code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="cvt" def __init__( self , UpperCAmelCase=3 , UpperCAmelCase=[7, 3, 3] , UpperCAmelCase=[4, 2, 2] , UpperCAmelCase=[2, 1, 1] , UpperCAmelCase=[64, 192, 384] , UpperCAmelCase=[1, 3, 6] , UpperCAmelCase=[1, 2, 10] , UpperCAmelCase=[4.0, 4.0, 4.0] , UpperCAmelCase=[0.0, 0.0, 0.0] , UpperCAmelCase=[0.0, 0.0, 0.0] , UpperCAmelCase=[0.0, 0.0, 0.1] , UpperCAmelCase=[True, True, True] , UpperCAmelCase=[False, False, True] , UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , UpperCAmelCase=[3, 3, 3] , UpperCAmelCase=[1, 1, 1] , UpperCAmelCase=[2, 2, 2] , UpperCAmelCase=[1, 1, 1] , UpperCAmelCase=[1, 1, 1] , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) __snake_case : Optional[int] = num_channels __snake_case : Tuple = patch_sizes __snake_case : int = patch_stride __snake_case : int = patch_padding __snake_case : Tuple = embed_dim __snake_case : Optional[int] = num_heads __snake_case : Tuple = depth __snake_case : Optional[int] = mlp_ratio __snake_case : List[Any] = attention_drop_rate __snake_case : Optional[int] = drop_rate __snake_case : Dict = drop_path_rate __snake_case : Any = qkv_bias __snake_case : List[str] = cls_token __snake_case : Union[str, Any] = qkv_projection_method __snake_case : Union[str, Any] = kernel_qkv __snake_case : Optional[int] = padding_kv __snake_case : Optional[int] = stride_kv __snake_case : Optional[int] = padding_q __snake_case : Tuple = stride_q __snake_case : int = initializer_range __snake_case : Union[str, Any] = layer_norm_eps
326
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
1
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list: _lowerCAmelCase =[] _lowerCAmelCase , _lowerCAmelCase =input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _lowerCAmelCase =result + left + right return input_list def _lowerCamelCase(__UpperCamelCase ) -> list: if len(__UpperCamelCase ) <= 1: return input_list _lowerCAmelCase =list(__UpperCamelCase ) # iteration for two-way merging _lowerCAmelCase =2 while p <= len(__UpperCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase ): _lowerCAmelCase =i _lowerCAmelCase =i + p - 1 _lowerCAmelCase =(low + high + 1) // 2 _lowerCAmelCase =merge(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # final merge of last two parts if p * 2 >= len(__UpperCamelCase ): _lowerCAmelCase =i _lowerCAmelCase =merge(__UpperCamelCase , 0 , __UpperCamelCase , len(__UpperCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __A = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __A = [] else: __A = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
350
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self ) -> Union[str, Any]: _lowerCAmelCase =1 _lowerCAmelCase =3 _lowerCAmelCase =(32, 32) _lowerCAmelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCAmelCase ) return image @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _lowerCAmelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(__UpperCAmelCase ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__UpperCAmelCase , )[0] _lowerCAmelCase =image[0, -3:, -3:, -1] _lowerCAmelCase =image_from_tuple[0, -3:, -3:, -1] _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _lowerCAmelCase =np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 _lowerCAmelCase =torch.Generator(device=__UpperCAmelCase ).manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) _lowerCAmelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =self.dummy_cond_unet_upscale _lowerCAmelCase =DDPMScheduler() _lowerCAmelCase =DDIMScheduler(prediction_type="""v_prediction""" ) _lowerCAmelCase =self.dummy_vae _lowerCAmelCase =self.dummy_text_encoder _lowerCAmelCase =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _lowerCAmelCase =unet.half() _lowerCAmelCase =text_encoder.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase =StableDiffusionUpscalePipeline( unet=__UpperCAmelCase , low_res_scheduler=__UpperCAmelCase , scheduler=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , max_noise_level=3_50 , ) _lowerCAmelCase =sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _lowerCAmelCase ="""A painting of a squirrel eating a burger""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =sd_pipe( [prompt] , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ).images _lowerCAmelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ) -> Optional[Any]: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained(__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self ) -> Tuple: _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , output_type="""np""" , ) _lowerCAmelCase =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) _lowerCAmelCase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowerCAmelCase =StableDiffusionUpscalePipeline.from_pretrained( __UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase ="""a cat sitting on a park bench""" _lowerCAmelCase =torch.manual_seed(0 ) _lowerCAmelCase =pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , output_type="""np""" , ) _lowerCAmelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
341
0
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets _a = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ _a = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ _a = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32'''), '''references''': datasets.Value('''int32'''), }) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def UpperCAmelCase ( self , __a , __a , __a=None) -> Dict: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__a , __a , sample_weight=__a)), }
194
"""simple docstring""" class _UpperCAmelCase: def __init__( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {} def UpperCAmelCase ( self) -> None: '''simple docstring''' print(self.vertex) for i in self.vertex: print(__a , ''' -> ''' , ''' -> '''.join([str(__a) for j in self.vertex[i]])) def UpperCAmelCase ( self , __a , __a) -> None: '''simple docstring''' # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__a) else: # else make a new vertex _UpperCamelCase = [to_vertex] def UpperCAmelCase ( self) -> None: '''simple docstring''' # visited array for storing already visited nodes _UpperCamelCase = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(__a , __a) def UpperCAmelCase ( self , __a , __a) -> None: '''simple docstring''' # mark start vertex as visited _UpperCamelCase = True print(__a , end=''' ''') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__a , __a) if __name__ == "__main__": _a = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
194
1
class snake_case__: """simple docstring""" def __init__( self : Optional[int] ): lowercase__ : Any = '' lowercase__ : List[str] = '' lowercase__ : str = [] def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowercase__ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowercase__ : List[Any] = self.__min_dist_top_down_dp(_a , n - 1 ) lowercase__ : List[Any] = self.__min_dist_top_down_dp(m - 1 , _a ) lowercase__ : int = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowercase__ : str = 1 + min(_a , _a , _a ) return self.dp[m][n] def snake_case ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): lowercase__ : List[str] = worda lowercase__ : List[str] = worda lowercase__ : List[Any] = [[-1 for _ in range(len(_a ) )] for _ in range(len(_a ) )] return self.__min_dist_top_down_dp(len(_a ) - 1 , len(_a ) - 1 ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): lowercase__ : str = worda lowercase__ : Optional[int] = worda lowercase__ : Tuple = len(_a ) lowercase__ : List[str] = len(_a ) lowercase__ : Tuple = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowercase__ : Optional[Any] = j elif j == 0: # second string is empty lowercase__ : Union[str, Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowercase__ : Union[str, Any] = self.dp[i - 1][j - 1] else: lowercase__ : List[str] = self.dp[i][j - 1] lowercase__ : Union[str, Any] = self.dp[i - 1][j] lowercase__ : Union[str, Any] = self.dp[i - 1][j - 1] lowercase__ : Optional[int] = 1 + min(_a , _a , _a ) return self.dp[m][n] if __name__ == "__main__": lowerCAmelCase__ = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowerCAmelCase__ = input('''Enter the first string: ''').strip() lowerCAmelCase__ = input('''Enter the second string: ''').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
355
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase__ = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{j}.''' lowerCAmelCase__ = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ : int = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = v lowercase__ : Union[str, Any] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase__ = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{i}.''' lowerCAmelCase__ = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ : Optional[int] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Dict = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = v lowercase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ : Optional[int] = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) lowercase__ : Dict = reshape_weight_for_sd(lowerCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = {} lowercase__ : List[Any] = {} lowercase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): lowercase__ : int = k[: -len(".q_proj.weight" )] lowercase__ : Optional[Any] = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: lowercase__ : Dict = [None, None, None] lowercase__ : Any = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): lowercase__ : Optional[int] = k[: -len(".q_proj.bias" )] lowercase__ : Any = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: lowercase__ : str = [None, None, None] lowercase__ : str = v continue lowercase__ : Union[str, Any] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : List[Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : str = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Any = torch.cat(lowerCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : List[str] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Tuple = torch.cat(lowerCamelCase__ ) return new_state_dict def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
121
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel snake_case_ : Any = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __a (unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls : Tuple ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def UpperCAmelCase__ ( cls : List[Any] ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(__magic_name__ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase_ : Tuple = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id='''test-model-flax''' , push_to_hub=__magic_name__ , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) UpperCAmelCase_ : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" UpperCAmelCase_ : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Tuple = FlaxBertModel(__magic_name__ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : List[Any] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__magic_name__ , use_auth_token=self._token ) UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1E-3 , msg=F"""{key} not identical""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) UpperCAmelCase_ : List[Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: UpperCAmelCase_ : List[str] = False return models_are_equal @require_flax class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel(__magic_name__ ) UpperCAmelCase_ : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase_ : int = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel(__magic_name__ ) UpperCAmelCase_ : Optional[int] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size='''10KB''' ) with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = '''bert''' UpperCAmelCase_ : str = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : List[Any] = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = '''bert''' UpperCAmelCase_ : str = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__magic_name__ ): UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(__magic_name__ ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
125
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets snake_case_ : Union[str, Any] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" snake_case_ : int = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" snake_case_ : Optional[Any] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: return float((preds == labels).mean() ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: UpperCAmelCase_ : str = simple_accuracy(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = float(fa_score(y_true=SCREAMING_SNAKE_CASE__, y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : str ) -> Dict: UpperCAmelCase_ : Optional[int] = float(pearsonr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )[0] ) UpperCAmelCase_ : str = float(spearmanr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a (datasets.Metric ): def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> List[Any]: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__magic_name__ , __magic_name__ )} elif self.config_name == "stsb": return pearson_and_spearman(__magic_name__ , __magic_name__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__magic_name__ , __magic_name__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__magic_name__ , __magic_name__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
125
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') lowerCAmelCase_ : Optional[int] = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) lowerCAmelCase_ : Union[str, Any] = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowerCAmelCase_ : Optional[Any] = BeautifulSoup(res.text, '''html.parser''') lowerCAmelCase_ : Any = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'https://google.com{link.get("href")}')
248
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(snake_case__ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=snake_case__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images assert image.shape[0] == 2 UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.dummy_cond_unet_upscale UpperCAmelCase = DDPMScheduler() UpperCAmelCase = DDIMScheduler(prediction_type="""v_prediction""" ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_50 , ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = """A painting of a squirrel eating a burger""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" , ).images UpperCAmelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="""np""" , ) UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="""np""" , ) UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) UpperCAmelCase = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase = """a cat sitting on a park bench""" UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type="""np""" , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
248
1
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = LxmertTokenizer snake_case = LxmertTokenizerFast snake_case = True snake_case = True def lowerCAmelCase ( self : Tuple ): '''simple docstring''' super().setUp() _A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = "UNwant\u00E9d,running" _A = "unwanted, running" return input_text, output_text def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = self.tokenizer_class(self.vocab_file ) _A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if not self.test_rust_tokenizer: return _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = "I was born in 92000, and this is falsé." _A = tokenizer.tokenize(__UpperCAmelCase ) _A = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _A = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _A = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _A = self.get_rust_tokenizer() _A = tokenizer.encode(__UpperCAmelCase ) _A = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
79
from math import pi def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
95
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> str: UpperCamelCase : Dict = tempfile.mkdtemp() # fmt: off UpperCamelCase : Tuple = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase : List[str] = dict(zip(SCREAMING_SNAKE_CASE_, range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase : Dict = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase : Optional[int] = {'unk_token': '<unk>'} UpperCamelCase : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase : Dict = os.path.join(self.tmpdirname, SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> int: return CLIPTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Dict: return CLIPImageProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase : List[str] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : Optional[int] = self.get_rust_tokenizer() UpperCamelCase : int = self.get_image_processor() UpperCamelCase : str = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : Tuple = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer, SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Any: UpperCamelCase : str = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Any = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) UpperCamelCase : Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) UpperCamelCase : List[str] = CLIPProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : int = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = self.prepare_image_inputs() UpperCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_, return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case_ ( self ) -> List[str]: UpperCamelCase : int = self.get_image_processor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : Optional[int] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : Dict = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = self.get_image_processor() UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : Optional[int] = self.prepare_image_inputs() UpperCamelCase : str = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def snake_case_ ( self ) -> str: UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : int = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : Any = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : Any = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 'lower newer' UpperCamelCase : Optional[Any] = self.prepare_image_inputs() UpperCamelCase : str = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
359
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : @staticmethod def snake_case_ ( *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> Dict: pass def UpperCamelCase ( snake_case__ : Image ) -> str: UpperCamelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase__ : str = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : List[str] = DepthEstimationPipeline(model=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, SCREAMING_SNAKE_CASE_ ) import datasets UpperCamelCase : int = datasets.load_dataset('hf-internal-testing/fixtures_image_utils', 'image', split='test' ) UpperCamelCase : Tuple = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ], SCREAMING_SNAKE_CASE_, ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def snake_case_ ( self ) -> Optional[int]: pass @slow @require_torch def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[Any] = 'Intel/dpt-large' UpperCamelCase : Tuple = pipeline('depth-estimation', model=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCamelCase : int = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ), 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ), 2.6_62 ) @require_torch def snake_case_ ( self ) -> Optional[int]: # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
103
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __lowercase = """__DUMMY_TRANSFORMERS_USER__""" __lowercase = """Dummy User""" __lowercase = """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""" __lowercase = """https://hub-ci.huggingface.co""" __lowercase = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" __lowercase = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" __lowercase = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def lowercase ( A_ )-> Tuple: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def lowercase ( A_ )-> List[Any]: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def lowercase ( A_ )-> List[str]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def lowercase ( A_ , A_ )-> Union[str, Any]: '''simple docstring''' HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def lowercase ( )-> Any: '''simple docstring''' return HfApi(endpoint=_SCREAMING_SNAKE_CASE ) @pytest.fixture(scope="session" ) def lowercase ( A_ )-> Dict: '''simple docstring''' a : Optional[Any] = HfFolder.get_token() HfFolder.save_token(_SCREAMING_SNAKE_CASE ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowercase ( A_ )-> Union[str, Any]: '''simple docstring''' def _cleanup_repo(A_ ): hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def lowercase ( A_ )-> int: '''simple docstring''' @contextmanager def _temporary_repo(A_ ): try: yield repo_id finally: cleanup_repo(_SCREAMING_SNAKE_CASE ) return _temporary_repo @pytest.fixture(scope="session" ) def lowercase ( A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : int = F'''repo_txt_data-{int(time.time() * 10e3 )}''' a : Tuple = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="dataset" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="data/text_data.txt" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowercase ( A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' a : List[Any] = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' a : Any = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="dataset" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="data.zip" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowercase ( A_ , A_ , A_ )-> Tuple: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def lowercase ( A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' a : List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="dataset" , private=_SCREAMING_SNAKE_CASE ) hf_api.upload_file( token=_SCREAMING_SNAKE_CASE , path_or_fileobj=str(_SCREAMING_SNAKE_CASE ) , path_in_repo="data.zip" , repo_id=_SCREAMING_SNAKE_CASE , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowercase ( A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
40
