase_ , add_pooling_layer=lowercase_ ) _lowerCamelCase = TrOCRForCausalLM(lowercase_ ) _lowerCamelCase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() # load state_dict of original model, rename some keys _lowerCamelCase = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' , check_hash=lowercase_ )['''model'''] _lowerCamelCase = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _lowerCamelCase = state_dict.pop(lowercase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _lowerCamelCase = val else: _lowerCamelCase = val # load state dict model.load_state_dict(lowercase_ ) # Check outputs on an image _lowerCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _lowerCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _lowerCamelCase = TrOCRProcessor(lowercase_ , lowercase_ ) _lowerCamelCase = processor(images=prepare_img(lowercase_ ) , return_tensors='''pt''' ).pixel_values # verify logits _lowerCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _lowerCamelCase = model(pixel_values=lowercase_ , decoder_input_ids=lowercase_ ) _lowerCamelCase = outputs.logits _lowerCamelCase = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: _lowerCamelCase = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: _lowerCamelCase = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase_ , atol=1e-3 ), "First elements of logits not as expected" Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
73
0
def __A ( __lowerCAmelCase )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator _UpperCAmelCase = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(__lowerCAmelCase ) , 'Postfix'.center(__lowerCAmelCase ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=' | ' , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , (''.join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=' | ' , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def __A ( __lowerCAmelCase )-> Tuple: """simple docstring""" _UpperCAmelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": _UpperCAmelCase = ')' # change "(" to ")" elif infix[i] == ")": _UpperCAmelCase = '(' # change ")" to "(" return (infix_2_postfix(''.join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _a = input('''\nEnter an Infix Equation = ''') # Input an Infix equation _a = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
39
def UpperCamelCase (lowercase_: int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError("""Invalid input""" ) A__ : List[str] = 10**n A__ : Any = 28433 * (pow(2 , 7830457 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
192
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): @slow def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) UpperCamelCase = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase = model(__a )["last_hidden_state"] UpperCamelCase = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. UpperCamelCase = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
244
"""simple docstring""" from __future__ import annotations from random import choice def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return choice(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = random_pivot(_SCREAMING_SNAKE_CASE ) # partition based on pivot # linear time UpperCamelCase = [e for e in lst if e < pivot] UpperCamelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_SCREAMING_SNAKE_CASE ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_SCREAMING_SNAKE_CASE ) < k - 1: return kth_number(_SCREAMING_SNAKE_CASE , k - len(_SCREAMING_SNAKE_CASE ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
244
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a ( _lowerCamelCase ): def A_ ( self : str ): snake_case_ = tempfile.mkdtemp() snake_case_ = 8 # DPR tok snake_case_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok snake_case_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(lowercase_ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def A_ ( self : Union[str, Any] ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A_ ( self : Union[str, Any] ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def A_ ( self : int ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def A_ ( self : str ): shutil.rmtree(self.tmpdirname ) def A_ ( self : str ): snake_case_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def A_ ( self : str ): snake_case_ = self.get_dummy_dataset() snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case_ = dataset snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def A_ ( self : str , lowercase_ : bool ): snake_case_ = self.get_dummy_dataset() snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: snake_case_ = os.path.join(self.tmpdirname , '''dataset''' ) snake_case_ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowercase_ ) , ) return retriever def A_ ( self : Tuple ): snake_case_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case_ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) snake_case_ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) snake_case_ = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(lowercase_ , open(lowercase_ , '''wb''' ) ) snake_case_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) snake_case_ = RagRetriever( lowercase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def A_ ( self : Optional[Any] ): snake_case_ = 1 snake_case_ = self.get_dummy_canonical_hf_index_retriever() snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : str ): snake_case_ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: snake_case_ = self.get_dummy_dataset() retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : int ): snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : int ): snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : str ): snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : Any ): snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) def A_ ( self : Any ): snake_case_ = 1 snake_case_ = self.get_dummy_legacy_index_retriever() snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ ,snake_case_ ,snake_case_ = retriever.retrieve(lowercase_ , n_docs=lowercase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , lowercase_ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def A_ ( self : int ): snake_case_ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowercase_ ) snake_case_ = RagRetriever.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever.retrieve(lowercase_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def A_ ( self : List[str] ): import torch snake_case_ = 1 snake_case_ = self.get_dummy_canonical_hf_index_retriever() snake_case_ = [[5, 7], [10, 11]] snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) snake_case_ ,snake_case_ ,snake_case_ = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertIsInstance(lowercase_ , np.ndarray ) snake_case_ = retriever( lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ , return_tensors='''pt''' , ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) self.assertIsInstance(lowercase_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def A_ ( self : Tuple ): snake_case_ = self.get_dpr_ctx_encoder_tokenizer() snake_case_ = 1 snake_case_ = self.get_dummy_custom_hf_index_retriever(from_disk=lowercase_ ) retriever.set_ctx_encoder_tokenizer(lowercase_ ) snake_case_ = [[5, 7], [10, 11]] snake_case_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case_ = retriever(lowercase_ , lowercase_ , prefix=retriever.config.generator.prefix , n_docs=lowercase_ ) self.assertEqual( len(lowercase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , lowercase_ ) # check for doc token related keys in dictionary.
56
'''simple docstring''' from collections import defaultdict def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCAmelCase ) if ret % 2 == 0: cuts.append(__UpperCAmelCase ) return ret def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": a ,a : Dict = 10, 9 a : Dict = defaultdict(list) a : dict[int, bool] = {} a : list[int] = [] a : Tuple = 0 a : str = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
56
1
def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
125
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 512 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Tuple ): '''simple docstring''' ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __snake_case : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable ) else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self : Tuple , __lowercase : int , __lowercase : int ) -> Any: __UpperCAmelCase : Any = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase ( self : str ) -> int: __UpperCAmelCase : int = None __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : Dict = self._get_uniform_logits(batch_size=2 , length=__lowercase ) # tweak scores to not be uniform anymore __UpperCAmelCase : Optional[int] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __UpperCAmelCase : Dict = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __UpperCAmelCase : Any = jax.nn.softmax(__lowercase , axis=-1 ) __UpperCAmelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) __UpperCAmelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=1.3 ) __UpperCAmelCase : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(__lowercase , scores.copy() , cur_len=__lowercase ) , axis=-1 ) __UpperCAmelCase : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(__lowercase , scores.copy() , cur_len=__lowercase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __UpperCAmelCase : int = None __UpperCAmelCase : int = 10 __UpperCAmelCase : Optional[Any] = 2 # create ramp distribution __UpperCAmelCase : str = np.broadcast_to(np.arange(__lowercase )[None, :] , (batch_size, vocab_size) ).copy() __UpperCAmelCase : Any = ramp_logits[1:, : vocab_size // 2] + vocab_size __UpperCAmelCase : Union[str, Any] = FlaxTopKLogitsWarper(3 ) __UpperCAmelCase : Optional[int] = top_k_warp(__lowercase , __lowercase , cur_len=__lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __UpperCAmelCase : List[Any] = 5 __UpperCAmelCase : str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __UpperCAmelCase : Union[str, Any] = np.broadcast_to(np.arange(__lowercase )[None, :] , (batch_size, length) ).copy() __UpperCAmelCase : str = top_k_warp_safety_check(__lowercase , __lowercase , cur_len=__lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: __UpperCAmelCase : Any = None __UpperCAmelCase : List[Any] = 10 __UpperCAmelCase : str = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __UpperCAmelCase : Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __UpperCAmelCase : str = FlaxTopPLogitsWarper(0.8 ) __UpperCAmelCase : Tuple = np.exp(top_p_warp(__lowercase , __lowercase , cur_len=__lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __UpperCAmelCase : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # check edge cases with negative and extreme logits __UpperCAmelCase : str = np.broadcast_to(np.arange(__lowercase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __UpperCAmelCase : Tuple = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __UpperCAmelCase : Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __UpperCAmelCase : Dict = top_p_warp(__lowercase , __lowercase , cur_len=__lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCAmelCase ( self : Dict ) -> Optional[Any]: __UpperCAmelCase : int = 20 __UpperCAmelCase : Optional[Any] = 4 __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__lowercase ) # check that min length is applied at length 5 __UpperCAmelCase : Tuple = ids_tensor((batch_size, 20) , vocab_size=20 ) __UpperCAmelCase : Dict = 5 __UpperCAmelCase : List[str] = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = min_dist_processor(__lowercase , __lowercase , cur_len=__lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 __UpperCAmelCase : Union[str, Any] = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : int = 15 __UpperCAmelCase : int = min_dist_processor(__lowercase , __lowercase , cur_len=__lowercase ) self.assertFalse(jnp.isinf(__lowercase ).any() ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = 20 __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__lowercase ) # check that all scores are -inf except the bos_token_id score __UpperCAmelCase : List[str] = ids_tensor((batch_size, 1) , vocab_size=20 ) __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : str = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : Dict = logits_processor(__lowercase , __lowercase , cur_len=__lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __UpperCAmelCase : Dict = 3 __UpperCAmelCase : Optional[int] = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : int = logits_processor(__lowercase , __lowercase , cur_len=__lowercase ) self.assertFalse(jnp.isinf(__lowercase ).any() ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = 20 __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : List[str] = 5 __UpperCAmelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=__lowercase , eos_token_id=__lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached __UpperCAmelCase : int = ids_tensor((batch_size, 4) , vocab_size=20 ) __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : Optional[int] = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : int = logits_processor(__lowercase , __lowercase , cur_len=__lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[str] = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : Dict = logits_processor(__lowercase , __lowercase , cur_len=__lowercase ) self.assertFalse(jnp.isinf(__lowercase ).any() ) def UpperCAmelCase ( self : Optional[int] ) -> int: __UpperCAmelCase : Tuple = 4 __UpperCAmelCase : Optional[int] = 10 __UpperCAmelCase : Union[str, Any] = 15 __UpperCAmelCase : Optional[int] = 2 __UpperCAmelCase : int = 1 __UpperCAmelCase : Optional[Any] = 15 # dummy input_ids and scores __UpperCAmelCase : Dict = ids_tensor((batch_size, sequence_length) , __lowercase ) __UpperCAmelCase : Optional[Any] = input_ids.copy() __UpperCAmelCase : str = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : Union[str, Any] = scores.copy() # instantiate all dist processors __UpperCAmelCase : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) __UpperCAmelCase : Optional[int] = FlaxTopKLogitsWarper(3 ) __UpperCAmelCase : Union[str, Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __UpperCAmelCase : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__lowercase ) __UpperCAmelCase : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__lowercase ) __UpperCAmelCase : int = FlaxForcedEOSTokenLogitsProcessor(max_length=__lowercase , eos_token_id=__lowercase ) __UpperCAmelCase : str = 10 # no processor list __UpperCAmelCase : Any = temp_dist_warp(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : int = top_k_warp(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : Any = top_p_warp(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : Any = min_dist_proc(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : Any = bos_dist_proc(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : Dict = eos_dist_proc(__lowercase , __lowercase , cur_len=__lowercase ) # with processor list __UpperCAmelCase : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __UpperCAmelCase : Union[str, Any] = processor(__lowercase , __lowercase , cur_len=__lowercase ) # scores should be equal self.assertTrue(jnp.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCAmelCase ( self : Dict ) -> int: __UpperCAmelCase : str = 4 __UpperCAmelCase : Any = 10 __UpperCAmelCase : List[str] = 15 __UpperCAmelCase : int = 2 __UpperCAmelCase : Union[str, Any] = 1 __UpperCAmelCase : Union[str, Any] = 15 # dummy input_ids and scores __UpperCAmelCase : int = ids_tensor((batch_size, sequence_length) , __lowercase ) __UpperCAmelCase : Optional[int] = input_ids.copy() __UpperCAmelCase : Dict = self._get_uniform_logits(__lowercase , __lowercase ) __UpperCAmelCase : int = scores.copy() # instantiate all dist processors __UpperCAmelCase : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) __UpperCAmelCase : Tuple = FlaxTopKLogitsWarper(3 ) __UpperCAmelCase : Any = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __UpperCAmelCase : Dict = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__lowercase ) __UpperCAmelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__lowercase ) __UpperCAmelCase : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=__lowercase , eos_token_id=__lowercase ) __UpperCAmelCase : Union[str, Any] = 10 # no processor list def run_no_processor_list(__lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : str ): __UpperCAmelCase : List[str] = temp_dist_warp(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : str = top_k_warp(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : Any = top_p_warp(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : int = min_dist_proc(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : List[str] = bos_dist_proc(__lowercase , __lowercase , cur_len=__lowercase ) __UpperCAmelCase : List[Any] = eos_dist_proc(__lowercase , __lowercase , cur_len=__lowercase ) return scores # with processor list def run_processor_list(__lowercase : List[str] , __lowercase : Dict , __lowercase : Tuple ): __UpperCAmelCase : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __UpperCAmelCase : str = processor(__lowercase , __lowercase , cur_len=__lowercase ) return scores __UpperCAmelCase : List[Any] = jax.jit(__lowercase ) __UpperCAmelCase : Union[str, Any] = jax.jit(__lowercase ) __UpperCAmelCase : List[str] = jitted_run_no_processor_list(__lowercase , __lowercase , __lowercase ) __UpperCAmelCase : Dict = jitted_run_processor_list(__lowercase , __lowercase , __lowercase ) # scores should be equal self.assertTrue(jnp.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
114
from math import log from scipy.constants import Boltzmann, physical_constants a : Any = 300 # TEMPERATURE (unit = K) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
114
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Any = None A__ : Dict = logging.get_logger(__name__) A__ : str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A__ : int = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } A__ : Optional[Any] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } A__ : Any = '▁' # Segments (not really needed) A__ : Any = 0 A__ : List[Any] = 1 A__ : int = 2 A__ : Optional[Any] = 3 A__ : Tuple = 4 class lowercase__ ( snake_case__ ): _UpperCAmelCase :Tuple = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[Any] = "left" _UpperCAmelCase :List[str] = XLNetTokenizer def __init__( self : int , snake_case__ : List[str]=None , snake_case__ : int=None , snake_case__ : Union[str, Any]=False , snake_case__ : Any=True , snake_case__ : str=False , snake_case__ : Optional[Any]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<unk>" , snake_case__ : int="<sep>" , snake_case__ : str="<pad>" , snake_case__ : Optional[int]="<cls>" , snake_case__ : Union[str, Any]="<mask>" , snake_case__ : int=["<eop>", "<eod>"] , **snake_case__ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCamelCase_ : str =3 lowerCamelCase_ : Dict =do_lower_case lowerCamelCase_ : Optional[Any] =remove_space lowerCamelCase_ : Optional[int] =keep_accents lowerCamelCase_ : str =vocab_file lowerCamelCase_ : Dict =False if not self.vocab_file else True def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : Tuple =[self.sep_token_id] lowerCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : str =[self.sep_token_id] lowerCamelCase_ : Optional[int] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Any =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
209
"""simple docstring""" def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : list[int] , lowerCamelCase__ : int ) -> bool: # Base Case if curr_ind == len(lowerCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowerCamelCase__ ) ): if valid_connection(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # Insert current vertex into path as next transition lowerCamelCase_ : Tuple =next_ver # Validate created path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , curr_ind + 1 ): return True # Backtrack lowerCamelCase_ : int =-1 return False def _snake_case ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : int = 0 ) -> list[int]: lowerCamelCase_ : Optional[Any] =[-1] * (len(lowerCamelCase__ ) + 1) # initialize start and end of path with starting index lowerCamelCase_ : Optional[int] =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowerCamelCase__ , lowerCamelCase__ , 1 ) else []
209
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase : def __init__( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : Tuple=24 , UpperCAmelCase : Any=2 , UpperCAmelCase : Tuple=6 , UpperCAmelCase : int=37 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : int=2 , UpperCAmelCase : List[str]=0.0_2 , UpperCAmelCase : int=3 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : str=1000 , ) -> int: lowerCamelCase__ : List[str] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : Tuple = seq_length lowerCamelCase__ : Any = is_training lowerCamelCase__ : Optional[int] = use_input_mask lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : str = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Dict = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : int = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Optional[Any] = type_vocab_size lowerCamelCase__ : int = type_sequence_label_size lowerCamelCase__ : str = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : List[str] = scope lowerCamelCase__ : str = range_bbox def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__ : Union[str, Any] = bbox[i, j, 3] lowerCamelCase__ : List[str] = bbox[i, j, 1] lowerCamelCase__ : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__ : Optional[int] = bbox[i, j, 2] lowerCamelCase__ : str = bbox[i, j, 0] lowerCamelCase__ : str = t lowerCamelCase__ : Any = None if self.use_input_mask: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCamelCase__ : List[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Tuple = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : List[str] ) -> Tuple: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A_ ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , ) -> List[str]: lowerCamelCase__ : str = LiltModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : str = model(UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , bbox=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , ) -> int: lowerCamelCase__ : Tuple = self.num_labels lowerCamelCase__ : List[str] = LiltForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , ) -> Any: lowerCamelCase__ : Optional[int] = LiltForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Optional[int] = config_and_inputs lowerCamelCase__ : Any = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> Tuple: return True def A_ ( self : Union[str, Any] ) -> int: lowerCamelCase__ : int = LiltModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A_ ( self : int ) -> Tuple: self.config_tester.run_common_tests() def A_ ( self : int ) -> Any: lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Dict ) -> List[Any]: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Union[str, Any] = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Tuple: lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Tuple: lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) @slow def A_ ( self : List[str] ) -> Tuple: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Optional[int] = LiltModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : str ) -> Dict: lowerCamelCase__ : List[str] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(UpperCAmelCase ) lowerCamelCase__ : List[Any] = torch.tensor([[1, 2]] , device=UpperCAmelCase ) lowerCamelCase__ : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase ) lowerCamelCase__ : List[str] = torch.Size([1, 2, 768] ) lowerCamelCase__ : Any = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase , atol=1e-3 ) )
50
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Union[str, Any]): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding='utf-8' ,check=SCREAMING_SNAKE_CASE__ ,) assert hasattr(self ,'env') def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int): # configuration for running training on smdistributed Model Parallel __lowerCamelCase : Any = { 'enabled': True, 'processes_per_host': 8, } __lowerCamelCase : List[Any] = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __lowerCamelCase : str = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __lowerCamelCase : List[str] = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" ,instance_count=SCREAMING_SNAKE_CASE__ ,instance_type=self.instance_type ,debugger_hook_config=SCREAMING_SNAKE_CASE__ ,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_0_0, } ,metric_definitions=self.env.metric_definitions ,distribution=SCREAMING_SNAKE_CASE__ ,py_version='py36' ,) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any): TrainingJobAnalytics(SCREAMING_SNAKE_CASE__).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(1,)]) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): # create estimator __lowerCamelCase : str = self.create_estimator(SCREAMING_SNAKE_CASE__) # run training estimator.fit() # result dataframe __lowerCamelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) __lowerCamelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase : str = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' ,9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" ,'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,SCREAMING_SNAKE_CASE__)
73
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _A : Union[str, Any] =object() # For specifying empty leaf dict `{}` _A : Any =object() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Dict: lowerCamelCase__ : Tuple = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(UpperCamelCase ) - len(UpperCamelCase ) + 1 ): lowerCamelCase__ : Optional[Any] = [x.match(UpperCamelCase ) for x, y in zip(UpperCamelCase , ks[i:] )] if matches and all(UpperCamelCase ): return True return False def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[Any]: def replace(UpperCamelCase , UpperCamelCase ): for rule, replacement in rules: if _match(UpperCamelCase , UpperCamelCase ): return replacement return val return replace def SCREAMING_SNAKE_CASE_ () -> Optional[int]: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""" , UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Any = _get_partition_rules() lowerCamelCase__ : List[str] = _replacement_rules(UpperCamelCase ) lowerCamelCase__ : List[Any] = {k: _unmatched for k in flatten_dict(UpperCamelCase )} lowerCamelCase__ : Optional[Any] = {k: replace(UpperCamelCase , UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase ) )
129
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> list[str]: if nth_term == "": return [""] lowerCamelCase__ : str = int(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = int(UpperCamelCase ) lowerCamelCase__ : list[str] = [] for temp in range(int(UpperCamelCase ) ): series.append(f'''1 / {pow(temp + 1 , int(UpperCamelCase ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() _A : Optional[Any] =int(input('''Enter the last number (nth term) of the P-Series''')) _A : List[str] =int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
129
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __A( unittest.TestCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=4 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_attention_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_choices def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_attention_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=SCREAMING_SNAKE_CASE_ , ) return config, input_ids, attention_mask def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ (self ): UpperCamelCase__ = FlaxDistilBertModelTester(self ) @slow def UpperCAmelCase_ (self ): for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class __A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase__ = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) UpperCamelCase__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase__ = (1, 11, 7_68) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
244
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __A( nn.Module ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 88 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "geglu" , SCREAMING_SNAKE_CASE_ = None , ): super().__init__() UpperCamelCase__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=SCREAMING_SNAKE_CASE_ , attention_head_dim=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , norm_num_groups=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , sample_size=SCREAMING_SNAKE_CASE_ , num_vector_embeds=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , num_embeds_ada_norm=SCREAMING_SNAKE_CASE_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCamelCase__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCamelCase__ = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCamelCase__ = [1, 0] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ): UpperCamelCase__ = hidden_states UpperCamelCase__ = [] UpperCamelCase__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCamelCase__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCamelCase__ = self.transformer_index_for_condition[i] UpperCamelCase__ = self.transformers[transformer_index]( SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCamelCase__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCamelCase__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=SCREAMING_SNAKE_CASE_ )
244
1
'''simple docstring''' def _A ( _lowerCAmelCase = 50 ): """simple docstring""" __lowercase =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
48
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """bart""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , _lowerCAmelCase : Any=5_0_2_6_5 , _lowerCAmelCase : Optional[Any]=1_0_2_4 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Any=4_0_9_6 , _lowerCAmelCase : List[str]=1_6 , _lowerCAmelCase : List[Any]=1_2 , _lowerCAmelCase : Dict=4_0_9_6 , _lowerCAmelCase : Optional[Any]=1_6 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : str=1_0_2_4 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : str=2 , **_lowerCAmelCase : Optional[int] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =max_position_embeddings __lowercase =d_model __lowercase =encoder_ffn_dim __lowercase =encoder_layers __lowercase =encoder_attention_heads __lowercase =decoder_ffn_dim __lowercase =decoder_layers __lowercase =decoder_attention_heads __lowercase =dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =activation_function __lowercase =init_std __lowercase =encoder_layerdrop __lowercase =decoder_layerdrop __lowercase =classifier_dropout __lowercase =use_cache __lowercase =encoder_layers __lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , _lowerCAmelCase): __lowercase =self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ 'The config can simply be saved and uploaded again to be fixed.') class _UpperCamelCase ( A ): '''simple docstring''' @property def __lowerCamelCase ( self : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase ={0: 'batch'} __lowercase ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase ={0: 'batch', 1: 'decoder_sequence'} __lowercase ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super().outputs else: __lowercase =super(_lowerCAmelCase , self).outputs if self.use_past: __lowercase , __lowercase =self.num_layers for i in range(_lowerCAmelCase): __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} __lowercase ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # Generate decoder inputs __lowercase =seq_length if not self.use_past else 1 __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) __lowercase ={f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowercase =dict(**_lowerCAmelCase , **_lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape __lowercase =common_inputs['decoder_input_ids'].shape[1] __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =decoder_seq_length + 3 __lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase)] , dim=1) __lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase =self.num_layers __lowercase =min(_lowerCAmelCase , _lowerCAmelCase) __lowercase =max(_lowerCAmelCase , _lowerCAmelCase) - min_num_layers __lowercase ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase), )) # TODO: test this. __lowercase =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase))) return common_inputs def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch __lowercase , __lowercase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase =seqlen + 2 __lowercase , __lowercase =self.num_layers __lowercase , __lowercase =self.num_attention_heads __lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase =common_inputs['attention_mask'].dtype __lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase)] , dim=1) __lowercase =[ (torch.zeros(_lowerCAmelCase), torch.zeros(_lowerCAmelCase)) for _ in range(_lowerCAmelCase) ] return common_inputs def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase =tokenizer.num_special_tokens_to_add(_lowerCAmelCase) __lowercase =compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase) # Generate dummy inputs according to compute batch and sequence __lowercase =[' '.join([tokenizer.unk_token]) * seq_length] * batch_size __lowercase =dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase)) return common_inputs def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) elif self.task == "causal-lm": __lowercase =self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) else: __lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase) return common_inputs def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __lowercase =super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) else: __lowercase =super(_lowerCAmelCase , self)._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
48
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Union[str, Any] = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys snake_case_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
125
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
125
1
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class a ( lowerCAmelCase_ ): _snake_case : Optional[Any] = 'masked_bert' def __init__( self : Dict , __lowerCAmelCase : Union[str, Any]=3_0522 , __lowerCAmelCase : List[Any]=768 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Optional[Any]=12 , __lowerCAmelCase : Any=3072 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[Any]=512 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : str=1e-1_2 , __lowerCAmelCase : Union[str, Any]=0 , __lowerCAmelCase : Optional[int]="topK" , __lowerCAmelCase : Dict="constant" , __lowerCAmelCase : List[Any]=0.0 , **__lowerCAmelCase : Tuple , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = pruning_method _UpperCAmelCase = mask_init _UpperCAmelCase = mask_scale
30
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _snake_case : Dict = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : List[str] = False def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int=False ): _UpperCAmelCase = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( lowerCAmelCase_ ): def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : str=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=99 , __lowerCAmelCase : Optional[int]=32 , __lowerCAmelCase : str=32 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : int=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = TFMobileBertModel(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ): _UpperCAmelCase = TFMobileBertForMaskedLM(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ): _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFMobileBertForPreTraining(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__lowerCAmelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__lowerCAmelCase ) _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = [1, 6, 3_0522] self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 )
30
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _a = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _a = spec.loader.load_module() _a = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _a = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") _a = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowerCAmelCase__() -> List[str]: '''simple docstring''' lowerCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCamelCase__ = False # source code of `config_class` lowerCamelCase__ = inspect.getsource(__snake_case ) lowerCamelCase__ = _re_checkpoint.findall(__snake_case ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCamelCase__ , lowerCamelCase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__ = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: lowerCamelCase__ = True break lowerCamelCase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__snake_case ) if len(__snake_case ) > 0: lowerCamelCase__ = '''\n'''.join(sorted(__snake_case ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
209
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """yolos""" def __init__( self , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=[5_1_2, 8_6_4] , __lowerCAmelCase=1_6 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=1_0_0 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = qkv_bias lowerCamelCase__ = num_detection_tokens lowerCamelCase__ = use_mid_position_embeddings lowerCamelCase__ = auxiliary_loss # Hungarian matcher lowerCamelCase__ = class_cost lowerCamelCase__ = bbox_cost lowerCamelCase__ = giou_cost # Loss coefficients lowerCamelCase__ = bbox_loss_coefficient lowerCamelCase__ = giou_loss_coefficient lowerCamelCase__ = eos_coefficient class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4 @property def __lowerCamelCase ( self ): '''simple docstring''' return 1_2
209
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) snake_case : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Any = self.dummy_uncond_unet snake_case : Tuple = KarrasVeScheduler() snake_case : int = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : Dict = torch.manual_seed(0 ) snake_case : Dict = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type="numpy" , return_dict=UpperCamelCase__ )[0] snake_case : Tuple = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : int = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = "google/ncsnpp-celebahq-256" snake_case : List[str] = UNetaDModel.from_pretrained(UpperCamelCase__ ) snake_case : Optional[Any] = KarrasVeScheduler() snake_case : Optional[int] = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : Dict = torch.manual_seed(0 ) snake_case : Union[str, Any] = pipe(num_inference_steps=20 , generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case : Any = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
363
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __snake_case = data_utils.TransfoXLTokenizer __snake_case = data_utils.TransfoXLCorpus __snake_case = data_utils __snake_case = data_utils def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowercase , "rb" ) as fp: snake_case : int = pickle.load(lowercase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) snake_case : int = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) snake_case : str = corpus.vocab.__dict__ torch.save(lowercase , lowercase ) snake_case : str = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , lowercase ) snake_case : Dict = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(lowercase , lowercase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model snake_case : Union[str, Any] = os.path.abspath(lowercase ) snake_case : str = os.path.abspath(lowercase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": snake_case : int = TransfoXLConfig() else: snake_case : Optional[int] = TransfoXLConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) snake_case : str = TransfoXLLMHeadModel(lowercase ) snake_case : str = load_tf_weights_in_transfo_xl(lowercase , lowercase , lowercase ) # Save pytorch-model snake_case : Union[str, Any] = os.path.join(lowercase , lowercase ) snake_case : Optional[Any] = os.path.join(lowercase , lowercase ) print(F'Save PyTorch model to {os.path.abspath(lowercase )}' ) torch.save(model.state_dict() , lowercase ) print(F'Save configuration file to {os.path.abspath(lowercase )}' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) __snake_case = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
112
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __snake_case : Union[str, Any] =True except ImportError: __snake_case : Dict =False __snake_case : Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCAmelCase__ ( lowerCamelCase_ : Namespace): '''simple docstring''' return AddNewModelCommand(args.testing ,args.testing_file ,path=args.path) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @staticmethod def lowerCAmelCase__ (__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' ,action='''store_true''' ,help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' ,type=__lowerCamelCase ,help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' ,type=__lowerCamelCase ,help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__lowerCamelCase ) def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase=None ,*__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = testing lowerCAmelCase__ : Union[str, Any] = testing_file lowerCAmelCase__ : Optional[Any] = path def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase__ : Optional[Any] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__lowerCamelCase ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) lowerCAmelCase__ : Optional[int] = ( Path(__lowerCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase__ : Any = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__lowerCamelCase ) ) else: with open(self._testing_file ,'''r''' ) as configuration_file: lowerCAmelCase__ : str = json.load(__lowerCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=__lowerCamelCase ,extra_context=__lowerCamelCase ,) lowerCAmelCase__ : int = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' ,'''r''' ) as configuration_file: lowerCAmelCase__ : List[str] = json.load(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = configuration['''lowercase_modelname'''] lowerCAmelCase__ : Optional[Any] = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) lowerCAmelCase__ : List[str] = '''PyTorch''' in generate_tensorflow_pytorch_and_flax lowerCAmelCase__ : Optional[Any] = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax lowerCAmelCase__ : int = '''Flax''' in generate_tensorflow_pytorch_and_flax lowerCAmelCase__ : List[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" ,exist_ok=__lowerCamelCase ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" ,'''w''' ): pass shutil.move( f"""{directory}/__init__.py""" ,f"""{model_dir}/__init__.py""" ,) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" ,f"""{model_dir}/configuration_{lowercase_model_name}.py""" ,) def remove_copy_lines(__lowerCamelCase ): with open(__lowerCamelCase ,'''r''' ) as f: lowerCAmelCase__ : Any = f.readlines() with open(__lowerCamelCase ,'''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__lowerCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" ,f"""{model_dir}/modeling_{lowercase_model_name}.py""" ,) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" ,f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" ,) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ,f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" ,) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ,f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" ,) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ,f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" ,) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ,f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" ,) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" ,f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" ,) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" ,f"""{model_dir}/tokenization_{lowercase_model_name}.py""" ,) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" ,f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): # Create temp file lowerCAmelCase__ , lowerCAmelCase__ : Any = mkstemp() lowerCAmelCase__ : int = False with fdopen(__lowerCamelCase ,'''w''' ) as new_file: with open(__lowerCamelCase ) as old_file: for line in old_file: new_file.write(__lowerCamelCase ) if line_to_copy_below in line: lowerCAmelCase__ : Union[str, Any] = True for line_to_copy in lines_to_copy: new_file.write(__lowerCamelCase ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__lowerCamelCase ,__lowerCamelCase ) # Remove original file remove(__lowerCamelCase ) # Move new file move(__lowerCamelCase ,__lowerCamelCase ) def skip_units(__lowerCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__lowerCamelCase ): with open(__lowerCamelCase ) as datafile: lowerCAmelCase__ : Any = [] lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Dict = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase__ : Optional[Any] = line.split('''"''' )[1] lowerCAmelCase__ : Tuple = skip_units(__lowerCamelCase ) elif "# Below: " in line and "##" not in line: lowerCAmelCase__ : Any = line.split('''"''' )[1] lowerCAmelCase__ : List[str] = skip_units(__lowerCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase__ : str = [] elif "##" not in line: lines_to_copy.append(__lowerCamelCase ) remove(__lowerCamelCase ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__lowerCamelCase )
129
def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]]): '''simple docstring''' lowerCAmelCase__ : list[list[float]] = [] for data in source_data: for i, el in enumerate(lowerCamelCase_): if len(lowerCamelCase_) < i + 1: data_lists.append([]) data_lists[i].append(float(lowerCamelCase_)) return data_lists def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]] ,lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : list[list[float]] = [] for dlist, weight in zip(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : str = min(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = max(lowerCamelCase_) lowerCAmelCase__ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: lowerCAmelCase__ : Optional[int] = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowerCamelCase_) score_lists.append(lowerCamelCase_) return score_lists def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]]): '''simple docstring''' lowerCAmelCase__ : list[float] = [0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(lowerCamelCase_): lowerCAmelCase__ : str = final_scores[j] + ele return final_scores def lowerCAmelCase__ ( lowerCamelCase_ : list[list[float]] ,lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : Optional[int] = get_data(lowerCamelCase_) lowerCAmelCase__ : Dict = calculate_each_score(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = generate_final_scores(lowerCamelCase_) # append scores to source data for i, ele in enumerate(lowerCamelCase_): source_data[i].append(lowerCamelCase_) return source_data
129
1
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ): """simple docstring""" def count_of_possible_combinations(UpperCAmelCase_ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ): """simple docstring""" def count_of_possible_combinations_with_dp_array( UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] a :List[Any] = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCAmelCase_ ) for item in array ) a :int = answer return answer a :int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ): """simple docstring""" a :List[str] = [0] * (target + 1) a :Any = 1 for i in range(1 , target + 1 ): for j in range(UpperCAmelCase_ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() snake_case : Optional[int] = 3 snake_case : List[Any] = 5 snake_case : Any = [1, 2, 5] print(combination_sum_iv(n, array, target))
281
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = CycleDiffusionPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {'latents'} SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) SCREAMING_SNAKE_CASE__ = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) a :List[str] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) a :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) a :Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a :str = CLIPTextModel(_lowerCamelCase ) a :List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a :Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :Tuple = image / 2 + 0.5 if str(_lowerCamelCase ).startswith('''mps''' ): a :List[str] = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :int = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator a :Optional[Any] = self.get_dummy_components() a :Dict = CycleDiffusionPipeline(**_lowerCamelCase ) a :Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :List[str] = self.get_dummy_inputs(_lowerCamelCase ) a :Any = pipe(**_lowerCamelCase ) a :List[Any] = output.images a :str = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a :List[Any] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowerCamelCase , '''half''' ): a :Union[str, Any] = module.half() a :List[Any] = CycleDiffusionPipeline(**_lowerCamelCase ) a :Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Tuple = self.get_dummy_inputs(_lowerCamelCase ) a :Optional[int] = pipe(**_lowerCamelCase ) a :Optional[Any] = output.images a :List[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a :str = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def SCREAMING_SNAKE_CASE__ ( self ): return super().test_inference_batch_single_identical() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): a :str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) a :Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) a :Optional[Any] = init_image.resize((512, 512) ) a :List[str] = '''CompVis/stable-diffusion-v1-4''' a :List[str] = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) a :Tuple = CycleDiffusionPipeline.from_pretrained( _lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() a :Optional[Any] = '''A black colored car''' a :Any = '''A blue colored car''' a :str = torch.manual_seed(0 ) a :List[Any] = pipe( prompt=_lowerCamelCase , source_prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCamelCase , output_type='''np''' , ) a :int = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def SCREAMING_SNAKE_CASE__ ( self ): a :str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) a :Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) a :List[str] = init_image.resize((512, 512) ) a :List[str] = '''CompVis/stable-diffusion-v1-4''' a :Any = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) a :int = CycleDiffusionPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() a :Optional[int] = '''A black colored car''' a :Any = '''A blue colored car''' a :Optional[int] = torch.manual_seed(0 ) a :Union[str, Any] = pipe( prompt=_lowerCamelCase , source_prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCamelCase , output_type='''np''' , ) a :Optional[int] = output.images assert np.abs(image - expected_image ).max() < 2e-2
281
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig SCREAMING_SNAKE_CASE__ : Tuple = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """albert""" def __init__( self , UpperCamelCase__=3_0000 , UpperCamelCase__=128 , UpperCamelCase__=4096 , UpperCamelCase__=12 , UpperCamelCase__=1 , UpperCamelCase__=64 , UpperCamelCase__=1_6384 , UpperCamelCase__=1 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0 , UpperCamelCase__=0 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0.1 , UpperCamelCase__="absolute" , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=3 , **UpperCamelCase__ , ) -> Dict: super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Dict = vocab_size lowerCamelCase : Union[str, Any] = embedding_size lowerCamelCase : Optional[Any] = hidden_size lowerCamelCase : Tuple = num_hidden_layers lowerCamelCase : str = num_hidden_groups lowerCamelCase : str = num_attention_heads lowerCamelCase : str = inner_group_num lowerCamelCase : Any = hidden_act lowerCamelCase : Tuple = intermediate_size lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Dict = max_position_embeddings lowerCamelCase : Union[str, Any] = type_vocab_size lowerCamelCase : int = initializer_range lowerCamelCase : int = layer_norm_eps lowerCamelCase : List[Any] = classifier_dropout_prob lowerCamelCase : Dict = position_embedding_type class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
48
def A ( _SCREAMING_SNAKE_CASE ) -> list: if n_term == "": return [] lowerCamelCase : list = [] for temp in range(int(_SCREAMING_SNAKE_CASE ) ): series.append(f'''1/{temp + 1}''' if series else "1" ) return series if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
48
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ : Any = NewType("DataClass", Any) SCREAMING_SNAKE_CASE__ : List[str] = NewType("DataClassType", Any) def __magic_name__ ( __lowerCAmelCase : Any ) -> int: if isinstance(A_ , A_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def __magic_name__ ( __lowerCAmelCase : List[str] ) -> str: __lowerCamelCase = {str(A_ ): choice for choice in choices} return lambda __lowerCAmelCase : str_to_choice.get(A_ , A_ ) def __magic_name__ ( *, __lowerCAmelCase : Any = None , __lowerCAmelCase : List[Any] = None , __lowerCAmelCase : Tuple = dataclasses.MISSING , __lowerCAmelCase : str = dataclasses.MISSING , __lowerCAmelCase : Optional[int] = None , **__lowerCAmelCase : Tuple , ) -> Any: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __lowerCamelCase = {} if aliases is not None: __lowerCamelCase = aliases if help is not None: __lowerCamelCase = help return dataclasses.field(metadata=A_ , default=A_ , default_factory=A_ , **A_ ) class lowerCAmelCase__ ( a_ ): a__ : Optional[int] = 42 def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[DataClassType, Iterable[DataClassType]] , **SCREAMING_SNAKE_CASE__ : str ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: __lowerCamelCase = ArgumentDefaultsHelpFormatter super().__init__(**lowercase_ ) if dataclasses.is_dataclass(lowercase_ ): __lowerCamelCase = [dataclass_types] __lowerCamelCase = list(lowercase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase_ ) @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : ArgumentParser , SCREAMING_SNAKE_CASE__ : dataclasses.Field ) -> List[Any]: __lowerCamelCase = f'''--{field.name}''' __lowerCamelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowercase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __lowerCamelCase = kwargs.pop('''aliases''' , [] ) if isinstance(lowercase_ , lowercase_ ): __lowerCamelCase = [aliases] __lowerCamelCase = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowercase_ , '''UnionType''' ) and isinstance(lowercase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f''' Problem encountered in field \'{field.name}\'.''' ) if type(lowercase_ ) not in field.type.__args__: # filter `str` in Union __lowerCamelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __lowerCamelCase = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __lowerCamelCase = ( field.type.__args__[0] if isinstance(lowercase_ , field.type.__args__[1] ) else field.type.__args__[1] ) __lowerCamelCase = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __lowerCamelCase = {} if origin_type is Literal or (isinstance(field.type , lowercase_ ) and issubclass(field.type , lowercase_ )): if origin_type is Literal: __lowerCamelCase = field.type.__args__ else: __lowerCamelCase = [x.value for x in field.type] __lowerCamelCase = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __lowerCamelCase = field.default else: __lowerCamelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __lowerCamelCase = copy(lowercase_ ) # Hack because type=bool in argparse does not behave as we want. __lowerCamelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __lowerCamelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __lowerCamelCase = default # This tells argparse we accept 0 or 1 value after --field_name __lowerCamelCase = '''?''' # This is the value that will get picked if we do --field_name (without value) __lowerCamelCase = True elif isclass(lowercase_ ) and issubclass(lowercase_ , lowercase_ ): __lowerCamelCase = field.type.__args__[0] __lowerCamelCase = '''+''' if field.default_factory is not dataclasses.MISSING: __lowerCamelCase = field.default_factory() elif field.default is dataclasses.MISSING: __lowerCamelCase = True else: __lowerCamelCase = field.type if field.default is not dataclasses.MISSING: __lowerCamelCase = field.default elif field.default_factory is not dataclasses.MISSING: __lowerCamelCase = field.default_factory() else: __lowerCamelCase = True parser.add_argument(lowercase_ , *lowercase_ , **lowercase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __lowerCamelCase = False parser.add_argument(f'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **lowercase_ ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : DataClassType ) -> Optional[int]: if hasattr(lowercase_ , '''_argument_group_name''' ): __lowerCamelCase = self.add_argument_group(dtype._argument_group_name ) else: __lowerCamelCase = self try: __lowerCamelCase = get_type_hints(lowercase_ ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowercase_ ): __lowerCamelCase = '''.'''.join(map(lowercase_ , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase_ ): if not field.init: continue __lowerCamelCase = type_hints[field.name] self._parse_dataclass_field(lowercase_ , lowercase_ ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> str: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __lowerCamelCase = [] if args_filename: args_files.append(Path(lowercase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __lowerCamelCase = ArgumentParser() args_file_parser.add_argument(lowercase_ , type=lowercase_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __lowerCamelCase = args_file_parser.parse_known_args(args=lowercase_ ) __lowerCamelCase = vars(lowercase_ ).get(args_file_flag.lstrip('''-''' ) , lowercase_ ) if cmd_args_file_paths: args_files.extend([Path(lowercase_ ) for p in cmd_args_file_paths] ) __lowerCamelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __lowerCamelCase = file_args + args if args is not None else file_args + sys.argv[1:] __lowerCamelCase = self.parse_known_args(args=lowercase_ ) __lowerCamelCase = [] for dtype in self.dataclass_types: __lowerCamelCase = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} __lowerCamelCase = {k: v for k, v in vars(lowercase_ ).items() if k in keys} for k in keys: delattr(lowercase_ , lowercase_ ) __lowerCamelCase = dtype(**lowercase_ ) outputs.append(lowercase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : Dict[str, Any] , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[Any]: __lowerCamelCase = set(args.keys() ) __lowerCamelCase = [] for dtype in self.dataclass_types: __lowerCamelCase = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} __lowerCamelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __lowerCamelCase = dtype(**lowercase_ ) outputs.append(lowercase_ ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(lowercase_ )}''' ) return tuple(lowercase_ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ) -> Dict: with open(Path(lowercase_ ) , encoding='''utf-8''' ) as open_json_file: __lowerCamelCase = json.loads(open_json_file.read() ) __lowerCamelCase = self.parse_dict(lowercase_ , allow_extra_keys=lowercase_ ) return tuple(lowercase_ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ) -> int: __lowerCamelCase = self.parse_dict(yaml.safe_load(Path(lowercase_ ).read_text() ) , allow_extra_keys=lowercase_ ) return tuple(lowercase_ )
358
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :int = ['input_features', 'attention_mask'] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any=8_0 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6_0_0_0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_5 , SCREAMING_SNAKE_CASE_ : str="hamming_window" , SCREAMING_SNAKE_CASE_ : Dict=3_27_68.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.97 , SCREAMING_SNAKE_CASE_ : Any=1.0 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> Optional[int]: super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = feature_size lowercase_ = sampling_rate lowercase_ = padding_value lowercase_ = hop_length lowercase_ = win_length lowercase_ = frame_signal_scale lowercase_ = preemphasis_coeff lowercase_ = mel_floor lowercase_ = normalize_means lowercase_ = normalize_vars lowercase_ = win_function lowercase_ = return_attention_mask lowercase_ = win_length * sampling_rate // 1_0_0_0 lowercase_ = hop_length * sampling_rate // 1_0_0_0 lowercase_ = optimal_fft_length(self.sample_size ) lowercase_ = (self.n_fft // 2) + 1 def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : np.array ) -> np.ndarray: if self.win_function == "hamming_window": lowercase_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=SCREAMING_SNAKE_CASE_ ) else: lowercase_ = window_function(window_length=self.sample_size , name=self.win_function ) lowercase_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) lowercase_ = spectrogram( one_waveform * self.frame_signal_scale , window=SCREAMING_SNAKE_CASE_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=SCREAMING_SNAKE_CASE_ , preemphasis=self.preemphasis_coeff , mel_filters=SCREAMING_SNAKE_CASE_ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: # make sure we normalize float32 arrays if self.normalize_means: lowercase_ = x[:input_length].mean(axis=0 ) lowercase_ = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.normalize_vars: lowercase_ = x[:input_length].std(axis=0 ) lowercase_ = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: lowercase_ = padding_value # make sure array is in float32 lowercase_ = x.astype(np.floataa ) return x def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: lowercase_ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase_ = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowercase_ = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): lowercase_ = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ = [raw_speech] # extract fbank features lowercase_ = [self._extract_mfsc_features(SCREAMING_SNAKE_CASE_ ) for one_waveform in raw_speech] # convert into correct format for padding lowercase_ = BatchFeature({'''input_features''': features} ) lowercase_ = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format lowercase_ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): lowercase_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] lowercase_ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: lowercase_ = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase_ = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase_ = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: lowercase_ = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
30
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = 'upernet' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : str=5_1_2 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_8_4 , SCREAMING_SNAKE_CASE_ : str=2_5_6 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : str=2_5_5 , **SCREAMING_SNAKE_CASE_ : str , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = backbone_config.get('''model_type''' ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) lowercase_ = backbone_config lowercase_ = hidden_size lowercase_ = initializer_range lowercase_ = pool_scales lowercase_ = use_auxiliary_head lowercase_ = auxiliary_loss_weight lowercase_ = auxiliary_in_channels lowercase_ = auxiliary_channels lowercase_ = auxiliary_num_convs lowercase_ = auxiliary_concat_input lowercase_ = loss_ignore_index def _lowercase ( self : List[str] ) -> List[str]: lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
30
1
from math import factorial def A ( _lowerCamelCase = 100 ): '''simple docstring''' return sum(int(_lowerCamelCase ) for x in str(factorial(_lowerCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BeitFeatureExtractor"] _snake_case = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCamelCase__ = HfApi() lowerCamelCase__ = {} # fmt: off lowerCamelCase__ = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowerCamelCase__ = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowerCamelCase__ = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowerCamelCase__ = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowerCamelCase__ = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowerCamelCase__ = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowerCamelCase__ = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowerCamelCase__ = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowerCamelCase__ = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowerCamelCase__ = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowerCamelCase__ = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowerCamelCase__ = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowerCamelCase__ = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowerCamelCase__ = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowerCamelCase__ = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowerCamelCase__ = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCamelCase__ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('/')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('CompVis'): lowerCamelCase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowerCamelCase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCamelCase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCamelCase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCamelCase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
234
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase__ : List[Any] = { '''E''': 1_2.7_0, '''T''': 9.0_6, '''A''': 8.1_7, '''O''': 7.5_1, '''I''': 6.9_7, '''N''': 6.7_5, '''S''': 6.3_3, '''H''': 6.0_9, '''R''': 5.9_9, '''D''': 4.2_5, '''L''': 4.0_3, '''C''': 2.7_8, '''U''': 2.7_6, '''M''': 2.4_1, '''W''': 2.3_6, '''F''': 2.2_3, '''G''': 2.0_2, '''Y''': 1.9_7, '''P''': 1.9_3, '''B''': 1.2_9, '''V''': 0.9_8, '''K''': 0.7_7, '''J''': 0.1_5, '''X''': 0.1_5, '''Q''': 0.1_0, '''Z''': 0.0_7, } UpperCamelCase__ : Optional[Any] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' UpperCamelCase__ : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : int = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCAmelCase_ ( _lowerCamelCase: tuple ): return x[0] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = get_letter_count(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = """""".join(freq_to_letter[freq] ) __SCREAMING_SNAKE_CASE : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCamelCase , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = get_frequency_order(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
112
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np __lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) __lowercase = None def lowerCAmelCase (): """simple docstring""" __UpperCamelCase =argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__UpperCamelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__UpperCamelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" __UpperCamelCase ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCamelCase =bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def lowerCAmelCase (__UpperCamelCase : Any ): """simple docstring""" def remove_articles(__UpperCamelCase : str ): return ARTICLES_REGEX.sub(''' ''' , __UpperCamelCase ) def white_space_fix(__UpperCamelCase : str ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase : Tuple ): __UpperCamelCase =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def lowerCAmelCase (__UpperCamelCase : Tuple ): """simple docstring""" if not s: return [] return normalize_answer(__UpperCamelCase ).split() def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : int ): """simple docstring""" return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ): """simple docstring""" __UpperCamelCase =get_tokens(__UpperCamelCase ) __UpperCamelCase =get_tokens(__UpperCamelCase ) __UpperCamelCase =collections.Counter(__UpperCamelCase ) & collections.Counter(__UpperCamelCase ) __UpperCamelCase =sum(common.values() ) if len(__UpperCamelCase ) == 0 or len(__UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __UpperCamelCase =1.0 * num_same / len(__UpperCamelCase ) __UpperCamelCase =1.0 * num_same / len(__UpperCamelCase ) __UpperCamelCase =(2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase ={} __UpperCamelCase ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __UpperCamelCase =qa['''id'''] __UpperCamelCase =[t for t in qa['''answers''']['''text'''] if normalize_answer(__UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __UpperCamelCase =[''''''] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue __UpperCamelCase =preds[qid] # Take max over all gold answers __UpperCamelCase =max(compute_exact(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) __UpperCamelCase =max(compute_fa(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def lowerCAmelCase (__UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ): """simple docstring""" __UpperCamelCase ={} for qid, s in scores.items(): __UpperCamelCase =na_probs[qid] > na_prob_thresh if pred_na: __UpperCamelCase =float(not qid_to_has_ans[qid] ) else: __UpperCamelCase =s return new_scores def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict=None ): """simple docstring""" if not qid_list: __UpperCamelCase =len(__UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __UpperCamelCase =len(__UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): """simple docstring""" for k in new_eval: __UpperCamelCase =new_eval[k] def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): """simple docstring""" plt.step(__UpperCamelCase , __UpperCamelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__UpperCamelCase , __UpperCamelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(__UpperCamelCase ) plt.savefig(__UpperCamelCase ) plt.clf() def lowerCAmelCase (__UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=None ): """simple docstring""" __UpperCamelCase =sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) __UpperCamelCase =0.0 __UpperCamelCase =1.0 __UpperCamelCase =0.0 __UpperCamelCase =[1.0] __UpperCamelCase =[0.0] __UpperCamelCase =0.0 for i, qid in enumerate(__UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] __UpperCamelCase =true_pos / float(i + 1 ) __UpperCamelCase =true_pos / float(__UpperCamelCase ) if i == len(__UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCamelCase ) recalls.append(__UpperCamelCase ) if out_image: plot_pr_curve(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return {"ap": 1_0_0.0 * avg_prec} def lowerCAmelCase (__UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): """simple docstring""" if out_image_dir and not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) __UpperCamelCase =sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __UpperCamelCase =make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __UpperCamelCase =make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __UpperCamelCase ={k: float(__UpperCamelCase ) for k, v in qid_to_has_ans.items()} __UpperCamelCase =make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_exact''' ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_f1''' ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''pr_oracle''' ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ): """simple docstring""" if not qid_list: return __UpperCamelCase =[na_probs[k] for k in qid_list] __UpperCamelCase =np.ones_like(__UpperCamelCase ) / float(len(__UpperCamelCase ) ) plt.hist(__UpperCamelCase , weights=__UpperCamelCase , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(__UpperCamelCase , F"""na_prob_hist_{name}.png""" ) ) plt.clf() def lowerCAmelCase (__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Dict ): """simple docstring""" __UpperCamelCase =sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __UpperCamelCase =num_no_ans __UpperCamelCase =cur_score __UpperCamelCase =0.0 __UpperCamelCase =sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) for i, qid in enumerate(__UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: __UpperCamelCase =scores[qid] else: if preds[qid]: __UpperCamelCase =-1 else: __UpperCamelCase =0 cur_score += diff if cur_score > best_score: __UpperCamelCase =cur_score __UpperCamelCase =na_probs[qid] return 1_0_0.0 * best_score / len(__UpperCamelCase ), best_thresh def lowerCAmelCase (__UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ): """simple docstring""" __UpperCamelCase , __UpperCamelCase =find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCamelCase , __UpperCamelCase =find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =best_exact __UpperCamelCase =exact_thresh __UpperCamelCase =best_fa __UpperCamelCase =fa_thresh def lowerCAmelCase (): """simple docstring""" with open(OPTS.data_file ) as f: __UpperCamelCase =json.load(__UpperCamelCase ) __UpperCamelCase =dataset_json['''data'''] with open(OPTS.pred_file ) as f: __UpperCamelCase =json.load(__UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __UpperCamelCase =json.load(__UpperCamelCase ) else: __UpperCamelCase ={k: 0.0 for k in preds} __UpperCamelCase =make_qid_to_has_ans(__UpperCamelCase ) # maps qid to True/False __UpperCamelCase =[k for k, v in qid_to_has_ans.items() if v] __UpperCamelCase =[k for k, v in qid_to_has_ans.items() if not v] __UpperCamelCase , __UpperCamelCase =get_raw_scores(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) __UpperCamelCase =apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) __UpperCamelCase =make_eval_dict(__UpperCamelCase , __UpperCamelCase ) if has_ans_qids: __UpperCamelCase =make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''HasAns''' ) if no_ans_qids: __UpperCamelCase =make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) else: print(json.dumps(__UpperCamelCase , indent=2 ) ) if __name__ == "__main__": __lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
85
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase (__UpperCamelCase : dict , __UpperCamelCase : str , __UpperCamelCase : set , __UpperCamelCase : set , __UpperCamelCase : dict , __UpperCamelCase : dict , __UpperCamelCase : PriorityQueue , __UpperCamelCase : dict , __UpperCamelCase : float | int , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue __UpperCamelCase =cst_fwd.get(__UpperCamelCase , np.inf ) __UpperCamelCase =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __UpperCamelCase =new_cost_f __UpperCamelCase =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __UpperCamelCase =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase (__UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : dict , __UpperCamelCase : dict ): """simple docstring""" __UpperCamelCase =-1 __UpperCamelCase =set() __UpperCamelCase =set() __UpperCamelCase ={source: 0} __UpperCamelCase ={destination: 0} __UpperCamelCase ={source: None} __UpperCamelCase ={destination: None} __UpperCamelCase =PriorityQueue() __UpperCamelCase =PriorityQueue() __UpperCamelCase =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __UpperCamelCase , __UpperCamelCase =queue_forward.get() visited_forward.add(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase =queue_backward.get() visited_backward.add(__UpperCamelCase ) __UpperCamelCase =pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) __UpperCamelCase =pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __UpperCamelCase =shortest_distance return shortest_path_distance __lowercase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowercase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
85
1
def lowerCAmelCase_ ( _snake_case : int = 1000 ) -> int: '''simple docstring''' __magic_name__ , __magic_name__ : Union[str, Any] = 1, 1 __magic_name__ : Optional[int] = [] for i in range(1 , n + 1 ): __magic_name__ : Tuple = prev_numerator + 2 * prev_denominator __magic_name__ : Any = prev_numerator + prev_denominator if len(str(_snake_case ) ) > len(str(_snake_case ) ): result.append(_snake_case ) __magic_name__ : Any = numerator __magic_name__ : int = denominator return len(_snake_case ) if __name__ == "__main__": print(F"{solution() = }")
281