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = ["pixel_values"] def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: super().__init__(**UpperCAmelCase ) _snake_case = size if size is not None else {"""height""": 256, """width""": 256} _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: _snake_case = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(UpperCAmelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) _snake_case = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: _snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: _snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: _snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] _snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] _snake_case = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
341
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["BeitFeatureExtractor"] lowerCamelCase_ = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( a_ : Optional[int] , a_ : Any=0 ) -> Optional[Any]: return sorted(a_ , key=lambda a_ : x[column] ) def __lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : str=float('''inf''' ) ) -> str: for i in range(points_counts - 1 ): for j in range(i + 1 , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :Optional[Any] = current_dis return min_dis def __lowerCamelCase ( a_ : List[Any] , a_ : Any , a_ : Optional[int]=float('''inf''' ) ) -> Optional[Any]: for i in range(min(6 , points_counts - 1 ) , a_ ): for j in range(max(0 , i - 6 ) , a_ ): __SCREAMING_SNAKE_CASE :Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE :int = current_dis return min_dis def __lowerCamelCase ( a_ : str , a_ : List[Any] , a_ : int ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(a_ , a_ ) # recursion __SCREAMING_SNAKE_CASE :int = points_counts // 2 __SCREAMING_SNAKE_CASE :Dict = closest_pair_of_points_sqr( a_ , points_sorted_on_y[:mid] , a_ ) __SCREAMING_SNAKE_CASE :Any = closest_pair_of_points_sqr( a_ , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE :Union[str, Any] = min(a_ , a_ ) __SCREAMING_SNAKE_CASE :str = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a_ ) __SCREAMING_SNAKE_CASE :Dict = dis_between_closest_in_strip( a_ , len(a_ ) , a_ ) return min(a_ , a_ ) def __lowerCamelCase ( a_ : int , a_ : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = column_based_sort(a_ , column=0 ) __SCREAMING_SNAKE_CASE :int = column_based_sort(a_ , column=1 ) return ( closest_pair_of_points_sqr( a_ , a_ , a_ ) ) ** 0.5 if __name__ == "__main__": lowerCamelCase_ = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
239
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE (A , A ) -> str: """simple docstring""" assert isinstance(A , A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Tuple: """simple docstring""" lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = JsonDatasetReader(A , cache_dir=A , keep_in_memory=A ).read() _check_json_dataset(A , A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = JsonDatasetReader(A , features=A , cache_dir=A ).read() _check_json_dataset(A , A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[str]: """simple docstring""" lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = JsonDatasetReader(A , features=A , cache_dir=A ).read() assert isinstance(A , A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" lowercase__ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowercase__ = features.copy() lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = tmp_path / '''cache''' lowercase__ = JsonDatasetReader(A , features=A , cache_dir=A ).read() assert isinstance(A , A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ = JsonDatasetReader(A , cache_dir=A , split=A ).read() _check_json_dataset(A , A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Tuple: """simple docstring""" if issubclass(A , A ): lowercase__ = jsonl_path elif issubclass(A , A ): lowercase__ = [jsonl_path] lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ = JsonDatasetReader(A , cache_dir=A ).read() _check_json_dataset(A , A ) def _SCREAMING_SNAKE_CASE (A , A , A=("train",) ) -> Tuple: """simple docstring""" assert isinstance(A , A ) for split in splits: lowercase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> str: """simple docstring""" lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=A , keep_in_memory=A ).read() _check_json_datasetdict(A , A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[Any]: """simple docstring""" lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = JsonDatasetReader({'''train''': jsonl_path} , features=A , cache_dir=A ).read() _check_json_datasetdict(A , A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" if split: lowercase__ = {split: jsonl_path} else: lowercase__ = '''train''' lowercase__ = {'''train''': jsonl_path, '''test''': jsonl_path} lowercase__ = tmp_path / '''cache''' lowercase__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase__ = JsonDatasetReader(A , cache_dir=A ).read() _check_json_datasetdict(A , A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" return json.load(A ) def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" return [json.loads(A ) for line in buffer] class __lowerCAmelCase : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase__ (self : int , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Dict ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase ).write() buffer.seek(0 ) lowercase__ = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase ).write() buffer.seek(0 ) lowercase__ = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) lowercase__ = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def UpperCamelCase__ (self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) lowercase__ = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 def UpperCamelCase__ (self : Dict , UpperCamelCase : Any ): '''simple docstring''' with pytest.raises(UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def UpperCamelCase__ (self : str , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : List[Any] ): '''simple docstring''' lowercase__ = tmp_path_factory.mktemp('''data''' ) / f"test.json.{extension}" lowercase__ = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(UpperCamelCase , UpperCamelCase , compression=UpperCamelCase ).write() with fsspec.open(UpperCamelCase , '''rb''' , compression='''infer''' ) as f: lowercase__ = f.read() with fsspec.open(UpperCamelCase , '''rb''' , compression='''infer''' ) as f: lowercase__ = f.read() assert exported_content == original_content
2
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : Dict = {'vocab_file': 'vocab.txt'} UpperCAmelCase__ : List[Any] = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } UpperCAmelCase__ : Union[str, Any] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } UpperCAmelCase__ : Dict = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ConvBertTokenizer def __init__( self : Tuple , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : List[Any]="[CLS]" , lowerCAmelCase_ : Optional[int]="[MASK]" , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _A: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _A: List[str] = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _A: List[Any] = do_lower_case _A: Optional[Any] = strip_accents _A: Union[str, Any] = tokenize_chinese_chars _A: Optional[int] = normalizer_class(**lowerCAmelCase_ ) _A: Optional[Any] = do_lower_case def __magic_name__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any]=None ): """simple docstring""" _A: Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Any = [self.sep_token_id] _A: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" _A: str = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
121
0
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): _A : Any = np.shape(snake_case_ ) if rows != columns: _A : Optional[Any] = ( """'table' has to be of square shaped array but got a """ f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(snake_case_ ) _A : List[Any] = np.zeros((rows, columns) ) _A : Optional[int] = np.zeros((rows, columns) ) for i in range(snake_case_ ): for j in range(snake_case_ ): _A : Tuple = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) _A : Tuple = (table[i][j] - total) / upper[j][j] _A : Optional[int] = 1 for j in range(snake_case_,snake_case_ ): _A : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) ) _A : Optional[Any] = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
350
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class A__: """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=32 , _lowercase=2 , _lowercase=3 , _lowercase=16 , _lowercase=[1, 2, 1] , _lowercase=[2, 2, 4] , _lowercase=2 , _lowercase=2.0 , _lowercase=True , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.1 , _lowercase="gelu" , _lowercase=False , _lowercase=True , _lowercase=0.0_2 , _lowercase=1e-5 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=10 , _lowercase=8 , _lowercase=["stage1", "stage2", "stage3"] , _lowercase=[1, 2, 3] , ) -> List[Any]: a_ : Any = parent a_ : Any = batch_size a_ : List[str] = image_size a_ : Any = patch_size a_ : Dict = num_channels a_ : Union[str, Any] = embed_dim a_ : Optional[Any] = depths a_ : str = num_heads a_ : Any = window_size a_ : List[Any] = mlp_ratio a_ : int = qkv_bias a_ : Optional[Any] = hidden_dropout_prob a_ : Dict = attention_probs_dropout_prob a_ : Union[str, Any] = drop_path_rate a_ : str = hidden_act a_ : List[Any] = use_absolute_embeddings a_ : Tuple = patch_norm a_ : List[str] = layer_norm_eps a_ : Union[str, Any] = initializer_range a_ : List[Any] = is_training a_ : List[Any] = scope a_ : Union[str, Any] = use_labels a_ : Any = type_sequence_label_size a_ : Optional[int] = encoder_stride a_ : Any = out_features a_ : Any = out_indices def UpperCamelCase__ ( self ) -> Dict: a_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Union[str, Any] = None if self.use_labels: a_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> Any: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Dict: a_ : List[str] = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : Any = model(_lowercase ) a_ : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) a_ : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Optional[int]: a_ : Union[str, Any] = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : int = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): a_ : int = ["""stem"""] a_ : Tuple = MaskFormerSwinBackbone(config=_lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : int = self.prepare_config_and_inputs() a_ , a_ , a_ : str = config_and_inputs a_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Dict = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _A : int = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _A : Optional[Any] = False _A : str = False _A : Dict = False _A : int = False _A : Any = False def UpperCamelCase__ ( self ) -> List[str]: a_ : Any = MaskFormerSwinModelTester(self ) a_ : Optional[Any] = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def UpperCamelCase__ ( self ) -> Tuple: pass def UpperCamelCase__ ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ) -> List[Any]: return def UpperCamelCase__ ( self ) -> Any: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> str: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def UpperCamelCase__ ( self ) -> Any: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass def UpperCamelCase__ ( self ) -> List[str]: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : List[Any] = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[Any] = model_class(_lowercase ) a_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Optional[int] = [*signature.parameters.keys()] a_ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def UpperCamelCase__ ( self ) -> Tuple: pass def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: a_ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): a_ : str = model(**self._prepare_for_class(_lowercase , _lowercase ) ) a_ : Dict = outputs.hidden_states a_ : Tuple = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length a_ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a_ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ ( self ) -> List[str]: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: a_ : Tuple = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Optional[Any] = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> int: a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Tuple = 3 a_ : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) a_ : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) a_ : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) a_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: a_ : Any = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Optional[int] = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def UpperCamelCase__ ( self ) -> Optional[int]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase__ ( self ) -> str: pass def UpperCamelCase__ ( self ) -> Tuple: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase ): a_ : int = 0 return t def check_equivalence(_lowercase , _lowercase , _lowercase , _lowercase={} ): with torch.no_grad(): a_ : List[Any] = model(**_lowercase , return_dict=_lowercase , **_lowercase ) a_ : Tuple = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase , _lowercase ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' F''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(_lowercase ) model.to(_lowercase ) model.eval() a_ : Union[str, Any] = self._prepare_for_class(_lowercase , _lowercase ) a_ : int = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) a_ : int = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) a_ : Optional[int] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) a_ : Optional[Any] = self._prepare_for_class(_lowercase , _lowercase ) a_ : Union[str, Any] = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {"""output_hidden_states""": True} ) a_ : Optional[Any] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) a_ : Dict = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {"""output_hidden_states""": True} ) @require_torch class A__(unittest.TestCase, a_ ): """simple docstring""" _A : int = (MaskFormerSwinBackbone,) if is_torch_available() else () _A : str = MaskFormerSwinConfig def UpperCamelCase__ ( self ) -> Any: a_ : Optional[int] = MaskFormerSwinModelTester(self ) def UpperCamelCase__ ( self ) -> Dict: a_ , a_ : int = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[int] = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: a_ : str = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() a_ : List[str] = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True a_ : int = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) a_ , a_ , a_ : Optional[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: a_ : Tuple = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
248
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' a_ : Tuple = original_name.split(""".""")[0] a_ : List[Any] = key.split(""".""") a_ : List[Any] = int(key_list[key_list.index(a__) - 2]) a_ : Dict = int(key_list[key_list.index(a__) - 1]) a_ : Any = orig_block_num - offset a_ : Optional[int] = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''') return key def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = OrderedDict() a_ , a_ : Optional[int] = 0, 0 for key, value in state_dict.items(): if key.startswith("""network"""): a_ : str = key.replace("""network""" , """poolformer.encoder""") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""") and "patch_embed" not in key: patch_emb_offset += 1 a_ : Tuple = key[: key.find("""proj""")] a_ : Dict = key.replace(a__ , f'''patch_embeddings.{total_embed_found}.''') a_ : Optional[Any] = key.replace("""proj""" , """projection""") if key.endswith("""bias"""): total_embed_found += 1 if "patch_embeddings" in key: a_ : int = """poolformer.encoder.""" + key if "mlp.fc1" in key: a_ : Union[str, Any] = replace_key_with_offset(a__ , a__ , """mlp.fc1""" , """output.conv1""") if "mlp.fc2" in key: a_ : str = replace_key_with_offset(a__ , a__ , """mlp.fc2""" , """output.conv2""") if "norm1" in key: a_ : str = replace_key_with_offset(a__ , a__ , """norm1""" , """before_norm""") if "norm2" in key: a_ : Any = replace_key_with_offset(a__ , a__ , """norm2""" , """after_norm""") if "layer_scale_1" in key: a_ : List[Any] = replace_key_with_offset(a__ , a__ , """layer_scale_1""" , """layer_scale_1""") if "layer_scale_2" in key: a_ : Optional[Any] = replace_key_with_offset(a__ , a__ , """layer_scale_2""" , """layer_scale_2""") if "head" in key: a_ : Optional[Any] = key.replace("""head""" , """classifier""") a_ : Union[str, Any] = value return new_state_dict def _UpperCAmelCase ( ): '''simple docstring''' a_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Any = Image.open(requests.get(a__ , stream=a__).raw) return image @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : str = PoolFormerConfig() # set attributes based on model_name a_ : Union[str, Any] = """huggingface/label-files""" a_ : str = model_name[-3:] a_ : Tuple = 1_0_0_0 a_ : List[str] = """imagenet-1k-id2label.json""" a_ : Any = (1, 1_0_0_0) # set config attributes a_ : Optional[Any] = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""") , """r""")) a_ : List[Any] = {int(a__): v for k, v in idalabel.items()} a_ : Tuple = idalabel a_ : int = {v: k for k, v in idalabel.items()} if size == "s12": a_ : Optional[int] = [2, 2, 6, 2] a_ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : List[Any] = 4.0 a_ : Tuple = 0.9 elif size == "s24": a_ : List[Any] = [4, 4, 1_2, 4] a_ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : List[Any] = 4.0 a_ : Optional[Any] = 0.9 elif size == "s36": a_ : str = [6, 6, 1_8, 6] a_ : Dict = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : Optional[int] = 4.0 a_ : Optional[int] = 1e-6 a_ : Tuple = 0.9 elif size == "m36": a_ : str = [6, 6, 1_8, 6] a_ : List[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] a_ : str = 4.0 a_ : Union[str, Any] = 1e-6 a_ : str = 0.95 elif size == "m48": a_ : List[Any] = [8, 8, 2_4, 8] a_ : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] a_ : int = 4.0 a_ : int = 1e-6 a_ : List[Any] = 0.95 else: raise ValueError(f'''Size {size} not supported''') # load image processor a_ : Tuple = PoolFormerImageProcessor(crop_pct=a__) # Prepare image a_ : List[Any] = prepare_img() a_ : List[str] = image_processor(images=a__ , return_tensors="""pt""").pixel_values logger.info(f'''Converting model {model_name}...''') # load original state dict a_ : List[str] = torch.load(a__ , map_location=torch.device("""cpu""")) # rename keys a_ : List[Any] = rename_keys(a__) # create HuggingFace model and load state dict a_ : List[str] = PoolFormerForImageClassification(a__) model.load_state_dict(a__) model.eval() # Define image processor a_ : Tuple = PoolFormerImageProcessor(crop_pct=a__) a_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""").pixel_values # forward pass a_ : Any = model(a__) a_ : Any = outputs.logits # define expected logit slices for different models if size == "s12": a_ : Union[str, Any] = torch.tensor([-0.3045, -0.6758, -0.4869]) elif size == "s24": a_ : Optional[Any] = torch.tensor([0.4402, -0.1374, -0.8045]) elif size == "s36": a_ : int = torch.tensor([-0.6080, -0.5133, -0.5898]) elif size == "m36": a_ : List[str] = torch.tensor([0.3952, 0.2263, -1.2668]) elif size == "m48": a_ : Union[str, Any] = torch.tensor([0.1167, -0.0656, -0.3423]) else: raise ValueError(f'''Size {size} not supported''') # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(a__).mkdir(exist_ok=a__) model.save_pretrained(a__) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(a__) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __snake_case : Optional[int] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
248
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCamelCase__ : int = logging.getLogger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ) -> int: # save results if os.path.exists(__UpperCAmelCase ): if os.path.exists(os.path.join(__UpperCAmelCase , 'config.json' ) ) and os.path.isfile( os.path.join(__UpperCAmelCase , 'config.json' ) ): os.remove(os.path.join(__UpperCAmelCase , 'config.json' ) ) if os.path.exists(os.path.join(__UpperCAmelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__UpperCAmelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(__UpperCAmelCase , 'pytorch_model.bin' ) ) else: os.makedirs(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = 2 if unlogit: SCREAMING_SNAKE_CASE_ = torch.pow(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = p * torch.log(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> List[str]: logger.info('lv, h >\t' + '\t'.join(f"{x + 1}" for x in range(len(__UpperCAmelCase ) ) ) ) for row in range(len(__UpperCAmelCase ) ): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + '\t'.join(f"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(f"layer {row + 1}:\t" + '\t'.join(f"{x:d}" for x in tensor[row].cpu().data ) ) def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict=False ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = model.config.num_hidden_layers, model.config.num_attention_heads SCREAMING_SNAKE_CASE_ = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ).to(args.device ) SCREAMING_SNAKE_CASE_ = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ).to(args.device ) if head_mask is None: SCREAMING_SNAKE_CASE_ = torch.ones(__UpperCAmelCase , __UpperCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=__UpperCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = 0.0 for step, inputs in enumerate(tqdm(__UpperCAmelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): SCREAMING_SNAKE_CASE_ = tuple(t.to(args.device ) for t in inputs ) ((SCREAMING_SNAKE_CASE_) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) SCREAMING_SNAKE_CASE_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , head_mask=__UpperCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = entropy(attn.detach() , __UpperCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__UpperCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = torch.pow(torch.pow(__UpperCAmelCase , __UpperCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: SCREAMING_SNAKE_CASE_ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__UpperCAmelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__UpperCAmelCase ) logger.info('Head ranked by importance scores' ) SCREAMING_SNAKE_CASE_ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) SCREAMING_SNAKE_CASE_ = torch.arange( head_importance.numel() , device=args.device ) SCREAMING_SNAKE_CASE_ = head_ranks.view_as(__UpperCAmelCase ) print_ad_tensor(__UpperCAmelCase ) return attn_entropy, head_importance, total_loss def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = compute_heads_importance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __UpperCAmelCase , original_score * args.masking_threshold ) SCREAMING_SNAKE_CASE_ = torch.ones_like(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) SCREAMING_SNAKE_CASE_ = original_score while current_score >= original_score * args.masking_threshold: SCREAMING_SNAKE_CASE_ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads SCREAMING_SNAKE_CASE_ = float('Inf' ) SCREAMING_SNAKE_CASE_ = head_importance.view(-1 ).sort()[1] if len(__UpperCAmelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads SCREAMING_SNAKE_CASE_ = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) SCREAMING_SNAKE_CASE_ = new_head_mask.view(-1 ) SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = new_head_mask.view_as(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = new_head_mask.clone().detach() print_ad_tensor(__UpperCAmelCase ) # Compute metric and head importance again SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = compute_heads_importance( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase , head_mask=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __UpperCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__UpperCAmelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = datetime.now() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = compute_heads_importance( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase , compute_importance=__UpperCAmelCase , head_mask=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 1 / loss SCREAMING_SNAKE_CASE_ = datetime.now() - before_time SCREAMING_SNAKE_CASE_ = sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE_ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__UpperCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = [ v, ] assert sum(len(__UpperCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE_ = datetime.now() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = compute_heads_importance( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , compute_entropy=__UpperCAmelCase , compute_importance=__UpperCAmelCase , head_mask=__UpperCAmelCase , actually_pruned=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ = 1 / loss SCREAMING_SNAKE_CASE_ = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __UpperCAmelCase , __UpperCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __UpperCAmelCase , __UpperCAmelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__UpperCAmelCase , args.output_dir ) def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__UpperCAmelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__UpperCAmelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__UpperCAmelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__UpperCAmelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__UpperCAmelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__UpperCAmelCase , help='Batch size.' ) parser.add_argument('--seed' , type=__UpperCAmelCase , default=42 ) parser.add_argument('--local_rank' , type=__UpperCAmelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__UpperCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__UpperCAmelCase , default='' , help='Can be used for distant debugging.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__UpperCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: SCREAMING_SNAKE_CASE_ = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) SCREAMING_SNAKE_CASE_ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) SCREAMING_SNAKE_CASE_ = torch.device('cuda' , args.local_rank ) SCREAMING_SNAKE_CASE_ = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) SCREAMING_SNAKE_CASE_ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: SCREAMING_SNAKE_CASE_ = nn.parallel.DistributedDataParallel( __UpperCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__UpperCAmelCase ) elif args.n_gpu > 1: SCREAMING_SNAKE_CASE_ = nn.DataParallel(__UpperCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__UpperCAmelCase ) torch.save(__UpperCAmelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __UpperCAmelCase ) # Prepare dataset SCREAMING_SNAKE_CASE_ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) SCREAMING_SNAKE_CASE_ = (torch.from_numpy(__UpperCAmelCase ),) SCREAMING_SNAKE_CASE_ = TensorDataset(*__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = RandomSampler(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = DataLoader(__UpperCAmelCase , sampler=__UpperCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: SCREAMING_SNAKE_CASE_ = mask_heads(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) prune_heads(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
210
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Dict=32 * 8 , _lowerCAmelCase : List[str]=32 * 8 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Optional[Any]=64 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_size SCREAMING_SNAKE_CASE_ = max_size SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = hidden_dim def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() SCREAMING_SNAKE_CASE_ = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE_ = self.num_queries SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = [1, 1, 1, 1] SCREAMING_SNAKE_CASE_ = self.num_channels SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim return config def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = output.encoder_hidden_states SCREAMING_SNAKE_CASE_ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_layers ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ = MaskaFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase_ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Any ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_lowerCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } SCREAMING_SNAKE_CASE_ = self.model_tester.get_config() SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ ( self : List[str] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : Tuple = 1E-4 def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[int] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase_ ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # masks_queries_logits SCREAMING_SNAKE_CASE_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
210
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def a__ ( snake_case , snake_case ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__UpperCamelCase , __UpperCamelCase ) ) ) def a__ ( snake_case , snake_case ): """simple docstring""" if dataset.ndim != value_array.ndim: __SCREAMING_SNAKE_CASE : List[str] = ( '''Wrong input data\'s dimensions... ''' F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(__UpperCamelCase ) try: if dataset.shape[1] != value_array.shape[1]: __SCREAMING_SNAKE_CASE : Dict = ( '''Wrong input data\'s shape... ''' F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(__UpperCamelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''Input data have different datatype... ''' F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(__UpperCamelCase ) __SCREAMING_SNAKE_CASE : Any = [] for value in value_array: __SCREAMING_SNAKE_CASE : List[Any] = euclidean(__UpperCamelCase , dataset[0] ) __SCREAMING_SNAKE_CASE : str = dataset[0].tolist() for dataset_value in dataset[1:]: __SCREAMING_SNAKE_CASE : Optional[int] = euclidean(__UpperCamelCase , __UpperCamelCase ) if dist > temp_dist: __SCREAMING_SNAKE_CASE : Tuple = temp_dist __SCREAMING_SNAKE_CASE : Any = dataset_value.tolist() answer.append([vector, dist] ) return answer def a__ ( snake_case , snake_case ): """simple docstring""" return np.dot(__UpperCamelCase , __UpperCamelCase ) / (norm(__UpperCamelCase ) * norm(__UpperCamelCase )) if __name__ == "__main__": import doctest doctest.testmod()
303
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : int): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=A_ , ) assert hasattr(self , '''env''') def UpperCAmelCase__ ( self : Union[str, Any] , A_ : str=1): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=A_ , instance_type=self.instance_type , debugger_hook_config=A_ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def UpperCAmelCase__ ( self : List[str] , A_ : Optional[Any]): TrainingJobAnalytics(A_).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") def UpperCAmelCase__ ( self : int): # create estimator lowerCAmelCase_ : List[Any] = self.create_estimator() # run training estimator.fit() # result dataframe lowerCAmelCase_ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis lowerCAmelCase_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) lowerCAmelCase_ : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase_ : Dict = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , A_)
103
0
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class snake_case__ : _snake_case : Optional[Union[str, Path]] = None _snake_case : bool = False _snake_case : bool = False _snake_case : bool = False _snake_case : Optional[Dict] = None _snake_case : Optional[str] = None _snake_case : bool = False _snake_case : bool = False _snake_case : bool = False _snake_case : bool = True _snake_case : Optional[int] = None _snake_case : int = 1 _snake_case : Optional[Union[str, bool]] = None _snake_case : bool = False _snake_case : Optional[Dict] = None _snake_case : Optional[str] = None def a__ ( self ): return self.__class__(**{k: copy.deepcopy(lowerCamelCase ) for k, v in self.__dict__.items()} )
367
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) class snake_case__ : _snake_case : List[str] = None @experimental def _lowerCamelCase( a , a , a , a , a , a , a ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( a , a , a , a , a , a , a ) return _map_with_joblib(a , a , a , a , a , a , a ) def _lowerCamelCase( a , a , a , a , a , a , a ): __a = num_proc if num_proc <= len(a ) else len(a ) __a = [] # We organize the splits ourselve (contiguous splits) for index in range(a ): __a = len(a ) // num_proc __a = len(a ) % num_proc __a = div * index + min(a , a ) __a = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(a ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(a )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(a )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) __a , __a = None, None if not disable_tqdm: __a , __a = (RLock(),), tqdm.set_lock with Pool(a , initargs=a , initializer=a ) as pool: __a = pool.map(a , a ) logger.info(F"Finished {num_proc} processes" ) __a = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(a )} objects" ) return mapped def _lowerCamelCase( a , a , a , a , a , a , a ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=a ): return joblib.Parallel()( joblib.delayed(a )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _lowerCamelCase( a ): __a = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __a = None
268
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: list , _lowerCamelCase: int = 0 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = length or len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __SCREAMING_SNAKE_CASE : Optional[int] = list_data[i + 1], list_data[i] __SCREAMING_SNAKE_CASE : Optional[Any] = True return list_data if not swapped else bubble_sort(UpperCAmelCase__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
112
'''simple docstring''' from collections import defaultdict def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> bool: lowercase_ : Tuple = first_str.lower().strip() lowercase_ : List[Any] = second_str.lower().strip() # Remove whitespace lowercase_ : Dict = first_str.replace(""" """ , """""" ) lowercase_ : Tuple = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): return False # Default values for count should be 0 lowercase_ : defaultdict[str, int] = defaultdict(UpperCAmelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCAmelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : int = input("Enter the first string ").strip() _lowercase : Tuple = input("Enter the second string ").strip() _lowercase : Union[str, Any] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
239
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'Wav2Vec2FeatureExtractor' lowerCAmelCase__ = 'AutoTokenizer' def __init__( self : List[Any] , _A : Union[str, Any] , _A : Optional[int] ): '''simple docstring''' super().__init__(_A , _A ) UpperCAmelCase__ : Optional[Any] = self.feature_extractor UpperCAmelCase__ : str = False @classmethod def lowercase_ ( cls : str , _A : Tuple , **_A : Optional[int] ): '''simple docstring''' try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _A , ) UpperCAmelCase__ : Tuple = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self : int , *_A : Tuple , **_A : List[str] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase__ : Union[str, Any] = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase__ : Any = kwargs.pop('''audio''' , _A ) UpperCAmelCase__ : Any = kwargs.pop('''sampling_rate''' , _A ) UpperCAmelCase__ : List[Any] = kwargs.pop('''text''' , _A ) if len(_A ) > 0: UpperCAmelCase__ : str = args[0] UpperCAmelCase__ : List[str] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase__ : Tuple = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: UpperCAmelCase__ : List[str] = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase__ : Any = encodings['''input_ids'''] return inputs def lowercase_ ( self : Any , *_A : List[str] , **_A : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) UpperCAmelCase__ : Dict = kwargs.pop('''input_features''' , _A ) UpperCAmelCase__ : int = kwargs.pop('''labels''' , _A ) if len(_A ) > 0: UpperCAmelCase__ : Any = args[0] UpperCAmelCase__ : int = args[1:] if input_features is not None: UpperCAmelCase__ : Optional[Any] = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: UpperCAmelCase__ : str = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase__ : Union[str, Any] = labels['''input_ids'''] return input_features def lowercase_ ( self : Dict , *_A : Any , **_A : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def lowercase_ ( self : List[str] , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @contextmanager def lowercase_ ( self : str ): '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[int] = self.tokenizer yield UpperCAmelCase__ : Tuple = self.feature_extractor UpperCAmelCase__ : Union[str, Any] = False
365
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase_ ( __lowerCAmelCase ): __lowerCamelCase : int = ["vqvae"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Optional[int]: super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , mel=lowerCamelCase_ , vqvae=lowerCamelCase_ ) def _snake_case ( self ) -> Tuple: return 50 if isinstance(self.scheduler , lowerCamelCase_ ) else 1000 @torch.no_grad() def __call__( self , _lowerCAmelCase = 1 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase=True , ) -> Any: _lowerCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCamelCase_ ) _lowerCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _lowerCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _lowerCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCamelCase_ , device=self.device , ) _lowerCAmelCase = noise _lowerCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase = self.mel.audio_slice_to_image(lowerCamelCase_ ) _lowerCAmelCase = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _lowerCAmelCase = (input_image / 255) * 2 - 1 _lowerCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _lowerCAmelCase = self.vqvae.encode(torch.unsqueeze(lowerCamelCase_ , 0 ) ).latent_dist.sample( generator=lowerCamelCase_ )[0] _lowerCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _lowerCAmelCase = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , self.scheduler.timesteps[start_step - 1] ) _lowerCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _lowerCAmelCase = int(mask_start_secs * pixels_per_second ) _lowerCAmelCase = int(mask_end_secs * pixels_per_second ) _lowerCAmelCase = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowerCamelCase_ ): _lowerCAmelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )["sample"] else: _lowerCAmelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ )["sample"] if isinstance(self.scheduler , lowerCamelCase_ ): _lowerCAmelCase = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , )["prev_sample"] else: _lowerCAmelCase = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , generator=lowerCamelCase_ , )["prev_sample"] if mask is not None: if mask_start > 0: _lowerCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: _lowerCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _lowerCAmelCase = 1 / self.vqvae.config.scaling_factor * images _lowerCAmelCase = self.vqvae.decode(lowerCamelCase_ )["sample"] _lowerCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _lowerCAmelCase = (images * 255).round().astype("uint8" ) _lowerCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCamelCase_ , mode="RGB" ).convert("L" ) for _ in images) ) _lowerCAmelCase = [self.mel.image_to_audio(lowerCamelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCamelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCamelCase_ ) ) @torch.no_grad() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = 50 ) -> Optional[Any]: assert isinstance(self.scheduler , lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ ) _lowerCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _lowerCAmelCase = (sample / 255) * 2 - 1 _lowerCAmelCase = torch.Tensor(lowerCamelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _lowerCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _lowerCAmelCase = self.scheduler.alphas_cumprod[t] _lowerCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t _lowerCAmelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ )["sample"] _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _lowerCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _lowerCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _snake_case ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = acos(torch.dot(torch.flatten(lowerCamelCase_ ) , torch.flatten(lowerCamelCase_ ) ) / torch.norm(lowerCamelCase_ ) / torch.norm(lowerCamelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCamelCase_ ) + sin(alpha * theta ) * xa / sin(lowerCamelCase_ )
158
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
343
0
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __A ( self: str ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModel.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModel.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def __A ( self: Dict ) -> int: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModelForPreTraining.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModelForPreTraining.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def __A ( self: str ) -> Union[str, Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModelForCausalLM.from_pretrained(__A , from_pt=__A ) _A ,_A = TFAutoModelForCausalLM.from_pretrained( __A , output_loading_info=__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModelForCausalLM.from_pretrained(__A , from_tf=__A ) _A ,_A = AutoModelForCausalLM.from_pretrained( __A , output_loading_info=__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def __A ( self: List[str] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModelWithLMHead.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModelWithLMHead.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def __A ( self: Union[str, Any] ) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModelForMaskedLM.from_pretrained(__A , from_pt=__A ) _A ,_A = TFAutoModelForMaskedLM.from_pretrained( __A , output_loading_info=__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModelForMaskedLM.from_pretrained(__A , from_tf=__A ) _A ,_A = AutoModelForMaskedLM.from_pretrained( __A , output_loading_info=__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def __A ( self: Tuple ) -> Tuple: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModelForSeqaSeqLM.from_pretrained(__A , from_pt=__A ) _A ,_A = TFAutoModelForSeqaSeqLM.from_pretrained( __A , output_loading_info=__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModelForSeqaSeqLM.from_pretrained(__A , from_tf=__A ) _A ,_A = AutoModelForSeqaSeqLM.from_pretrained( __A , output_loading_info=__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def __A ( self: List[str] ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModelForSequenceClassification.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModelForSequenceClassification.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def __A ( self: Union[str, Any] ) -> Dict: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: _A = AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = TFAutoModelForQuestionAnswering.from_pretrained(__A , from_pt=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) _A = AutoModelForQuestionAnswering.from_pretrained(__A , from_tf=__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) def __A ( self: Optional[int] ) -> Union[str, Any]: _A = TFAutoModelWithLMHead.from_pretrained(__A , from_pt=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_44_10 ) _A = AutoModelWithLMHead.from_pretrained(__A , from_tf=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_44_10 ) def __A ( self: str ) -> List[str]: _A = TFAutoModelWithLMHead.from_pretrained(__A , from_pt=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_44_10 ) _A = AutoModelWithLMHead.from_pretrained(__A , from_tf=__A ) self.assertIsInstance(__A , __A ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__A ) , 1_44_10 )
352
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: List[Any] , *__A: Union[str, Any] , **__A: Optional[Any] ) -> None: warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
75
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Any = logging.get_logger(__name__) __a : Tuple = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Union[str, Any] = '''speech_to_text''' __a : Optional[Any] = ['''past_key_values'''] __a : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCAmelCase__=1_00_00 , lowerCAmelCase__=12 , lowerCAmelCase__=20_48 , lowerCAmelCase__=4 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=60_00 , lowerCAmelCase__=10_24 , lowerCAmelCase__=2 , lowerCAmelCase__=(5, 5) , lowerCAmelCase__=10_24 , lowerCAmelCase__=80 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ) -> int: '''simple docstring''' __lowercase = vocab_size __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase = max_source_positions __lowercase = max_target_positions __lowercase = num_conv_layers __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_channels __lowercase = input_feat_per_channel __lowercase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
210