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) snake_case : Optional[int] = logging.getLogger(__name__) def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' __magic_name__ : List[str] = np.argmax(_snake_case , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase_ ( _snake_case : Optional[Any] ) -> Dict: '''simple docstring''' with open(_snake_case , encoding="utf_8" ) as f: __magic_name__ : List[str] = csv.reader(_snake_case ) __magic_name__ : List[Any] = [] next(_snake_case ) # skip the first line for line in tqdm(_snake_case ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase_ ( _snake_case : str , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Optional[int] ) -> int: '''simple docstring''' __magic_name__ : Optional[int] = [] for dataset in encoded_datasets: __magic_name__ : Union[str, Any] = len(_snake_case ) __magic_name__ : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __magic_name__ : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa ) __magic_name__ : Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __magic_name__ : int = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_snake_case ): __magic_name__ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __magic_name__ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __magic_name__ : str = with_conta __magic_name__ : Tuple = with_conta __magic_name__ : Union[str, Any] = len(_snake_case ) - 1 __magic_name__ : int = len(_snake_case ) - 1 __magic_name__ : Optional[Any] = with_conta __magic_name__ : Optional[Any] = with_conta __magic_name__ : Optional[int] = mc_label __magic_name__ : str = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_snake_case ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' __magic_name__ : Any = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_snake_case , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=_snake_case , type=_snake_case , required=_snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=_snake_case , default="" ) parser.add_argument("--eval_dataset" , type=_snake_case , default="" ) parser.add_argument("--seed" , type=_snake_case , default=42 ) parser.add_argument("--num_train_epochs" , type=_snake_case , default=3 ) parser.add_argument("--train_batch_size" , type=_snake_case , default=8 ) parser.add_argument("--eval_batch_size" , type=_snake_case , default=16 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=_snake_case , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=_snake_case , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=_snake_case , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=_snake_case , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=_snake_case , default=6.25E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=_snake_case , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=_snake_case , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=_snake_case , default=0.01 ) parser.add_argument("--lm_coef" , type=_snake_case , default=0.9 ) parser.add_argument("--n_valid" , type=_snake_case , default=374 ) parser.add_argument("--server_ip" , type=_snake_case , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_snake_case , default="" , help="Can be used for distant debugging." ) __magic_name__ : List[Any] = parser.parse_args() print(_snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __magic_name__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __magic_name__ : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(_snake_case , _snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __magic_name__ : List[Any] = ["_start_", "_delimiter_", "_classify_"] __magic_name__ : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_snake_case ) __magic_name__ : Optional[Any] = tokenizer.convert_tokens_to_ids(_snake_case ) __magic_name__ : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_snake_case ) ) model.to(_snake_case ) # Load and encode the datasets def tokenize_and_encode(_snake_case : str ): if isinstance(_snake_case , _snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_snake_case ) ) elif isinstance(_snake_case , _snake_case ): return obj return [tokenize_and_encode(_snake_case ) for o in obj] logger.info("Encoding dataset..." ) __magic_name__ : Optional[int] = load_rocstories_dataset(args.train_dataset ) __magic_name__ : str = load_rocstories_dataset(args.eval_dataset ) __magic_name__ : int = (train_dataset, eval_dataset) __magic_name__ : List[str] = tokenize_and_encode(_snake_case ) # Compute the max input length for the Transformer __magic_name__ : Optional[Any] = model.config.n_positions // 2 - 2 __magic_name__ : Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __magic_name__ : List[str] = min(_snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __magic_name__ : List[Any] = pre_process_datasets(_snake_case , _snake_case , _snake_case , *_snake_case ) __magic_name__ , __magic_name__ : Optional[int] = tensor_datasets[0], tensor_datasets[1] __magic_name__ : Tuple = TensorDataset(*_snake_case ) __magic_name__ : Union[str, Any] = RandomSampler(_snake_case ) __magic_name__ : Dict = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.train_batch_size ) __magic_name__ : Any = TensorDataset(*_snake_case ) __magic_name__ : Optional[Any] = SequentialSampler(_snake_case ) __magic_name__ : int = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __magic_name__ : Tuple = args.max_steps __magic_name__ : List[str] = args.max_steps // (len(_snake_case ) // args.gradient_accumulation_steps) + 1 else: __magic_name__ : List[str] = len(_snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs __magic_name__ : str = list(model.named_parameters() ) __magic_name__ : Dict = ["bias", "LayerNorm.bias", "LayerNorm.weight"] __magic_name__ : str = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] __magic_name__ : str = AdamW(_snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) __magic_name__ : List[str] = get_linear_schedule_with_warmup( _snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=_snake_case ) if args.do_train: __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): __magic_name__ : List[str] = 0 __magic_name__ : Tuple = 0 __magic_name__ : Dict = tqdm(_snake_case , desc="Training" ) for step, batch in enumerate(_snake_case ): __magic_name__ : Optional[Any] = tuple(t.to(_snake_case ) for t in batch ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Dict = batch __magic_name__ : Optional[Any] = model(_snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __magic_name__ : Optional[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __magic_name__ : List[str] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __magic_name__ : int = "Training loss: {:.2e} lr: {:.2e}".format(_snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __magic_name__ : Dict = model.module if hasattr(_snake_case , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __magic_name__ : List[Any] = os.path.join(args.output_dir , _snake_case ) __magic_name__ : Dict = os.path.join(args.output_dir , _snake_case ) torch.save(model_to_save.state_dict() , _snake_case ) model_to_save.config.to_json_file(_snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __magic_name__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __magic_name__ : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_snake_case ) if args.do_eval: model.eval() __magic_name__ , __magic_name__ : Any = 0, 0 __magic_name__ , __magic_name__ : Union[str, Any] = 0, 0 for batch in tqdm(_snake_case , desc="Evaluating" ): __magic_name__ : int = tuple(t.to(_snake_case ) for t in batch ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = batch with torch.no_grad(): __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Dict = model( _snake_case , mc_token_ids=_snake_case , lm_labels=_snake_case , mc_labels=_snake_case ) __magic_name__ : Tuple = mc_logits.detach().cpu().numpy() __magic_name__ : Any = mc_labels.to("cpu" ).numpy() __magic_name__ : str = accuracy(_snake_case , _snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __magic_name__ : Tuple = eval_loss / nb_eval_steps __magic_name__ : List[Any] = eval_accuracy / nb_eval_examples __magic_name__ : int = tr_loss / nb_tr_steps if args.do_train else None __magic_name__ : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} __magic_name__ : int = os.path.join(args.output_dir , "eval_results.txt" ) with open(_snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _snake_case , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
281
1
class lowercase : """simple docstring""" def __init__( self : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase_= data UpperCAmelCase_= previous UpperCAmelCase_= next_node def __str__( self : Tuple ) -> str: return F"""{self.data}""" def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return self.data def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return self.next def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: return self.previous class lowercase : """simple docstring""" def __init__( self : Optional[Any] , __UpperCAmelCase : Dict ) -> Optional[Any]: UpperCAmelCase_= head def __iter__( self : Optional[Any] ) -> Optional[int]: return self def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: if not self.current: raise StopIteration else: UpperCAmelCase_= self.current.get_data() UpperCAmelCase_= self.current.get_next() return value class lowercase : """simple docstring""" def __init__( self : str ) -> int: UpperCAmelCase_= None # First node in list UpperCAmelCase_= None # Last node in list def __str__( self : Any ) -> Tuple: UpperCAmelCase_= self.head UpperCAmelCase_= [] while current is not None: nodes.append(current.get_data() ) UpperCAmelCase_= current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self : Optional[int] , __UpperCAmelCase : int ) -> int: UpperCAmelCase_= self.head while current: if current.get_data() == value: return True UpperCAmelCase_= current.get_next() return False def __iter__( self : Any ) -> Dict: return LinkedListIterator(self.head ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: if self.head: return self.head.get_data() return None def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: if self.tail: return self.tail.get_data() return None def _SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Node ) -> None: if self.head is None: UpperCAmelCase_= node UpperCAmelCase_= node else: self.insert_before_node(self.head , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Node ) -> None: if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : int ) -> None: UpperCAmelCase_= Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Node , __UpperCAmelCase : Node ) -> None: UpperCAmelCase_= node UpperCAmelCase_= node.previous if node.get_previous() is None: UpperCAmelCase_= node_to_insert else: UpperCAmelCase_= node_to_insert UpperCAmelCase_= node_to_insert def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Node , __UpperCAmelCase : Node ) -> None: UpperCAmelCase_= node UpperCAmelCase_= node.next if node.get_next() is None: UpperCAmelCase_= node_to_insert else: UpperCAmelCase_= node_to_insert UpperCAmelCase_= node_to_insert def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> None: UpperCAmelCase_= 1 UpperCAmelCase_= Node(__UpperCAmelCase ) UpperCAmelCase_= self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 UpperCAmelCase_= node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : int ) -> Node: UpperCAmelCase_= self.head while node: if node.get_data() == item: return node UpperCAmelCase_= node.get_next() raise Exception("""Node not found""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: UpperCAmelCase_= self.head.get_next() if node == self.tail: UpperCAmelCase_= self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def _SCREAMING_SNAKE_CASE ( __UpperCAmelCase : Node ) -> None: if node.get_next(): UpperCAmelCase_= node.previous if node.get_previous(): UpperCAmelCase_= node.next UpperCAmelCase_= None UpperCAmelCase_= None def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: return self.head is None def __a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
277
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( snake_case__): """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) -> List[str]: super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_= DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self : Union[str, Any] , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 50 , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __UpperCAmelCase ): UpperCAmelCase_= ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_= (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCAmelCase_= randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_= self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_= self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , eta=__UpperCAmelCase , use_clipped_model_output=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample UpperCAmelCase_= (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_= image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_= self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
277
1
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Dict ): A = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] A = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } A = F'{src_lang}-{tgt_lang}' A = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(snake_case__ , exist_ok=snake_case__ ) A = os.path.join(snake_case__ , 'README.md' ) print(F'Generating {path}' ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(snake_case__ ) # make sure we are under the root of the project _lowercase = Path(__file__).resolve().parent.parent.parent _lowercase = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowercase , _lowercase , _lowercase = model_name.split('''-''') _lowercase = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
74
import requests from bsa import BeautifulSoup def A ( _UpperCAmelCase : str , _UpperCAmelCase : dict ) -> str: '''simple docstring''' _UpperCAmelCase = BeautifulSoup(requests.get(_UpperCAmelCase , params=_UpperCAmelCase ).content , 'html.parser' ) _UpperCAmelCase = soup.find('div' , attrs={'class': 'gs_ri'} ) _UpperCAmelCase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": UpperCAmelCase__ = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
339
0
'''simple docstring''' def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _a ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
240
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __UpperCAmelCase :int = datasets.utils.logging.get_logger(__name__) @dataclass class a ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None SCREAMING_SNAKE_CASE : str = "utf-8" SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : bool = True # deprecated SCREAMING_SNAKE_CASE : Optional[int] = None # deprecated SCREAMING_SNAKE_CASE : int = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE : Optional[bool] = None class a ( datasets.ArrowBasedBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = JsonConfig def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) __UpperCAmelCase : Tuple = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self : Dict , snake_case : Tuple ) -> str: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __UpperCAmelCase : Optional[int] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): __UpperCAmelCase : Dict = data_files if isinstance(snake_case , snake_case ): __UpperCAmelCase : List[Any] = [files] __UpperCAmelCase : Tuple = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): __UpperCAmelCase : Any = [files] __UpperCAmelCase : Optional[int] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={'''files''': files} ) ) return splits def lowerCamelCase__ ( self : List[str] , snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __UpperCAmelCase : Any = self.config.features.arrow_schema.field(snake_case ).type __UpperCAmelCase : Dict = pa_table.append_column(snake_case , pa.array([None] * len(snake_case ) , type=snake_case ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase : Tuple = table_cast(snake_case , self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self : Tuple , snake_case : Any ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase : Optional[int] = json.load(snake_case ) # We keep only the field we are interested in __UpperCAmelCase : int = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case , (list, tuple) ): __UpperCAmelCase : Optional[Any] = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase : Union[str, Any] = {col: [row.get(snake_case ) for row in dataset] for col in keys} else: __UpperCAmelCase : Optional[int] = dataset __UpperCAmelCase : Tuple = pa.Table.from_pydict(snake_case ) yield file_idx, self._cast_table(snake_case ) # If the file has one json object per line else: with open(snake_case , '''rb''' ) as f: __UpperCAmelCase : Optional[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __UpperCAmelCase : int = max(self.config.chunksize // 32 , 16 << 10 ) __UpperCAmelCase : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: __UpperCAmelCase : List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __UpperCAmelCase : Union[str, Any] = batch.decode(self.config.encoding , errors=snake_case ).encode('''utf-8''' ) try: while True: try: __UpperCAmelCase : List[str] = paj.read_json( io.BytesIO(snake_case ) , read_options=paj.ReadOptions(block_size=snake_case ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case , pa.ArrowInvalid ) and "straddling" not in str(snake_case ) or block_size > len(snake_case ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(snake_case )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase : Optional[Any] = json.load(snake_case ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case , snake_case ): # list is the only sequence type supported in JSON try: __UpperCAmelCase : Dict = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase : Optional[Any] = {col: [row.get(snake_case ) for row in dataset] for col in keys} __UpperCAmelCase : Union[str, Any] = pa.Table.from_pydict(snake_case ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(snake_case ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) batch_idx += 1
240
1
"""simple docstring""" # Lint as: python3 import itertools import os import re lowercase__ = re.compile(r'([A-Z]+)([A-Z][a-z])') lowercase__ = re.compile(r'([a-z\d])([A-Z])') lowercase__ = re.compile(r'(?<!_)_(?!_)') lowercase__ = re.compile(r'(_{2,})') lowercase__ = r'''^\w+(\.\w+)*$''' lowercase__ = r'''<>:/\|?*''' def __a ( _SCREAMING_SNAKE_CASE ) ->List[str]: a__: str = _uppercase_uppercase_re.sub(r'\1_\2' , _lowerCAmelCase ) a__: List[Any] = _lowercase_uppercase_re.sub(r'\1_\2' , _lowerCAmelCase ) return name.lower() def __a ( _SCREAMING_SNAKE_CASE ) ->Any: a__: Any = _single_underscore_re.split(_lowerCAmelCase ) a__: Tuple = [_multiple_underscores_re.split(_lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCAmelCase ) if n != '' ) def __a ( _SCREAMING_SNAKE_CASE ) ->Dict: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(_lowerCAmelCase ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , _lowerCAmelCase ): raise ValueError(F'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return F'{filename_prefix_for_name(_lowerCAmelCase )}-{split}' def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: a__: List[Any] = filename_prefix_for_split(_lowerCAmelCase , _lowerCAmelCase ) if filetype_suffix: prefix += F'.{filetype_suffix}' a__: Optional[int] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) return F'{filepath}*' def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[str]: a__: Tuple = filename_prefix_for_split(_lowerCAmelCase , _lowerCAmelCase ) a__: int = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if shard_lengths: a__: int = len(_lowerCAmelCase ) a__: List[Any] = [F'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(_lowerCAmelCase )] if filetype_suffix: a__: Any = [filename + F'.{filetype_suffix}' for filename in filenames] return filenames else: a__: str = prefix if filetype_suffix: filename += F'.{filetype_suffix}' return [filename]
290
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : int = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Any = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict="run" ) -> List[Any]: if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id A_ : Optional[Any] = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
300
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,lowercase__ : List[Any] ,lowercase__ : List[str]=7 ,lowercase__ : Tuple=3 ,lowercase__ : Dict=1_8 ,lowercase__ : int=3_0 ,lowercase__ : Optional[int]=4_0_0 ,lowercase__ : int=True ,lowercase__ : List[Any]=None ,lowercase__ : Any=True ,lowercase__ : Optional[int]=None ,lowercase__ : str=True ,lowercase__ : List[Any]=[0.5, 0.5, 0.5] ,lowercase__ : List[Any]=[0.5, 0.5, 0.5] ,): __lowercase = size if size is not None else {'''shortest_edge''': 1_8} __lowercase = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def SCREAMING_SNAKE_CASE ( self : Dict ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = LevitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = LevitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_center_crop''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size''' ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size ,{'''height''': 1_8, '''width''': 1_8} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def SCREAMING_SNAKE_CASE ( self : int ): pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
356
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] ,*lowercase__ : List[str] ,**lowercase__ : Optional[Any] ): warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,lowercase__ ,) super().__init__(*lowercase__ ,**lowercase__ )
52
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = "ZinengTang/tvlt-base" snake_case_ = tempfile.mkdtemp() def lowerCAmelCase__ ( self , **a__ ) -> Any: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Union[str, Any]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , a__ ) self.assertIsInstance(processor.image_processor , a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) snake_case_ = np.ones([12_000] ) snake_case_ = feature_extractor(a__ , return_tensors="np" ) snake_case_ = processor(audio=a__ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) snake_case_ = np.ones([3, 224, 224] ) snake_case_ = image_processor(a__ , return_tensors="np" ) snake_case_ = processor(images=a__ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) snake_case_ = np.ones([12_000] ) snake_case_ = np.ones([3, 224, 224] ) snake_case_ = processor(audio=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
85
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) _SCREAMING_SNAKE_CASE : int = parser.parse_args() _SCREAMING_SNAKE_CASE : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPImageProcessor() _SCREAMING_SNAKE_CASE : str = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") _SCREAMING_SNAKE_CASE : int = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
85
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : int = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''ctrl''' UpperCamelCase__ = ['''past_key_values'''] UpperCamelCase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=246534 , lowercase_ : Dict=256 , lowercase_ : int=1280 , lowercase_ : str=8192 , lowercase_ : Any=48 , lowercase_ : List[Any]=16 , lowercase_ : int=0.1 , lowercase_ : int=0.1 , lowercase_ : Optional[int]=1E-6 , lowercase_ : str=0.02 , lowercase_ : Optional[int]=True , **lowercase_ : Optional[int] , ): lowercase_ : str = vocab_size lowercase_ : Any = n_positions lowercase_ : int = n_embd lowercase_ : List[Any] = n_layer lowercase_ : List[Any] = n_head lowercase_ : Any = dff lowercase_ : Optional[Any] = resid_pdrop lowercase_ : int = embd_pdrop lowercase_ : str = layer_norm_epsilon lowercase_ : Any = initializer_range lowercase_ : Union[str, Any] = use_cache super().__init__(**lowercase_ )
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : Dict = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
264
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) A__: Dict = None A__: Tuple = { '''7B''': 1_1008, '''13B''': 1_3824, '''30B''': 1_7920, '''65B''': 2_2016, '''70B''': 2_8672, } A__: Any = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int]=1 ,_UpperCAmelCase : List[str]=256 ) -> Dict: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ) -> List[str]: with open(_UpperCAmelCase ,"""r""" ) as f: return json.load(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ) -> Tuple: with open(_UpperCAmelCase ,"""w""" ) as f: json.dump(_UpperCAmelCase ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any]=True ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase ,exist_ok=_UpperCAmelCase ) _a : Union[str, Any] =os.path.join(_UpperCAmelCase ,"""tmp""" ) os.makedirs(_UpperCAmelCase ,exist_ok=_UpperCAmelCase ) _a : int =read_json(os.path.join(_UpperCAmelCase ,"""params.json""" ) ) _a : int =NUM_SHARDS[model_size] _a : Dict =params["""n_layers"""] _a : Union[str, Any] =params["""n_heads"""] _a : List[str] =n_heads // num_shards _a : int =params["""dim"""] _a : Union[str, Any] =dim // n_heads _a : int =1_0_0_0_0.0 _a : str =1.0 / (base ** (torch.arange(0 ,_UpperCAmelCase ,2 ).float() / dims_per_head)) if "n_kv_heads" in params: _a : str =params["""n_kv_heads"""] # for GQA / MQA _a : Optional[Any] =n_heads_per_shard // num_key_value_heads _a : Optional[int] =dim // num_key_value_heads else: # compatibility with other checkpoints _a : str =n_heads _a : Any =n_heads_per_shard _a : str =dim # permute for sliced rotary def permute(_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int]=n_heads ,_UpperCAmelCase : Optional[int]=dim ,_UpperCAmelCase : List[str]=dim ): return w.view(_UpperCAmelCase ,dima // n_heads // 2 ,2 ,_UpperCAmelCase ).transpose(1 ,2 ).reshape(_UpperCAmelCase ,_UpperCAmelCase ) print(F"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _a : Any =torch.load(os.path.join(_UpperCAmelCase ,"""consolidated.00.pth""" ) ,map_location="""cpu""" ) else: # Sharded _a : List[Any] =[ torch.load(os.path.join(_UpperCAmelCase ,F"consolidated.{i:02d}.pth" ) ,map_location="""cpu""" ) for i in range(_UpperCAmelCase ) ] _a : Any =0 _a : Optional[int] ={"""weight_map""": {}} for layer_i in range(_UpperCAmelCase ): _a : List[str] =F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _a : List[str] ={ F"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wq.weight"] ), F"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[F"layers.{layer_i}.attention.wk.weight"] ), F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"], F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"], F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"], F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"], F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"], F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"], F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _a : Tuple ={ F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ F"layers.{layer_i}.attention_norm.weight" ].clone(), F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ F"layers.{layer_i}.ffn_norm.weight" ].clone(), } _a : str =permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] ,dim=0 ,).reshape(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Tuple =permute( torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wk.weight"].view( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] ,dim=0 ,).reshape(_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) _a : Any =torch.cat( [ loaded[i][F"layers.{layer_i}.attention.wv.weight"].view( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] ,dim=0 ,).reshape(_UpperCAmelCase ,_UpperCAmelCase ) _a : List[str] =torch.cat( [loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(_UpperCAmelCase )] ,dim=1 ) _a : Union[str, Any] =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(_UpperCAmelCase )] ,dim=0 ) _a : Tuple =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(_UpperCAmelCase )] ,dim=1 ) _a : Union[str, Any] =torch.cat( [loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(_UpperCAmelCase )] ,dim=0 ) _a : str =inv_freq for k, v in state_dict.items(): _a : Any =filename param_count += v.numel() torch.save(_UpperCAmelCase ,os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Union[str, Any] =F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded _a : List[str] ={ """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: _a : int ={ """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_UpperCAmelCase )] ,dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_UpperCAmelCase )] ,dim=0 ), } for k, v in state_dict.items(): _a : Dict =filename param_count += v.numel() torch.save(_UpperCAmelCase ,os.path.join(_UpperCAmelCase ,_UpperCAmelCase ) ) # Write configs _a : Tuple ={"""total_size""": param_count * 2} write_json(_UpperCAmelCase ,os.path.join(_UpperCAmelCase ,"""pytorch_model.bin.index.json""" ) ) _a : Optional[Any] =params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 _a : int =params["""multiple_of"""] if """multiple_of""" in params else 256 _a : List[Any] =LlamaConfig( hidden_size=_UpperCAmelCase ,intermediate_size=compute_intermediate_size(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ,num_attention_heads=params["""n_heads"""] ,num_hidden_layers=params["""n_layers"""] ,rms_norm_eps=params["""norm_eps"""] ,num_key_value_heads=_UpperCAmelCase ,) config.save_pretrained(_UpperCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) _a : Any =LlamaForCausalLM.from_pretrained(_UpperCAmelCase ,torch_dtype=torch.floataa ,low_cpu_mem_usage=_UpperCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_UpperCAmelCase ,safe_serialization=_UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> Optional[Any]: # Initialize the tokenizer based on the `spm` model _a : List[str] =LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) _a : List[Any] =tokenizer_class(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: _a : List[str] =argparse.ArgumentParser() parser.add_argument( """--input_dir""" ,help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" ,) parser.add_argument( """--model_size""" ,choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] ,) parser.add_argument( """--output_dir""" ,help="""Location to write HF model and tokenizer""" ,) parser.add_argument("""--safe_serialization""" ,type=_UpperCAmelCase ,help="""Whether or not to save using `safetensors`.""" ) _a : Optional[Any] =parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,) _a : List[Any] =os.path.join(args.input_dir ,"""tokenizer.model""" ) write_tokenizer(args.output_dir ,_UpperCAmelCase ) if __name__ == "__main__": main()
276
0
__magic_name__ : Optional[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} snake_case_ = Stack() snake_case_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(UpperCamelCase__ ) ) elif i in operators: # RULE 2 operator_stack.push(UpperCamelCase__ ) elif i == ")": # RULE 4 snake_case_ = operator_stack.peek() operator_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operand_stack.peek() operand_stack.pop() snake_case_ = operators[opr](UpperCamelCase__ , UpperCamelCase__ ) operand_stack.push(UpperCamelCase__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __magic_name__ : Any = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
367
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=99 , snake_case=0 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=2 , snake_case=4 , snake_case="last" , snake_case=True , snake_case=None , snake_case=0 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_lengths snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = gelu_activation snake_case_ = sinusoidal_embeddings snake_case_ = causal snake_case_ = asm snake_case_ = n_langs snake_case_ = vocab_size snake_case_ = n_special snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = summary_type snake_case_ = use_proj snake_case_ = scope snake_case_ = bos_token_id def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , 2 ).float() snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , lengths=snake_case , langs=snake_case ) snake_case_ = model(snake_case , langs=snake_case ) snake_case_ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMWithLMHeadModel(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnsweringSimple(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) snake_case_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , ) ((snake_case_) , ) = result_with_labels.to_tuple() snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) ((snake_case_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_labels snake_case_ = XLMForTokenClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_choices snake_case_ = XLMForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Tuple = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __SCREAMING_SNAKE_CASE : int = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a ( self , snake_case , snake_case , snake_case=False ): snake_case_ = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def a ( self ): snake_case_ = XLMModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case , emb_dim=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_attentions in attentions] , [True] * len(snake_case ) ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = min_length + idx + 1 snake_case_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case ) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_hidden_states in hidden_states] , [True] * len(snake_case ) , ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case ) , ) pass @slow def a ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = XLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(snake_case ) snake_case_ = torch.tensor([[14, 447]] , dtype=torch.long , device=snake_case ) # the president snake_case_ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case_ = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case )
200
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowercase ( ): a__ = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' a__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert('RGB' ) return image def __lowercase ( __lowerCAmelCase : str ): a__ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): a__ = dct.pop(__lowerCAmelCase ) a__ = val def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) a__ = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict a__ = torch.cat((q_bias, torch.zeros_like(__lowerCAmelCase , requires_grad=__lowerCAmelCase ), v_bias) ) a__ = qkv_bias def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ): a__ = 3_6_4 if 'coco' in model_name else 2_2_4 a__ = BlipaVisionConfig(image_size=__lowerCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: a__ = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=__lowerCAmelCase ).to_dict() elif "opt-6.7b" in model_name: a__ = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=__lowerCAmelCase ).to_dict() elif "t5-xl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() a__ = BlipaConfig(vision_config=__lowerCAmelCase , text_config=__lowerCAmelCase ) return config, image_size @torch.no_grad() def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : str=False ): a__ = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) a__ = tokenizer('\n' , add_special_tokens=__lowerCAmelCase ).input_ids[0] a__ , a__ = get_blipa_config(__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) a__ = BlipaForConditionalGeneration(__lowerCAmelCase ).eval() a__ = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } a__ , a__ = model_name_to_original[model_name] # load original model print('Loading original model...' ) a__ = 'cuda' if torch.cuda.is_available() else 'cpu' a__ , a__ , a__ = load_model_and_preprocess( name=__lowerCAmelCase , model_type=__lowerCAmelCase , is_eval=__lowerCAmelCase , device=__lowerCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys a__ = original_model.state_dict() a__ = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ = state_dict.pop(__lowerCAmelCase ) if key.startswith('Qformer.bert' ): a__ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: a__ = key.replace('self' , 'attention' ) if "opt_proj" in key: a__ = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: a__ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): a__ = key.replace('opt' , 'language' ) if key.startswith('t5' ): a__ = key.replace('t5' , 'language' ) a__ = val # read in qv biases read_in_q_v_bias(__lowerCAmelCase , __lowerCAmelCase ) a__ , a__ = hf_model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert len(__lowerCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] a__ = load_demo_image() a__ = vis_processors['eval'](__lowerCAmelCase ).unsqueeze(0 ).to(__lowerCAmelCase ) a__ = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(__lowerCAmelCase ) # create processor a__ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=__lowerCAmelCase , image_std=__lowerCAmelCase ) a__ = BlipaProcessor(image_processor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) a__ = processor(images=__lowerCAmelCase , return_tensors='pt' ).pixel_values.to(__lowerCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) original_model.to(__lowerCAmelCase ) hf_model.to(__lowerCAmelCase ) with torch.no_grad(): if "opt" in model_name: a__ = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits a__ = hf_model(__lowerCAmelCase , __lowerCAmelCase ).logits else: a__ = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits a__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) a__ = hf_model(__lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": a__ = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=__lowerCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": a__ = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=__lowerCAmelCase ) else: # cast to same type a__ = logits.dtype assert torch.allclose(original_logits.to(__lowerCAmelCase ) , __lowerCAmelCase , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) a__ = '' a__ = tokenizer(__lowerCAmelCase , return_tensors='pt' ).input_ids.to(__lowerCAmelCase ) a__ = original_model.generate({'image': original_pixel_values} ) a__ = hf_model.generate( __lowerCAmelCase , __lowerCAmelCase , do_sample=__lowerCAmelCase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , __lowerCAmelCase ) a__ = input_ids.shape[1] a__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowerCAmelCase ) a__ = [text.strip() for text in output_text] print('HF generation:' , __lowerCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": snake_case : List[str] = argparse.ArgumentParser() snake_case : int = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) snake_case : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
240
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin snake_case : int = False @skip_mps class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = StableDiffusionAttendAndExcitePipeline UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCamelCase__( cls :int ) -> int: super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowerCamelCase__( cls :Optional[Any] ) -> int: super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowerCamelCase__( self :Dict ) -> Optional[Any]: torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=__snake_case ,) a__ = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,clip_sample=__snake_case ,set_alpha_to_one=__snake_case ,) torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act='gelu' ,projection_dim=5_12 ,) a__ = CLIPTextModel(__snake_case ) a__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase__( self :Any ,__snake_case :Union[str, Any] ,__snake_case :Tuple=0 ) -> Any: if str(__snake_case ).startswith('mps' ): a__ = torch.manual_seed(__snake_case ) else: a__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a__ = a__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def lowerCamelCase__( self :Optional[int] ) -> Any: a__ = 'cpu' a__ = self.get_dummy_components() a__ = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) a__ = self.get_dummy_inputs(__snake_case ) a__ = pipe(**__snake_case ).images a__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 64, 64, 3) ) a__ = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) a__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case ,1E-3 ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def lowerCamelCase__( self :Dict ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__( self :List[str] ) -> Optional[int]: self._test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=7E-4 ) def lowerCamelCase__( self :Dict ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__( self :Dict ) -> Union[str, Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def lowerCamelCase__( self :Optional[Any] ) -> Dict: super().test_save_load_local(expected_max_difference=5E-4 ) def lowerCamelCase__( self :List[Any] ) -> List[Any]: super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class snake_case_ (unittest.TestCase ): @classmethod def lowerCamelCase__( cls :Optional[Any] ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def lowerCamelCase__( cls :Optional[int] ) -> Tuple: super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__( self :Optional[Any] ) -> Tuple: a__ = torch.manual_seed(51 ) a__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,safety_checker=__snake_case ,torch_dtype=torch.floataa ) pipe.to('cuda' ) a__ = 'a painting of an elephant with glasses' a__ = [5, 7] a__ = pipe( prompt=__snake_case ,token_indices=__snake_case ,guidance_scale=7.5 ,generator=__snake_case ,num_inference_steps=5 ,max_iter_to_alter=5 ,output_type='numpy' ,).images[0] a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
240
1