import gc import threading import time import psutil import torch class _UpperCamelCase : """simple docstring""" def __init__( self ) -> str: '''simple docstring''' __lowercase = psutil.Process() __lowercase = False def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = -1 while True: __lowercase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = True __lowercase = threading.Thread(target=self.peak_monitor ) __lowercase = True self.thread.start() def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = False self.thread.join() return self.cpu_memory_peak __a : List[str] = PeakCPUMemory() def UpperCAmelCase ( ): """simple docstring""" __lowercase = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowercase = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __lowercase = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowercase = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 __lowercase = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" print(F"{description}:" ) print(F"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(F"- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB" ) __lowercase = measures[F"{i}-peak"] print(F"- GPU {i} peak: {peak:.2f}MiB" ) print(F"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(F"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
210
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = 0 snake_case_ = False snake_case_ = 3.0 class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=_snake_case ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def lowerCAmelCase ( self : int )-> str: snake_case = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() snake_case = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) snake_case = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , _snake_case ) @require_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> int: snake_case = ["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _SCREAMING_SNAKE_CASE = Accelerator(kwargs_handlers=[ddp_scaler]) _SCREAMING_SNAKE_CASE = torch.nn.Linear(100, 200) _SCREAMING_SNAKE_CASE = accelerator.prepare(model) # Check the values changed in kwargs _SCREAMING_SNAKE_CASE = '' _SCREAMING_SNAKE_CASE = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
360
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : int=None )-> str: snake_case = data snake_case = previous snake_case = next_node def __str__( self : Union[str, Any] )-> str: return f'''{self.data}''' def lowerCAmelCase ( self : Tuple )-> int: return self.data def lowerCAmelCase ( self : str )-> str: return self.next def lowerCAmelCase ( self : Dict )-> Optional[int]: return self.previous class _lowerCAmelCase : """simple docstring""" def __init__( self : int , __snake_case : List[Any] )-> List[str]: snake_case = head def __iter__( self : Optional[int] )-> Dict: return self def lowerCAmelCase ( self : Optional[Any] )-> List[str]: if not self.current: raise StopIteration else: snake_case = self.current.get_data() snake_case = self.current.get_next() return value class _lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] )-> str: snake_case = None # First node in list snake_case = None # Last node in list def __str__( self : List[str] )-> Any: snake_case = self.head snake_case = [] while current is not None: nodes.append(current.get_data() ) snake_case = current.get_next() return " ".join(str(__snake_case ) for node in nodes ) def __contains__( self : Optional[Any] , __snake_case : int )-> Optional[Any]: snake_case = self.head while current: if current.get_data() == value: return True snake_case = current.get_next() return False def __iter__( self : Dict )-> List[Any]: return LinkedListIterator(self.head ) def lowerCAmelCase ( self : Tuple )-> int: if self.head: return self.head.get_data() return None def lowerCAmelCase ( self : Dict )-> Optional[Any]: if self.tail: return self.tail.get_data() return None def lowerCAmelCase ( self : List[Any] , __snake_case : Node )-> None: if self.head is None: snake_case = node snake_case = node else: self.insert_before_node(self.head , __snake_case ) def lowerCAmelCase ( self : int , __snake_case : Node )-> None: if self.head is None: self.set_head(__snake_case ) else: self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> None: snake_case = Node(__snake_case ) if self.head is None: self.set_head(__snake_case ) else: self.set_tail(__snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.previous if node.get_previous() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : Optional[int] , __snake_case : Node , __snake_case : Node )-> None: snake_case = node snake_case = node.next if node.get_next() is None: snake_case = node_to_insert else: snake_case = node_to_insert snake_case = node_to_insert def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : int )-> None: snake_case = 1 snake_case = Node(__snake_case ) snake_case = self.head while node: if current_position == position: self.insert_before_node(__snake_case , __snake_case ) return current_position += 1 snake_case = node.next self.insert_after_node(self.tail , __snake_case ) def lowerCAmelCase ( self : str , __snake_case : int )-> Node: snake_case = self.head while node: if node.get_data() == item: return node snake_case = node.get_next() raise Exception("""Node not found""" ) def lowerCAmelCase ( self : Any , __snake_case : Dict )-> Tuple: if (node := self.get_node(__snake_case )) is not None: if node == self.head: snake_case = self.head.get_next() if node == self.tail: snake_case = self.tail.get_previous() self.remove_node_pointers(__snake_case ) @staticmethod def lowerCAmelCase ( __snake_case : Node )-> None: if node.get_next(): snake_case = node.previous if node.get_previous(): snake_case = node.next snake_case = None snake_case = None def lowerCAmelCase ( self : List[Any] )-> Optional[Any]: return self.head is None def __lowerCamelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
3
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]) -> Optional[int]: '''simple docstring''' __UpperCamelCase : list[list[str]] = [[] for _ in range(A__)] __UpperCamelCase : List[str] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1 or len(A__) <= key: return input_string for position, character in enumerate(A__): __UpperCamelCase : List[str] = position % (lowest * 2) # puts it in bounds __UpperCamelCase : Optional[int] = min(A__ , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append(A__) __UpperCamelCase : List[str] = ["".join(A__) for row in temp_grid] __UpperCamelCase : Any = "".join(A__) return output_string def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : str) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : str = [] __UpperCamelCase : Tuple = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1: return input_string __UpperCamelCase : list[list[str]] = [[] for _ in range(A__)] # generates template for position in range(len(A__)): __UpperCamelCase : Any = position % (lowest * 2) # puts it in bounds __UpperCamelCase : List[str] = min(A__ , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append("*") __UpperCamelCase : Union[str, Any] = 0 for row in temp_grid: # fills in the characters __UpperCamelCase : Dict = input_string[counter : counter + len(A__)] grid.append(list(A__)) counter += len(A__) __UpperCamelCase : Optional[int] = "" # reads as zigzag for position in range(len(A__)): __UpperCamelCase : List[str] = position % (lowest * 2) # puts it in bounds __UpperCamelCase : Any = min(A__ , lowest * 2 - num) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0) return output_string def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any]) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = {} for key_guess in range(1 , len(A__)): # tries every key __UpperCamelCase : Optional[int] = decrypt(A__ , A__) return results if __name__ == "__main__": import doctest doctest.testmod()
232
"""simple docstring""" lowerCamelCase_ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def snake_case ( A__ ): UpperCAmelCase_ : List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = 0 while place < len(A__ ): if (place + 1 < len(A__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = divmod(A__ ,A__ ) result.append(roman * factor ) if number == 0: break return "".join(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
268
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _UpperCamelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: UpperCAmelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: UpperCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = """weight""" else: UpperCAmelCase = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case=None ): """simple docstring""" UpperCAmelCase = torch.load(__lowerCAmelCase ) UpperCAmelCase = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: UpperCAmelCase = WavLMConfig() UpperCAmelCase = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _UpperCamelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
371
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _UpperCamelCase = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: _UpperCamelCase = json.load(f) @require_torch class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ,A ): return FSMTTokenizer.from_pretrained(A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = FSMTForConditionalGeneration.from_pretrained(A ).to(A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _UpperCamelCase ( self ,A ,A ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase = F'''facebook/wmt19-{pair}''' UpperCAmelCase = self.get_tokenizer(A ) UpperCAmelCase = self.get_model(A ) UpperCAmelCase = bleu_data[pair]["""src"""] UpperCAmelCase = bleu_data[pair]["""tgt"""] UpperCAmelCase = tokenizer(A ,return_tensors="""pt""" ,truncation=A ,padding="""longest""" ).to(A ) UpperCAmelCase = model.generate( input_ids=batch.input_ids ,num_beams=8 ,) UpperCAmelCase = tokenizer.batch_decode( A ,skip_special_tokens=A ,clean_up_tokenization_spaces=A ) UpperCAmelCase = calculate_bleu(A ,A ) print(A ) self.assertGreaterEqual(scores["""bleu"""] ,A )
234
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '''\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n''' lowerCAmelCase__ = '''\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n''' lowerCAmelCase__ = '''\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n''' def _A ( A__ , A__ , A__=False , A__=False , A__=True , A__=False , A__="dummy_doc" ): """simple docstring""" __lowercase = {doc: key_lines} __lowercase = {doc: sys_lines} __lowercase = {} __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase , __lowercase = reader.get_doc_mentions(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase , __lowerCamelCase ) __lowercase , __lowercase = reader.get_doc_mentions(__lowerCamelCase , sys_doc_lines[doc] , __lowerCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: __lowercase = reader.set_annotated_parse_trees(__lowerCamelCase , key_doc_lines[doc] , __lowerCamelCase , __lowerCamelCase ) if remove_nested: __lowercase , __lowercase = reader.remove_nested_coref_mentions(__lowerCamelCase , __lowerCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __lowercase , __lowercase = reader.remove_nested_coref_mentions(__lowerCamelCase , __lowerCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __lowercase = reader.get_mention_assignments(__lowerCamelCase , __lowerCamelCase ) __lowercase = reader.get_mention_assignments(__lowerCamelCase , __lowerCamelCase ) __lowercase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' F"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( '''Number of resulting singleton clusters in the key ''' F"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( F"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " '''files, respectively''' ) return doc_coref_infos def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = get_coref_infos(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowercase = {} __lowercase = 0 __lowercase = 0 for name, metric in metrics: __lowercase , __lowercase , __lowercase = evaluator.evaluate_documents(__lowerCamelCase , __lowerCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"{name}/recall": recall, F"{name}/precision": precision, F"{name}/f1": fa} ) logger.info( name.ljust(10 ) , F"Recall: {recall * 100:.2f}" , F" Precision: {precision * 100:.2f}" , F" F1: {fa * 100:.2f}" , ) if conll_subparts_num == 3: __lowercase = (conll / 3) * 100 logger.info(F"CoNLL score: {conll:.2f}" ) output_scores.update({'''conll_score''': conll} ) return output_scores def _A ( A__ ): """simple docstring""" __lowercase = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: __lowercase = line.split()[5] if not parse_col == "-": __lowercase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ (datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) ,codebase_urls=['''https://github.com/ns-moosavi/coval'''] ,reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] ,) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[Any]=True ,lowercase__ : Dict=False ,lowercase__ : int=False ,lowercase__ : Optional[int]=False ): __lowercase = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: __lowercase = util.check_gold_parse_annotation(_A ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __lowercase = evaluate( key_lines=_A ,sys_lines=_A ,metrics=_A ,NP_only=_A ,remove_nested=_A ,keep_singletons=_A ,min_span=_A ,) return score
104
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __UpperCAmelCase = logging.getLogger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="summarization" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =ROUGE_KEYS UpperCAmelCase_ ="rouge2" def __init__( self , _A , **_A ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''metrics.json''' SCREAMING_SNAKE_CASE_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = defaultdict(_A ) SCREAMING_SNAKE_CASE_ = self.config.model_type SCREAMING_SNAKE_CASE_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size SCREAMING_SNAKE_CASE_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } SCREAMING_SNAKE_CASE_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE_ = get_git_info()['''repo_sha'''] SCREAMING_SNAKE_CASE_ = hparams.num_workers SCREAMING_SNAKE_CASE_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): SCREAMING_SNAKE_CASE_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ = self.model.config.max_length SCREAMING_SNAKE_CASE_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _UpperCamelCase ( self , _A ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE_ = True return readable_batch def _UpperCamelCase ( self , _A , **_A ) -> List[str]: return self.model(_A , **_A ) def _UpperCamelCase ( self , _A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def _UpperCamelCase ( self , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = batch['''input_ids'''], batch['''attention_mask'''] SCREAMING_SNAKE_CASE_ = batch['''labels'''] if isinstance(self.model , _A ): SCREAMING_SNAKE_CASE_ = self.model._shift_right(_A ) else: SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ = decoder_input_ids self.save_readable_batch(_A ) SCREAMING_SNAKE_CASE_ = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) SCREAMING_SNAKE_CASE_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE_ = nn.functional.log_softmax(_A , dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def _UpperCamelCase ( self ) -> int: return self.tokenizer.pad_token_id def _UpperCamelCase ( self , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) # tokens per batch SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).sum() SCREAMING_SNAKE_CASE_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _UpperCamelCase ( self , _A , _A ) -> Dict: return self._generative_step(_A ) def _UpperCamelCase ( self , _A , _A="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ = losses['''loss'''] SCREAMING_SNAKE_CASE_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } SCREAMING_SNAKE_CASE_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) SCREAMING_SNAKE_CASE_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _UpperCamelCase ( self , _A , _A ) -> Dict: return calculate_rouge(_A , _A ) def _UpperCamelCase ( self , _A ) -> dict: SCREAMING_SNAKE_CASE_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ = (time.time() - ta) / batch['''input_ids'''].shape[0] SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(_A ) SCREAMING_SNAKE_CASE_ = self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE_ = self._step(_A ) SCREAMING_SNAKE_CASE_ = dict(zip(self.loss_names , _A ) ) SCREAMING_SNAKE_CASE_ = self.calc_generative_metrics(_A , _A ) SCREAMING_SNAKE_CASE_ = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def _UpperCamelCase ( self , _A , _A ) -> Any: return self._generative_step(_A ) def _UpperCamelCase ( self , _A ) -> Optional[int]: return self.validation_epoch_end(_A , prefix='''test''' ) def _UpperCamelCase ( self , _A ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE_ = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def _UpperCamelCase ( self , _A , _A , _A = False ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def _UpperCamelCase ( self ) -> DataLoader: SCREAMING_SNAKE_CASE_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def _UpperCamelCase ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def _UpperCamelCase ( _A , _A ) -> Dict: BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ ="translation" UpperCAmelCase_ =["loss"] UpperCAmelCase_ =["bleu"] UpperCAmelCase_ ="bleu" def __init__( self , _A , **_A ) -> Optional[int]: super().__init__(_A , **_A ) SCREAMING_SNAKE_CASE_ = hparams.src_lang SCREAMING_SNAKE_CASE_ = hparams.tgt_lang def _UpperCamelCase ( self , _A , _A ) -> dict: return calculate_bleu(_A , _A ) def A__ ( __lowerCamelCase, __lowerCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__lowerCamelCase ) check_output_dir(__lowerCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ = SummarizationModule(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = TranslationModule(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = os.environ.get('''WANDB_PROJECT''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=__lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = args.val_metric == '''loss''' SCREAMING_SNAKE_CASE_ = generic_train( __lowerCamelCase, __lowerCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, __lowerCamelCase ), early_stopping_callback=__lowerCamelCase, logger=__lowerCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ = '''''' SCREAMING_SNAKE_CASE_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=__lowerCamelCase ) ) if checkpoints: SCREAMING_SNAKE_CASE_ = checkpoints[-1] SCREAMING_SNAKE_CASE_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() __UpperCAmelCase = pl.Trainer.add_argparse_args(parser) __UpperCAmelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() main(args)
299
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a_ ( _snake_case ): UpperCamelCase__ : str ="megatron-bert" def __init__( self :List[Any] , _lowercase :List[str]=29056 , _lowercase :List[str]=1024 , _lowercase :List[str]=24 , _lowercase :Tuple=16 , _lowercase :Optional[int]=4096 , _lowercase :str="gelu" , _lowercase :Optional[Any]=0.1 , _lowercase :List[Any]=0.1 , _lowercase :Tuple=512 , _lowercase :str=2 , _lowercase :str=0.02 , _lowercase :Union[str, Any]=1E-1_2 , _lowercase :List[Any]=0 , _lowercase :Tuple="absolute" , _lowercase :Union[str, Any]=True , **_lowercase :str , ) -> Any: super().__init__(pad_token_id=_lowercase , **_lowercase) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def a__ ( snake_case__ ) -> Tuple: if "cls_token" in name: lowerCamelCase = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCamelCase = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCamelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCamelCase = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCamelCase = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowerCamelCase = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowerCamelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCamelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCamelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def a__ ( snake_case__ , snake_case__ ) -> List[str]: for key in orig_state_dict.copy().keys(): lowerCamelCase = orig_state_dict.pop(__snake_case ) if "qkv" in key: lowerCamelCase = key.split(""".""" ) lowerCamelCase = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase = config.decoder_hidden_size lowerCamelCase = """decoder.decoder_layers.""" if "weight" in key: lowerCamelCase = val[:dim, :] lowerCamelCase = val[dim : dim * 2, :] lowerCamelCase = val[-dim:, :] elif "bias" in key: lowerCamelCase = val[:dim] lowerCamelCase = val[dim : dim * 2] lowerCamelCase = val[-dim:] else: lowerCamelCase = config.hidden_size lowerCamelCase = """vit.encoder.layer.""" if "weight" in key: lowerCamelCase = val[:dim, :] lowerCamelCase = val[dim : dim * 2, :] lowerCamelCase = val[-dim:, :] elif "bias" in key: lowerCamelCase = val[:dim] lowerCamelCase = val[dim : dim * 2] lowerCamelCase = val[-dim:] else: lowerCamelCase = val return orig_state_dict def a__ ( snake_case__ , snake_case__ ) -> str: lowerCamelCase = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase = 10_24 lowerCamelCase = 40_96 lowerCamelCase = 24 lowerCamelCase = 16 elif "huge" in checkpoint_url: lowerCamelCase = 14 lowerCamelCase = 12_80 lowerCamelCase = 51_20 lowerCamelCase = 32 lowerCamelCase = 16 lowerCamelCase = ViTMAEForPreTraining(__snake_case ) lowerCamelCase = torch.hub.load_state_dict_from_url(__snake_case , map_location="""cpu""" )["""model"""] lowerCamelCase = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) model.eval() lowerCamelCase = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCamelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) lowerCamelCase = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase = image_processor(images=__snake_case , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCamelCase = model(**__snake_case ) lowerCamelCase = outputs.logits if "large" in checkpoint_url: lowerCamelCase = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowerCamelCase = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowerCamelCase = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __snake_case , atol=1E-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
291
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a_ : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, **lowerCAmelCase ): """simple docstring""" super().__init__(**lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return super().__call__(lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={} if "candidate_labels" in kwargs: lowerCamelCase_ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCamelCase_ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase="This is a sound of {}." ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCamelCase_ =requests.get(lowerCAmelCase ).content else: with open(lowerCAmelCase, '''rb''' ) as f: lowerCamelCase_ =f.read() if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =ffmpeg_read(lowerCAmelCase, self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowerCamelCase_ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) lowerCamelCase_ =candidate_labels lowerCamelCase_ =[hypothesis_template.format(lowerCAmelCase ) for x in candidate_labels] lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=self.framework, padding=lowerCAmelCase ) lowerCamelCase_ =[text_inputs] return inputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_inputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowerCAmelCase ): lowerCamelCase_ =text_inputs[0] else: # Batching case. lowerCamelCase_ =text_inputs[0][0] lowerCamelCase_ =self.model(**lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_outputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_outputs['''logits'''][0] if self.framework == "pt": lowerCamelCase_ =logits.softmax(dim=0 ) lowerCamelCase_ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowerCamelCase_ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase, lowerCAmelCase ), key=lambda lowerCAmelCase : -x[0] ) ] return result
75
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _snake_case : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> List[Any]: self.enable_attention_slicing(lowerCAmelCase_ ) @torch.no_grad() def __call__( self : str , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_1_2 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , **lowerCAmelCase_ : List[Any] , ) -> Optional[int]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = 1 elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = len(lowerCAmelCase_ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase_ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(lowerCAmelCase_ )}.""" ) # get prompt text embeddings __lowerCAmelCase = self.tokenizer( lowerCAmelCase_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __lowerCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowerCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __lowerCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = text_embeddings.shape __lowerCAmelCase = text_embeddings.repeat(1 , lowerCAmelCase_ , 1 ) __lowerCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCAmelCase = 42 if negative_prompt is None: __lowerCAmelCase = [''] elif type(lowerCAmelCase_ ) is not type(lowerCAmelCase_ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase_ )} !=""" f""" {type(lowerCAmelCase_ )}.""" ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [negative_prompt] elif batch_size != len(lowerCAmelCase_ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase_ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: __lowerCAmelCase = negative_prompt __lowerCAmelCase = text_input_ids.shape[-1] __lowerCAmelCase = self.tokenizer( lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' , ) __lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCAmelCase = uncond_embeddings.shape[1] __lowerCAmelCase = uncond_embeddings.repeat(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) __lowerCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowerCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) __lowerCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowerCAmelCase = torch.randn( lowerCAmelCase_ , generator=lowerCAmelCase_ , device='cpu' , dtype=lowerCAmelCase_ ).to(self.device ) __lowerCAmelCase = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device='cpu' , dtype=lowerCAmelCase_ ).to( self.device ) else: __lowerCAmelCase = torch.randn( lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) __lowerCAmelCase = torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowerCAmelCase = latents_reference.to(self.device ) __lowerCAmelCase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __lowerCAmelCase = (latents_shape[3] - latents_shape_reference[3]) // 2 __lowerCAmelCase = (latents_shape[2] - latents_shape_reference[2]) // 2 __lowerCAmelCase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __lowerCAmelCase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __lowerCAmelCase = 0 if dx < 0 else dx __lowerCAmelCase = 0 if dy < 0 else dy __lowerCAmelCase = max(-dx , 0 ) __lowerCAmelCase = max(-dy , 0 ) # import pdb # pdb.set_trace() __lowerCAmelCase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowerCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCAmelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCAmelCase = {} if accepts_eta: __lowerCAmelCase = eta for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual __lowerCAmelCase = self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample # perform guidance if do_classifier_free_guidance: __lowerCAmelCase , __lowerCAmelCase = noise_pred.chunk(2 ) __lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = 1 / 0.1_82_15 * latents __lowerCAmelCase = self.vae.decode(lowerCAmelCase_ ).sample __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __lowerCAmelCase = self.feature_extractor(self.numpy_to_pil(lowerCAmelCase_ ) , return_tensors='pt' ).to( self.device ) __lowerCAmelCase , __lowerCAmelCase = self.safety_checker( images=lowerCAmelCase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __lowerCAmelCase = None if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
207
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 6_5_5_3_6 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : str = "fourier" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple[int] = (3_2, 3_2, 6_4) , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) __lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) __lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase = block_out_channels[0] * 4 __lowerCAmelCase = TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None # down __lowerCAmelCase = in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid __lowerCAmelCase = get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up __lowerCAmelCase = list(reversed(lowerCAmelCase_ ) ) __lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase = out_channels else: __lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) __lowerCAmelCase = output_channel # out __lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) __lowerCAmelCase = get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: __lowerCAmelCase = timestep if not torch.is_tensor(lowerCAmelCase_ ): __lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps[None].to(sample.device ) __lowerCAmelCase = self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: __lowerCAmelCase = self.time_mlp(lowerCAmelCase_ ) else: __lowerCAmelCase = timestep_embed[..., None] __lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCAmelCase = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase = downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCAmelCase = down_block_res_samples[-1:] __lowerCAmelCase = down_block_res_samples[:-1] __lowerCAmelCase = upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: __lowerCAmelCase = self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
207
1
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A : List[Any] = 2 class _UpperCAmelCase : def __init__( self : Tuple , *, # begin keyword-only arguments A : Tuple="<s>" , A : List[str]="<pad>" , A : Optional[Any]="</s>" , A : str="<unk>" , A : int=None , ) -> Union[str, Any]: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = bos, unk, pad, eos lowercase_ : Tuple = [] lowercase_ : Union[str, Any] = [] lowercase_ : Dict = {} lowercase_ : List[Any] = self.add_symbol(A ) lowercase_ : Optional[Any] = self.add_symbol(A ) lowercase_ : Optional[Any] = self.add_symbol(A ) lowercase_ : str = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) lowercase_ : int = len(self.symbols ) def __eq__( self : str , A : Tuple ) -> Any: return self.indices == other.indices def __getitem__( self : int , A : Tuple ) -> Any: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Any ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , A : Optional[int] ) -> Dict: return sym in self.indices @classmethod def A ( cls : Optional[int] , A : Dict ) -> Any: lowercase_ : Any = cls() d.add_from_file(A ) return d def A ( self : List[Any] , A : int , A : List[Any]=1 , A : List[str]=False ) -> Dict: if word in self.indices and not overwrite: lowercase_ : Optional[int] = self.indices[word] lowercase_ : Tuple = self.count[idx] + n return idx else: lowercase_ : Dict = len(self.symbols ) lowercase_ : int = idx self.symbols.append(A ) self.count.append(A ) return idx def A ( self : int , A : Tuple ) -> List[str]: return 0 def A ( self : str , A : str ) -> Tuple: if isinstance(A , A ): try: with open(A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(A ) ) return lowercase_ : Any = f.readlines() lowercase_ : int = self._load_meta(A ) for line in lines[indices_start_line:]: try: lowercase_ , lowercase_ : Any = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": lowercase_ : str = True lowercase_ , lowercase_ : Union[str, Any] = line.rsplit(''' ''' , 1 ) else: lowercase_ : Tuple = False lowercase_ : Optional[int] = int(A ) lowercase_ : Optional[int] = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(A ) ) self.add_symbol(A , n=A , overwrite=A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def lowercase ( __snake_case : Dict ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase_ : Dict = dict((re.sub(r'''@@$''' , '''''' , __snake_case ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , __snake_case ), v) for k, v in d.items() ) lowercase_ : int = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] lowercase_ : Union[str, Any] = d[k] # restore return da def lowercase ( __snake_case : Tuple , __snake_case : Any ): # prep if not os.path.exists(__snake_case ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowercase_ : Optional[Any] = os.path.join(__snake_case , '''checkpoint.pt''' ) if not os.path.isfile(__snake_case ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) lowercase_ : Union[str, Any] = torch.load(__snake_case , map_location='''cpu''' ) lowercase_ : int = chkpt['''cfg''']['''model'''] # dicts lowercase_ : int = os.path.join(__snake_case , '''dict.txt''' ) if not os.path.isfile(__snake_case ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) lowercase_ : str = Dictionary.load(__snake_case ) lowercase_ : List[str] = rewrite_dict_keys(src_dict.indices ) lowercase_ : Dict = len(__snake_case ) lowercase_ : int = os.path.join(__snake_case , VOCAB_FILES_NAMES['''vocab_file'''] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , ensure_ascii=__snake_case , indent=__snake_case ) ) # merges_file (bpecodes) lowercase_ : Optional[int] = os.path.join(__snake_case , '''bpecodes''' ) if not os.path.isfile(__snake_case ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) lowercase_ : List[Any] = os.path.join(__snake_case , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(__snake_case , __snake_case ) # model config lowercase_ : Union[str, Any] = os.path.join(__snake_case , '''config.json''' ) lowercase_ : Dict = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , ensure_ascii=__snake_case , indent=__snake_case ) ) # tokenizer config lowercase_ : Optional[int] = os.path.join(__snake_case , __snake_case ) lowercase_ : str = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1_0_2_4, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__snake_case , ensure_ascii=__snake_case , indent=__snake_case ) ) # model lowercase_ : Tuple = chkpt['''model'''] # remove unneeded keys lowercase_ : Dict = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(__snake_case , __snake_case ) lowercase_ : List[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): lowercase_ : Optional[int] = model_state_dict.pop(__snake_case ) else: lowercase_ : str = model_state_dict.pop(__snake_case ) lowercase_ : int = BioGptConfig.from_pretrained(__snake_case ) lowercase_ : int = BioGptForCausalLM(__snake_case ) # check that it loads ok model_new.load_state_dict(__snake_case ) # save lowercase_ : Optional[int] = os.path.join(__snake_case , __snake_case ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(__snake_case , __snake_case ) print('''Conversion is done!''' ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A : Dict = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
33
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A ( __snake_case ): __magic_name__ = DistilBertTokenizer __magic_name__ = DistilBertTokenizerFast __magic_name__ = True @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : List[Any] = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) A : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE ) A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
3
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = AutoModelForSeqaSeqLM.from_config(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ).save_pretrained(_SCREAMING_SNAKE_CASE ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
366
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) UpperCamelCase = DetaConfig( backbone_config=_SCREAMING_SNAKE_CASE , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=_SCREAMING_SNAKE_CASE , with_box_refine=_SCREAMING_SNAKE_CASE , two_stage=_SCREAMING_SNAKE_CASE , ) # set labels UpperCamelCase = "huggingface/label-files" if "o365" in model_name: UpperCamelCase = 366 UpperCamelCase = "object365-id2label.json" else: UpperCamelCase = 91 UpperCamelCase = "coco-detection-id2label.json" UpperCamelCase = num_labels UpperCamelCase = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) ) , "r" ) ) UpperCamelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} return config def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = dct.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) UpperCamelCase = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:dim, :] UpperCamelCase = in_proj_bias[: dim] UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase = in_proj_bias[ dim : dim * 2 ] UpperCamelCase = in_proj_weight[ -dim :, : ] UpperCamelCase = in_proj_bias[-dim :] # fmt: on def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCamelCase = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:hidden_size, :] UpperCamelCase = in_proj_bias[:hidden_size] UpperCamelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase = in_proj_weight[-hidden_size:, :] UpperCamelCase = in_proj_bias[-hidden_size:] def a__ ( ): """simple docstring""" UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = get_deta_config(_SCREAMING_SNAKE_CASE ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": UpperCamelCase = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F"Model name {model_name} not supported" ) UpperCamelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(_SCREAMING_SNAKE_CASE , param.shape ) # rename keys UpperCamelCase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_swin_q_k_v(_SCREAMING_SNAKE_CASE , config.backbone_config ) read_in_decoder_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val if "input_proj" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = DetaForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = "cuda" if torch.cuda.is_available() else "cpu" model.to(_SCREAMING_SNAKE_CASE ) # load image processor UpperCamelCase = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image UpperCamelCase = prepare_img() UpperCamelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase = encoding["pixel_values"] UpperCamelCase = model(pixel_values.to(_SCREAMING_SNAKE_CASE ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase = torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) UpperCamelCase = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase = torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) UpperCamelCase = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
244
0
A__ : List[str] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A__ : int = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase( __UpperCamelCase : dict[int, list[int]] ,__UpperCamelCase : int ,__UpperCamelCase : list[bool] ): lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : str = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) order.append(__UpperCamelCase ) return order def UpperCamelCase( __UpperCamelCase : dict[int, list[int]] ,__UpperCamelCase : int ,__UpperCamelCase : list[bool] ): lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : List[Any] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return component def UpperCamelCase( __UpperCamelCase : dict[int, list[int]] ): lowerCAmelCase_ : int = len(__UpperCamelCase ) * [False] lowerCAmelCase_ : dict[int, list[int]] = {vert: [] for vert in range(len(__UpperCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__UpperCamelCase ) lowerCAmelCase_ : Any = [] for i, was_visited in enumerate(__UpperCamelCase ): if not was_visited: order += topology_sort(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : int = len(__UpperCamelCase ) * [False] for i in range(len(__UpperCamelCase ) ): lowerCAmelCase_ : List[str] = order[len(__UpperCamelCase ) - i - 1] if not visited[vert]: lowerCAmelCase_ : Dict = find_components(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) components_list.append(__UpperCamelCase ) return components_list
103
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = DPTConfig() if "large" in checkpoint_url: _UpperCAmelCase : List[str] = 1_024 _UpperCAmelCase : Optional[int] = 4_096 _UpperCAmelCase : Union[str, Any] = 24 _UpperCAmelCase : List[Any] = 16 _UpperCAmelCase : List[Any] = [5, 11, 17, 23] _UpperCAmelCase : int = [256, 512, 1_024, 1_024] _UpperCAmelCase : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : List[Any] = 150 _UpperCAmelCase : Optional[Any] = "huggingface/label-files" _UpperCAmelCase : Optional[int] = "ade20k-id2label.json" _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase : str = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : int = idalabel _UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCAmelCase : str = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: _UpperCAmelCase : List[str] = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: _UpperCAmelCase : Dict = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: _UpperCAmelCase : int = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: _UpperCAmelCase : int = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: _UpperCAmelCase : int = name.replace("proj" , "projection" ) if "blocks" in name: _UpperCAmelCase : Tuple = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: _UpperCAmelCase : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : int = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: _UpperCAmelCase : List[Any] = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: _UpperCAmelCase : List[str] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: _UpperCAmelCase : Union[str, Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: _UpperCAmelCase : str = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: _UpperCAmelCase : int = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: _UpperCAmelCase : Tuple = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: _UpperCAmelCase : Optional[Any] = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCAmelCase : List[str] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: _UpperCAmelCase : Tuple = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: _UpperCAmelCase : Optional[int] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: _UpperCAmelCase : Optional[Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCAmelCase : Optional[Any] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCAmelCase : int = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _UpperCAmelCase : Tuple = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _UpperCAmelCase : Optional[int] = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _UpperCAmelCase : Dict = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _UpperCAmelCase : List[str] = name.replace("pretrained" , "dpt" ) if "bn" in name: _UpperCAmelCase : Dict = name.replace("bn" , "batch_norm" ) if "head" in name: _UpperCAmelCase : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: _UpperCAmelCase : Dict = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : str = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase (): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase : Dict = get_dpt_config(__lowerCAmelCase ) # load original state_dict from URL _UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" ) # remove certain keys remove_ignore_keys_(__lowerCAmelCase ) # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : Tuple = state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase : List[Any] = val # read in qkv matrices read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model _UpperCAmelCase : Any = DPTForSemanticSegmentation(__lowerCAmelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Check outputs on an image _UpperCAmelCase : Any = 480 if "ade" in checkpoint_url else 384 _UpperCAmelCase : List[str] = DPTImageProcessor(size=__lowerCAmelCase ) _UpperCAmelCase : Any = prepare_img() _UpperCAmelCase : Dict = image_processor(__lowerCAmelCase , return_tensors="pt" ) # forward pass _UpperCAmelCase : Tuple = model(**__lowerCAmelCase ).logits if "ade" in checkpoint_url else model(**__lowerCAmelCase ).predicted_depth # Assert logits _UpperCAmelCase : Dict = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: _UpperCAmelCase : str = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(__lowerCAmelCase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __lowerCAmelCase ) ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
234
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class _snake_case : def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Any = data UpperCAmelCase__ : Node | None = None class _snake_case : def __init__( self): UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Any = None def __iter__( self): UpperCAmelCase__ : Optional[int] = self.head while self.head: yield node.data UpperCAmelCase__ : Optional[int] = node.next if node == self.head: break def __len__( self): return sum(1 for _ in self) def __repr__( self): return "->".join(str(_lowerCamelCase) for item in iter(self)) def snake_case__ ( self , _lowerCamelCase): self.insert_nth(len(self) , _lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): self.insert_nth(0 , _lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): if index < 0 or index > len(self): raise IndexError("""list index out of range.""") UpperCAmelCase__ : int = Node(_lowerCamelCase) if self.head is None: UpperCAmelCase__ : Optional[int] = new_node # first node points itself UpperCAmelCase__ : Optional[Any] = new_node elif index == 0: # insert at head UpperCAmelCase__ : List[Any] = self.head UpperCAmelCase__ : Optional[Any] = new_node else: UpperCAmelCase__ : List[Any] = self.head for _ in range(index - 1): UpperCAmelCase__ : List[Any] = temp.next UpperCAmelCase__ : Tuple = temp.next UpperCAmelCase__ : int = new_node if index == len(self) - 1: # insert at tail UpperCAmelCase__ : Dict = new_node def snake_case__ ( self): return self.delete_nth(0) def snake_case__ ( self): return self.delete_nth(len(self) - 1) def snake_case__ ( self , _lowerCamelCase = 0): if not 0 <= index < len(self): raise IndexError("""list index out of range.""") UpperCAmelCase__ : Optional[int] = self.head if self.head == self.tail: # just one node UpperCAmelCase__ : List[Any] = None elif index == 0: # delete head node UpperCAmelCase__ : List[Any] = self.tail.next.next UpperCAmelCase__ : Tuple = self.head.next else: UpperCAmelCase__ : List[str] = self.head for _ in range(index - 1): UpperCAmelCase__ : int = temp.next UpperCAmelCase__ : Union[str, Any] = temp.next UpperCAmelCase__ : Dict = temp.next.next if index == len(self) - 1: # delete at tail UpperCAmelCase__ : Any = temp return delete_node.data def snake_case__ ( self): return len(self) == 0 def _UpperCamelCase ( ): UpperCAmelCase__ : Optional[int] = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