class UpperCAmelCase : def __init__(self : int , snake_case__ : int ) -> str: '''simple docstring''' snake_case : Union[str, Any] = n snake_case : Any = [None] * self.n snake_case : List[Any] = 0 # index of the first element snake_case : Tuple = 0 snake_case : Dict = 0 def __len__(self : Dict ) -> int: '''simple docstring''' return self.size def _SCREAMING_SNAKE_CASE (self : List[str] ) -> bool: '''simple docstring''' return self.size == 0 def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL" ) snake_case : Union[str, Any] = data snake_case : Union[str, Any] = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW" ) snake_case : int = self.array[self.front] snake_case : Optional[Any] = None snake_case : Any = (self.front + 1) % self.n self.size -= 1 return temp
371
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = """▁""" __lowerCamelCase = {"""vocab_file""": """prophetnet.tokenizer"""} __lowerCamelCase = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } __lowerCamelCase = { """microsoft/xprophetnet-large-wiki100-cased""": 5_12, } def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Dict = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: snake_case : Any = reader.readlines() for index, token in enumerate(__lowerCamelCase ): snake_case : List[Any] = token.rstrip("\n" ) snake_case : int = index return vocab class UpperCAmelCase ( A_ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : int = ["input_ids", "attention_mask"] def __init__(self : Any , snake_case__ : Dict , snake_case__ : List[Any]="[SEP]" , snake_case__ : Optional[int]="[SEP]" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="[UNK]" , snake_case__ : List[str]="[PAD]" , snake_case__ : List[str]="[CLS]" , snake_case__ : List[Any]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[str] , ) -> None: '''simple docstring''' snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab snake_case : List[Any] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): snake_case : Dict = f"""[unused{i}]""" snake_case : List[str] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab snake_case : Dict = 12 snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__(self : str ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.__dict__.copy() snake_case : Tuple = None return state def __setstate__(self : str , snake_case__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case : List[str] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : str ) -> str: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : Optional[int] ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case : Optional[Any] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int] ) -> int: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict ) -> List[Any]: '''simple docstring''' snake_case : Dict = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: snake_case : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] snake_case : str = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __snake_case =logging.get_logger(__name__) __snake_case ={ """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[Any] = '''dpt''' def __init__( self : int , UpperCAmelCase__ : List[Any]=7_6_8 , UpperCAmelCase__ : Optional[Any]=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : List[str]=3_0_7_2 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : List[Any]=1E-12 , UpperCAmelCase__ : List[str]=3_8_4 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=[2, 5, 8, 1_1] , UpperCAmelCase__ : Union[str, Any]="project" , UpperCAmelCase__ : List[Any]=[4, 2, 1, 0.5] , UpperCAmelCase__ : List[Any]=[9_6, 1_9_2, 3_8_4, 7_6_8] , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=-1 , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Dict=0.4 , UpperCAmelCase__ : Any=2_5_5 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=[1, 1_0_2_4, 2_4, 2_4] , UpperCAmelCase__ : Any=[0, 1] , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : str , ) -> int: super().__init__(**UpperCAmelCase__ ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowerCAmelCase = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = BitConfig(**UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
4
class A__ : def __init__( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = set_counts UpperCamelCase : int = max(A_ ) UpperCamelCase : Optional[Any] = len(A_ ) UpperCamelCase : Union[str, Any] = [1] * num_sets UpperCamelCase : Union[str, Any] = list(range(A_ ) ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = self.get_parent(A_ ) UpperCamelCase : Optional[int] = self.get_parent(A_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase : int = 0 UpperCamelCase : Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase : Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase : Any = 0 UpperCamelCase : Optional[int] = src_parent UpperCamelCase : int = self.set_counts[src_parent] UpperCamelCase : Any = max(self.max_set , A_ ) return True def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
52
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Optional[Any] = """lxmert""" lowerCAmelCase : Dict = {} def __init__( self , UpperCAmelCase__=30_522 , UpperCAmelCase__=768 , UpperCAmelCase__=12 , UpperCAmelCase__=9_500 , UpperCAmelCase__=1_600 , UpperCAmelCase__=400 , UpperCAmelCase__=3_072 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=512 , UpperCAmelCase__=2 , UpperCAmelCase__=0.02 , UpperCAmelCase__=1e-1_2 , UpperCAmelCase__=9 , UpperCAmelCase__=5 , UpperCAmelCase__=5 , UpperCAmelCase__=2_048 , UpperCAmelCase__=4 , UpperCAmelCase__=6.67 , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=True , **UpperCAmelCase__ , ): A__ = vocab_size A__ = hidden_size A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = num_qa_labels A__ = num_object_labels A__ = num_attr_labels A__ = l_layers A__ = x_layers A__ = r_layers A__ = visual_feat_dim A__ = visual_pos_dim A__ = visual_loss_normalizer A__ = task_matched A__ = task_mask_lm A__ = task_obj_predict A__ = task_qa A__ = visual_obj_loss A__ = visual_attr_loss A__ = visual_feat_loss A__ = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**UpperCAmelCase__ )
198
from __future__ import annotations class UpperCamelCase : def __init__( self , UpperCAmelCase__=None ): A__ = data A__ = None def __repr__( self ): A__ = [] A__ = self while temp: string_rep.append(F"""{temp.data}""" ) A__ = temp.next return "->".join(UpperCAmelCase__ ) def UpperCamelCase ( _A : list )-> Dict: """simple docstring""" if not elements_list: raise Exception("The Elements List is empty" ) A__ = A__ = Node(elements_list[0] ) for i in range(1 , len(_A ) ): A__ = Node(elements_list[i] ) A__ = current.next return head def UpperCamelCase ( _A : Node )-> None: """simple docstring""" if head_node is not None and isinstance(_A , _A ): print_reverse(head_node.next ) print(head_node.data ) def UpperCamelCase ( )-> Tuple: """simple docstring""" from doctest import testmod testmod() A__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(_A ) print("Elements in Reverse:" ) print_reverse(_A ) if __name__ == "__main__": main()
198
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class a ( _a ): UpperCamelCase : Dict = """longformer""" def __init__( self : Dict , lowerCAmelCase : Dict = 512 , lowerCAmelCase : Dict = 2 , lowerCAmelCase : Optional[Any] = 1 , lowerCAmelCase : List[Any] = 0 , lowerCAmelCase : Optional[int] = 2 , lowerCAmelCase : Tuple = 3_0522 , lowerCAmelCase : Union[str, Any] = 768 , lowerCAmelCase : Optional[Any] = 12 , lowerCAmelCase : List[str] = 12 , lowerCAmelCase : Tuple = 3072 , lowerCAmelCase : Any = "gelu" , lowerCAmelCase : Dict = 0.1 , lowerCAmelCase : int = 0.1 , lowerCAmelCase : List[str] = 512 , lowerCAmelCase : Optional[Any] = 2 , lowerCAmelCase : List[Any] = 0.0_2 , lowerCAmelCase : Optional[Any] = 1E-12 , lowerCAmelCase : List[Any] = False , **lowerCAmelCase : Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_window SCREAMING_SNAKE_CASE_: Union[str, Any] =sep_token_id SCREAMING_SNAKE_CASE_: int =bos_token_id SCREAMING_SNAKE_CASE_: Tuple =eos_token_id SCREAMING_SNAKE_CASE_: List[Any] =vocab_size SCREAMING_SNAKE_CASE_: Tuple =hidden_size SCREAMING_SNAKE_CASE_: Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: Optional[Any] =hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE_: int =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Dict =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[Any] =max_position_embeddings SCREAMING_SNAKE_CASE_: int =type_vocab_size SCREAMING_SNAKE_CASE_: str =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =onnx_export class a ( _a ): def __init__( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any = "default" , lowerCAmelCase : Optional[int] = None ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =True @property def lowerCamelCase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_: Union[str, Any] ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def lowerCamelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =super().outputs if self.task == "default": SCREAMING_SNAKE_CASE_: List[Any] ={0: 'batch'} return outputs @property def lowerCamelCase__ ( self : Optional[int] ) -> float: '''simple docstring''' return 1E-4 @property def lowerCamelCase__ ( self : int ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int = -1 , lowerCAmelCase : Optional[int] = -1 , lowerCAmelCase : Optional[Any] = False , lowerCAmelCase : Union[str, Any] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =super().generate_dummy_inputs( preprocessor=lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE_: Any =torch.zeros_like(inputs["""input_ids"""] ) # make every second token global SCREAMING_SNAKE_CASE_: List[str] =1 return inputs
173
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> float: _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCamelCase_( ) -> Optional[int]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import string import numpy def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> int: return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class __A : '''simple docstring''' lowerCAmelCase : List[str] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase : Tuple = numpy.vectorize(lambda A_ : x % 3_6 ) lowerCAmelCase : List[Any] = numpy.vectorize(A_ ) def __init__( self : Optional[Any] ,_snake_case : numpy.ndarray ) -> None: """simple docstring""" lowercase__ : Tuple = self.modulus(_snake_case ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase__ : Union[str, Any] = encrypt_key.shape[0] def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> int: """simple docstring""" return self.key_string.index(_snake_case ) def UpperCAmelCase ( self : str ,_snake_case : int ) -> str: """simple docstring""" return self.key_string[round(_snake_case )] def UpperCAmelCase ( self : List[Any] ) -> None: """simple docstring""" lowercase__ : Tuple = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase__ : Tuple = det % len(self.key_string ) lowercase__ : Any = len(self.key_string ) if greatest_common_divisor(_snake_case ,len(self.key_string ) ) != 1: lowercase__ : List[Any] = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(_snake_case ) def UpperCAmelCase ( self : Tuple ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : List[Any] = [char for char in text.upper() if char in self.key_string] lowercase__ : Optional[int] = chars[-1] while len(_snake_case ) % self.break_key != 0: chars.append(_snake_case ) return "".join(_snake_case ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : int = self.process_text(text.upper() ) lowercase__ : List[Any] = '''''' for i in range(0 ,len(_snake_case ) - self.break_key + 1 ,self.break_key ): lowercase__ : Optional[Any] = text[i : i + self.break_key] lowercase__ : List[Any] = [self.replace_letters(_snake_case ) for char in batch] lowercase__ : Optional[int] = numpy.array([vec] ).T lowercase__ : List[Any] = self.modulus(self.encrypt_key.dot(_snake_case ) ).T.tolist()[ 0 ] lowercase__ : Union[str, Any] = ''''''.join( self.replace_digits(_snake_case ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCAmelCase ( self : Any ) -> numpy.ndarray: """simple docstring""" lowercase__ : Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase__ : int = det % len(self.key_string ) lowercase__ : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase__ : Union[str, Any] = i break lowercase__ : Dict = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_snake_case ) ) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> str: """simple docstring""" lowercase__ : Optional[int] = self.make_decrypt_key() lowercase__ : List[Any] = self.process_text(text.upper() ) lowercase__ : Any = '''''' for i in range(0 ,len(_snake_case ) - self.break_key + 1 ,self.break_key ): lowercase__ : Optional[Any] = text[i : i + self.break_key] lowercase__ : List[Any] = [self.replace_letters(_snake_case ) for char in batch] lowercase__ : str = numpy.array([vec] ).T lowercase__ : int = self.modulus(decrypt_key.dot(_snake_case ) ).T.tolist()[0] lowercase__ : Union[str, Any] = ''''''.join( self.replace_digits(_snake_case ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __UpperCAmelCase ( ) -> None: lowercase__ : List[str] = int(input('''Enter the order of the encryption key: ''' ) ) lowercase__ : Any = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__lowerCamelCase ): lowercase__ : Dict = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) lowercase__ : Tuple = HillCipher(numpy.array(__lowerCamelCase ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) lowercase__ : Optional[int] = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": lowercase__ : Tuple = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": lowercase__ : List[Any] = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
302
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[int]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Dict = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : List[Any] = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( __lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase_ = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1": lowercase__ : Any = 2 # Initialize accelerator lowercase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : List[Any] = config['''lr'''] lowercase__ : Union[str, Any] = int(config['''num_epochs'''] ) lowercase__ : List[str] = int(config['''seed'''] ) lowercase__ : Any = int(config['''batch_size'''] ) lowercase__ : int = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__lowerCamelCase ) def inner_training_loop(__lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Optional[int] = AdamW(params=model.parameters() , lr=__lowerCamelCase ) lowercase__ , lowercase__ : List[str] = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate scheduler lowercase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : int = model(**__lowerCamelCase ) lowercase__ : Optional[int] = outputs.loss accelerator.backward(__lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Tuple = model(**__lowerCamelCase ) lowercase__ : Dict = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowercase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Tuple: lowercase__ : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ : Union[str, Any] = parser.parse_args() lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
302
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _lowercase( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : str = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _lowercase( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__snake_case ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.dummy_uncond_unet UpperCAmelCase : Dict = DDIMScheduler() UpperCAmelCase : int = self.dummy_vq_model UpperCAmelCase : Dict = LDMPipeline(unet=__snake_case , vqvae=__snake_case , scheduler=__snake_case ) ldm.to(__snake_case ) ldm.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Dict = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Any = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" , return_dict=__snake_case )[0] UpperCAmelCase : Dict = image[0, -3:, -3:, -1] UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Tuple = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase : Any = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Tuple: UpperCAmelCase : Union[str, Any] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__snake_case ) ldm.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase : List[str] = torch.manual_seed(0 ) UpperCAmelCase : Any = ldm(generator=__snake_case , num_inference_steps=5 , output_type="""numpy""" ).images UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : str = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase : Optional[int] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
265
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as flax_state_f: _SCREAMING_SNAKE_CASE : Dict = from_bytes(SCREAMING_SNAKE_CASE__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _SCREAMING_SNAKE_CASE : Dict = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = """""" _SCREAMING_SNAKE_CASE : str = flatten_dict(SCREAMING_SNAKE_CASE__ , sep=""".""" ) _SCREAMING_SNAKE_CASE : str = pt_model.state_dict() # keep track of unexpected & missing keys _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _SCREAMING_SNAKE_CASE : Any = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _SCREAMING_SNAKE_CASE : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _SCREAMING_SNAKE_CASE : Union[str, Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _SCREAMING_SNAKE_CASE : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[int] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _SCREAMING_SNAKE_CASE : Tuple = """.""".join(SCREAMING_SNAKE_CASE__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor _SCREAMING_SNAKE_CASE : int = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list _SCREAMING_SNAKE_CASE : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
200
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : int = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } UpperCamelCase : str = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCamelCase ( a_ ): """simple docstring""" A : int = VOCAB_FILES_NAMES A : Tuple = PRETRAINED_VOCAB_FILES_MAP A : Any = PRETRAINED_INIT_CONFIGURATION A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = RealmTokenizer def __init__( self : int , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Optional[int]="[SEP]" , UpperCAmelCase_ : Tuple="[PAD]" , UpperCAmelCase_ : Any="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : str , ): """simple docstring""" super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , UpperCAmelCase_) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase_) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase_) != tokenize_chinese_chars ): a : List[str] = getattr(UpperCAmelCase_ , normalizer_state.pop('type')) a : Tuple = do_lower_case a : Optional[int] = strip_accents a : List[Any] = tokenize_chinese_chars a : str = normalizer_class(**UpperCAmelCase_) a : int = do_lower_case def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple): """simple docstring""" a : Optional[Any] = PaddingStrategy.MAX_LENGTH a : Any = text a : Tuple = kwargs.pop('text_pair' , UpperCAmelCase_) a : Tuple = kwargs.pop('return_tensors' , UpperCAmelCase_) a : List[str] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase_): if batch_text_pair is not None: a : Union[str, Any] = batch_text_pair[idx] else: a : Dict = None a : str = super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) a : Dict = encoded_candidates.get('input_ids') a : List[Any] = encoded_candidates.get('attention_mask') a : Any = encoded_candidates.get('token_type_ids') if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase_) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase_) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase_) a : str = {key: item for key, item in output_data.items() if len(UpperCAmelCase_) != 0} return BatchEncoding(UpperCAmelCase_ , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=None): """simple docstring""" a : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : Dict = [self.sep_token_id] a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" a : str = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
345
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Tuple = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
1
import numpy as np def a__ ( UpperCAmelCase : Optional[int] ) -> np.array: return 1 / (1 + np.exp(-vector )) def a__ ( UpperCAmelCase : Tuple ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
336
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Union[str, Any] = logging.get_logger(__name__) __a: Union[str, Any] = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "mra" def __init__( self , __lowerCAmelCase=50265 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=1 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-5 , __lowerCAmelCase="absolute" , __lowerCAmelCase=4 , __lowerCAmelCase="full" , __lowerCAmelCase=0 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ) -> int: super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Optional[Any] = vocab_size lowercase__ : Optional[int] = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : int = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Optional[Any] = initializer_range lowercase__ : int = type_vocab_size lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : List[Any] = position_embedding_type lowercase__ : Union[str, Any] = block_per_row lowercase__ : Union[str, Any] = approx_mode lowercase__ : Optional[Any] = initial_prior_first_n_blocks lowercase__ : Union[str, Any] = initial_prior_diagonal_n_blocks
214
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def _lowerCAmelCase( self ) -> int: lowercase__ : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) lowercase__ : Optional[Any] = load_dataset('''ashraq/esc50''' ) lowercase__ : Tuple = dataset['''train''']['''audio'''][-1]['''array'''] lowercase__ : Optional[Any] = audio_classifier(__lowerCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def _lowerCAmelCase( self ) -> str: pass @slow @require_torch def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[str] = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog lowercase__ : int = load_dataset('''ashraq/esc50''' ) lowercase__ : str = dataset['''train''']['''audio'''][-1]['''array'''] lowercase__ : Any = audio_classifier(__lowerCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) lowercase__ : Dict = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) lowercase__ : Any = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def _lowerCAmelCase( self ) -> Union[str, Any]: pass
214
1
'''simple docstring''' from math import isclose, sqrt def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ : List[Any] = point_y / 4 / point_x lowercase__ : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowercase__ : Tuple = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowercase__ : Dict = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowercase__ : Any = outgoing_gradient**2 + 4 lowercase__ : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowercase__ : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowercase__ : Tuple = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowercase__ : List[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowercase__ : Optional[Any] = x_minus if isclose(UpperCAmelCase , UpperCAmelCase ) else x_plus lowercase__ : List[str] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __UpperCamelCase ( UpperCAmelCase = 1.4 , UpperCAmelCase = -9.6 ): lowercase__ : int = 0 lowercase__ : float = first_x_coord lowercase__ : float = first_y_coord lowercase__ : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): lowercase__ , lowercase__ , lowercase__ : str = next_point(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'{solution() = }')
198
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a: Optional[Any] = 16 __a: Any = 32 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 16 ): lowercase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Optional[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : List[Any] = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : str = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : List[str] = 16 elif accelerator.mixed_precision != "no": lowercase__ : Dict = 8 else: lowercase__ : Optional[int] = None return tokenizer.pad( UpperCAmelCase , padding='''longest''' , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ : str = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowercase__ : Optional[int] = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a: Tuple = mocked_dataloaders # noqa: F811 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCAmelCase ) == "1": lowercase__ : Optional[int] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowercase__ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: lowercase__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : int = config['''lr'''] lowercase__ : Optional[int] = int(config['''num_epochs'''] ) lowercase__ : Optional[Any] = int(config['''seed'''] ) lowercase__ : int = int(config['''batch_size'''] ) set_seed(UpperCAmelCase ) lowercase__ , lowercase__ : str = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowercase__ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE lowercase__ : Any = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : List[str] = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : List[Any] = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler lowercase__ : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowercase__ : Optional[Any] = os.path.split(UpperCAmelCase )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowercase__ : str = 0 for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : List[str] = model(**UpperCAmelCase ) lowercase__ : List[str] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowercase__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : List[str] = model(**UpperCAmelCase ) lowercase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowercase__ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(UpperCAmelCase ), '''epoch''': epoch, } , step=UpperCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __UpperCamelCase ( ): lowercase__ : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCAmelCase , default=UpperCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCAmelCase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) lowercase__ : str = parser.parse_args() lowercase__ : Tuple = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
198
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = CanineTokenizer SCREAMING_SNAKE_CASE : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : Dict ): super().setUp() __lowercase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return CanineTokenizer.from_pretrained('''google/canine-s''' ) def SCREAMING_SNAKE_CASE ( self : str ,**lowercase__ : Optional[Any] ): __lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ,**lowercase__ ) __lowercase = 1_0_2_4 return tokenizer @require_torch def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.canine_tokenizer __lowercase = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off __lowercase = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on __lowercase = tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors='''pt''' ) self.assertIsInstance(lowercase__ ,lowercase__ ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowercase__ ,lowercase__ ) self.assertEqual((2, 3_9) ,batch.input_ids.shape ) self.assertEqual((2, 3_9) ,batch.attention_mask.shape ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.canine_tokenizer __lowercase = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] __lowercase = tokenizer(lowercase__ ,padding=lowercase__ ,return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' ,lowercase__ ) self.assertIn('''attention_mask''' ,lowercase__ ) self.assertIn('''token_type_ids''' ,lowercase__ ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.canine_tokenizer __lowercase = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] __lowercase = tokenizer( text_target=lowercase__ ,max_length=3_2 ,padding='''max_length''' ,truncation=lowercase__ ,return_tensors='''pt''' ) self.assertEqual(3_2 ,targets['''input_ids'''].shape[1] ) def SCREAMING_SNAKE_CASE ( self : List[str] ): # safety check on max_len default value so we are sure the test works __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length ,4_2 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) tokenizer.save_pretrained(lowercase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowercase__ ) __lowercase = after_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) shutil.rmtree(lowercase__ ) __lowercase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __lowercase = chr(0xe_007 ) additional_special_tokens.append(lowercase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) tokenizer.save_pretrained(lowercase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowercase__ ) __lowercase = after_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) self.assertIn(lowercase__ ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,4_2 ) __lowercase = tokenizer.__class__.from_pretrained(lowercase__ ,model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length ,4_3 ) shutil.rmtree(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.get_tokenizers(do_lower_case=lowercase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase , __lowercase = self.get_clean_sequence(lowercase__ ) # a special token for Canine can be defined as follows: __lowercase = 0xe_005 __lowercase = chr(lowercase__ ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertEqual(len(lowercase__ ) ,1 ) __lowercase = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertEqual(lowercase__ ,input_encoded + special_token_id ) __lowercase = tokenizer.decode(lowercase__ ,skip_special_tokens=lowercase__ ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.get_tokenizers(do_lower_case=lowercase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = chr(0xe_005 ) __lowercase = chr(0xe_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=lowercase__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) __lowercase = tokenizer.tokenize(lowercase__ ) __lowercase = tokenizer.tokenize(lowercase__ ) self.assertEqual(len(lowercase__ ) ,1 ) self.assertEqual(len(lowercase__ ) ,1 ) self.assertEqual(token_a[0] ,lowercase__ ) self.assertEqual(token_a[0] ,lowercase__ ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_tokenizers(do_lower_case=lowercase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: __lowercase = 0xe_006 __lowercase = chr(lowercase__ ) __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowercase__ ) tokenizer.from_pretrained(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowercase__ ) with open(os.path.join(lowercase__ ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowercase__ ) # a special token for Canine can be defined as follows: __lowercase = 0xe_006 __lowercase = chr(lowercase__ ) __lowercase = [new_token_a] __lowercase = [new_token_a] with open(os.path.join(lowercase__ ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(lowercase__ ,lowercase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained(lowercase__ ,extra_ids=0 ) self.assertIn(lowercase__ ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) __lowercase = 0xe_007 __lowercase = chr(lowercase__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = [AddedToken(lowercase__ ,lstrip=lowercase__ )] __lowercase = tokenizer_class.from_pretrained( lowercase__ ,additional_special_tokens=lowercase__ ,extra_ids=0 ) self.assertIn(lowercase__ ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_tokenizers(do_lower_case=lowercase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = '''hello world''' if self.space_between_special_tokens: __lowercase = '''[CLS] hello world [SEP]''' else: __lowercase = input __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = tokenizer.decode(lowercase__ ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowercase__ ,[output, output.lower()] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = '''a''' __lowercase = ord(lowercase__ ) for attr in attributes_list: setattr(lowercase__ ,attr + '''_id''' ,lowercase__ ) self.assertEqual(getattr(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(getattr(lowercase__ ,attr + '''_id''' ) ,lowercase__ ) setattr(lowercase__ ,attr + '''_id''' ,lowercase__ ) self.assertEqual(getattr(lowercase__ ,lowercase__ ) ,lowercase__ ) self.assertEqual(getattr(lowercase__ ,attr + '''_id''' ) ,lowercase__ ) setattr(lowercase__ ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(lowercase__ ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(lowercase__ ,'''additional_special_tokens_ids''' ) ,[] ) __lowercase = 0xe_006 __lowercase = chr(lowercase__ ) setattr(lowercase__ ,'''additional_special_tokens_ids''' ,[additional_special_token_id] ) self.assertListEqual(getattr(lowercase__ ,'''additional_special_tokens''' ) ,[additional_special_token] ) self.assertListEqual(getattr(lowercase__ ,'''additional_special_tokens_ids''' ) ,[additional_special_token_id] ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass def SCREAMING_SNAKE_CASE ( self : Dict ): pass def SCREAMING_SNAKE_CASE ( self : str ): pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ): pass def SCREAMING_SNAKE_CASE ( self : Any ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): pass def SCREAMING_SNAKE_CASE ( self : str ): pass
52
'''simple docstring''' lowerCAmelCase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def _A ( ): """simple docstring""" __lowercase = input('''Enter message: ''' ) __lowercase = input('''Enter key [alphanumeric]: ''' ) __lowercase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowercase = '''encrypt''' __lowercase = encrypt_message(A__ , A__ ) elif mode.lower().startswith('''d''' ): __lowercase = '''decrypt''' __lowercase = decrypt_message(A__ , A__ ) print(F"\n{mode.title()}ed message:" ) print(A__ ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''encrypt''' ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''decrypt''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = 0 __lowercase = key.upper() for symbol in message: __lowercase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): __lowercase = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
52
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """width_multiplier""" ) ) class SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Dict=13 , __lowercase : int=64 , __lowercase : Tuple=2 , __lowercase : Tuple=3 , __lowercase : Tuple="swish" , __lowercase : List[Any]=3 , __lowercase : List[str]=32 , __lowercase : int=0.1 , __lowercase : Union[str, Any]=0.02 , __lowercase : Optional[int]=True , __lowercase : Dict=True , __lowercase : Tuple=10 , __lowercase : str=None , __lowercase : Optional[Any]=0.25 , __lowercase : str=0.0 , __lowercase : Optional[Any]=0.0 , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase_ ( self : Tuple , __lowercase : Optional[Any] , __lowercase : int , __lowercase : Optional[Any] , __lowercase : Tuple ): '''simple docstring''' __a = MobileViTVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : str , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , __lowercase : str , __lowercase : Any , __lowercase : int , __lowercase : List[str] ): '''simple docstring''' __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Any =( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Dict =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =False __lowerCamelCase : Any =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[str] , __lowercase : Optional[int] , __lowercase : List[str] ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(__lowercase ) , __lowercase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(__lowercase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowercase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __lowercase ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=__lowercase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowercase , atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = model.to(__lowercase ) __a = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __lowercase ) __a = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __lowercase )
302
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : str = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True}) snake_case__ : ClassVar[Features] = Features({"text": Value("string")}) snake_case__ : ClassVar[Features] = Features({"summary": Value("string")}) snake_case__ : str = "text" snake_case__ : str = "summary" @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
368
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCAmelCase_ ) , lowerCAmelCase_ ) return number - int(lowerCAmelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
195
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase_ = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCamelCase_ = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCamelCase_ = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = RealmTokenizer def __init__( self: Tuple ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: str=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[Any]="[UNK]" ,lowerCamelCase_: str="[SEP]" ,lowerCamelCase_: int="[PAD]" ,lowerCamelCase_: Union[str, Any]="[CLS]" ,lowerCamelCase_: List[Any]="[MASK]" ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: Tuple=None ,**lowerCamelCase_: Any ,) -> str: super().__init__( lowerCamelCase_ ,tokenizer_file=lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,tokenize_chinese_chars=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,lowerCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,lowerCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,lowerCamelCase_ ) != tokenize_chinese_chars ): UpperCAmelCase_ : Optional[Any] = getattr(lowerCamelCase_ ,normalizer_state.pop("""type""" ) ) UpperCAmelCase_ : Tuple = do_lower_case UpperCAmelCase_ : Union[str, Any] = strip_accents UpperCAmelCase_ : List[Any] = tokenize_chinese_chars UpperCAmelCase_ : Dict = normalizer_class(**lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = do_lower_case def A__ ( self: Optional[Any] ,lowerCamelCase_: int ,**lowerCamelCase_: str ) -> List[Any]: UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : int = text UpperCAmelCase_ : Optional[Any] = kwargs.pop("""text_pair""" ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = kwargs.pop("""return_tensors""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(lowerCamelCase_ ): if batch_text_pair is not None: UpperCAmelCase_ : int = batch_text_pair[idx] else: UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[str] = super().__call__(lowerCamelCase_ ,lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = encoded_candidates.get("""input_ids""" ) UpperCAmelCase_ : List[Any] = encoded_candidates.get("""attention_mask""" ) UpperCAmelCase_ : Optional[int] = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(lowerCamelCase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCamelCase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = {key: item for key, item in output_data.items() if len(lowerCamelCase_ ) != 0} return BatchEncoding(lowerCamelCase_ ,tensor_type=lowerCamelCase_ ) def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Dict=None ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self: int ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: UpperCAmelCase_ : Optional[Any] = self._tokenizer.model.save(lowerCamelCase_ ,name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
345
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
1
"""simple docstring""" _A = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
357