283
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''megatron-bert''' def __init__( self , _lowerCamelCase=2_9056 , _lowerCamelCase=1024 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=4096 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase="absolute" , _lowerCamelCase=True , **_lowerCamelCase , ) -> List[str]: super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) A_ : List[str] = vocab_size A_ : str = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Optional[int] = num_attention_heads A_ : Dict = hidden_act A_ : Dict = intermediate_size A_ : Union[str, Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Any = initializer_range A_ : int = layer_norm_eps A_ : List[Any] = position_embedding_type A_ : Tuple = use_cache
344
'''simple docstring''' class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: A_ : Optional[Any] = name A_ : Dict = value A_ : Union[str, Any] = weight def __repr__( self ) -> List[str]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def UpperCAmelCase_ ( self ) -> Optional[Any]: return self.value def UpperCAmelCase_ ( self ) -> List[str]: return self.name def UpperCAmelCase_ ( self ) -> Tuple: return self.weight def UpperCAmelCase_ ( self ) -> Optional[int]: return self.value / self.weight def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Optional[int] = [] for i in range(len(a_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" A_ : Optional[Any] = sorted(a_ , key=a_ , reverse=a_ ) A_ : str = [] A_ , A_ : Dict = 0.0, 0.0 for i in range(len(a_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
344
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "deta" lowercase_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : str , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[Any]=900 , _lowerCAmelCase : Tuple=2_048 , _lowerCAmelCase : str=6 , _lowerCAmelCase : List[str]=2_048 , _lowerCAmelCase : Union[str, Any]=8 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : str=1_024 , _lowerCAmelCase : str=8 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple="relu" , _lowerCAmelCase : List[str]=256 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Union[str, Any]=1.0 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : List[str]="sine" , _lowerCAmelCase : int=5 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : int=300 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : Optional[int]=5 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : int=0.25 , **_lowerCAmelCase : Any , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = backbone_config.pop('model_type' ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type # deformable attributes SCREAMING_SNAKE_CASE_ = num_feature_levels SCREAMING_SNAKE_CASE_ = encoder_n_points SCREAMING_SNAKE_CASE_ = decoder_n_points SCREAMING_SNAKE_CASE_ = two_stage SCREAMING_SNAKE_CASE_ = two_stage_num_proposals SCREAMING_SNAKE_CASE_ = with_box_refine SCREAMING_SNAKE_CASE_ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient SCREAMING_SNAKE_CASE_ = focal_alpha super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): return self.encoder_attention_heads @property def lowerCAmelCase_ ( self : int ): return self.d_model def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
210
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ : str = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : Optional[int] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = AutoConfig.for_model('roberta' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , 'fake-roberta' ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertEqual(type(_lowerCAmelCase ) , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) # Wrong model type will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('model' , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoConfig.register('bert' , _lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self : Optional[int] ): with self.assertRaisesRegex( _lowerCAmelCase , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self : int ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def lowerCAmelCase_ ( self : Union[str, Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def lowerCAmelCase_ ( self : Any ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "new-model" try: AutoConfig.register('new-model' , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
210
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : int = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_attention_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : str, lowerCamelCase : str=13, lowerCamelCase : Union[str, Any]=64, lowerCamelCase : str=3, lowerCamelCase : int=3, lowerCamelCase : Dict=2, lowerCamelCase : int=1, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Dict=[128, 256, 384], lowerCamelCase : Tuple=[4, 6, 8], lowerCamelCase : Optional[Any]=[2, 3, 4], lowerCamelCase : str=[16, 16, 16], lowerCamelCase : Dict=0, lowerCamelCase : List[str]=[2, 2, 2], lowerCamelCase : str=[2, 2, 2], lowerCamelCase : List[Any]=0.02, lowerCamelCase : Any=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[Any]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = LevitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Tuple ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Any=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowercase__ = problem_type['''title'''] lowercase__ = problem_type['''num_labels'''] lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs['''labels'''].unsqueeze(1 ).repeat(1, problem_type['''num_labels'''] ) lowercase__ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: lowercase__ = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : int ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
1
'''simple docstring''' def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =[0 for i in range(r + 1 )] # nc0 = 1 __lowercase =1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase =min(_lowerCAmelCase , _lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
48
'''simple docstring''' from math import factorial def _A ( _lowerCAmelCase = 20 ): """simple docstring""" __lowercase =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __lowercase =n // 2 return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
48
1
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __UpperCamelCase = '''sshleifer/mar_enro_6_3_student''' class UpperCamelCase ( __lowerCamelCase ): def a_ ( self) -> Union[str, Any]: super().setUp() snake_case_ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz', extract_compressed_file=SCREAMING_SNAKE_CASE_, ) snake_case_ = f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def a_ ( self) -> Dict: MarianMTModel.from_pretrained(SCREAMING_SNAKE_CASE_) @slow @require_torch_gpu def a_ ( self) -> str: snake_case_ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script snake_case_ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py')[1].strip() snake_case_ = bash_script.replace('\\\n', '').strip().replace('\"$@\"', '') for k, v in env_vars_to_replace.items(): snake_case_ = bash_script.replace(SCREAMING_SNAKE_CASE_, str(SCREAMING_SNAKE_CASE_)) snake_case_ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") snake_case_ = f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future snake_case_ = ['finetune.py'] + bash_script.split() + args with patch.object(SCREAMING_SNAKE_CASE_, 'argv', SCREAMING_SNAKE_CASE_): snake_case_ = argparse.ArgumentParser() snake_case_ = pl.Trainer.add_argparse_args(SCREAMING_SNAKE_CASE_) snake_case_ = SummarizationModule.add_model_specific_args(SCREAMING_SNAKE_CASE_, os.getcwd()) snake_case_ = parser.parse_args() snake_case_ = main(SCREAMING_SNAKE_CASE_) # Check metrics snake_case_ = load_json(model.metrics_save_path) snake_case_ = metrics['val'][0] snake_case_ = metrics['val'][-1] self.assertEqual(len(metrics['val']), (args.max_epochs / args.val_check_interval)) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'], SCREAMING_SNAKE_CASE_) self.assertGreater(last_step_stats['val_avg_gen_time'], 0.01) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'], 1.0) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'], 2) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'], 17) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu']), 1.1) # check lightning ckpt can be loaded and has a reasonable statedict snake_case_ = os.listdir(SCREAMING_SNAKE_CASE_) snake_case_ = [x for x in contents if x.endswith('.ckpt')][0] snake_case_ = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE_) snake_case_ = torch.load(SCREAMING_SNAKE_CASE_, map_location='cpu') snake_case_ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: snake_case_ = {os.path.basename(SCREAMING_SNAKE_CASE_) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test']) == 1 class UpperCamelCase ( __lowerCamelCase ): @timeout_decorator.timeout(600) @slow @require_torch_gpu def a_ ( self) -> Union[str, Any]: snake_case_ = f'{self.test_file_dir_str}/test_data/wmt_en_ro' snake_case_ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script snake_case_ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py')[1].strip() ) snake_case_ = bash_script.replace('\\\n', '').strip().replace('\"$@\"', '') snake_case_ = bash_script.replace('--fp16 ', ' ') for k, v in env_vars_to_replace.items(): snake_case_ = bash_script.replace(SCREAMING_SNAKE_CASE_, str(SCREAMING_SNAKE_CASE_)) snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = bash_script.replace('--fp16', '') snake_case_ = 6 snake_case_ = ( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(SCREAMING_SNAKE_CASE_, 'argv', SCREAMING_SNAKE_CASE_): snake_case_ = argparse.ArgumentParser() snake_case_ = pl.Trainer.add_argparse_args(SCREAMING_SNAKE_CASE_) snake_case_ = SummarizationDistiller.add_model_specific_args(SCREAMING_SNAKE_CASE_, os.getcwd()) snake_case_ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu snake_case_ = distill_main(SCREAMING_SNAKE_CASE_) # Check metrics snake_case_ = load_json(model.metrics_save_path) snake_case_ = metrics['val'][0] snake_case_ = metrics['val'][-1] assert len(metrics['val']) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'], SCREAMING_SNAKE_CASE_) # check lightning ckpt can be loaded and has a reasonable statedict snake_case_ = os.listdir(SCREAMING_SNAKE_CASE_) snake_case_ = [x for x in contents if x.endswith('.ckpt')][0] snake_case_ = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE_) snake_case_ = torch.load(SCREAMING_SNAKE_CASE_, map_location='cpu') snake_case_ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: snake_case_ = {os.path.basename(SCREAMING_SNAKE_CASE_) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test']) == 1
69
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCamelCase_ = ['''small''', '''medium''', '''large'''] lowerCamelCase_ = '''lm_head.decoder.weight''' lowerCamelCase_ = '''lm_head.weight''' def __magic_name__ ( __a : str , __a : str ): '''simple docstring''' UpperCamelCase__ = torch.load(__a ) UpperCamelCase__ = d.pop(__a ) os.makedirs(__a , exist_ok=__a ) torch.save(__a , os.path.join(__a , __a ) ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) lowerCamelCase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCamelCase_ = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') lowerCamelCase_ = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
244
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _A = logging.getLogger(__name__) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=SCREAMING_SNAKE_CASE__ , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=SCREAMING_SNAKE_CASE__ , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=SCREAMING_SNAKE_CASE__ , default='data/dump' , help='The dump file prefix.' ) __UpperCamelCase =parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": __UpperCamelCase =BertTokenizer.from_pretrained(args.tokenizer_name ) __UpperCamelCase =tokenizer.special_tokens_map['cls_token'] # `[CLS]` __UpperCamelCase =tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": __UpperCamelCase =RobertaTokenizer.from_pretrained(args.tokenizer_name ) __UpperCamelCase =tokenizer.special_tokens_map['cls_token'] # `<s>` __UpperCamelCase =tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": __UpperCamelCase =GPTaTokenizer.from_pretrained(args.tokenizer_name ) __UpperCamelCase =tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` __UpperCamelCase =tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: __UpperCamelCase =fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(SCREAMING_SNAKE_CASE__ )} examples to process.' ) __UpperCamelCase =[] __UpperCamelCase =0 __UpperCamelCase =1_00_00 __UpperCamelCase =time.time() for text in data: __UpperCamelCase =F'{bos} {text.strip()} {sep}' __UpperCamelCase =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) rslt.append(SCREAMING_SNAKE_CASE__ ) iter += 1 if iter % interval == 0: __UpperCamelCase =time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) __UpperCamelCase =time.time() logger.info('Finished binarization' ) logger.info(F'{len(SCREAMING_SNAKE_CASE__ )} examples processed.' ) __UpperCamelCase =F'{args.dump_file}.{args.tokenizer_name}.pickle' __UpperCamelCase =tokenizer.vocab_size if vocab_size < (1 << 16): __UpperCamelCase =[np.uintaa(SCREAMING_SNAKE_CASE__ ) for d in rslt] else: __UpperCamelCase =[np.intaa(SCREAMING_SNAKE_CASE__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as handle: pickle.dump(rslt_ , SCREAMING_SNAKE_CASE__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
360
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : Optional[torch.FloatTensor] = None def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=0.999 , SCREAMING_SNAKE_CASE__ : str="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCamelCase =[] for i in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =i / num_diffusion_timesteps __UpperCamelCase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class UpperCAmelCase__ ( A_ , A_ ): """simple docstring""" @register_to_config def __init__( self , A_ = 1000 , A_ = "fixed_small_log" , A_ = True , A_ = 1.0 , A_ = "epsilon" , A_ = "squaredcos_cap_v2" , ) -> Tuple: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __UpperCamelCase =betas_for_alpha_bar(A_ ) __UpperCamelCase =1.0 - self.betas __UpperCamelCase =torch.cumprod(self.alphas , dim=0 ) __UpperCamelCase =torch.tensor(1.0 ) # standard deviation of the initial noise distribution __UpperCamelCase =1.0 # setable values __UpperCamelCase =None __UpperCamelCase =torch.from_numpy(np.arange(0 , A_ )[::-1].copy() ) __UpperCamelCase =variance_type def _a ( self , A_ , A_ = None ) -> torch.FloatTensor: return sample def _a ( self , A_ , A_ = None ) -> Tuple: __UpperCamelCase =num_inference_steps __UpperCamelCase =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __UpperCamelCase =(np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __UpperCamelCase =torch.from_numpy(A_ ).to(A_ ) def _a ( self , A_ , A_=None , A_=None , A_=None ) -> List[Any]: if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCamelCase =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __UpperCamelCase =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __UpperCamelCase =torch.log(torch.clamp(A_ , min=1E-20 ) ) __UpperCamelCase =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __UpperCamelCase =variance.log() __UpperCamelCase =beta.log() __UpperCamelCase =(predicted_variance + 1) / 2 __UpperCamelCase =frac * max_log + (1 - frac) * min_log return variance def _a ( self , A_ , A_ , A_ , A_ = None , A_=None , A_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __UpperCamelCase =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __UpperCamelCase , __UpperCamelCase =torch.split(A_ , sample.shape[1] , dim=1 ) else: __UpperCamelCase =None # 1. compute alphas, betas if prev_timestep is None: __UpperCamelCase =t - 1 __UpperCamelCase =self.alphas_cumprod[t] __UpperCamelCase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __UpperCamelCase =1 - alpha_prod_t __UpperCamelCase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __UpperCamelCase =self.betas[t] __UpperCamelCase =self.alphas[t] else: __UpperCamelCase =1 - alpha_prod_t / alpha_prod_t_prev __UpperCamelCase =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCamelCase =model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCamelCase =torch.clamp( A_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __UpperCamelCase =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __UpperCamelCase =0 if t > 0: __UpperCamelCase =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A_ , device=model_output.device ) __UpperCamelCase =self._get_variance( A_ , predicted_variance=A_ , prev_timestep=A_ , ) if self.variance_type == "fixed_small_log": __UpperCamelCase =variance elif self.variance_type == "learned_range": __UpperCamelCase =(0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' ' for the UnCLIPScheduler.' ) __UpperCamelCase =variance * variance_noise __UpperCamelCase =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A_ , pred_original_sample=A_ ) def _a ( self , A_ , A_ , A_ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __UpperCamelCase =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __UpperCamelCase =timesteps.to(original_samples.device ) __UpperCamelCase =alphas_cumprod[timesteps] ** 0.5 __UpperCamelCase =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =(1 - alphas_cumprod[timesteps]) ** 0.5 __UpperCamelCase =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __UpperCamelCase =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __UpperCamelCase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
117
0
from math import factorial _snake_case = {str(d): factorial(d) for d in range(10)} def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(SCREAMING_SNAKE_CASE_ ) ) def lowercase_( ): '''simple docstring''' lowerCamelCase : List[str] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , SCREAMING_SNAKE_CASE_ ) if sum_of_digit_factorial(SCREAMING_SNAKE_CASE_ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
283
def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , 0 , -1 ): lowerCamelCase : Tuple = False for j in range(SCREAMING_SNAKE_CASE_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCamelCase , lowerCamelCase : int = unsorted[j - 1], unsorted[j] lowerCamelCase : Optional[int] = True for j in range(SCREAMING_SNAKE_CASE_ ): if unsorted[j] > unsorted[j + 1]: lowerCamelCase , lowerCamelCase : Union[str, Any] = unsorted[j + 1], unsorted[j] lowerCamelCase : Optional[Any] = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input('''Enter numbers separated by a comma:\n''').strip() _snake_case = [int(item) for item in user_input.split(''',''')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
283
1
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCAmelCase__ = logging.getLogger(__name__) @dataclass(frozen=lowerCAmelCase_ ) class a : _snake_case : int = 42 _snake_case : Any = 42 _snake_case : List[Any] = None _snake_case : List[Any] = None _snake_case : int = None @dataclass(frozen=lowerCAmelCase_ ) class a : _snake_case : Optional[Any] = 42 _snake_case : List[Any] = None _snake_case : Union[str, Any] = None _snake_case : Any = None _snake_case : int = None if is_torch_available(): import torch from torch.utils.data import Dataset class a ( lowerCAmelCase_ ): _snake_case : List[str] = 42 def __init__( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : bool = False , ): _UpperCAmelCase = hans_processors[task]() _UpperCAmelCase = os.path.join( __A , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(__A ) , __A , ) , ) _UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase = cached_features_file + """.lock""" with FileLock(__A ): if os.path.exists(__A ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) _UpperCAmelCase = torch.load(__A ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) _UpperCAmelCase = ( processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) ) logger.info("""Training examples: %s""" , len(__A ) ) _UpperCAmelCase = hans_convert_examples_to_features(__A , __A , __A , __A ) logger.info("""Saving features into cached file %s""" , __A ) torch.save(self.features , __A ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : str , __lowerCAmelCase : int ): return self.features[i] def lowerCAmelCase_ ( self : Union[str, Any] ): return self.label_list if is_tf_available(): import tensorflow as tf class a : _snake_case : List[Any] = 42 def __init__( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] = 128 , __lowerCAmelCase : str=False , __lowerCAmelCase : bool = False , ): _UpperCAmelCase = hans_processors[task]() _UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) _UpperCAmelCase , _UpperCAmelCase = label_list[2], label_list[1] _UpperCAmelCase = label_list _UpperCAmelCase = processor.get_dev_examples(__A ) if evaluate else processor.get_train_examples(__A ) _UpperCAmelCase = hans_convert_examples_to_features(__A , __A , __A , __A ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(__A )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) _UpperCAmelCase = tf.data.Dataset.from_generator( __A , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCAmelCase_ ( self : Dict ): return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : List[str] , __lowerCAmelCase : Any ): return self.features[i] def lowerCAmelCase_ ( self : Tuple ): return self.label_list class a ( lowerCAmelCase_ ): def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Tuple ): return self._create_examples(self._read_tsv(os.path.join(__A , """heuristics_train_set.txt""" ) ) , """train""" ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Any ): return self._create_examples(self._read_tsv(os.path.join(__A , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def lowerCAmelCase_ ( self : Any ): return ["contradiction", "entailment", "neutral"] def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = [] for i, line in enumerate(__A ): if i == 0: continue _UpperCAmelCase = """%s-%s""" % (set_type, line[0]) _UpperCAmelCase = line[5] _UpperCAmelCase = line[6] _UpperCAmelCase = line[7][2:] if line[7].startswith("""ex""" ) else line[7] _UpperCAmelCase = line[0] examples.append(InputExample(guid=__A , text_a=__A , text_b=__A , label=__A , pairID=__A ) ) return examples def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,): """simple docstring""" _UpperCAmelCase = {label: i for i, label in enumerate(_lowercase )} _UpperCAmelCase = [] for ex_index, example in tqdm.tqdm(enumerate(_lowercase ) ,desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d""" % (ex_index) ) _UpperCAmelCase = tokenizer( example.text_a ,example.text_b ,add_special_tokens=_lowercase ,max_length=_lowercase ,padding="""max_length""" ,truncation=_lowercase ,return_overflowing_tokens=_lowercase ,) _UpperCAmelCase = label_map[example.label] if example.label in label_map else 0 _UpperCAmelCase = int(example.pairID ) features.append(InputFeatures(**_lowercase ,label=_lowercase ,pairID=_lowercase ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'''guid: {example}''' ) logger.info(f'''features: {features[i]}''' ) return features UpperCAmelCase__ = { """hans""": 3, } UpperCAmelCase__ = { """hans""": HansProcessor, }