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def _a (self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_lowerCamelCase , ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) class lowerCamelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def _a (self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_lowerCamelCase , ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_lowerCamelCase ) def a__ ( ) -> Tuple: return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def a__ ( ) -> List[str]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @require_beam def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Dict = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a (self ): """simple docstring""" import apache_beam as beam UpperCAmelCase__ : Optional[int] = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Any = DummyBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: UpperCAmelCase__ : int = partial(_lowerCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( _lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) UpperCAmelCase__ : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _a (self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=_lowerCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = NestedBeamDataset(cache_dir=_lowerCamelCase , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) UpperCAmelCase__ : str = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _lowerCamelCase ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _lowerCamelCase ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_lowerCamelCase , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
166
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Any = """maskformer""" __lowerCamelCase : Tuple = {"""hidden_size""": """mask_feature_size"""} __lowerCamelCase : Union[str, Any] = ["""resnet""", """swin"""] __lowerCamelCase : List[Any] = ["""detr"""] def __init__( self , a = 256 , a = 256 , a = 0.1 , a = False , a = None , a = None , a = 0.02 , a = 1.0 , a = 1.0 , a = 1.0 , a = 20.0 , a = None , **a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : str = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(a , a): lowercase__ : List[str] = backbone_config.pop('model_type') lowercase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : Optional[Any] = config_class.from_dict(a) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported)}""") if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : List[Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Optional[int] = ( decoder_config.pop('model_type') if isinstance(a , a) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported)}""") if isinstance(a , a): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[int] = config_class.from_dict(a) lowercase__ : List[Any] = backbone_config lowercase__ : str = decoder_config # main feature dimension for the model lowercase__ : str = fpn_feature_size lowercase__ : Optional[Any] = mask_feature_size # initializer lowercase__ : List[str] = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Any = cross_entropy_weight lowercase__ : str = dice_weight lowercase__ : Tuple = mask_weight lowercase__ : List[str] = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[int] = output_auxiliary_logits lowercase__ : Optional[int] = self.decoder_config.encoder_attention_heads lowercase__ : Union[str, Any] = self.decoder_config.num_hidden_layers super().__init__(**a) @classmethod def snake_case_ ( cls , a , a , **a): return cls( backbone_config=a , decoder_config=a , **a , ) def snake_case_ ( self): lowercase__ : Optional[int] = copy.deepcopy(self.__dict__) lowercase__ : List[str] = self.backbone_config.to_dict() lowercase__ : List[str] = self.decoder_config.to_dict() lowercase__ : List[Any] = self.__class__.model_type return output
214
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError('String lengths must match!' ) lowercase__ : Union[str, Any] = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
214
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __UpperCAmelCase = '\\n\n' __UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1_6 , _UpperCamelCase = True , _UpperCamelCase=None ) -> str: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase_ : Dict = 'cuda' else: UpperCAmelCase_ : List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCAmelCase_ : Dict = AutoModelForCausalLM.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : int = model.to(_UpperCamelCase ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase_ : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase_ : List[str] = model.config.max_length - 1 else: UpperCAmelCase_ : str = model.config.max_length UpperCAmelCase_ : Optional[Any] = tokenizer( _UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='pt' , return_attention_mask=_UpperCamelCase , ).to(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = encodings['input_ids'] UpperCAmelCase_ : Optional[int] = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Union[str, Any] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(_UpperCamelCase ) , _UpperCamelCase ) ): UpperCAmelCase_ : Tuple = min(start_index + batch_size , len(_UpperCamelCase ) ) UpperCAmelCase_ : Union[str, Any] = encoded_texts[start_index:end_index] UpperCAmelCase_ : Optional[Any] = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase_ : List[str] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCamelCase ) UpperCAmelCase_ : Tuple = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase_ : Any = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCamelCase ), attn_mask] , dim=1 ) UpperCAmelCase_ : List[str] = encoded_batch with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase ).logits UpperCAmelCase_ : List[Any] = out_logits[..., :-1, :].contiguous() UpperCAmelCase_ : Dict = labels[..., 1:].contiguous() UpperCAmelCase_ : Optional[int] = attn_mask[..., 1:].contiguous() UpperCAmelCase_ : Optional[int] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCamelCase )}
353
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = RemBertConfig.from_json_file(__snake_case ) print('Building PyTorch model from configuration: {}'.format(str(__snake_case ) ) ) UpperCAmelCase_ : Dict = RemBertModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print('Save PyTorch model to {}'.format(__snake_case ) ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
145
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowerCamelCase : Tuple = (720, 1280) # Height, Width __lowerCamelCase : int = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowerCamelCase : int = 1 / 100 __lowerCamelCase : Any = """""" __lowerCamelCase : List[str] = """""" __lowerCamelCase : List[Any] = """""" __lowerCamelCase : Tuple = 250 def A_ ( ) -> None: UpperCamelCase , UpperCamelCase : Tuple = get_dataset(_lowerCAmelCase , _lowerCAmelCase ) for index in range(_lowerCAmelCase ): UpperCamelCase : Union[str, Any] = random.sample(range(len(_lowerCAmelCase ) ) , 4 ) UpperCamelCase , UpperCamelCase , UpperCamelCase : str = update_image_and_anno( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , filter_scale=_lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase : Union[str, Any] = random_chars(32 ) UpperCamelCase : Optional[Any] = path.split(os.sep )[-1].rsplit("." , 1 )[0] UpperCamelCase : Optional[Any] = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) UpperCamelCase : int = [] for anno in new_annos: UpperCamelCase : Dict = anno[3] - anno[1] UpperCamelCase : Union[str, Any] = anno[4] - anno[2] UpperCamelCase : Optional[int] = anno[1] + width / 2 UpperCamelCase : Tuple = anno[2] + height / 2 UpperCamelCase : Dict = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_lowerCAmelCase ) with open(F"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[list, list]: UpperCamelCase : int = [] UpperCamelCase : Tuple = [] for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ): UpperCamelCase : Union[str, Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCAmelCase ) as in_file: UpperCamelCase : int = in_file.readlines() UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , F"""{label_name}.jpg""" ) UpperCamelCase : str = [] for obj_list in obj_lists: UpperCamelCase : Optional[int] = obj_list.rstrip("\n" ).split(" " ) UpperCamelCase : Dict = float(obj[1] ) - float(obj[3] ) / 2 UpperCamelCase : List[str] = float(obj[2] ) - float(obj[4] ) / 2 UpperCamelCase : Dict = float(obj[1] ) + float(obj[3] ) / 2 UpperCamelCase : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCAmelCase ) labels.append(_lowerCAmelCase ) return img_paths, labels def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , ) -> tuple[list, list, str]: UpperCamelCase : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCamelCase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase : Dict = int(scale_x * output_size[1] ) UpperCamelCase : Tuple = int(scale_y * output_size[0] ) UpperCamelCase : Union[str, Any] = [] UpperCamelCase : int = [] for i, index in enumerate(_lowerCAmelCase ): UpperCamelCase : str = all_img_list[index] path_list.append(_lowerCAmelCase ) UpperCamelCase : Tuple = all_annos[index] UpperCamelCase : Union[str, Any] = cva.imread(_lowerCAmelCase ) if i == 0: # top-left UpperCamelCase : int = cva.resize(_lowerCAmelCase , (divid_point_x, divid_point_y) ) UpperCamelCase : int = img for bbox in img_annos: UpperCamelCase : Any = bbox[1] * scale_x UpperCamelCase : Optional[Any] = bbox[2] * scale_y UpperCamelCase : str = bbox[3] * scale_x UpperCamelCase : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCamelCase : Any = cva.resize(_lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) UpperCamelCase : str = img for bbox in img_annos: UpperCamelCase : str = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase : Tuple = bbox[2] * scale_y UpperCamelCase : int = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase : str = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase : Dict = img for bbox in img_annos: UpperCamelCase : str = bbox[1] * scale_x UpperCamelCase : List[str] = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase : Dict = bbox[3] * scale_x UpperCamelCase : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCamelCase : str = cva.resize( _lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase : Optional[int] = img for bbox in img_annos: UpperCamelCase : Dict = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase : Any = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase : int = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCamelCase : List[str] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def A_ ( _lowerCAmelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" UpperCamelCase : Optional[Any] = ascii_lowercase + digits return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
52
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :List[str] = KandinskyInpaintPipeline _UpperCAmelCase :List[str] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCAmelCase :Dict = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCAmelCase :Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase :int = False @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase( self ): '''simple docstring''' return 100 @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCamelCase : Optional[int] = MultilingualCLIP(A_ ) UpperCamelCase : Union[str, Any] = text_encoder.eval() return text_encoder @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[int] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase : List[Any] = UNetaDConditionModel(**A_ ) return model @property def __UpperCamelCase( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.dummy_text_encoder UpperCamelCase : str = self.dummy_tokenizer UpperCamelCase : List[Any] = self.dummy_unet UpperCamelCase : Optional[Any] = self.dummy_movq UpperCamelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) UpperCamelCase : Optional[Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' UpperCamelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase : List[Any] = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((256, 256) ) # create mask UpperCamelCase : str = np.ones((64, 64) , dtype=np.floataa ) UpperCamelCase : str = 0 if str(A_ ).startswith("mps" ): UpperCamelCase : int = torch.manual_seed(A_ ) else: UpperCamelCase : Tuple = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Union[str, Any] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = "cpu" UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**A_ ) UpperCamelCase : Tuple = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Any = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase : List[Any] = output.images UpperCamelCase : List[Any] = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCamelCase : Union[str, Any] = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __UpperCamelCase( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCamelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) UpperCamelCase : str = 0 UpperCamelCase : List[Any] = "a hat" UpperCamelCase : Tuple = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCamelCase : Optional[Any] = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : Optional[Any] = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase : Dict = pipeline( A_ , image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) UpperCamelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ )
52
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_A , '''hidden_sizes''')) self.parent.assertTrue(hasattr(_A , '''num_attention_heads''')) self.parent.assertTrue(hasattr(_A , '''num_encoder_blocks''')) class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : List[str]=64 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=[2, 2, 2, 2] , UpperCAmelCase__ : Tuple=[8, 4, 2, 1] , UpperCAmelCase__ : List[str]=[16, 32, 64, 128] , UpperCAmelCase__ : int=[1, 4, 8, 16] , UpperCAmelCase__ : List[str]=[1, 2, 4, 8] , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : int=None , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]) ->int: '''simple docstring''' A__ = SegformerModel(config=_A) model.to(_A) model.eval() A__ = model(_A) A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : int) ->str: '''simple docstring''' A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_A) model.to(_A) model.eval() A__ = model(_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) A__ = model(_A , labels=_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str) ->List[Any]: '''simple docstring''' A__ = 1 A__ = SegformerForSemanticSegmentation(config=_A) model.to(_A) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(_A) A__ = model(_A , labels=_A) self.parent.assertGreater(result.loss , 0.0) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase__ = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ = SegformerModelTester(self) A__ = SegformerConfigTester(self , config_class=_A) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_A) def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_A) @unittest.skip('''SegFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''') def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_A) A__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_A , _A)) A__ = outputs.attentions A__ = sum(self.model_tester.depths) self.assertEqual(len(_A) , _A) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_A , _A)) A__ = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_A) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_A , _A)) self.assertEqual(out_len + 1 , len(_A)) A__ = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def SCREAMING_SNAKE_CASE ( self : str) ->List[str]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple): A__ = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_A , _A)) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_A) , _A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_A , _A , _A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_A , _A , _A) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' if not self.model_tester.is_training: return A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_A): continue A__ = model_class(_A) model.to(_A) model.train() A__ = self._prepare_for_class(_A , _A , return_labels=_A) A__ = model(**_A).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_A) self.assertIsNotNone(_A) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' A__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_A , align=_A , do_random_crop=_A) A__ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( _A) A__ = prepare_img() A__ = image_processor(images=_A , return_tensors='''pt''') A__ = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): A__ = model(_A) A__ = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , _A) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_A , align=_A , do_random_crop=_A) A__ = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''').to(_A) A__ = prepare_img() A__ = image_processor(images=_A , return_tensors='''pt''') A__ = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): A__ = model(_A) A__ = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , _A) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1e-1)) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_A , align=_A , do_random_crop=_A) A__ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( _A) A__ = prepare_img() A__ = image_processor(images=_A , return_tensors='''pt''') A__ = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): A__ = model(_A) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(500, 300)]) A__ = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , _A) A__ = image_processor.post_process_semantic_segmentation(outputs=_A) A__ = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , _A)
357
from __future__ import annotations from collections import Counter from random import random class UpperCamelCase_ : '''simple docstring''' def __init__( self : Any) ->Optional[Any]: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->None: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : float) ->None: '''simple docstring''' if nodea not in self.connections: self.add_node(UpperCAmelCase__) if nodea not in self.connections: self.add_node(UpperCAmelCase__) A__ = probability def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->list[str]: '''simple docstring''' return list(self.connections) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->str: '''simple docstring''' A__ = 0 A__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, int]: """simple docstring""" A__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase_ , lowercase_ , lowercase_ ) A__ = Counter(graph.get_nodes() ) A__ = start for _ in range(lowercase_ ): A__ = graph.transition(lowercase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
231
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : str = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
80
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError('Input value must be an \'int\' type' ) lowercase = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
195
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=18,__SCREAMING_SNAKE_CASE=30,__SCREAMING_SNAKE_CASE=4_00,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5],__SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5],): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 20} __lowerCAmelCase = do_thumbnail __lowerCAmelCase = do_align_axis __lowerCAmelCase = do_pad __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std def lowerCamelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[Any] =DonutImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = DonutImageProcessingTester(self ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""size""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""do_thumbnail""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""do_align_long_axis""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""do_pad""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE,"""image_std""" ) ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size,{"""height""": 18, """width""": 20} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict,size=42 ) self.assertEqual(image_processor.size,{"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict,size=(42, 84) ) self.assertEqual(image_processor.size,{"""height""": 84, """width""": 42} ) def lowerCamelCase__ ( self ): '''simple docstring''' pass @is_flaky() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE,Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0],return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ),) # Test batched __lowerCAmelCase = image_processing(__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ),) @is_flaky() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=__SCREAMING_SNAKE_CASE,numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE,np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0],return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ),) # Test batched __lowerCAmelCase = image_processing(__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ),) @is_flaky() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester,equal_resolution=__SCREAMING_SNAKE_CASE,torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE,torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0],return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ),) # Test batched __lowerCAmelCase = image_processing(__SCREAMING_SNAKE_CASE,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ),)
46
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _lowerCAmelCase ( lowercase=None ) -> Any: __lowerCAmelCase = argparse.ArgumentParser(add_help=lowercase , allow_abbrev=lowercase ) # The main config parser __lowerCAmelCase = config_command_parser(lowercase ) # The subparser to add commands to __lowerCAmelCase = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowercase , parents=[parent_parser] ) update_command_parser(lowercase , parents=[parent_parser] ) return config_parser def _lowerCAmelCase ( ) -> List[Any]: __lowerCAmelCase = get_config_parser() __lowerCAmelCase = config_parser.parse_args() if not hasattr(lowercase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
46
1
'''simple docstring''' import math def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: """simple docstring""" return math.pow(_UpperCamelCase , 2 ) - a def _lowerCAmelCase ( _UpperCamelCase : float ) -> float: """simple docstring""" return 2 * x def _lowerCAmelCase ( _UpperCamelCase : float ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE =2.0 while start <= a: _SCREAMING_SNAKE_CASE =math.pow(_UpperCamelCase , 2 ) return start def _lowerCAmelCase ( _UpperCamelCase : float , _UpperCamelCase : int = 99_99 , _UpperCamelCase : float = 0.00_00_00_00_00_00_01 ) -> float: """simple docstring""" if a < 0: raise ValueError('math domain error' ) _SCREAMING_SNAKE_CASE =get_initial_point(_UpperCamelCase ) for _ in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =value - fx(_UpperCamelCase , _UpperCamelCase ) / fx_derivative(_UpperCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
47
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[True] * limit __lowercase =False __lowercase =False __lowercase =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): __lowercase =i * 2 while index < limit: __lowercase =False __lowercase =index + i __lowercase =[2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def _A ( _lowerCAmelCase = 1_000_000 ): """simple docstring""" __lowercase =prime_sieve(_lowerCAmelCase ) __lowercase =0 __lowercase =0 for i in range(len(_lowerCAmelCase ) ): for j in range(i + length , len(_lowerCAmelCase ) ): __lowercase =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: __lowercase =j - i __lowercase =sol return largest if __name__ == "__main__": print(f"{solution() = }")
166
0
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowercase__ : List[str] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowercase__ : Optional[int] = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def UpperCamelCase_ ( lowerCAmelCase__ : Any ) -> str: """simple docstring""" lowerCAmelCase_ : int = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=lowerCAmelCase__ )[0] @deprecated(lowerCAmelCase__ , 'Please use tf.data to implement this functionality.' ) def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream: lowerCAmelCase_ : Any = _readaa(lowerCAmelCase__ ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCAmelCase_ : str = _readaa(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = _readaa(lowerCAmelCase__ ) lowerCAmelCase_ : str = _readaa(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = bytestream.read(rows * cols * num_images ) lowerCAmelCase_ : Tuple = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta ) lowerCAmelCase_ : List[str] = data.reshape(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 1 ) return data @deprecated(lowerCAmelCase__ , 'Please use tf.one_hot on tensors.' ) def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : List[Any] = labels_dense.shape[0] lowerCAmelCase_ : Optional[int] = numpy.arange(lowerCAmelCase__ ) * num_classes lowerCAmelCase_ : Tuple = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase_ : List[Any] = 1 return labels_one_hot @deprecated(lowerCAmelCase__ , 'Please use tf.data to implement this functionality.' ) def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Tuple=10 ) -> int: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=lowerCAmelCase__ ) as bytestream: lowerCAmelCase_ : Optional[Any] = _readaa(lowerCAmelCase__ ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCAmelCase_ : int = _readaa(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = bytestream.read(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = numpy.frombuffer(lowerCAmelCase__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(lowerCAmelCase__ , lowerCAmelCase__ ) return labels class UpperCamelCase__ : """simple docstring""" @deprecated( _a , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=dtypes.floataa , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : str=None , ): lowerCAmelCase_ : int = random_seed.get_seed(_a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase_ : Dict = dtypes.as_dtype(_a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCAmelCase_ : List[Any] = 1_0_0_0_0 lowerCAmelCase_ : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase_ : Dict = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase_ : List[str] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase_ : Tuple = images.astype(numpy.floataa ) lowerCAmelCase_ : List[Any] = numpy.multiply(_a , 1.0 / 2_5_5.0 ) lowerCAmelCase_ : str = images lowerCAmelCase_ : Dict = labels lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Optional[Any] = 0 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self._images @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return self._labels @property def SCREAMING_SNAKE_CASE__ ( self : str ): return self._num_examples @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return self._epochs_completed def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : Optional[int]=True ): if fake_data: lowerCAmelCase_ : str = [1] * 7_8_4 lowerCAmelCase_ : Optional[int] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_a )], [fake_label for _ in range(_a )], ) lowerCAmelCase_ : List[Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase_ : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) lowerCAmelCase_ : int = self.images[perma] lowerCAmelCase_ : Dict = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase_ : Tuple = self._num_examples - start lowerCAmelCase_ : str = self._images[start : self._num_examples] lowerCAmelCase_ : Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase_ : List[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) lowerCAmelCase_ : Any = self.images[perm] lowerCAmelCase_ : Optional[int] = self.labels[perm] # Start next epoch lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = batch_size - rest_num_examples lowerCAmelCase_ : Any = self._index_in_epoch lowerCAmelCase_ : List[str] = self._images[start:end] lowerCAmelCase_ : Tuple = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase_ : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCAmelCase__ , 'Please write your own downloading logic.' ) def UpperCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Tuple: """simple docstring""" if not gfile.Exists(lowerCAmelCase__ ): gfile.MakeDirs(lowerCAmelCase__ ) lowerCAmelCase_ : int = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if not gfile.Exists(lowerCAmelCase__ ): urllib.request.urlretrieve(lowerCAmelCase__ , lowerCAmelCase__ ) # noqa: S310 with gfile.GFile(lowerCAmelCase__ ) as f: lowerCAmelCase_ : Optional[int] = f.size() print('Successfully downloaded' , lowerCAmelCase__ , lowerCAmelCase__ , 'bytes.' ) return filepath @deprecated( lowerCAmelCase__ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[int]=dtypes.floataa , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Optional[int]=5000 , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Union[str, Any]=DEFAULT_SOURCE_URL , ) -> Any: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCAmelCase__ , one_hot=lowerCAmelCase__ , dtype=lowerCAmelCase__ , seed=lowerCAmelCase__ ) lowerCAmelCase_ : Any = fake() lowerCAmelCase_ : Optional[Any] = fake() lowerCAmelCase_ : str = fake() return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ ) if not source_url: # empty string check lowerCAmelCase_ : int = DEFAULT_SOURCE_URL lowerCAmelCase_ : str = "train-images-idx3-ubyte.gz" lowerCAmelCase_ : int = "train-labels-idx1-ubyte.gz" lowerCAmelCase_ : List[str] = "t10k-images-idx3-ubyte.gz" lowerCAmelCase_ : Tuple = "t10k-labels-idx1-ubyte.gz" lowerCAmelCase_ : Union[str, Any] = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_images_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: lowerCAmelCase_ : int = _extract_images(lowerCAmelCase__ ) lowerCAmelCase_ : str = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + train_labels_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: lowerCAmelCase_ : int = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ ) lowerCAmelCase_ : Any = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_images_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: lowerCAmelCase_ : int = _extract_images(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = _maybe_download( lowerCAmelCase__ , lowerCAmelCase__ , source_url + test_labels_file ) with gfile.Open(lowerCAmelCase__ , 'rb' ) as f: lowerCAmelCase_ : Optional[Any] = _extract_labels(lowerCAmelCase__ , one_hot=lowerCAmelCase__ ) if not 0 <= validation_size <= len(lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = ( "Validation size should be between 0 and " f"{len(lowerCAmelCase__ )}. Received: {validation_size}." ) raise ValueError(lowerCAmelCase__ ) lowerCAmelCase_ : Any = train_images[:validation_size] lowerCAmelCase_ : Optional[int] = train_labels[:validation_size] lowerCAmelCase_ : Dict = train_images[validation_size:] lowerCAmelCase_ : Optional[int] = train_labels[validation_size:] lowerCAmelCase_ : List[str] = {"dtype": dtype, "reshape": reshape, "seed": seed} lowerCAmelCase_ : Tuple = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) lowerCAmelCase_ : Any = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) lowerCAmelCase_ : Any = _DataSet(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) return _Datasets(train=lowerCAmelCase__ , validation=lowerCAmelCase__ , test=lowerCAmelCase__ )
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : Dict = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _a : int = 'pt' elif is_tf_available(): _a : Union[str, Any] = 'tf' else: _a : Union[str, Any] = 'jax' class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = ByTaTokenizer _UpperCamelCase : Union[str, Any] = False def __A ( self ): super().setUp() _lowerCAmelCase : Tuple = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def __A ( self , **a__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ , a__=False , a__=20 , a__=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowerCAmelCase : Optional[int] = [] for i in range(len(a__ ) ): try: _lowerCAmelCase : int = tokenizer.decode([i] , clean_up_tokenization_spaces=a__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCAmelCase : Tuple = list(filter(lambda a__ : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , a__ ) ) _lowerCAmelCase : str = list(filter(lambda a__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: _lowerCAmelCase : Optional[Any] = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: _lowerCAmelCase : str = toks + toks # toks_str = [t[1] for t in toks] _lowerCAmelCase : Any = [t[0] for t in toks] # Ensure consistency _lowerCAmelCase : Union[str, Any] = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: _lowerCAmelCase : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: _lowerCAmelCase : int = """ """ + output_txt _lowerCAmelCase : Dict = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def __A ( self ): _lowerCAmelCase : Tuple = self.ta_base_tokenizer _lowerCAmelCase : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) _lowerCAmelCase : Dict = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def __A ( self ): _lowerCAmelCase : str = self.ta_base_tokenizer _lowerCAmelCase : List[str] = """Unicode €.""" _lowerCAmelCase : Optional[Any] = tokenizer(a__ ) _lowerCAmelCase : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , a__ ) # decoding _lowerCAmelCase : Optional[int] = tokenizer.decode(a__ ) self.assertEqual(a__ , """Unicode €.</s>""" ) _lowerCAmelCase : Tuple = tokenizer("""e è é ê ë""" ) _lowerCAmelCase : Any = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , a__ ) # decoding _lowerCAmelCase : Any = tokenizer.decode(a__ ) self.assertEqual(a__ , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def __A ( self ): _lowerCAmelCase : Dict = self.ta_base_tokenizer _lowerCAmelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _lowerCAmelCase : str = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowerCAmelCase : List[str] = tokenizer(a__ , padding=a__ , return_tensors=a__ ) self.assertIsInstance(a__ , a__ ) if FRAMEWORK != "jax": _lowerCAmelCase : List[str] = list(batch.input_ids.numpy()[0] ) else: _lowerCAmelCase : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a__ , a__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self ): _lowerCAmelCase : Tuple = self.ta_base_tokenizer _lowerCAmelCase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowerCAmelCase : List[str] = tokenizer(a__ , padding=a__ , return_tensors=a__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , a__ ) self.assertIn("""attention_mask""" , a__ ) self.assertNotIn("""decoder_input_ids""" , a__ ) self.assertNotIn("""decoder_attention_mask""" , a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.ta_base_tokenizer _lowerCAmelCase : Any = [ """Summary of the text.""", """Another summary.""", ] _lowerCAmelCase : Any = tokenizer( text_target=a__ , max_length=32 , padding="""max_length""" , truncation=a__ , return_tensors=a__ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __A ( self ): _lowerCAmelCase : int = self.ta_base_tokenizer _lowerCAmelCase : List[str] = ["""A long paragraph for summarization. </s>"""] _lowerCAmelCase : List[str] = ["""Summary of the text. </s>"""] # fmt: off _lowerCAmelCase : Union[str, Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowerCAmelCase : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowerCAmelCase : Optional[Any] = tokenizer(a__ , text_target=a__ ) self.assertEqual(a__ , batch["""input_ids"""][0] ) self.assertEqual(a__ , batch["""labels"""][0] ) def __A ( self ): # safety check on max_len default value so we are sure the test works _lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = """ He is very happy, UNwant\u00E9d,running""" _lowerCAmelCase : Optional[int] = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) _lowerCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(a__ ) _lowerCAmelCase : Any = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) shutil.rmtree(a__ ) _lowerCAmelCase : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : List[str] = tempfile.mkdtemp() _lowerCAmelCase : Dict = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _lowerCAmelCase : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _lowerCAmelCase : List[str] = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) _lowerCAmelCase : str = tokenizer.__class__.from_pretrained(a__ ) _lowerCAmelCase : List[str] = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowerCAmelCase : Any = tokenizer.__class__.from_pretrained(a__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) with open(os.path.join(a__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase : List[Any] = json.load(a__ ) with open(os.path.join(a__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase : Tuple = json.load(a__ ) _lowerCAmelCase : int = [F"<extra_id_{i}>" for i in range(125 )] _lowerCAmelCase : List[str] = added_tokens_extra_ids + [ """an_additional_special_token""" ] _lowerCAmelCase : Tuple = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(a__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(a__ , a__ ) with open(os.path.join(a__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(a__ , a__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase : str = tokenizer_class.from_pretrained( a__ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=a__ )] _lowerCAmelCase : Dict = tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __A ( self ): _lowerCAmelCase : Dict = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) _lowerCAmelCase : Optional[Any] = tokenizer_class.from_pretrained(a__ ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def __A ( self ): pass def __A ( self ): pass def __A ( self ): pass def __A ( self ): pass def __A ( self ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _lowerCAmelCase : str = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : Dict = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] _lowerCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(a__ , a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _lowerCAmelCase : Dict = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens( a__ , skip_special_tokens=a__ ) for attr in attributes_list: setattr(a__ , attr + """_id""" , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + """_id""" ) , a__ ) setattr(a__ , attr + """_id""" , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + """_id""" ) , a__ ) setattr(a__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(a__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(a__ , """additional_special_tokens_ids""" ) , [] ) setattr(a__ , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(a__ , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(a__ , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
44