358
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCAmelCase ( lowercase=None ,lowercase=None ): """simple docstring""" return field(default_factory=lambda: default ,metadata=lowercase ) @dataclass class a : _snake_case : str = field( metadata={'help': 'The csv file to plot.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _snake_case : Optional[str] = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _snake_case : Optional[List[str]] = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def __UpperCAmelCase ( lowercase ): """simple docstring""" try: int(lowercase ) return True except ValueError: return False def __UpperCAmelCase ( lowercase ): """simple docstring""" try: float(lowercase ) return True except ValueError: return False class a : def __init__( self : int , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = args _UpperCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: _UpperCAmelCase = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None _UpperCAmelCase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None _UpperCAmelCase = float(row["""result"""] ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase = plt.subplots() _UpperCAmelCase = """Time usage""" if self.args.is_time else """Memory usage""" _UpperCAmelCase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) _UpperCAmelCase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) _UpperCAmelCase = self.result_dict[model_name]["""result"""] ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) _UpperCAmelCase = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , """--""" ) title_str += f''' {label_model_name} vs.''' _UpperCAmelCase = title_str[:-4] _UpperCAmelCase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = HfArgumentParser(lowercase ) _UpperCAmelCase = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase = Plot(args=lowercase ) plot.plot() if __name__ == "__main__": main()
30
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 __a : Dict = get_tests_dir("""fixtures/dummy-config.json""") class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = 0 def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __lowercase = os.path.join(lowerCAmelCase__ , '''fake-roberta''' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) __lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(type(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' try: AutoConfig.register('''custom''' , lowerCAmelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register('''model''' , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register('''bert''' , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) __lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __lowercase = AutoConfig.from_pretrained('''bert-base''' ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase__ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ , revision='''aaaaaa''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase__ , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=lowerCAmelCase__ ) __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) __lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : List[Any] = '''new-model''' try: AutoConfig.register('''new-model''' , lowerCAmelCase__ ) # If remote code is not set, the default is to use local __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub __lowercase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
210
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : Optional[int] = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''vivit''' def __init__( self , lowerCAmelCase__=2_24 , lowerCAmelCase__=32 , lowerCAmelCase__=[2, 16, 16] , lowerCAmelCase__=3 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu_fast" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-06 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> int: '''simple docstring''' __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = num_frames __lowercase = tubelet_size __lowercase = num_channels __lowercase = qkv_bias super().__init__(**lowerCAmelCase__ )
210
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowercase_ = TransfoXLTokenizer lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' super().setUp() lowerCamelCase__: Optional[int] =[ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] lowerCamelCase__: Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def SCREAMING_SNAKE_CASE_ (self : int , **UpperCAmelCase_ : Any) ->int: '''simple docstring''' lowerCamelCase__: str =True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowercase) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: int ='''<unk> UNwanted , running''' lowerCamelCase__: List[Any] ='''<unk> unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowercase) lowerCamelCase__: Tuple =tokenizer.tokenize("<unk> UNwanted , running") self.assertListEqual(__lowercase , ["<unk>", "unwanted", ",", "running"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase) , [0, 4, 8, 7]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =TransfoXLTokenizer(lower_case=__lowercase) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? ") , ["hello", "!", "how", "are", "you", "?"]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[Any] =TransfoXLTokenizer(lower_case=__lowercase) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =TransfoXLTokenizer(lower_case=__lowercase) lowerCamelCase__: List[str] ='''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' lowerCamelCase__: Union[str, Any] =[ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase) , __lowercase) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase) , __lowercase) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =self.get_tokenizer() lowerCamelCase__: Optional[Any] =len(__lowercase) tokenizer.add_tokens(["new1", "new2"]) tokenizer.move_added_token("new1" , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1") , [1]) self.assertEqual(tokenizer.decode([1]) , "new1")
350
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0) ->None: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Any =row, column lowerCamelCase__: List[str] =[[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__(self : Tuple) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowerCamelCase__: List[str] =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__: int =max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) lowerCamelCase__: Any =F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase_ : list[float]) -> str: nonlocal string_format_identifier lowerCamelCase__: Tuple ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__(self : Optional[int]) ->str: '''simple docstring''' return str(self) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : tuple[int, int]) ->bool: '''simple docstring''' if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : int , UpperCAmelCase_ : tuple[int, int]) ->Any: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__(self : Optional[Any] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float) ->None: '''simple docstring''' assert self.validate_indicies(UpperCAmelCase_) lowerCamelCase__: str =value def __add__(self : Dict , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__: Dict =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: List[str] =self[r, c] + another[r, c] return result def __neg__(self : str) ->Matrix: '''simple docstring''' lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =-self[r, c] return result def __sub__(self : str , UpperCAmelCase_ : Matrix) ->Matrix: '''simple docstring''' return self + (-another) def __mul__(self : List[str] , UpperCAmelCase_ : int | float | Matrix) ->Matrix: '''simple docstring''' if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication lowerCamelCase__: List[Any] =Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Union[str, Any] =self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row lowerCamelCase__: Dict =Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__: int =F"""Unsupported type given for another ({type(UpperCAmelCase_)})""" raise TypeError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Matrix: '''simple docstring''' lowerCamelCase__: Optional[Any] =Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): lowerCamelCase__: Optional[int] =self[r, c] return result def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix) ->Any: '''simple docstring''' assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__: Tuple =v.transpose() lowerCamelCase__: Optional[Any] =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: List[str] =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__: Union[str, Any] =1 print(F"""a^(-1) is {ainv}""" ) # u, v lowerCamelCase__: Optional[int] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =1, 2, -3 lowerCamelCase__: Optional[Any] =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__a , __a )}""" ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
273
0
from math import factorial def A ( _SCREAMING_SNAKE_CASE = 20 ) -> int: lowerCamelCase : List[str] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... lowerCamelCase : Optional[Any] = n // 2 return int(factorial(_SCREAMING_SNAKE_CASE ) / (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: SCREAMING_SNAKE_CASE__ : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
48
from math import sqrt def A ( _SCREAMING_SNAKE_CASE = 100_0000 ) -> int: lowerCamelCase : int = 0 lowerCamelCase : int = 0 lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_SCREAMING_SNAKE_CASE ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
48
1
class __magic_name__ : def __init__( self : List[Any] , lowerCamelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Any = n UpperCamelCase__ : Any = [None] * self.n UpperCamelCase__ : Tuple = 0 # index of the first element UpperCamelCase__ : str = 0 UpperCamelCase__ : List[Any] = 0 def __len__( self : List[Any] ) -> int: '''simple docstring''' return self.size def UpperCAmelCase__ ( self : List[str] ) -> bool: '''simple docstring''' return self.size == 0 def UpperCAmelCase__ ( self : Any ) -> Dict: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] ) -> int: '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCamelCase__ : Union[str, Any] = data UpperCamelCase__ : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCamelCase__ : Optional[int] = self.array[self.front] UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
365
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCamelCase : Optional[int] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Union[str, Any] = "cpu" __UpperCamelCase : Dict = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __UpperCamelCase : int = "path-to-your-trained-model" __UpperCamelCase : List[str] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCamelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase : Optional[Any] = pipe.to(device) # to channels last __UpperCamelCase : Tuple = pipe.unet.to(memory_format=torch.channels_last) __UpperCamelCase : Optional[int] = pipe.vae.to(memory_format=torch.channels_last) __UpperCamelCase : int = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCamelCase : Tuple = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCamelCase : Tuple = torch.randn(2, 4, 64, 64) __UpperCamelCase : Any = torch.rand(1) * 999 __UpperCamelCase : Any = torch.randn(2, 77, 768) __UpperCamelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: __UpperCamelCase : Union[str, Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCamelCase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : str = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCamelCase : List[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCamelCase : Optional[Any] = 666 __UpperCamelCase : int = torch.Generator(device).manual_seed(seed) __UpperCamelCase : int = {"generator": generator} if args.steps is not None: __UpperCamelCase : str = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCamelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
51
0
import itertools import string from collections.abc import Generator, Iterable def _A ( SCREAMING_SNAKE_CASE : Iterable[str] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Dict =iter(SCREAMING_SNAKE_CASE ) while True: a__ : int =tuple(itertools.islice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not chunk: return yield chunk def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Tuple ="".join([c.upper() for c in dirty if c in string.ascii_letters] ) a__ : List[str] ="" if len(SCREAMING_SNAKE_CASE ) < 2: return dirty for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(SCREAMING_SNAKE_CASE ) & 1: clean += "X" return clean def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Tuple ="ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler a__ : Optional[int] =[] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(SCREAMING_SNAKE_CASE ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(SCREAMING_SNAKE_CASE ) return table def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Tuple =generate_table(SCREAMING_SNAKE_CASE ) a__ : Optional[int] =prepare_input(SCREAMING_SNAKE_CASE ) a__ : Any ="" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE , 2 ): a__ , a__ : str =divmod(table.index(SCREAMING_SNAKE_CASE ) , 5 ) a__ , a__ : str =divmod(table.index(SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Tuple =generate_table(SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] ="" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE , 2 ): a__ , a__ : List[str] =divmod(table.index(SCREAMING_SNAKE_CASE ) , 5 ) a__ , a__ : Tuple =divmod(table.index(SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
95
from __future__ import annotations def _a ( lowerCamelCase: list[float] , lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCamelCase ): print(F"""{i}\t\t{d}""" ) def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: list[float] , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: int ) -> list[float]: '''simple docstring''' __A = [float('''inf''' )] * vertex_count __A = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __A = distance[u] + w __A = check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Dict = int(input('Enter number of vertices: ').strip()) snake_case__ : Optional[int] = int(input('Enter number of edges: ').strip()) snake_case__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) snake_case__ , snake_case__ , snake_case__ : Dict = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) snake_case__ : List[Any] = {'src': src, 'dst': dest, 'weight': weight} snake_case__ : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) snake_case__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
117
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" A_ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f'''{test_file} instead.''' ) A_ = components[-1] if not test_fn.endswith("py" ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) A_ = components[:-1] + [test_fn.replace(".py" ,"" )] A_ = ".".join(__UpperCamelCase ) return test_module_path def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = get_module_path(__UpperCamelCase ) A_ = importlib.import_module(__UpperCamelCase ) return test_module def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" A_ = [] A_ = get_test_module(__UpperCamelCase ) for attr in dir(__UpperCamelCase ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(__UpperCamelCase ,__UpperCamelCase ) ) # sort with class names return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ ) def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = [] A_ = get_test_module(__UpperCamelCase ) for attr in dir(__UpperCamelCase ): A_ = getattr(__UpperCamelCase ,__UpperCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). A_ = getattr(__UpperCamelCase ,"all_model_classes" ,[] ) if len(__UpperCamelCase ) > 0: test_classes.append(__UpperCamelCase ) # sort with class names return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ ) def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = get_test_classes(__UpperCamelCase ) A_ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ ) def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = test_class() if hasattr(__UpperCamelCase ,"setUp" ): test.setUp() A_ = None if hasattr(__UpperCamelCase ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: A_ = test.model_tester.__class__ return model_tester def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = get_test_classes(__UpperCamelCase ) A_ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__UpperCamelCase ) # sort with class names return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ): """simple docstring""" A_ = get_test_classes_for_model(__UpperCamelCase ,__UpperCamelCase ) A_ = [] for test_class in test_classes: A_ = get_model_tester_from_test_class(__UpperCamelCase ) if tester_class is not None: tester_classes.append(__UpperCamelCase ) # sort with class names return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ ) def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = get_test_classes(__UpperCamelCase ) A_ = {test_class: get_model_tester_from_test_class(__UpperCamelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = get_model_classes(__UpperCamelCase ) A_ = { model_class: get_test_classes_for_model(__UpperCamelCase ,__UpperCamelCase ) for model_class in model_classes } return model_test_mapping def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = get_model_classes(__UpperCamelCase ) A_ = { model_class: get_tester_classes_for_model(__UpperCamelCase ,__UpperCamelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" if isinstance(__UpperCamelCase ,__UpperCamelCase ): return o elif isinstance(__UpperCamelCase ,__UpperCamelCase ): return o.__name__ elif isinstance(__UpperCamelCase ,(list, tuple) ): return [to_json(__UpperCamelCase ) for x in o] elif isinstance(__UpperCamelCase ,__UpperCamelCase ): return {to_json(__UpperCamelCase ): to_json(__UpperCamelCase ) for k, v in o.items()} else: return o
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ,A_ : List[Any] ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): A = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: A = 'sgugger/tiny-distilbert-classification' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,only_pretrain_model=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,torchscript=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,fpaa=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` A = None A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' ,'Can\'t do half precision' ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: A = 'sshleifer/tiny-gpt2' A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tiny-gpt2' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = 'sshleifer/tinier_bart' A = AutoConfig.from_pretrained(A_ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ,configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,save_to_csv=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(A_ ,'inf_time.csv' ) ,train_memory_csv_file=os.path.join(A_ ,'train_mem.csv' ) ,inference_memory_csv_file=os.path.join(A_ ,'inf_mem.csv' ) ,train_time_csv_file=os.path.join(A_ ,'train_time.csv' ) ,env_info_csv_file=os.path.join(A_ ,'env.csv' ) ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ ,'env.csv' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: A = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A_ : Optional[int] ): self.assertTrue(hasattr(A_ ,'sequential' ) ) self.assertTrue(hasattr(A_ ,'cumulative' ) ) self.assertTrue(hasattr(A_ ,'current' ) ) self.assertTrue(hasattr(A_ ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=A_ ,inference=A_ ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(A_ ,'log.txt' ) ,log_print=A_ ,trace_memory_line_by_line=A_ ,multi_process=A_ ,) A = PyTorchBenchmark(A_ ) A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ ,'log.txt' ) ).exists() )
74
def a ( snake_case__: list ): '''simple docstring''' if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] lowercase_ = [] def generate(snake_case__: int , snake_case__: list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowercase_ , lowercase_ = arr[k - 1], arr[i] else: # k is odd lowercase_ , lowercase_ = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(heaps(arr))
30