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''input_features''', '''attention_mask'''] def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : Tuple=1_6_0_0_0 , lowerCAmelCase__ : Union[str, Any]=8_0 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[Any]=True , **lowerCAmelCase__ : int , ) -> int: """simple docstring""" super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : str = num_mel_bins _UpperCAmelCase : Optional[int] = do_ceptral_normalize _UpperCAmelCase : List[str] = normalize_means _UpperCAmelCase : str = normalize_vars _UpperCAmelCase : Union[str, Any] = True def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : np.ndarray , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Tuple = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ) _UpperCAmelCase : List[Any] = ta_kaldi.fbank(lowerCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: _UpperCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : Dict = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if normalize_vars: _UpperCAmelCase : Any = x[:input_length].std(axis=0 ) _UpperCAmelCase : Optional[int] = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: _UpperCAmelCase : str = padding_value # make sure array is in float32 _UpperCAmelCase : Union[str, Any] = x.astype(np.floataa ) return x def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[np.ndarray] , lowerCAmelCase__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" _UpperCAmelCase : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase__ , lowerCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] def __call__( self : List[Any] , lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Any = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : List[Any] = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Any = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[Any] = [raw_speech] # extract fbank features _UpperCAmelCase : Tuple = [self._extract_fbank_features(lowerCAmelCase__ ) for waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Optional[Any] = BatchFeature({"input_features": features} ) _UpperCAmelCase : Optional[Any] = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format _UpperCAmelCase : Optional[Any] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : int = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : Dict = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCAmelCase : List[str] = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCAmelCase : str = self.normalize( padded_inputs["input_features"] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: _UpperCAmelCase : Any = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
145
0
UpperCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" UpperCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] UpperCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
351
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCAmelCase__ = "bart" UpperCAmelCase__ = True @st.cache(allow_output_mutation=a ) def _a ( ) -> Tuple: if LOAD_DENSE_INDEX: a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) a = qar_model.eval() else: a , a = (None, None) if MODEL_TYPE == "bart": a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) a = sas_model.eval() else: a , a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=a ) def _a ( ) -> Dict: if LOAD_DENSE_INDEX: a = faiss.StandardGpuResources() a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) a = faiss.IndexFlatIP(128 ) a = faiss.index_cpu_to_gpu(a , 1 , a ) wikiaab_gpu_index_flat.add(a ) # TODO fix for larger GPU else: a , a = (None, None) a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=a ) def _a ( ) -> Optional[int]: a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) a = elia['''train_eli5'''] a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(a ) return (elia_train, eli5_train_q_index) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_indexes() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_models() UpperCAmelCase__ , UpperCAmelCase__ = load_train_data() def _a ( a :str , a :Tuple=10 ) -> List[str]: a = embed_questions_for_retrieval([question] , a , a ) a , a = eli5_train_q_index.search(a , a ) a = [elia_train[int(a )] for i in I[0]] return nn_examples def _a ( a :str , a :Any="wiki40b" , a :int="dense" , a :Union[str, Any]=10 ) -> List[str]: if source == "none": a , a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": a , a = query_qa_dense_index( a , a , a , a , a , a ) else: a , a = query_es_index( a , a , index_name='''english_wiki40b_snippets_100w''' , n_results=a , ) a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] a = '''question: {} context: {}'''.format(a , a ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda a : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda a : None), } ) def _a ( a :Tuple , a :int , a :int , a :Dict=64 , a :List[Any]=256 , a :List[Any]=False , a :List[Any]=2 , a :Tuple=0.95 , a :Optional[Any]=0.8 ) -> int: with torch.no_grad(): a = qa_sas_generate( a , a , a , num_answers=1 , num_beams=a , min_len=a , max_len=a , do_sample=a , temp=a , top_p=a , top_k=a , max_input_length=1_024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar UpperCAmelCase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCAmelCase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCAmelCase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCAmelCase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCAmelCase__ = st.sidebar.checkbox("Demo options") if demo_options: UpperCAmelCase__ = st.sidebar.selectbox( "", action_list, index=3, ) UpperCAmelCase__ = action_list.index(action_st) UpperCAmelCase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) UpperCAmelCase__ = show_type == "Show full text of passages" else: UpperCAmelCase__ = 3 UpperCAmelCase__ = True UpperCAmelCase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: UpperCAmelCase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) UpperCAmelCase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: UpperCAmelCase__ = "wiki40b" UpperCAmelCase__ = "dense" UpperCAmelCase__ = "beam" UpperCAmelCase__ = 2 UpperCAmelCase__ = 64 UpperCAmelCase__ = 256 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = st.sidebar.checkbox("Generation options") if generate_options: UpperCAmelCase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCAmelCase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) UpperCAmelCase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": UpperCAmelCase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCAmelCase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCAmelCase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCAmelCase__ = None # start main text UpperCAmelCase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCAmelCase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCAmelCase__ = st.text_input("Enter your question here:", "") else: UpperCAmelCase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="dense", n_results=10) UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) UpperCAmelCase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCAmelCase__ = support_list[:10] UpperCAmelCase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCAmelCase__ , UpperCAmelCase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCAmelCase__ , UpperCAmelCase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): UpperCAmelCase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) UpperCAmelCase__ = res[1].strip() if sec_titles == "": UpperCAmelCase__ = "[{}]({})".format(res[0], wiki_url) else: UpperCAmelCase__ = sec_titles.split(" & ") UpperCAmelCase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: UpperCAmelCase__ = find_nearest_training(question) UpperCAmelCase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) UpperCAmelCase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) UpperCAmelCase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _a : List[str] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _a : Optional[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ).convert('RGB' ) _a : Optional[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) _a : List[str] = transform(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) return image def __lowerCamelCase ( lowerCAmelCase_ ) -> int: if "visual_encoder" in key: _a : List[str] = re.sub('visual_encoder*' , 'vision_model.encoder' , lowerCAmelCase_ ) if "blocks" in key: _a : int = re.sub(r'blocks' , 'layers' , lowerCAmelCase_ ) if "attn" in key: _a : Optional[int] = re.sub(r'attn' , 'self_attn' , lowerCAmelCase_ ) if "norm1" in key: _a : List[str] = re.sub(r'norm1' , 'layer_norm1' , lowerCAmelCase_ ) if "norm2" in key: _a : str = re.sub(r'norm2' , 'layer_norm2' , lowerCAmelCase_ ) if "encoder.norm" in key: _a : int = re.sub(r'encoder.norm' , 'post_layernorm' , lowerCAmelCase_ ) if "encoder.patch_embed.proj" in key: _a : Union[str, Any] = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowerCAmelCase_ ) if "encoder.pos_embed" in key: _a : Tuple = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , lowerCAmelCase_ ) if "encoder.cls_token" in key: _a : Tuple = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , lowerCAmelCase_ ) if "self_attn" in key: _a : Any = re.sub(r'self_attn.proj' , 'self_attn.projection' , lowerCAmelCase_ ) return key @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=None ) -> int: if config_path is not None: _a : Tuple = BlipConfig.from_pretrained(lowerCAmelCase_ ) else: _a : int = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) _a : Dict = BlipForConditionalGeneration(lowerCAmelCase_ ).eval() _a : Any = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _a : List[str] = blip_decoder(pretrained=lowerCAmelCase_ , image_size=384 , vit='base' ) _a : int = pt_model.eval() _a : Any = pt_model.state_dict() for key in modified_state_dict.copy(): _a : List[str] = modified_state_dict.pop(lowerCAmelCase_ ) _a : Optional[Any] = rename_key(lowerCAmelCase_ ) _a : Any = value hf_model.load_state_dict(lowerCAmelCase_ ) _a : Optional[int] = 384 _a : List[str] = load_demo_image(image_size=lowerCAmelCase_ , device='cpu' ) _a : Optional[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) _a : int = tokenizer(['a picture of'] ).input_ids _a : List[str] = hf_model.generate(lowerCAmelCase_ , lowerCAmelCase_ ) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] _a : List[str] = hf_model.generate(lowerCAmelCase_ ) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowerCAmelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _a : Tuple = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _a : Optional[Any] = blip_vqa(pretrained=lowerCAmelCase_ , image_size=lowerCAmelCase_ , vit='base' ) vqa_model.eval() _a : Optional[int] = vqa_model.state_dict() for key in modified_state_dict.copy(): _a : int = modified_state_dict.pop(lowerCAmelCase_ ) _a : Optional[int] = rename_key(lowerCAmelCase_ ) _a : Dict = value _a : Optional[int] = BlipForQuestionAnswering(lowerCAmelCase_ ) hf_vqa_model.load_state_dict(lowerCAmelCase_ ) _a : List[str] = ['How many dogs are in this image?'] _a : str = tokenizer(lowerCAmelCase_ , return_tensors='pt' ).input_ids _a : Dict = hf_vqa_model.generate(lowerCAmelCase_ , lowerCAmelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _a : int = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _a : List[str] = blip_itm(pretrained=lowerCAmelCase_ , image_size=lowerCAmelCase_ , vit='base' ) itm_model.eval() _a : Any = itm_model.state_dict() for key in modified_state_dict.copy(): _a : Optional[int] = modified_state_dict.pop(lowerCAmelCase_ ) _a : Any = rename_key(lowerCAmelCase_ ) _a : Dict = value _a : Tuple = BlipForImageTextRetrieval(lowerCAmelCase_ ) _a : Any = ['A picture of a woman with a dog sitting in a beach'] _a : List[str] = tokenizer( lowerCAmelCase_ , return_tensors='pt' , padding='max_length' , truncation=lowerCAmelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(lowerCAmelCase_ ) hf_itm_model.eval() _a : str = hf_itm_model(lowerCAmelCase_ , lowerCAmelCase_ , use_itm_head=lowerCAmelCase_ ) _a : Any = hf_itm_model(lowerCAmelCase_ , lowerCAmelCase_ , use_itm_head=lowerCAmelCase_ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
89
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ) -> Union[str, Any]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_stages lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = num_labels lowerCAmelCase_ = initializer_range lowerCAmelCase_ = out_features lowerCAmelCase_ = out_indices lowerCAmelCase_ = scope def __a ( self ) -> Optional[int]: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[str]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: lowerCAmelCase_ = ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: lowerCAmelCase_ = ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase_ = None lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self ) -> Any: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict def __a ( self ) -> str: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _lowerCAmelCase ( __a , __a , unittest.TestCase ): _lowercase =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowercase =( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowercase =False _lowercase =False _lowercase =False _lowercase =False _lowercase =False def __a ( self ) -> Tuple: lowerCAmelCase_ = ConvNextVaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __a ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ) -> Any: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def __a ( self ) -> List[Any]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def __a ( self ) -> int: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def __a ( self ) -> str: pass def __a ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase_ = True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowerCAmelCase_ = model(**_UpperCamelCase ).loss loss.backward() def __a ( self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase_ = False lowerCAmelCase_ = True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowerCAmelCase_ = model(**_UpperCamelCase ).loss loss.backward() def __a ( self ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_UpperCamelCase ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __a ( self ) -> List[Any]: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def __a ( self ) -> Optional[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def __a ( self ) -> int: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(_UpperCamelCase ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = preprocessor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_UpperCamelCase ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) lowerCAmelCase_ = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
231
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): _snake_case : Any = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: _snake_case : Tuple = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _A ( __magic_name__ ): lowercase__ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ = numpy_to_pil(__SCREAMING_SNAKE_CASE ) return images def _A ( __magic_name__ ): if images.ndim == 3: lowercase__ = images[None, ...] lowercase__ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase__ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: lowercase__ = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for image in images] return pil_images
370
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase ( yaml.SafeLoader ): def UpperCAmelCase ( self :Optional[Any] , _lowercase :Any ): '''simple docstring''' lowercase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase__ = [tuple(_lowercase ) if isinstance(_lowercase , _lowercase ) else key for key in keys] lowercase__ = Counter(_lowercase ) lowercase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def UpperCAmelCase ( self :Any , _lowercase :str , _lowercase :Dict=False ): '''simple docstring''' lowercase__ = super().construct_mapping(_lowercase , deep=_lowercase ) self._check_no_duplicates_on_constructed_node(_lowercase ) return mapping def _A ( __magic_name__ ): lowercase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase__ = full_content[1:].index("---" ) + 1 lowercase__ = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__magic_name__ ) class lowerCAmelCase ( lowercase_ ): # class attributes __lowerCamelCase = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase ( cls :Dict , _lowercase :Path ): '''simple docstring''' with open(_lowercase , encoding="utf-8" ) as readme_file: lowercase__ , lowercase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_lowercase ) else: return cls() def UpperCAmelCase ( self :Any , _lowercase :Path ): '''simple docstring''' if path.exists(): with open(_lowercase , encoding="utf-8" ) as readme_file: lowercase__ = readme_file.read() else: lowercase__ = None lowercase__ = self._to_readme(_lowercase ) with open(_lowercase , "w" , encoding="utf-8" ) as readme_file: readme_file.write(_lowercase ) def UpperCAmelCase ( self :List[str] , _lowercase :Optional[str] = None ): '''simple docstring''' if readme_content is not None: lowercase__ , lowercase__ = _split_yaml_from_readme(_lowercase ) lowercase__ = "---\n" + self.to_yaml_string() + "---\n" + content else: lowercase__ = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def UpperCAmelCase ( cls :Any , _lowercase :str ): '''simple docstring''' lowercase__ = yaml.load(_lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase__ = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_lowercase , allow_unicode=_lowercase , encoding="utf-8" , ).decode("utf-8" ) _snake_case = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _snake_case = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _snake_case = ap.parse_args() _snake_case = Path(args.readme_filepath) _snake_case = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
201
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'bloom' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self , lowercase=250_880 , lowercase=64 , lowercase=2 , lowercase=8 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=1 , lowercase=2 , lowercase=False , lowercase=0.0 , lowercase=0.0 , lowercase=1 , lowercase=False , **lowercase , ) -> Tuple: lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase = kwargs.pop("""n_embed""" , lowercase ) lowerCAmelCase = hidden_size if n_embed is None else n_embed lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = use_cache lowerCAmelCase = pretraining_tp lowerCAmelCase = apply_residual_connection_post_layernorm lowerCAmelCase = hidden_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id lowerCAmelCase = slow_but_exact super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = version.parse('1.12' ) def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? lowerCAmelCase = 0 @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase , direction="""inputs""" , inverted_values_shape=lowercase ) lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def _snake_case ( self ) -> int: return self._config.n_layer @property def _snake_case ( self ) -> int: return self._config.n_head @property def _snake_case ( self ) -> float: return 1e-3 def _snake_case ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: lowerCAmelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase , lowerCAmelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase = seqlen + 2 lowerCAmelCase = self._config.hidden_size // self.num_attention_heads lowerCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] lowerCAmelCase = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ) -> int: return 13
46
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = '''blip_text_model''' def __init__( self : Tuple , _UpperCAmelCase : int=30_524 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[Any]=3_072 , _UpperCAmelCase : int=768 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Any=8 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Union[str, Any]=1E-1_2 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : str=30_522 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Optional[int]=102 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : str , ): super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , sep_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) _A = vocab_size _A = hidden_size _A = encoder_hidden_size _A = intermediate_size _A = projection_dim _A = hidden_dropout_prob _A = num_hidden_layers _A = num_attention_heads _A = max_position_embeddings _A = layer_norm_eps _A = hidden_act _A = initializer_range _A = attention_probs_dropout_prob _A = is_decoder _A = use_cache @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[int] ): cls._set_token_in_kwargs(_UpperCAmelCase ) _A , _A = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": _A = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Tuple = '''blip_vision_model''' def __init__( self : Any , _UpperCAmelCase : int=768 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : str=384 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[str]=1E-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Union[str, Any]=1E-1_0 , **_UpperCAmelCase : List[Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = intermediate_size _A = projection_dim _A = num_hidden_layers _A = num_attention_heads _A = patch_size _A = image_size _A = initializer_range _A = attention_dropout _A = layer_norm_eps _A = hidden_act @classmethod def lowerCAmelCase_ ( cls : Optional[int] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ): cls._set_token_in_kwargs(_UpperCAmelCase ) _A , _A = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": _A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''blip''' UpperCAmelCase : Tuple = True def __init__( self : Union[str, Any] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : List[str]=2.6592 , _UpperCAmelCase : Optional[int]=256 , **_UpperCAmelCase : Tuple , ): super().__init__(**_UpperCAmelCase ) if text_config is None: _A = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: _A = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) _A = BlipTextConfig(**_UpperCAmelCase ) _A = BlipVisionConfig(**_UpperCAmelCase ) _A = self.vision_config.hidden_size _A = projection_dim _A = logit_scale_init_value _A = 1.0 _A = 0.02 _A = image_text_hidden_size @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , _UpperCAmelCase : BlipTextConfig , _UpperCAmelCase : BlipVisionConfig , **_UpperCAmelCase : List[Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = copy.deepcopy(self.__dict__ ) _A = self.text_config.to_dict() _A = self.vision_config.to_dict() _A = self.__class__.model_type return output
271
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a = logging.getLogger(__name__) def _snake_case ( _snake_case : str , _snake_case : Tuple ) -> Any: '''simple docstring''' if os.path.exists(_snake_case ): if os.path.exists(os.path.join(_snake_case , 'config.json' ) ) and os.path.isfile( os.path.join(_snake_case , 'config.json' ) ): os.remove(os.path.join(_snake_case , 'config.json' ) ) if os.path.exists(os.path.join(_snake_case , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_snake_case , 'pytorch_model.bin' ) ): os.remove(os.path.join(_snake_case , 'pytorch_model.bin' ) ) else: os.makedirs(_snake_case ) model.save_pretrained(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[int]=False ) -> Tuple: '''simple docstring''' _A = 2 if unlogit: _A = torch.pow(_snake_case , _snake_case ) _A = p * torch.log(_snake_case ) _A = 0 return -plogp.sum(dim=-1 ) def _snake_case ( _snake_case : Optional[Any] ) -> int: '''simple docstring''' logger.info('lv, h >\t' + '\t'.join(F'''{x + 1}''' for x in range(len(_snake_case ) ) ) ) for row in range(len(_snake_case ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '\t'.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _snake_case ( _snake_case : List[str] , _snake_case : Dict , _snake_case : List[str] , _snake_case : Union[str, Any]=True , _snake_case : Any=True , _snake_case : List[str]=None , _snake_case : List[Any]=False ) -> int: '''simple docstring''' _A , _A = model.config.num_hidden_layers, model.config.num_attention_heads _A = torch.zeros(_snake_case , _snake_case ).to(args.device ) _A = torch.zeros(_snake_case , _snake_case ).to(args.device ) if head_mask is None: _A = torch.ones(_snake_case , _snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=_snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A = None _A = 0.0 _A = 0.0 for step, inputs in enumerate(tqdm(_snake_case , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): _A = tuple(t.to(args.device ) for t in inputs ) ((_A) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A = model(_snake_case , labels=_snake_case , head_mask=_snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_snake_case ): _A = entropy(attn.detach() , _snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A = 2 _A = torch.pow(torch.pow(_snake_case , _snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: _A = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_snake_case ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_snake_case ) logger.info('Head ranked by importance scores' ) _A = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A = torch.arange( head_importance.numel() , device=args.device ) _A = head_ranks.view_as(_snake_case ) print_ad_tensor(_snake_case ) return attn_entropy, head_importance, total_loss def _snake_case ( _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any] ) -> List[str]: '''simple docstring''' _A , _A , _A = compute_heads_importance(_snake_case , _snake_case , _snake_case , compute_entropy=_snake_case ) _A = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _snake_case , original_score * args.masking_threshold ) _A = torch.ones_like(_snake_case ) _A = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A = original_score while current_score >= original_score * args.masking_threshold: _A = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A = float('Inf' ) _A = head_importance.view(-1 ).sort()[1] if len(_snake_case ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads _A = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) _A = new_head_mask.view(-1 ) _A = 0.0 _A = new_head_mask.view_as(_snake_case ) _A = new_head_mask.clone().detach() print_ad_tensor(_snake_case ) # Compute metric and head importance again _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , head_mask=_snake_case ) _A = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(_snake_case ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _A = datetime.now() _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , compute_importance=_snake_case , head_mask=_snake_case ) _A = 1 / loss _A = datetime.now() - before_time _A = sum(p.numel() for p in model.parameters() ) _A = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(_snake_case , _snake_case ): _A = [ v, ] assert sum(len(_snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_snake_case ) _A = sum(p.numel() for p in model.parameters() ) _A = datetime.now() _A , _A , _A = compute_heads_importance( _snake_case , _snake_case , _snake_case , compute_entropy=_snake_case , compute_importance=_snake_case , head_mask=_snake_case , actually_pruned=_snake_case , ) _A = 1 / loss _A = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _snake_case , _snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _snake_case , _snake_case ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(_snake_case , args.output_dir ) def _snake_case ( ) -> Dict: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_snake_case , type=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_snake_case , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_snake_case , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_snake_case , type=_snake_case , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_snake_case , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_snake_case , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_snake_case , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_snake_case , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=_snake_case , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_snake_case , help='Batch size.' ) parser.add_argument('--seed' , type=_snake_case , default=42 ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_snake_case , default='' , help='Can be used for distant debugging.' ) _A = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) _A = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A = torch.device('cuda' , args.local_rank ) _A = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A = nn.parallel.DistributedDataParallel( _snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_snake_case ) elif args.n_gpu > 1: _A = nn.DataParallel(_snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_snake_case ) torch.save(_snake_case , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _snake_case ) # Prepare dataset _A = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A = (torch.from_numpy(_snake_case ),) _A = TensorDataset(*_snake_case ) _A = RandomSampler(_snake_case ) _A = DataLoader(_snake_case , sampler=_snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_snake_case , _snake_case , _snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A = mask_heads(_snake_case , _snake_case , _snake_case ) prune_heads(_snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": main()
271
1
'''simple docstring''' from typing import Any import numpy as np def __snake_case( _lowerCAmelCase ) -> bool: return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : int = v.conjugate().T snake_case__ : Optional[Any] = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def __snake_case( ) -> None: snake_case__ : int = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) snake_case__ : List[str] = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), f"{a} is not hermitian." print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case__ : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), f"{a} is not hermitian." assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
35
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class a : def __init__( self : Union[str, Any] ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : float ): if nodea not in self.connections: self.add_node(__lowerCAmelCase ) if nodea not in self.connections: self.add_node(__lowerCAmelCase ) _UpperCAmelCase = probability def lowerCAmelCase_ ( self : Optional[Any] ): return list(self.connections ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = 0 _UpperCAmelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = Counter(graph.get_nodes() ) _UpperCAmelCase = start for _ in range(lowercase ): _UpperCAmelCase = graph.transition(lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
289
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : Union[str, Any] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class UpperCamelCase__: __magic_name__ : List[str] __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="Translation" , init=lowerCAmelCase , repr=lowerCAmelCase ) def __call__( self : Union[str, Any] )-> str: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def a__( self : int )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class UpperCamelCase__: __magic_name__ : Optional[List] = None __magic_name__ : Optional[int] = None __magic_name__ : Optional[str] = None # Automatically constructed __magic_name__ : ClassVar[str] = "dict" __magic_name__ : ClassVar[Any] = None __magic_name__ : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase , repr=lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase = len(self.languages ) if self.languages else None def __call__( self : int )-> Optional[Any]: """simple docstring""" return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def a__( self : Optional[int] , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = set(self.languages ) if self.languages and set(lowerCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase , UpperCAmelCase = zip(*sorted(lowerCAmelCase ) ) return {"language": languages, "translation": translations} def a__( self : Any )-> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
91
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A_ (UpperCamelCase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ShapEImgaImgPipeline SCREAMING_SNAKE_CASE__ : List[str] = ["""image"""] SCREAMING_SNAKE_CASE__ : int = ["""image"""] SCREAMING_SNAKE_CASE__ : Dict = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE__ : Dict = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 8 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCAmelCase_ : List[Any] = CLIPVisionModel(_a ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } UpperCAmelCase_ : Optional[int] = PriorTransformer(**_a ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase_ : int = ShapERenderer(**_a ) return model def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.dummy_prior UpperCAmelCase_ : Tuple = self.dummy_image_encoder UpperCAmelCase_ : str = self.dummy_image_processor UpperCAmelCase_ : Any = self.dummy_renderer UpperCAmelCase_ : str = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) UpperCAmelCase_ : Union[str, Any] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" UpperCAmelCase_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("mps" ): UpperCAmelCase_ : List[Any] = torch.manual_seed(_a ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_a ).manual_seed(_a ) UpperCAmelCase_ : List[Any] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = """cpu""" UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : str = self.pipeline_class(**_a ) UpperCAmelCase_ : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) UpperCAmelCase_ : Tuple = pipe(**self.get_dummy_inputs(_a ) ) UpperCAmelCase_ : Tuple = output.images[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase_ : Dict = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = torch_device == """cpu""" UpperCAmelCase_ : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**_a ) UpperCAmelCase_ : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : str = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase_ : str = batch_size * [inputs[key]] UpperCAmelCase_ : Union[str, Any] = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCAmelCase_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCAmelCase_ : List[Any] = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCAmelCase_ : Union[str, Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) UpperCAmelCase_ : Tuple = torch.Generator(device=_a ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe( _a , generator=_a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
61
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } _snake_case = { "google/fnet-base": 512, "google/fnet-large": 512, } _snake_case = "▁" class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "token_type_ids"] _a = FNetTokenizer def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=True , _a="<unk>" , _a="[SEP]" , _a="<pad>" , _a="[CLS]" , _a="[MASK]" , **_a , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A : int = ( AddedToken(_a , lstrip=_a , rstrip=_a , normalized=_a ) if isinstance(_a , _a ) else mask_token ) super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , **_a , ) _A : Optional[int] = do_lower_case _A : List[Any] = remove_space _A : str = keep_accents _A : int = vocab_file _A : int = False if not self.vocab_file else True def a__ ( self , _a , _a = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , _a , _a = None ) -> List[int]: _A : Any = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) return (out_vocab_file,)
26
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
121
def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = [] lowercase__ : Tuple = [] lowercase__ : Any = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowercase__ : Any = len(lowerCamelCase__ ) if (len(lowerCamelCase__ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(lowerCamelCase__ ) , "Postfix".center(lowerCamelCase__ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCamelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCamelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCamelCase__ ) == 0: stack.append(lowerCamelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCamelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCamelCase__ ) # push x to stack print( x.center(8 ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , sep=" | " , ) # Output in tabular format while len(lowerCamelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , ("".join(lowerCamelCase__ )).ljust(lowerCamelCase__ ) , sep=" | " , ) # Output in tabular format return "".join(lowerCamelCase__ ) # return Postfix as str def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCamelCase__ ) ): if infix[i] == "(": lowercase__ : Tuple = ")" # change "(" to ")" elif infix[i] == ")": lowercase__ : Optional[Any] = "(" # change ")" to "(" return (infix_2_postfix("".join(lowerCamelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": lowerCAmelCase__ = input('''\nEnter an Infix Equation = ''') # Input an Infix equation lowerCAmelCase__ = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
121
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if edge <= 0 or not isinstance(A__ , A__ ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _A ( A__ ): """simple docstring""" if edge <= 0 or not isinstance(A__ , A__ ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
104
def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: int ) -> float: if digit_amount > 0: return round(number - int(__UpperCAmelCase ) , __UpperCAmelCase ) return number - int(__UpperCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
201
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : Any ,_a : Optional[int]=2 ,_a : Optional[Any]=True ,_a : Dict=False ,_a : Dict=10 ,_a : Any=3 ,_a : str=32 * 8 ,_a : Optional[int]=32 * 8 ,_a : int=4 ,_a : str=64 ,): '''simple docstring''' _a : Dict = parent _a : Union[str, Any] = batch_size _a : Tuple = is_training _a : List[str] = use_auxiliary_loss _a : Optional[Any] = num_queries _a : str = num_channels _a : List[str] = min_size _a : int = max_size _a : Optional[int] = num_labels _a : List[str] = hidden_dim _a : int = hidden_dim def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) _a : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a ) _a : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5 ).float() _a : Tuple = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long() _a : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : int = MaskaFormerConfig( hidden_size=self.hidden_dim ,) _a : str = self.num_queries _a : Union[str, Any] = self.num_labels _a : Tuple = [1, 1, 1, 1] _a : Dict = self.num_channels _a : str = 64 _a : Tuple = 128 _a : Optional[Any] = self.hidden_dim _a : Union[str, Any] = self.hidden_dim _a : List[Any] = self.hidden_dim return config def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a, _a, _a, _a, _a : Optional[Any] = self.prepare_config_and_inputs() _a : str = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : str ): '''simple docstring''' _a : str = output.encoder_hidden_states _a : Any = output.pixel_decoder_hidden_states _a : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) ,config.decoder_layers ) def __lowercase ( self : List[str] ,_a : str ,_a : List[Any] ,_a : Any ,_a : Union[str, Any]=False ): '''simple docstring''' with torch.no_grad(): _a : str = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[Any] = model(_a ,output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a ,_a ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Union[str, Any] ,_a : Tuple ,_a : List[str] ,_a : Any ): '''simple docstring''' _a : int = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _a : Any = model(pixel_values=_a ,pixel_mask=_a ) _a : Optional[int] = model(_a ) comm_check_on_output(_a ) _a : List[str] = model( pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __UpperCAmelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} __UpperCAmelCase : Dict = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = MaskaFormerModelTester(self ) _a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : str ): '''simple docstring''' _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def __lowercase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def __lowercase ( self : str ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowercase ( self : Dict ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass def __lowercase ( self : int ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Union[str, Any] = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Optional[Any] = [*signature.parameters.keys()] _a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _a : Dict = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : int = (self.model_tester.min_size,) * 2 _a : Any = { 'pixel_values': torch.randn((2, 3, *size) ,device=_a ), 'mask_labels': torch.randn((2, 10, *size) ,device=_a ), 'class_labels': torch.zeros(2 ,10 ,device=_a ).long(), } _a : List[Any] = self.model_tester.get_config() _a : int = MaskaFormerForUniversalSegmentation(_a ).to(_a ) _a : str = model(**_a ) self.assertTrue(outputs.loss is not None ) def __lowercase ( self : List[str] ): '''simple docstring''' _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a ) def __lowercase ( self : int ): '''simple docstring''' _a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any = model_class(_a ).to(_a ) _a : Optional[int] = model(**_a ,output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __lowercase ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return _a : List[str] = self.all_model_classes[1] _a, _a, _a, _a, _a : List[str] = self.model_tester.prepare_config_and_inputs() _a : Any = model_class(_a ) model.to(_a ) model.train() _a : Union[str, Any] = model(_a ,mask_labels=_a ,class_labels=_a ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' _a : int = self.all_model_classes[1] _a, _a, _a, _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs() _a : str = True _a : str = True _a : List[str] = model_class(_a ).to(_a ) model.train() _a : Optional[int] = model(_a ,mask_labels=_a ,class_labels=_a ) _a : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _a : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _a : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _a : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCAmelCase = 1e-4 def UpperCAmelCase_ (): """simple docstring""" _a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __lowercase ( self : Any ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __lowercase ( self : Any ): '''simple docstring''' _a : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) _a : int = self.default_image_processor _a : Tuple = prepare_img() _a : Any = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[Any] = model(**_a ) _a : List[Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : str = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) ) _a : Any = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Optional[Any] = self.default_image_processor _a : List[Any] = prepare_img() _a : str = image_processor(_a ,return_tensors='pt' ).to(_a ) _a : Any = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a ,(1, 3, 384, 384) ) with torch.no_grad(): _a : Optional[int] = model(**_a ) # masks_queries_logits _a : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _a : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _a : Optional[Any] = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) ) # class_queries_logits _a : str = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) _a : str = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() _a : Tuple = self.default_image_processor _a : Tuple = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,) _a : str = inputs['pixel_values'].to(_a ) _a : str = [el.to(_a ) for el in inputs['mask_labels']] _a : Dict = [el.to(_a ) for el in inputs['class_labels']] with torch.no_grad(): _a : List[str] = model(**_a ) self.assertTrue(outputs.loss is not None )
271
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """▁""" __lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} __lowerCAmelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } __lowerCAmelCase = {"""vinai/bartpho-syllable""": 1_0_2_4} class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : str ,_a : str ,_a : Any ,_a : Any="<s>" ,_a : Dict="</s>" ,_a : int="</s>" ,_a : Union[str, Any]="<s>" ,_a : List[Any]="<unk>" ,_a : Optional[Any]="<pad>" ,_a : List[str]="<mask>" ,_a : Optional[Dict[str, Any]] = None ,**_a : int ,): '''simple docstring''' _a : Any = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token _a : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,mask_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) _a : Optional[int] = vocab_file _a : Union[str, Any] = monolingual_vocab_file _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _a : Union[str, Any] = {} _a : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_a ) not in self.fairseq_tokens_to_ids: _a : int = cnt cnt += 1 with open(_a ,'r' ,encoding='utf-8' ) as f: for line in f.readlines(): _a : str = line.strip().split()[0] _a : Tuple = len(self.fairseq_tokens_to_ids ) if str(_a ) not in self.fairseq_tokens_to_ids: _a : List[str] = len(self.fairseq_tokens_to_ids ) _a : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ): '''simple docstring''' _a : int = self.__dict__.copy() _a : str = None _a : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple ,_a : Tuple ): '''simple docstring''' _a : Tuple = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : List[str] = {} _a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowercase ( self : Dict ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : Dict = [self.cls_token_id] _a : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : int ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __lowercase ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[str] = [self.sep_token_id] _a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowercase ( self : Dict ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __lowercase ( self : Dict ): '''simple docstring''' _a : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Tuple ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def __lowercase ( self : Union[str, Any] ,_a : Union[str, Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __lowercase ( self : Any ,_a : int ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __lowercase ( self : Tuple ,_a : Union[str, Any] ): '''simple docstring''' _a : str = ''.join(_a ).replace(_a ,' ' ).strip() return out_string def __lowercase ( self : Union[str, Any] ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : int = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _a : int = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] ,) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,'wb' ) as fi: _a : List[Any] = self.sp_model.serialized_model_proto() fi.write(_a ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _a ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file ,_a ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_a ,'w' ,encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(_a )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
271
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: lowercase : Optional[int] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
365
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowercase : Tuple = logging.get_logger(__name__) class __snake_case ( lowerCAmelCase ): _a : Optional[Any]= ["input_features", "attention_mask"] def __init__( self ,snake_case=80 ,snake_case=16000 ,snake_case=0.0 ,snake_case=10 ,snake_case=25 ,snake_case="hamming_window" ,snake_case=32_768.0 ,snake_case=0.97 ,snake_case=1.0 ,snake_case=True ,snake_case=True ,snake_case=False ,**snake_case ,): '''simple docstring''' super().__init__(feature_size=snake_case ,sampling_rate=snake_case ,padding_value=snake_case ,**snake_case ) lowercase : Optional[Any] = feature_size lowercase : List[Any] = sampling_rate lowercase : int = padding_value lowercase : Dict = hop_length lowercase : List[str] = win_length lowercase : List[Any] = frame_signal_scale lowercase : List[Any] = preemphasis_coeff lowercase : str = mel_floor lowercase : int = normalize_means lowercase : List[Any] = normalize_vars lowercase : List[Any] = win_function lowercase : int = return_attention_mask lowercase : Any = win_length * sampling_rate // 1000 lowercase : Tuple = hop_length * sampling_rate // 1000 lowercase : Tuple = optimal_fft_length(self.sample_size ) lowercase : Dict = (self.n_fft // 2) + 1 def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.win_function == "hamming_window": lowercase : Optional[Any] = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=snake_case ) else: lowercase : Optional[Any] = window_function(window_length=self.sample_size ,name=self.win_function ) lowercase : int = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) lowercase : Dict = spectrogram( one_waveform * self.frame_signal_scale ,window=snake_case ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=snake_case ,preemphasis=self.preemphasis_coeff ,mel_filters=snake_case ,mel_floor=self.mel_floor ,log_mel="""log""" ,) return msfc_features.T def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if self.normalize_means: lowercase : List[Any] = x[:input_length].mean(axis=0 ) lowercase : Dict = np.subtract(snake_case ,snake_case ) if self.normalize_vars: lowercase : List[Any] = x[:input_length].std(axis=0 ) lowercase : List[Any] = np.divide(snake_case ,snake_case ) if input_length < x.shape[0]: lowercase : Any = padding_value # make sure array is in float32 lowercase : Tuple = x.astype(np.floataa ) return x def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case ,snake_case ,self.padding_value ) for x, n in zip(snake_case ,snake_case )] def __call__( self ,snake_case ,snake_case = False ,snake_case = None ,snake_case = False ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowercase : List[Any] = isinstance(snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowercase : str = is_batched_numpy or ( isinstance(snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray(snake_case ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case ,np.ndarray ): lowercase : int = np.asarray(snake_case ,dtype=np.floataa ) elif isinstance(snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : Dict = [raw_speech] # extract fbank features lowercase : Tuple = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding lowercase : Union[str, Any] = BatchFeature({"""input_features""": features} ) lowercase : Optional[int] = self.pad( snake_case ,padding=snake_case ,max_length=snake_case ,truncation=snake_case ,pad_to_multiple_of=snake_case ,return_attention_mask=snake_case ,**snake_case ,) # make sure list is in array format lowercase : Tuple = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] ,snake_case ): lowercase : List[Any] = [np.asarray(snake_case ,dtype=np.floataa ) for feature in input_features] lowercase : int = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowercase : Any = [np.asarray(snake_case ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase : List[str] = ( np.array(snake_case ,dtype=np.intaa ) if self._get_padding_strategies(snake_case ,max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase : List[str] = self.normalize( padded_inputs["""input_features"""] ,attention_mask=snake_case ) if return_tensors is not None: lowercase : str = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
285
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : int ) -> str: if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(_lowerCamelCase ,_lowerCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) _lowerCAmelCase : Optional[int] = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
44
"""simple docstring""" from __future__ import annotations class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : int = 0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = key def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_) ^ key) for ch in content] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[str] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE_ : List[Any] = '''''' for ch in content: ans += chr(ord(lowercase_) ^ key) return ans def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int = 0): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''encrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_ , lowercase_)) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str , lowercase_ : int): '''simple docstring''' assert isinstance(lowercase_ , lowercase_) and isinstance(lowercase_ , lowercase_) try: with open(lowercase_) as fin, open('''decrypt.out''' , '''w+''') as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_ , lowercase_)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
91
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __lowerCamelCase ( A__ ) -> Tuple: """simple docstring""" # vision encoder if "img_encoder.pos_embed" in name: UpperCamelCase = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: UpperCamelCase = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: UpperCamelCase = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: UpperCamelCase = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: UpperCamelCase = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: UpperCamelCase = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: UpperCamelCase = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: UpperCamelCase = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: UpperCamelCase = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: UpperCamelCase = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: UpperCamelCase = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: UpperCamelCase = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: UpperCamelCase = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: UpperCamelCase = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: UpperCamelCase = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCamelCase = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCamelCase = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCamelCase = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: UpperCamelCase = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: UpperCamelCase = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: UpperCamelCase = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: UpperCamelCase = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: UpperCamelCase = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: UpperCamelCase = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def __lowerCamelCase ( A__ , A__ ) -> Tuple: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(A__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCamelCase = key.split('.' ) UpperCamelCase , UpperCamelCase = int(key_split[2] ), int(key_split[4] ) UpperCamelCase = config.vision_config.hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors UpperCamelCase = key.split('.' ) UpperCamelCase = int(key_split[3] ) UpperCamelCase = config.text_config.hidden_size if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[ dim : dim * 2, : ] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] else: UpperCamelCase = rename_key(A__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): UpperCamelCase = val.squeeze_() else: UpperCamelCase = val return orig_state_dict def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__="groupvit-gcc-yfcc" , A__=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase = GroupViTConfig() UpperCamelCase = GroupViTModel(A__ ).eval() UpperCamelCase = torch.load(A__ , map_location='cpu' )['model'] UpperCamelCase = convert_state_dict(A__ , A__ ) UpperCamelCase , UpperCamelCase = model.load_state_dict(A__ , strict=A__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(A__ ) == 0) # verify result UpperCamelCase = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) UpperCamelCase = prepare_img() UpperCamelCase = processor(text=['a photo of a cat', 'a photo of a dog'] , images=A__ , padding=A__ , return_tensors='pt' ) with torch.no_grad(): UpperCamelCase = model(**A__ ) if model_name == "groupvit-gcc-yfcc": UpperCamelCase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": UpperCamelCase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , A__ , atol=1e-3 ) processor.save_pretrained(A__ ) model.save_pretrained(A__ ) print('Successfully saved processor and model to' , A__ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(A__ , organization='nielsr' ) model.push_to_hub(A__ , organization='nielsr' ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) _lowerCamelCase : List[Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
249
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = (UnCLIPScheduler,) def A ( self : Union[str, Any] , **UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**UpperCamelCase__ ) return config def A ( self : str ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def A ( self : List[str] ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCamelCase__ , prev_timestep=UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(variance_type='fixed_small_log' ) UpperCamelCase = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_5_4_9_6_2_5 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_9_9_4_9_8_7 ) ) < 1E-5 def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(variance_type='learned_range' ) UpperCamelCase = scheduler_class(**UpperCamelCase__ ) UpperCamelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCamelCase__ ) - -1_0.1_7_1_2_7_9_0 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=UpperCamelCase__ ) - -5.7_9_9_8_0_5_2 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=UpperCamelCase__ ) - -0.0_0_1_0_0_1_1 < 1E-5 def A ( self : int ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**UpperCamelCase__ ) UpperCamelCase = scheduler.timesteps UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1E-3 def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(2_5 ) UpperCamelCase = scheduler.timesteps UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCamelCase__ ): # 1. predict noise residual UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ) if i + 1 == timesteps.shape[0]: UpperCamelCase = None else: UpperCamelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , prev_timestep=UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1E-3 def A ( self : Tuple ): """simple docstring""" pass def A ( self : Optional[int] ): """simple docstring""" pass
249
1
from __future__ import annotations import requests UpperCAmelCase__ : List[Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def lowerCamelCase__ ( a , a = 1 , a = "new" , a = None ) -> dict: _A: Dict = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a ) - valid_terms ) ): _A: List[Any] = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(a ) _A: Any = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_29: raise requests.HTTPError _A: Dict = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a )} _A: List[str] = {} for id_ in range(a ): _A: int = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
121
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Any = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = '''informer''' __UpperCamelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = None , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_0_0 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str = "prob" , lowerCAmelCase_ : int = 5 , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : str , ): """simple docstring""" # time series specific configuration _A: Optional[Any] = prediction_length _A: Optional[Any] = context_length or prediction_length _A: Dict = distribution_output _A: List[str] = loss _A: int = input_size _A: List[str] = num_time_features _A: Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A: str = scaling _A: Optional[Any] = num_dynamic_real_features _A: List[Any] = num_static_real_features _A: Tuple = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) _A: str = cardinality else: _A: Union[str, Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) _A: List[str] = embedding_dimension else: _A: Union[str, Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _A: int = num_parallel_samples # Transformer architecture configuration _A: Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _A: Union[str, Any] = d_model _A: Optional[Any] = encoder_attention_heads _A: Optional[Any] = decoder_attention_heads _A: Optional[Any] = encoder_ffn_dim _A: Union[str, Any] = decoder_ffn_dim _A: Any = encoder_layers _A: str = decoder_layers _A: List[str] = dropout _A: Any = attention_dropout _A: Optional[int] = activation_dropout _A: List[Any] = encoder_layerdrop _A: str = decoder_layerdrop _A: int = activation_function _A: Tuple = init_std _A: Union[str, Any] = use_cache # Informer _A: Union[str, Any] = attention_type _A: str = sampling_factor _A: List[str] = distil super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : List[str] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
121
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
237
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =["pixel_values"] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = crop_pct __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ): """simple docstring""" __lowerCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __lowerCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __lowerCamelCase = int(size['''height'''] / crop_pct ) else: __lowerCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) __lowerCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) else: if "shortest_edge" in size: __lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a ) elif "height" in size and "width" in size: __lowerCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ): """simple docstring""" __lowerCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ): """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ): """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(a ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] __lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=a , tensor_type=a )
237
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } UpperCamelCase__ = { 'google/realm-cc-news-pretrained-embedder': 5_1_2, 'google/realm-cc-news-pretrained-encoder': 5_1_2, 'google/realm-cc-news-pretrained-scorer': 5_1_2, 'google/realm-cc-news-pretrained-openqa': 5_1_2, 'google/realm-orqa-nq-openqa': 5_1_2, 'google/realm-orqa-nq-reader': 5_1_2, 'google/realm-orqa-wq-openqa': 5_1_2, 'google/realm-orqa-wq-reader': 5_1_2, } UpperCamelCase__ = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Tuple = VOCAB_FILES_NAMES __UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = RealmTokenizer def __init__(self : Optional[Any] , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : int=True , __UpperCAmelCase : Tuple="[UNK]" , __UpperCAmelCase : Dict="[SEP]" , __UpperCAmelCase : Tuple="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Any="[MASK]" , __UpperCAmelCase : Any=True , __UpperCAmelCase : str=None , **__UpperCAmelCase : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = strip_accents UpperCAmelCase__ = tokenize_chinese_chars UpperCAmelCase__ = normalizer_class(**__UpperCAmelCase ) UpperCAmelCase__ = do_lower_case def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = PaddingStrategy.MAX_LENGTH UpperCAmelCase__ = text UpperCAmelCase__ = kwargs.pop("text_pair" , __UpperCAmelCase ) UpperCAmelCase__ = kwargs.pop("return_tensors" , __UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(__UpperCAmelCase ): if batch_text_pair is not None: UpperCAmelCase__ = batch_text_pair[idx] else: UpperCAmelCase__ = None UpperCAmelCase__ = super().__call__(__UpperCAmelCase , __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase__ = encoded_candidates.get("input_ids" ) UpperCAmelCase__ = encoded_candidates.get("attention_mask" ) UpperCAmelCase__ = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(__UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__UpperCAmelCase ) UpperCAmelCase__ = {key: item for key, item in output_data.items() if len(__UpperCAmelCase ) != 0} return BatchEncoding(__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def lowercase_ (self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=None ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ (self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ (self : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
143
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
143
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase_ = """<<<<<<< This should probably be modified because it mentions: """ lowercase_ = """======= >>>>>>> """ lowercase_ = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase_ = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def a ( A__ : List[str] ) -> Any: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowerCAmelCase ( lowercase_ ): @staticmethod def A__ ( lowerCAmelCase ) -> int: '''simple docstring''' _lowercase =parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__( self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ) -> int: '''simple docstring''' _lowercase =get_logger('datasets-cli/converting' ) _lowercase =tfds_path _lowercase =datasets_directory def A__ ( self ) -> Any: '''simple docstring''' if os.path.isdir(self._tfds_path ): _lowercase =os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _lowercase =os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) _lowercase =os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) _lowercase =[] _lowercase =[] _lowercase ={} if os.path.isdir(self._tfds_path ): _lowercase =os.listdir(lowerCAmelCase ) else: _lowercase =[os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: _lowercase =f.readlines() _lowercase =[] _lowercase =False _lowercase =False _lowercase =[] for line in lines: _lowercase =line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _lowercase ='import datasets\n' elif "import tensorflow" in out_line: # order is important here _lowercase ='' continue elif "from absl import logging" in out_line: _lowercase ='from datasets import logging\n' elif "getLogger" in out_line: _lowercase =out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _lowercase =True _lowercase =list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: _lowercase =re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _lowercase =re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) _lowercase ='from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _lowercase =True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _lowercase =f_name.replace('.py' , '' ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: _lowercase =os.path.basename(lowerCAmelCase ) _lowercase =imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
205
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase ): def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def a ( self ): snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) snake_case_ = 'xvjiarui/stable-diffusion-2-inpainting' snake_case_ , snake_case_ = FlaxStableDiffusionInpaintPipeline.from_pretrained(snake_case , safety_checker=snake_case ) snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = jax.random.PRNGKey(0 ) snake_case_ = 50 snake_case_ = jax.device_count() snake_case_ = num_samples * [prompt] snake_case_ = num_samples * [init_image] snake_case_ = num_samples * [mask_image] snake_case_ , snake_case_ , snake_case_ = pipeline.prepare_inputs(snake_case , snake_case , snake_case ) # shard inputs and rng snake_case_ = replicate(snake_case ) snake_case_ = jax.random.split(snake_case , jax.device_count() ) snake_case_ = shard(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = shard(snake_case ) snake_case_ = pipeline( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , jit=snake_case ) snake_case_ = output.images.reshape(snake_case , 512 , 512 , 3 ) snake_case_ = images[0, 253:256, 253:256, -1] snake_case_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
285
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase_ = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
253
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a_ = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') a_ = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a_ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a_ = sorted(arg_to_scheduler.keys()) a_ = '{' + ', '.join(arg_to_scheduler_choices) + '}' class UpperCAmelCase_ ( pl.LightningModule ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_="base" , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ) -> int: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase_ ) __lowercase : Union[str, Any] = 0 __lowercase : int = Path(self.hparams.output_dir ) __lowercase : List[str] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __lowercase : Any = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase_ , **UpperCamelCase_ , ) else: __lowercase : PretrainedConfig = config __lowercase : Optional[int] = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(self.config , UpperCamelCase_ ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config , UpperCamelCase_ , getattr(self.hparams , UpperCamelCase_ ) ) if tokenizer is None: __lowercase : Tuple = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase_ , ) else: __lowercase : PreTrainedTokenizer = tokenizer __lowercase : List[Any] = MODEL_MODES[mode] if model is None: __lowercase : Tuple = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase_ , ) else: __lowercase : List[Any] = model def _lowerCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> Tuple: __lowercase : List[Any] = self.model_type.from_pretrained(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[int] = arg_to_scheduler[self.hparams.lr_scheduler] __lowercase : Optional[Any] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __lowercase : List[Any] = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def _lowerCamelCase ( self ) -> Any: __lowercase : int = self.model __lowercase : Optional[int] = ['''bias''', '''LayerNorm.weight'''] __lowercase : List[Any] = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: __lowercase : Tuple = Adafactor( UpperCamelCase_ , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase_ , relative_step=UpperCamelCase_ ) else: __lowercase : Optional[Any] = AdamW( UpperCamelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __lowercase : Optional[int] = optimizer __lowercase : List[str] = self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Any: return self.validation_step(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Union[str, Any]: return self.validation_end(UpperCamelCase_ ) def _lowerCamelCase ( self ) -> int: __lowercase : str = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __lowercase : Optional[int] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCamelCase ( self , UpperCamelCase_ ) -> Dict: if stage == "test": __lowercase : Union[str, Any] = len(self.test_dataloader().dataset ) else: __lowercase : Optional[int] = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=UpperCamelCase_ ) __lowercase : Dict = len(self.train_dataloader().dataset ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False ) -> Any: raise NotImplementedError('''You must implement this for your task''' ) def _lowerCamelCase ( self ) -> int: return self.train_loader def _lowerCamelCase ( self ) -> Tuple: return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ ) def _lowerCamelCase ( self ) -> int: return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[int]: return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( UpperCamelCase_ , list(filter(UpperCamelCase_ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def _lowerCamelCase ( self , UpperCamelCase_ ) -> None: __lowercase : Dict = self.output_dir.joinpath('''best_tfmr''' ) __lowercase : List[str] = self.step_count self.model.save_pretrained(UpperCamelCase_ ) self.tokenizer.save_pretrained(UpperCamelCase_ ) @staticmethod def _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: parser.add_argument( '''--model_name_or_path''' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=UpperCamelCase_ , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(UpperCamelCase_ ).parent / '''test_run''' / '''cache''' ) , type=UpperCamelCase_ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=UpperCamelCase_ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=UpperCamelCase_ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=UpperCamelCase_ , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=UpperCamelCase_ , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=UpperCamelCase_ , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=UpperCamelCase_ , metavar=UpperCamelCase_ , type=UpperCamelCase_ , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=UpperCamelCase_ , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=UpperCamelCase_ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=UpperCamelCase_ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=UpperCamelCase_ , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=UpperCamelCase_ ) parser.add_argument('''--train_batch_size''' , default=32 , type=UpperCamelCase_ ) parser.add_argument('''--eval_batch_size''' , default=32 , type=UpperCamelCase_ ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class UpperCAmelCase_ ( pl.Callback ): def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class UpperCAmelCase_ ( pl.Callback ): def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Any: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase_ ) class UpperCAmelCase_ ( pl.Callback ): def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: __lowercase : Dict = trainer.lr_schedulers[0]['''scheduler'''] __lowercase : int = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> str: rank_zero_info('''***** Validation results *****''' ) __lowercase : Union[str, Any] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(UpperCamelCase_ , str(metrics[key] ) ) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: rank_zero_info('''***** Test results *****''' ) __lowercase : int = trainer.callback_metrics # Log and save results to file __lowercase : Optional[Any] = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(UpperCamelCase_ , '''w''' ) as writer: for key in sorted(UpperCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(UpperCamelCase_ , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(UpperCamelCase_ , str(metrics[key] ) ) ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(__UpperCamelCase ).parent / '''test_run''' / '''model_checkpoints''' ) , type=__UpperCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__UpperCamelCase , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=__UpperCamelCase ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=__UpperCamelCase , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=__UpperCamelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=__UpperCamelCase , default=42 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(__UpperCamelCase ).parent / '''test_run''' / '''dummy-train-data''' ) , type=__UpperCamelCase , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[] , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): pl.seed_everything(args.seed ) # init model __lowercase : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__UpperCamelCase ) # add custom checkpoints if checkpoint_callback is None: __lowercase : int = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__UpperCamelCase ) if logging_callback is None: __lowercase : List[Any] = LoggingCallback() __lowercase : Union[str, Any] = {} if args.fpaa: __lowercase : Optional[Any] = 16 if args.gpus > 1: __lowercase : Optional[int] = '''auto''' __lowercase : Optional[Any] = '''ddp''' __lowercase : List[str] = args.accumulate_grad_batches __lowercase : str = None __lowercase : Optional[Any] = '''auto''' __lowercase : Any = pl.Trainer.from_argparse_args( __UpperCamelCase , weights_summary=__UpperCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__UpperCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__UpperCamelCase , ) if args.do_train: trainer.fit(__UpperCamelCase ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
249
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Dict = tempfile.mkdtemp() __lowercase : Any = BlipImageProcessor() __lowercase : Optional[int] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) __lowercase : str = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) __lowercase : str = InstructBlipProcessor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self , **UpperCamelCase_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).tokenizer def _lowerCamelCase ( self , **UpperCamelCase_ ) -> List[str]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).image_processor def _lowerCamelCase ( self , **UpperCamelCase_ ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ).qformer_tokenizer def _lowerCamelCase ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> Any: __lowercase : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase : Any = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ) -> str: __lowercase : Any = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __lowercase : List[str] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowercase : Dict = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) __lowercase : int = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Any: __lowercase : Any = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : Any = self.get_qformer_tokenizer() __lowercase : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : int = self.prepare_image_inputs() __lowercase : Union[str, Any] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) __lowercase : Tuple = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ) -> str: __lowercase : str = self.get_image_processor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[Any] = self.get_qformer_tokenizer() __lowercase : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : Dict = '''lower newer''' __lowercase : int = processor(text=UpperCamelCase_ ) __lowercase : List[str] = tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) __lowercase : Union[str, Any] = qformer_tokenizer(UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Optional[int] = self.get_qformer_tokenizer() __lowercase : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : Optional[int] = '''lower newer''' __lowercase : Any = self.prepare_image_inputs() __lowercase : List[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def _lowerCamelCase ( self ) -> Dict: __lowercase : Any = self.get_image_processor() __lowercase : List[str] = self.get_tokenizer() __lowercase : Any = self.get_qformer_tokenizer() __lowercase : Tuple = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : List[str] = processor.batch_decode(UpperCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : List[str] = self.get_image_processor() __lowercase : List[str] = self.get_tokenizer() __lowercase : List[Any] = self.get_qformer_tokenizer() __lowercase : Optional[Any] = InstructBlipProcessor( tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ , qformer_tokenizer=UpperCamelCase_ ) __lowercase : Any = '''lower newer''' __lowercase : Union[str, Any] = self.prepare_image_inputs() __lowercase : Union[str, Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
249
1
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class snake_case ( unittest.TestCase ): def lowercase_ ( self : Optional[Any])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = get_activation("swish") self.assertIsInstance(UpperCamelCase__ , nn.SiLU) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0) def lowercase_ ( self : Union[str, Any])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Dict = get_activation("silu") self.assertIsInstance(UpperCamelCase__ , nn.SiLU) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0) def lowercase_ ( self : List[Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = get_activation("mish") self.assertIsInstance(UpperCamelCase__ , nn.Mish) self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0) def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' __lowerCAmelCase: Tuple = get_activation("gelu") self.assertIsInstance(UpperCamelCase__ , nn.GELU) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa)).item() , 2_0)
108
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = PriorTransformer SCREAMING_SNAKE_CASE_ : List[str] = """hidden_states""" @property def lowercase_ ( self : Dict)-> str: '''simple docstring''' __lowerCAmelCase: str = 4 __lowerCAmelCase: int = 8 __lowerCAmelCase: int = 7 __lowerCAmelCase: str = floats_tensor((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: Optional[Any] = floats_tensor((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: Any = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(UpperCamelCase__) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase_ ( self : Optional[int] , UpperCamelCase__ : str=0)-> str: '''simple docstring''' torch.manual_seed(UpperCamelCase__) __lowerCAmelCase: List[Any] = 4 __lowerCAmelCase: Dict = 8 __lowerCAmelCase: int = 7 __lowerCAmelCase: List[str] = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: Tuple = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim)).to(UpperCamelCase__) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' return (4, 8) @property def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' return (4, 8) def lowercase_ ( self : Optional[int])-> Tuple: '''simple docstring''' __lowerCAmelCase: str = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } __lowerCAmelCase: Any = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : List[Any])-> int: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Optional[int] = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(UpperCamelCase__) __lowerCAmelCase: Dict = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def lowercase_ ( self : List[str])-> Tuple: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase: Tuple = self.model_class(**UpperCamelCase__) __lowerCAmelCase: List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: List[Any] = [*signature.parameters.keys()] __lowerCAmelCase: Any = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , UpperCamelCase__) def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' __lowerCAmelCase: int = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy") __lowerCAmelCase: Union[str, Any] = model.to(UpperCamelCase__) if hasattr(UpperCamelCase__ , "set_default_attn_processor"): model.set_default_attn_processor() __lowerCAmelCase: str = self.get_dummy_seed_input() with torch.no_grad(): __lowerCAmelCase: Dict = model(**UpperCamelCase__)[0] __lowerCAmelCase: Dict = output[0, :5].flatten().cpu() print(UpperCamelCase__) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowerCAmelCase: List[str] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239]) self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-2)) @slow class snake_case ( unittest.TestCase ): def lowercase_ ( self : int , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : int=7_7 , UpperCamelCase__ : Any=0)-> Union[str, Any]: '''simple docstring''' torch.manual_seed(UpperCamelCase__) __lowerCAmelCase: List[Any] = batch_size __lowerCAmelCase: Any = embedding_dim __lowerCAmelCase: Dict = num_embeddings __lowerCAmelCase: Dict = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: str = torch.randn((batch_size, embedding_dim)).to(UpperCamelCase__) __lowerCAmelCase: int = torch.randn((batch_size, num_embeddings, embedding_dim)).to(UpperCamelCase__) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowercase_ ( self : List[Any])-> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [3_7, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ]) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int)-> List[Any]: '''simple docstring''' __lowerCAmelCase: List[str] = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior") model.to(UpperCamelCase__) __lowerCAmelCase: Dict = self.get_dummy_seed_input(seed=UpperCamelCase__) with torch.no_grad(): __lowerCAmelCase: Optional[Any] = model(**UpperCamelCase__)[0] assert list(sample.shape) == [1, 7_6_8] __lowerCAmelCase: Dict = sample[0, :8].flatten().cpu() print(UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = torch.tensor(UpperCamelCase__) assert torch_all_close(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3)
108
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): __lowerCAmelCase : Optional[Any] =True from torch.cuda.amp import autocast __lowerCAmelCase : Dict =logging.getLogger(__name__) def UpperCamelCase ( _lowerCamelCase : int=None , _lowerCamelCase : int=None ): return field(default_factory=lambda: default , metadata=_lowerCamelCase ) @dataclass class UpperCAmelCase : __lowercase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __lowercase = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) __lowercase = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) __lowercase = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) __lowercase = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) __lowercase = field( default=0.0_5 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) __lowercase = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class UpperCAmelCase : __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowercase = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __lowercase = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __lowercase = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __lowercase = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) __lowercase = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class UpperCAmelCase : __lowercase = 42 __lowercase = True __lowercase = None __lowercase = None __lowercase = None __lowercase = None def __call__( self :Any , lowercase_ :List[Dict[str, Union[List[int], torch.Tensor]]] )-> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods A__ = [{"input_values": feature["input_values"]} for feature in features] A__ = [{"input_ids": feature["labels"]} for feature in features] A__ = self.processor.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) A__ = self.processor.pad( labels=lowercase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly A__ = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) A__ = labels return batch class UpperCAmelCase ( UpperCamelCase__ ): def UpperCAmelCase_ ( self :Dict , lowercase_ :nn.Module , lowercase_ :Dict[str, Union[torch.Tensor, Any]] )-> torch.Tensor: model.train() A__ = self._prepare_inputs(lowercase_ ) if self.use_amp: with autocast(): A__ = self.compute_loss(lowercase_ , lowercase_ ) else: A__ = self.compute_loss(lowercase_ , lowercase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": A__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A__ = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: A__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_ ).backward() elif self.use_apex: with amp.scale_loss(lowercase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_ ) else: loss.backward() return loss.detach() def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__, A__, A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__, A__, A__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: A__ = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) A__ = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer A__ = F"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(_lowerCamelCase : Optional[int] ): A__ = re.sub(_lowerCamelCase , "" , batch["sentence"] ).lower() + " " return batch A__ = train_dataset.map(_lowerCamelCase , remove_columns=["sentence"] ) A__ = eval_dataset.map(_lowerCamelCase , remove_columns=["sentence"] ) def extract_all_chars(_lowerCamelCase : int ): A__ = " ".join(batch["text"] ) A__ = list(set(_lowerCamelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} A__ = train_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , batch_size=-1 , keep_in_memory=_lowerCamelCase , remove_columns=train_dataset.column_names , ) A__ = train_dataset.map( _lowerCamelCase , batched=_lowerCamelCase , batch_size=-1 , keep_in_memory=_lowerCamelCase , remove_columns=eval_dataset.column_names , ) A__ = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) A__ = {v: k for k, v in enumerate(_lowerCamelCase )} A__ = vocab_dict[" "] del vocab_dict[" "] A__ = len(_lowerCamelCase ) A__ = len(_lowerCamelCase ) with open("vocab.json" , "w" ) as vocab_file: json.dump(_lowerCamelCase , _lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0.0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase ) A__ = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) A__ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: A__ = min(len(_lowerCamelCase ) , data_args.max_train_samples ) A__ = train_dataset.select(range(_lowerCamelCase ) ) if data_args.max_val_samples is not None: A__ = eval_dataset.select(range(data_args.max_val_samples ) ) A__ = torchaudio.transforms.Resample(4_80_00 , 1_60_00 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_lowerCamelCase : Union[str, Any] ): A__, A__ = torchaudio.load(batch["path"] ) A__ = resampler(_lowerCamelCase ).squeeze().numpy() A__ = 1_60_00 A__ = batch["text"] return batch A__ = train_dataset.map( _lowerCamelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) A__ = eval_dataset.map( _lowerCamelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_lowerCamelCase : Dict ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." A__ = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(_lowerCamelCase ) return batch A__ = train_dataset.map( _lowerCamelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , ) A__ = eval_dataset.map( _lowerCamelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric A__ = datasets.load_metric("wer" ) def compute_metrics(_lowerCamelCase : Any ): A__ = pred.predictions A__ = np.argmax(_lowerCamelCase , axis=-1 ) A__ = processor.tokenizer.pad_token_id A__ = processor.batch_decode(_lowerCamelCase ) # we do not want to group tokens when computing the metrics A__ = processor.batch_decode(pred.label_ids , group_tokens=_lowerCamelCase ) A__ = wer_metric.compute(predictions=_lowerCamelCase , references=_lowerCamelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator A__ = DataCollatorCTCWithPadding(processor=_lowerCamelCase , padding=_lowerCamelCase ) # Initialize our Trainer A__ = CTCTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , compute_metrics=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: A__ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): A__ = model_args.model_name_or_path else: A__ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) A__ = trainer.train(resume_from_checkpoint=_lowerCamelCase ) trainer.save_model() A__ = train_result.metrics A__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) A__ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics("train" , _lowerCamelCase ) trainer.save_metrics("train" , _lowerCamelCase ) trainer.save_state() # Evaluation A__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowerCamelCase ) A__ = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) return results if __name__ == "__main__": main()
237
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """char""" __lowercase = """bpe""" __lowercase = """wp""" __lowerCAmelCase : Union[str, Any] =(DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = ["""image_processor""", """char_tokenizer"""] __lowercase = """ViTImageProcessor""" __lowercase = """MgpstrTokenizer""" def __init__( self :int , lowercase_ :int=None , lowercase_ :List[str]=None , **lowercase_ :List[Any] )-> Optional[Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) A__ = tokenizer A__ = AutoTokenizer.from_pretrained("gpt2" ) A__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :Optional[Any] , lowercase_ :Any=None , lowercase_ :Tuple=None , lowercase_ :List[str]=None , **lowercase_ :Union[str, Any] )-> Optional[Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: A__ = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None: A__ = self.char_tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is None: return inputs elif images is None: return encodings else: A__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowercase_ :int )-> int: A__, A__, A__ = sequences A__ = char_preds.size(0 ) A__, A__ = self._decode_helper(lowercase_ , "char" ) A__, A__ = self._decode_helper(lowercase_ , "bpe" ) A__, A__ = self._decode_helper(lowercase_ , "wp" ) A__ = [] A__ = [] for i in range(lowercase_ ): A__ = [char_scores[i], bpe_scores[i], wp_scores[i]] A__ = [char_strs[i], bpe_strs[i], wp_strs[i]] A__ = scores.index(max(lowercase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) A__ = {} A__ = final_strs A__ = final_scores A__ = char_strs A__ = bpe_strs A__ = wp_strs return out def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] , lowercase_ :str )-> Optional[Any]: if format == DecodeType.CHARACTER: A__ = self.char_decode A__ = 1 A__ = "[s]" elif format == DecodeType.BPE: A__ = self.bpe_decode A__ = 2 A__ = "#" elif format == DecodeType.WORDPIECE: A__ = self.wp_decode A__ = 1_02 A__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) A__, A__ = [], [] A__ = pred_logits.size(0 ) A__ = pred_logits.size(1 ) A__, A__ = pred_logits.topk(1 , dim=-1 , largest=lowercase_ , sorted=lowercase_ ) A__ = preds_index.view(-1 , lowercase_ )[:, 1:] A__ = decoder(lowercase_ ) A__, A__ = torch.nn.functional.softmax(lowercase_ , dim=2 ).max(dim=2 ) A__ = preds_max_prob[:, 1:] for index in range(lowercase_ ): A__ = preds_str[index].find(lowercase_ ) A__ = preds_str[index][:pred_eos] A__ = preds_index[index].cpu().tolist() A__ = pred_index.index(lowercase_ ) if eos_token in pred_index else -1 A__ = preds_max_prob[index][: pred_eos_index + 1] A__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowercase_ ) conf_scores.append(lowercase_ ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] )-> int: A__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowercase_ )] return decode_strs def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Any] )-> List[str]: return self.bpe_tokenizer.batch_decode(lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[str] )-> Union[str, Any]: A__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowercase_ )] return decode_strs
237
1
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if len(lowerCamelCase__ ) == 0: return False A_ : int = len(lowerCamelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCamelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :int = input('''Enter numbers separated by comma:\n''').strip() lowerCamelCase :int = [int(item.strip()) for item in user_input.split(''',''')] lowerCamelCase :Tuple = int(input('''Enter the number to be found in the list:\n''').strip()) lowerCamelCase :List[Any] = '''''' if binary_search(sequence, target) else '''not ''' print(F"{target} was {not_str}found in {sequence}")
135
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) lowerCamelCase :Union[str, Any] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase :Tuple = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase=False , lowercase=True , lowercase=False , lowercase="<s>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<sep>" , lowercase="<pad>" , lowercase="<cls>" , lowercase="<mask>" , lowercase=["<eop>", "<eod>"] , lowercase = None , **lowercase , ): A_ : Optional[int] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A_ : List[str] = 3 A_ : List[str] = do_lower_case A_ : Tuple = remove_space A_ : Tuple = keep_accents A_ : Tuple = vocab_file A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) A_ : Tuple = jieba A_ : int = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _a (self ): return len(self.sp_model ) def _a (self ): A_ : str = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): A_ : Optional[Any] = self.__dict__.copy() A_ : Tuple = None return state def __setstate__(self , lowercase ): A_ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : List[Any] = {} A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , lowercase ): if self.remove_space: A_ : Union[str, Any] = """ """.join(inputs.strip().split() ) else: A_ : Optional[int] = inputs A_ : List[str] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A_ : str = unicodedata.normalize("""NFKD""" , lowercase ) A_ : Union[str, Any] = """""".join([c for c in outputs if not unicodedata.combining(lowercase )] ) if self.do_lower_case: A_ : int = outputs.lower() return outputs def _a (self , lowercase ): A_ : Optional[int] = self.preprocess_text(lowercase ) A_ : Dict = self.sp_model.encode(lowercase , out_type=lowercase ) A_ : List[Any] = [] for piece in pieces: if len(lowercase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A_ : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Dict = cur_pieces[1:] else: A_ : str = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase ) else: new_pieces.append(lowercase ) return new_pieces def _a (self , lowercase ): return self.sp_model.PieceToId(lowercase ) def _a (self , lowercase ): return self.sp_model.IdToPiece(lowercase ) def _a (self , lowercase ): A_ : int = """""".join(lowercase ).replace(lowercase , """ """ ).strip() return out_string def _a (self , lowercase , lowercase = None ): A_ : List[str] = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a (self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is not None: return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1, 1] return ([0] * len(lowercase )) + [1, 1] def _a (self , lowercase , lowercase = None ): A_ : str = [self.sep_token_id] A_ : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a (self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Tuple = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: A_ : Dict = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def _a (self , *lowercase , **lowercase ): A_ : Any = super()._decode(*lowercase , **lowercase ) A_ : int = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
135
1
def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: snake_case__ : Dict = [0 for i in range(r + 1 )] # nc0 = 1 snake_case__ : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case__ : Tuple = min(A__ , A__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
143
from __future__ import annotations def UpperCamelCase__ ( A__ , A__ , A__ ) -> tuple[float, list[float]]: snake_case__ : Optional[Any] = list(range(len(A__ ) ) ) snake_case__ : str = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda A__ : ratio[i] , reverse=A__ ) snake_case__ : float = 0 snake_case__ : list[float] = [0] * len(A__ ) for i in index: if weight[i] <= capacity: snake_case__ : str = 1 max_value += value[i] capacity -= weight[i] else: snake_case__ : str = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
143
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a : Any = logging.get_logger(__name__) # pylint: disable=invalid-name a : Optional[Any] = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Any=8 ) ->Optional[Any]: '''simple docstring''' a : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Dict: super().__init__() self.register_modules( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , ) a : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: if latents is None: a : List[str] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) a : List[Any] = latents.to(lowerCAmelCase__ ) a : Optional[int] = latents * scheduler.init_noise_sigma return latents def __a ( self , lowerCAmelCase__=0 ) -> int: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) a : Tuple = torch.device(f"""cuda:{gpu_id}""" ) a : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) a : str = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowerCAmelCase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a : str = None for cpu_offloaded_model in [self.unet, self.movq]: a, a : Dict = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__ ) # We'll offload the last model manually. a : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self ) -> Any: if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> List[str]: a : Optional[Any] = self._execution_device a : Optional[int] = guidance_scale > 1.0 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = torch.cat(lowerCAmelCase__ , dim=0 ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[Any] = torch.cat(lowerCAmelCase__ , dim=0 ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : int = torch.cat(lowerCAmelCase__ , dim=0 ) a : Any = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a : List[Any] = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) a : Optional[int] = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 ) a : List[str] = hint.repeat_interleave(lowerCAmelCase__ , dim=0 ) a : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase__ ) a : Dict = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__ ) a : Dict = self.scheduler.timesteps a : List[str] = self.movq.config.latent_channels a, a : List[Any] = downscale_height_and_width(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor ) # create initial latent a : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance a : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a : int = {"image_embeds": image_embeds, "hint": hint} a : Union[str, Any] = self.unet( sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] if do_classifier_free_guidance: a, a : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) a, a : Tuple = noise_pred.chunk(2 ) a, a : Union[str, Any] = variance_pred.chunk(2 ) a : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a, a : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a : Any = self.scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , )[0] # post-processing a : int = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: a : List[str] = image * 0.5 + 0.5 a : Dict = image.clamp(0 , 1 ) a : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a : Dict = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
79
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
79
1
from math import factorial __snake_case :int = {str(d): factorial(d) for d in range(10)} def __snake_case ( _UpperCAmelCase ): return sum(DIGIT_FACTORIAL[d] for d in str(_UpperCAmelCase ) ) def __snake_case ( ): __a = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _UpperCAmelCase ) if sum_of_digit_factorial(_UpperCAmelCase ) == i ) if __name__ == "__main__": print(f'{solution() = }')
49
import os import numpy import onnx def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = a.name SCREAMING_SNAKE_CASE_ : Dict = b.name SCREAMING_SNAKE_CASE_ : Optional[int] = '' SCREAMING_SNAKE_CASE_ : int = '' SCREAMING_SNAKE_CASE_ : Tuple = a == b SCREAMING_SNAKE_CASE_ : Dict = name_a SCREAMING_SNAKE_CASE_ : List[Any] = name_b return res def A_ ( a , a , a ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(a , a ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) _graph_replace_input_with(node_proto.attribute[1].g , a , a ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , a , a ) def A_ ( a , a , a ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(a , a , a ) def A_ ( a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : int = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i SCREAMING_SNAKE_CASE_ : List[Any] = inits[i].name SCREAMING_SNAKE_CASE_ : int = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , a , a ) def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.dirname(a ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.basename(a ) SCREAMING_SNAKE_CASE_ : str = onnx.load(os.path.join(a , a ) ) SCREAMING_SNAKE_CASE_ : Dict = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : str = set() SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Dict = 0 for i in range(len(a ) ): if i in dup_set: continue for j in range(i + 1 , len(a ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(a ) dup_set.add(a ) SCREAMING_SNAKE_CASE_ : Optional[int] = inits[j].data_type SCREAMING_SNAKE_CASE_ : List[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , a ) total_reduced_size += mem_size SCREAMING_SNAKE_CASE_ : Any = inits[i].name SCREAMING_SNAKE_CASE_ : Tuple = inits[j].name if name_i in dup_map: dup_map[name_i].append(a ) else: SCREAMING_SNAKE_CASE_ : Tuple = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) SCREAMING_SNAKE_CASE_ : Tuple = sorted(a ) _remove_dup_initializers_from_model(a , a , a ) SCREAMING_SNAKE_CASE_ : List[Any] = 'optimized_' + model_file_name SCREAMING_SNAKE_CASE_ : Any = os.path.join(a , a ) onnx.save(a , a ) return new_model
253
0
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): print('Loading config file...' ) def flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]="" , __SCREAMING_SNAKE_CASE : Union[str, Any]="." ): lowercase_ : Optional[Any] = [] for k, v in d.items(): lowercase_ : str = parent_key + sep + k if parent_key else k if isinstance(__SCREAMING_SNAKE_CASE , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sep=__SCREAMING_SNAKE_CASE ).items() ) else: items.append((new_key, v) ) return dict(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = argparse.Namespace() with open(__SCREAMING_SNAKE_CASE , 'r' ) as yaml_file: try: lowercase_ : int = yaml.load(__SCREAMING_SNAKE_CASE , Loader=yaml.FullLoader ) lowercase_ : List[str] = flatten_yaml_as_dict(__SCREAMING_SNAKE_CASE ) for k, v in flat_cfg.items(): setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__SCREAMING_SNAKE_CASE , str(__SCREAMING_SNAKE_CASE ) ) ) return config def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : Optional[Any] = MobileViTVaConfig() lowercase_ : Optional[int] = False # dataset if task_name.startswith('imagenet1k_' ): lowercase_ : int = 10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : Optional[Any] = 3_84 else: lowercase_ : Dict = 2_56 lowercase_ : List[Any] = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): lowercase_ : Optional[Any] = 2_10_00 if int(task_name.strip().split('_' )[-1] ) == 3_84: lowercase_ : Tuple = 3_84 else: lowercase_ : List[Any] = 2_56 lowercase_ : Optional[int] = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): lowercase_ : Tuple = 1_51 lowercase_ : str = 5_12 lowercase_ : Optional[int] = 'ade20k-id2label.json' lowercase_ : Optional[int] = True elif task_name.startswith('voc_' ): lowercase_ : Any = 21 lowercase_ : Optional[Any] = 5_12 lowercase_ : Dict = 'pascal-voc-id2label.json' lowercase_ : Tuple = True # orig_config lowercase_ : List[str] = load_orig_config_file(__SCREAMING_SNAKE_CASE ) assert getattr(__SCREAMING_SNAKE_CASE , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" lowercase_ : int = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__SCREAMING_SNAKE_CASE , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase_ : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase_ : List[str] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: lowercase_ : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) lowercase_ : int = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_12 ) lowercase_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label lowercase_ : List[str] = 'huggingface/label-files' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Any = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : int = idalabel lowercase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = val def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): if base_model: lowercase_ : Dict = '' else: lowercase_ : Optional[int] = 'mobilevitv2.' lowercase_ : Optional[int] = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase_ : List[Any] = k[8:] else: lowercase_ : List[Any] = k if ".block." in k: lowercase_ : Optional[Any] = k_new.replace('.block.' , '.' ) if ".conv." in k: lowercase_ : List[str] = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: lowercase_ : List[Any] = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: lowercase_ : str = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: lowercase_ : List[Any] = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowercase_ : Dict = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: lowercase_ : Any = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: lowercase_ : Union[str, Any] = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: lowercase_ : int = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: lowercase_ : Any = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowercase_ : Dict = [0, 1] elif i == 4: lowercase_ : Optional[Any] = [0, 1, 2, 3] elif i == 5: lowercase_ : List[str] = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: lowercase_ : int = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase_ : List[str] = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: lowercase_ : Optional[int] = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowercase_ : Any = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: lowercase_ : Optional[Any] = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: lowercase_ : Union[str, Any] = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: lowercase_ : Optional[Any] = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: lowercase_ : Dict = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: lowercase_ : str = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: lowercase_ : Optional[Any] = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: lowercase_ : List[str] = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: lowercase_ : Optional[Any] = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Optional[int] = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__SCREAMING_SNAKE_CASE ) for k in keys_to_ignore: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase__( ): lowercase_ : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase_ : Optional[int] = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : int = get_mobilevitva_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load original state_dict lowercase_ : List[Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): lowercase_ : str = MobileViTVaForSemanticSegmentation(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : Optional[Any] = False else: lowercase_ : Tuple = MobileViTVaForImageClassification(__SCREAMING_SNAKE_CASE ).eval() lowercase_ : int = False # remove and rename some keys of load the original model lowercase_ : Tuple = checkpoint remove_unused_keys(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load modified state_dict model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase_ : List[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase_ : Dict = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase_ : str = model(**__SCREAMING_SNAKE_CASE ) # verify classification model if task_name.startswith('imagenet' ): lowercase_ : int = outputs.logits lowercase_ : Any = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
321
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCAmelCase__ = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' lowerCAmelCase__ = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' lowerCAmelCase__ = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return float((preds == labels).mean() ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : List[Any] = simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE , y_pred=SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : List[str] = float(pearsonr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) lowerCAmelCase : List[Any] = float(spearmanr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case__ , snake_case__ )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case__ , snake_case__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case__ , snake_case__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
108
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate lowerCAmelCase : Tuple = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowerCAmelCase : List[Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
108
1
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase__ ( ) -> str: """simple docstring""" raise RuntimeError("CUDA out of memory." ) class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: super().__init__() _UpperCamelCase : List[str] = nn.Linear(3 , 4 ) _UpperCamelCase : int = nn.BatchNormad(4 ) _UpperCamelCase : Dict = nn.Linear(4 , 5 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int ) -> Optional[Any]: return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : List[str] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : List[str] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [128, 64, 32, 16, 8] ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: _UpperCamelCase : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : List[Any] , __a : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCamelCase : Tuple = mock_training_loop_function("hello" ) self.assertListEqual(__a , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a : Tuple ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a : Tuple ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__a : Optional[Any] , __a : Optional[int] , __a : Union[str, Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a : int ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: _UpperCamelCase : List[str] = torch.cuda.memory_allocated() _UpperCamelCase : Dict = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) _UpperCamelCase : Union[str, Any] = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
0
"""simple docstring""" from __future__ import annotations class _snake_case : def __init__( self : Optional[Any] , UpperCAmelCase : int = 0 ): __lowerCamelCase : Optional[Any] = key def lowerCamelCase__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : int ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCAmelCase ) ^ key ) for ch in content] def lowerCamelCase__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : int ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCAmelCase ) ^ key ) for ch in content] def lowerCamelCase__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : int = 0 ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __lowerCamelCase : Optional[int] = "" for ch in content: ans += chr(ord(UpperCAmelCase ) ^ key ) return ans def lowerCamelCase__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : int = 0 ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __lowerCamelCase : List[str] = "" for ch in content: ans += chr(ord(UpperCAmelCase ) ^ key ) return ans def lowerCamelCase__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : int = 0 ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) try: with open(UpperCAmelCase ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(UpperCAmelCase , UpperCAmelCase ) ) except OSError: return False return True def lowerCamelCase__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : int ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) try: with open(UpperCAmelCase ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(UpperCAmelCase , UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
135
"""simple docstring""" __A = [0, 2, 4, 6, 8] __A = [1, 3, 5, 7, 9] def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: list[int] , _lowerCamelCase: int ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __lowerCamelCase : Union[str, Any] = 0 for digit in range(10 ): __lowerCamelCase : Tuple = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase ) return result __lowerCamelCase : List[str] = 0 for digita in range(10 ): __lowerCamelCase : Optional[Any] = digita if (remainder + digita) % 2 == 0: __lowerCamelCase : Any = ODD_DIGITS else: __lowerCamelCase : Dict = EVEN_DIGITS for digita in other_parity_digits: __lowerCamelCase : int = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowercase_ ( _lowerCamelCase: int = 9 ) -> int: '''simple docstring''' __lowerCamelCase : List[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
135
1
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _A = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : str = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(a_, a_ ) _A = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Tuple = list(s_dict.keys() ) for key in keys: lowerCamelCase : List[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCamelCase : Optional[int] = new_key.replace(a_, a_ ) print(F"""{key} -> {new_key}""" ) lowerCamelCase : Any = s_dict.pop(a_ ) return s_dict def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : int = emb.weight.shape lowerCamelCase : Dict = nn.Linear(a_, a_, bias=a_ ) lowerCamelCase : Union[str, Any] = emb.weight.data return lin_layer def UpperCAmelCase ( a_, a_ ): '''simple docstring''' os.makedirs(a_, exist_ok=a_ ) lowerCamelCase : Union[str, Any] = os.path.basename(a_ ) lowerCamelCase : Any = url.split('/' )[-2] lowerCamelCase : Tuple = os.path.join(a_, a_ ) if os.path.exists(a_ ) and not os.path.isfile(a_ ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(a_ ): lowerCamelCase : Union[str, Any] = open(a_, 'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(a_ ) as source, open(a_, 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ), ncols=80, unit='iB', unit_scale=a_, unit_divisor=1024 ) as loop: while True: lowerCamelCase : Union[str, Any] = source.read(8192 ) if not buffer: break output.write(a_ ) loop.update(len(a_ ) ) lowerCamelCase : int = open(a_, 'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def UpperCAmelCase ( a_, a_ ): '''simple docstring''' if ".pt" not in checkpoint_path: lowerCamelCase : str = _download(_MODELS[checkpoint_path] ) else: lowerCamelCase : Any = torch.load(a_, map_location='cpu' ) lowerCamelCase : List[str] = original_checkpoint['dims'] lowerCamelCase : Any = original_checkpoint['model_state_dict'] lowerCamelCase : Tuple = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(a_ ) rename_keys(a_ ) lowerCamelCase : List[Any] = True lowerCamelCase : str = state_dict['decoder.layers.0.fc1.weight'].shape[0] lowerCamelCase : Optional[int] = WhisperConfig( vocab_size=dimensions['n_vocab'], encoder_ffn_dim=a_, decoder_ffn_dim=a_, num_mel_bins=dimensions['n_mels'], d_model=dimensions['n_audio_state'], max_target_positions=dimensions['n_text_ctx'], encoder_layers=dimensions['n_audio_layer'], encoder_attention_heads=dimensions['n_audio_head'], decoder_layers=dimensions['n_text_layer'], decoder_attention_heads=dimensions['n_text_state'], max_source_positions=dimensions['n_audio_ctx'], ) lowerCamelCase : Union[str, Any] = WhisperForConditionalGeneration(a_ ) lowerCamelCase : Optional[int] = model.model.load_state_dict(a_, strict=a_ ) if len(a_ ) > 0 and not set(a_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: lowerCamelCase : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase : Tuple = proj_out_weights model.save_pretrained(a_ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
368
"""simple docstring""" def UpperCAmelCase ( ): '''simple docstring''' return 1 def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a_ ) def UpperCAmelCase ( a_ ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a_ ) def UpperCAmelCase ( a_ = 200 ): '''simple docstring''' return two_pound(a_ ) if __name__ == "__main__": print(solution(int(input().strip())))
205
0