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : Any ): snake_case__ : List[str] = b.T snake_case__ : Union[str, Any] = np.sum(np.square(snake_case_ ) , axis=1 ) snake_case__ : Dict = np.sum(np.square(snake_case_ ) , axis=0 ) snake_case__ : Dict = np.matmul(snake_case_ , snake_case_ ) snake_case__ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Tuple ): snake_case__ : Tuple = x.reshape(-1 , 3 ) snake_case__ : int = squared_euclidean_distance(snake_case_ , snake_case_ ) return np.argmin(snake_case_ , axis=1 ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["pixel_values"] def __init__( self : str , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : bool = True , __A : Dict[str, int] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : bool = True , **__A : Union[str, Any] , ): super().__init__(**__A ) snake_case__ : Optional[int] = size if size is not None else {"height": 2_5_6, "width": 2_5_6} snake_case__ : List[Any] = get_size_dict(__A ) snake_case__ : Any = np.array(__A ) if clusters is not None else None snake_case__ : Optional[Any] = do_resize snake_case__ : Any = size snake_case__ : List[Any] = resample snake_case__ : List[Any] = do_normalize snake_case__ : Dict = do_color_quantize def _lowercase ( self : List[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : Optional[Union[str, ChannelDimension]] = None , **__A : int , ): snake_case__ : List[Any] = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __A , size=(size["height"], size["width"]) , resample=__A , data_format=__A , **__A ) def _lowercase ( self : List[Any] , __A : np.ndarray , __A : Optional[Union[str, ChannelDimension]] = None , ): snake_case__ : List[str] = rescale(image=__A , scale=1 / 1_2_7.5 , data_format=__A ) snake_case__ : List[Any] = image - 1 return image def _lowercase ( self : Dict , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Optional[bool] = None , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__A : Optional[int] , ): snake_case__ : Any = do_resize if do_resize is not None else self.do_resize snake_case__ : Union[str, Any] = size if size is not None else self.size snake_case__ : Union[str, Any] = get_size_dict(__A ) snake_case__ : Optional[Any] = resample if resample is not None else self.resample snake_case__ : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ : Union[str, Any] = clusters if clusters is not None else self.clusters snake_case__ : Union[str, Any] = np.array(__A ) snake_case__ : Any = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ : Optional[Any] = [to_numpy_array(__A ) for image in images] if do_resize: snake_case__ : List[str] = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_normalize: snake_case__ : Union[str, Any] = [self.normalize(image=__A ) for image in images] if do_color_quantize: snake_case__ : int = [to_channel_dimension_format(__A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ : int = np.array(__A ) snake_case__ : Dict = color_quantize(__A , __A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ : str = images.shape[0] snake_case__ : str = images.reshape(__A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ : Union[str, Any] = list(__A ) else: snake_case__ : Any = [to_channel_dimension_format(__A , __A ) for image in images] snake_case__ : Optional[int] = {"input_ids": images} return BatchFeature(data=__A , tensor_type=__A )
286
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : int ): snake_case__, snake_case__ : Optional[Any] = emb.weight.shape snake_case__ : Tuple = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) snake_case__ : Optional[int] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[Any]="facebook/mbart-large-en-ro" , snake_case_ : Optional[int]=False , snake_case_ : List[Any]=False ): snake_case__ : Tuple = torch.load(snake_case_ , map_location="cpu" )["model"] remove_ignore_keys_(snake_case_ ) snake_case__ : Any = state_dict["encoder.embed_tokens.weight"].shape[0] snake_case__ : List[Any] = MBartConfig.from_pretrained(snake_case_ , vocab_size=snake_case_ ) if mbart_aa and finetuned: snake_case__ : int = "relu" snake_case__ : List[str] = state_dict["decoder.embed_tokens.weight"] snake_case__ : Tuple = MBartForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ ) if finetuned: snake_case__ : Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") __lowerCamelCase : Optional[Any] = parser.parse_args() __lowerCamelCase : str = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
286
1
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _SCREAMING_SNAKE_CASE ( *UpperCamelCase ): """simple docstring""" with open(UpperCamelCase , """r""" ) as fh: fcntl.flock(UpperCamelCase , fcntl.LOCK_EX ) try: print(*UpperCamelCase ) finally: fcntl.flock(UpperCamelCase , fcntl.LOCK_UN ) _lowerCAmelCase = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) _lowerCAmelCase = torch.device('''cuda''', local_rank) _lowerCAmelCase = socket.gethostname() _lowerCAmelCase = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _lowerCAmelCase = dist.get_rank() _lowerCAmelCase = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
37
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __A : Dict = logging.get_logger(__name__) __A : str = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class A_ (a_ ): UpperCAmelCase__ = '''longformer''' def __init__( self , _A = 5_1_2 , _A = 2 , _A = 1 , _A = 0 , _A = 2 , _A = 3_0_5_2_2 , _A = 7_6_8 , _A = 1_2 , _A = 1_2 , _A = 3_0_7_2 , _A = "gelu" , _A = 0.1 , _A = 0.1 , _A = 5_1_2 , _A = 2 , _A = 0.02 , _A = 1E-12 , _A = False , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) UpperCAmelCase = attention_window UpperCAmelCase = sep_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = onnx_export class A_ (a_ ): def __init__( self , _A , _A = "default" , _A = None ): '''simple docstring''' super().__init__(_A , _A , _A ) UpperCAmelCase = True @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = super().outputs if self.task == "default": UpperCAmelCase = {0: '''batch'''} return outputs @property def _lowercase ( self ): '''simple docstring''' return 1E-4 @property def _lowercase ( self ): '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def _lowercase ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): '''simple docstring''' UpperCAmelCase = super().generate_dummy_inputs( preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase = 1 return inputs
273
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: int = "laion/clap-htsat-unfused" SCREAMING_SNAKE_CASE_: Optional[int] = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[Any]): return RobertaTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowerCAmelCase__ : List[Any]): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: Tuple = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_: Optional[int] = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") SCREAMING_SNAKE_CASE_: Optional[int] = self.get_feature_extractor(do_normalize=lowerCAmelCase__ , padding_value=1.0) SCREAMING_SNAKE_CASE_: Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Tuple = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Union[str, Any] = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_list((3, 1000)) SCREAMING_SNAKE_CASE_: Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors="np") SCREAMING_SNAKE_CASE_: List[Any] = processor(audios=lowerCAmelCase__ , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[str] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: int = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Tuple = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = "This is a test string" SCREAMING_SNAKE_CASE_: int = processor(text=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer(lowerCAmelCase__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: str = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_: Union[str, Any] = processor.batch_decode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.batch_decode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: str = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Dict = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
13
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml snake_case_ : Tuple = logging.get_logger(__name__) def A (__A : bool , __A : bool ) -> Optional[Any]: """simple docstring""" def run_func(__A : Optional[Any] ): @wraps(__A ) def run_in_eager_mode(*__A : Dict , **__A : List[Any] ): return func(*__A , **__A ) @wraps(__A ) @tf.function(experimental_compile=__A ) def run_in_graph_mode(*__A : Optional[Any] , **__A : Any ): return func(*__A , **__A ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def A (__A : int , __A : int , __A : int ) -> ["tf.Tensor"]: """simple docstring""" UpperCAmelCase_ = random.Random() UpperCAmelCase_ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__A , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __snake_case ( a ): UpperCAmelCase__ : TensorFlowBenchmarkArguments UpperCAmelCase__ : PretrainedConfig UpperCAmelCase__ : str = "TensorFlow" @property def lowerCamelCase ( self : List[str]): """simple docstring""" return tf.__version__ def lowerCamelCase ( self : Dict , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_inference_func(_snake_case , _snake_case , _snake_case) return self._measure_speed(_inference) def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_train_func(_snake_case , _snake_case , _snake_case) return self._measure_speed(_train) def lowerCamelCase ( self : Any , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _snake_case) UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_inference_func(_snake_case , _snake_case , _snake_case) return self._measure_memory(_inference) def lowerCamelCase ( self : Optional[Any] , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _snake_case) UpperCAmelCase_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''') UpperCAmelCase_ = self._prepare_train_func(_snake_case , _snake_case , _snake_case) return self._measure_memory(_train) def lowerCamelCase ( self : Optional[int] , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''') UpperCAmelCase_ = ( hasattr(_snake_case , '''architectures''') and isinstance(config.architectures , _snake_case) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ = __import__('''transformers''' , fromlist=[model_class]) UpperCAmelCase_ = getattr(_snake_case , _snake_case) UpperCAmelCase_ = model_cls(_snake_case) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''') else: UpperCAmelCase_ = TF_MODEL_MAPPING[config.__class__](_snake_case) # encoder-decoder has vocab size saved differently UpperCAmelCase_ = config.vocab_size if hasattr(_snake_case , '''vocab_size''') else config.encoder.vocab_size UpperCAmelCase_ = random_input_ids(_snake_case , _snake_case , _snake_case) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_forward(): return model(_snake_case , decoder_input_ids=_snake_case , training=_snake_case) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_forward(): return model(_snake_case , training=_snake_case) UpperCAmelCase_ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCamelCase ( self : Optional[Any] , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''') if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''') UpperCAmelCase_ = ( hasattr(_snake_case , '''architectures''') and isinstance(config.architectures , _snake_case) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ = __import__('''transformers''' , fromlist=[model_class]) UpperCAmelCase_ = getattr(_snake_case , _snake_case) UpperCAmelCase_ = model_cls(_snake_case) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''') else: UpperCAmelCase_ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_snake_case) # encoder-decoder has vocab size saved differently UpperCAmelCase_ = config.vocab_size if hasattr(_snake_case , '''vocab_size''') else config.encoder.vocab_size UpperCAmelCase_ = random_input_ids(_snake_case , _snake_case , _snake_case) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_decoder_train(): UpperCAmelCase_ = model(_snake_case , decoder_input_ids=_snake_case , labels=_snake_case , training=_snake_case)[0] UpperCAmelCase_ = tf.gradients(_snake_case , model.trainable_variables) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla) def encoder_train(): UpperCAmelCase_ = model(_snake_case , labels=_snake_case , training=_snake_case)[0] UpperCAmelCase_ = tf.gradients(_snake_case , model.trainable_variables) return gradients UpperCAmelCase_ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCamelCase ( self : Any , _snake_case : Optional[Any]): """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''') timeit.repeat(_snake_case , repeat=1 , number=5) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase_ = timeit.repeat( _snake_case , repeat=self.args.repeat , number=10 , ) return min(_snake_case) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""") def lowerCamelCase ( self : Dict , _snake_case : Callable[[], None]): """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''') with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''') UpperCAmelCase_ = start_memory_tracing('''transformers''') if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''') elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''') UpperCAmelCase_ = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''') # init nvml nvml.nvmlInit() func() UpperCAmelCase_ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) UpperCAmelCase_ = nvml.nvmlDeviceGetMemoryInfo(_snake_case) UpperCAmelCase_ = meminfo.used UpperCAmelCase_ = Memory(_snake_case) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''') UpperCAmelCase_ = None else: UpperCAmelCase_ = measure_peak_memory_cpu(_snake_case) UpperCAmelCase_ = Memory(_snake_case) if isinstance(_snake_case , _snake_case) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase_ = stop_memory_tracing(_snake_case) if memory is None: UpperCAmelCase_ = summary.total else: UpperCAmelCase_ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""") return "N/A", None
51
0
'''simple docstring''' from __future__ import annotations lowerCamelCase : Optional[Any] = "Muhammad Umer Farooq" lowerCamelCase : List[Any] = "MIT" lowerCamelCase : str = "1.0.0" lowerCamelCase : str = "Muhammad Umer Farooq" lowerCamelCase : Union[str, Any] = "contact@muhammadumerfarooq.me" lowerCamelCase : str = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class A__ ( A__ ): def __init__( self : int , _a : str ) -> None: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =domain def A ( self : Optional[int] , _a : str , _a : list[tuple[str, str | None]] ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _SCREAMING_SNAKE_CASE =parse.urljoin(self.domain , _a ) self.urls.append(_a ) def _lowerCAmelCase ( _UpperCamelCase : str ) -> str: """simple docstring""" return ".".join(get_sub_domain_name(_UpperCamelCase ).split('.' )[-2:] ) def _lowerCAmelCase ( _UpperCamelCase : str ) -> str: """simple docstring""" return parse.urlparse(_UpperCamelCase ).netloc def _lowerCAmelCase ( _UpperCamelCase : str = "https://github.com" ) -> list[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =get_domain_name(_UpperCamelCase ) # Initialize the parser _SCREAMING_SNAKE_CASE =Parser(_UpperCamelCase ) try: # Open URL _SCREAMING_SNAKE_CASE =requests.get(_UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _SCREAMING_SNAKE_CASE =set() for link in parser.urls: # open URL. # read = requests.get(link) try: _SCREAMING_SNAKE_CASE =requests.get(_UpperCamelCase ) # Get the valid email. _SCREAMING_SNAKE_CASE =re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : Optional[int] = emails_from_url("https://github.com") print(f'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
353
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase : int = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0_5_2_2, type=int) lowerCamelCase : Optional[Any] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: lowerCamelCase : Optional[int] = pickle.load(fp) logger.info("Counting occurrences for MLM.") lowerCamelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase : Any = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
114
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def lowerCAmelCase__ ( a__: Tuple ) -> str: '''simple docstring''' _UpperCAmelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'''{test_file} instead.''' ) _UpperCAmelCase = components[-1] if not test_fn.endswith('py' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCAmelCase = components[:-1] + [test_fn.replace('.py' , '' )] _UpperCAmelCase = '.'.join(a__ ) return test_module_path def lowerCAmelCase__ ( a__: str ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_module_path(a__ ) _UpperCAmelCase = importlib.import_module(a__ ) return test_module def lowerCAmelCase__ ( a__: Any ) -> int: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(a__ , a__ ) ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase__ ( a__: Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = get_test_module(a__ ) for attr in dir(a__ ): _UpperCAmelCase = getattr(a__ , a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCAmelCase = getattr(a__ , 'all_model_classes' , [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = get_test_classes(a__ ) _UpperCAmelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase__ ( a__: Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase = test_class() if hasattr(a__ , 'setUp' ): test.setUp() _UpperCAmelCase = None if hasattr(a__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCAmelCase = test.model_tester.__class__ return model_tester def lowerCAmelCase__ ( a__: str , a__: Any ) -> str: '''simple docstring''' _UpperCAmelCase = get_test_classes(a__ ) _UpperCAmelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase__ ( a__: str , a__: Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = get_test_classes_for_model(a__ , a__ ) _UpperCAmelCase = [] for test_class in test_classes: _UpperCAmelCase = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda a__ : x.__name__ ) def lowerCAmelCase__ ( a__: Optional[int] ) -> int: '''simple docstring''' _UpperCAmelCase = get_test_classes(a__ ) _UpperCAmelCase = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def lowerCAmelCase__ ( a__: int ) -> int: '''simple docstring''' _UpperCAmelCase = get_model_classes(a__ ) _UpperCAmelCase = { model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_test_mapping def lowerCAmelCase__ ( a__: Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = get_model_classes(a__ ) _UpperCAmelCase = { model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_to_tester_mapping def lowerCAmelCase__ ( a__: Optional[int] ) -> str: '''simple docstring''' if isinstance(a__ , a__ ): return o elif isinstance(a__ , a__ ): return o.__name__ elif isinstance(a__ , (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__ , a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
329
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
329
1
import argparse import copy def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = {} with open(__lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __snake_case : Tuple = [] _list.append([line.split()[1], line.split()[2]] ) __snake_case : List[Any] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __snake_case : Union[str, Any] = [] _list.append([line.split()[0], line.split()[2]] ) __snake_case : str = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): with open(__lowerCamelCase ) as f: __snake_case : Dict = f.read(1 ) __snake_case : Optional[int] = start_node __snake_case : List[Any] = [] __snake_case : Any = start_node __snake_case : int = 0 while visiting not in first_solution: __snake_case : Tuple = 1_0_0_0_0 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCamelCase ) and k[0] not in first_solution: __snake_case : Any = k[1] __snake_case : List[Any] = k[0] first_solution.append(__lowerCamelCase ) __snake_case : Dict = distance_of_first_solution + int(__lowerCamelCase ) __snake_case : List[Any] = best_node first_solution.append(__lowerCamelCase ) __snake_case : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __snake_case : Tuple = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0_0_0_0 ) return first_solution, distance_of_first_solution def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = [] for n in solution[1:-1]: __snake_case : Optional[Any] = solution.index(__lowerCamelCase ) for kn in solution[1:-1]: __snake_case : str = solution.index(__lowerCamelCase ) if n == kn: continue __snake_case : List[str] = copy.deepcopy(__lowerCamelCase ) __snake_case : int = kn __snake_case : Optional[Any] = n __snake_case : Optional[Any] = 0 for k in _tmp[:-1]: __snake_case : Optional[Any] = _tmp[_tmp.index(__lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __snake_case : Any = distance + int(i[1] ) _tmp.append(__lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __snake_case : Tuple = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Any = 1 __snake_case : str = first_solution __snake_case : Optional[int] = [] __snake_case : List[str] = distance_of_first_solution __snake_case : Optional[Any] = solution while count <= iters: __snake_case : Dict = find_neighborhood(__lowerCamelCase , __lowerCamelCase ) __snake_case : Union[str, Any] = 0 __snake_case : Optional[Any] = neighborhood[index_of_best_solution] __snake_case : Any = len(__lowerCamelCase ) - 1 __snake_case : Any = False while not found: __snake_case : Any = 0 while i < len(__lowerCamelCase ): if best_solution[i] != solution[i]: __snake_case : int = best_solution[i] __snake_case : List[str] = solution[i] break __snake_case : List[str] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __snake_case : Any = True __snake_case : Dict = best_solution[:-1] __snake_case : Dict = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __snake_case : Optional[int] = cost __snake_case : List[str] = solution else: __snake_case : Tuple = index_of_best_solution + 1 __snake_case : Dict = neighborhood[index_of_best_solution] if len(__lowerCamelCase ) >= size: tabu_list.pop(0 ) __snake_case : Optional[int] = count + 1 return best_solution_ever, best_cost def lowerCAmelCase_ ( __lowerCamelCase=None ): __snake_case : Tuple = generate_neighbours(args.File ) __snake_case : Tuple = generate_first_solution( args.File , __lowerCamelCase ) __snake_case : Optional[Any] = tabu_search( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
360
import logging from transformers.configuration_utils import PretrainedConfig _snake_case : Optional[Any] = logging.getLogger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = "masked_bert" def __init__( self : Optional[int] , lowerCamelCase : Any=30522 , lowerCamelCase : Tuple=768 , lowerCamelCase : str=12 , lowerCamelCase : Dict=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : int=2 , lowerCamelCase : str=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Any=0 , lowerCamelCase : Dict="topK" , lowerCamelCase : List[Any]="constant" , lowerCamelCase : Dict=0.0 , **lowerCamelCase : List[Any] , ) -> Dict: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __snake_case : Optional[Any] = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : str = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Any = initializer_range __snake_case : str = layer_norm_eps __snake_case : str = pruning_method __snake_case : int = mask_init __snake_case : Any = mask_scale
134
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Union[str, Any] = FileLock(str(tmpdir / 'foo.lock' ) ) A_ : Tuple = FileLock(str(tmpdir / 'foo.lock' ) ) A_ : Union[str, Any] = 0.01 with locka.acquire(): with pytest.raises(_UpperCAmelCase ): A_ : List[str] = time.time() locka.acquire(_UpperCAmelCase ) assert time.time() - _start > timeout def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = 'a' * 1000 + '.lock' A_ : Union[str, Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(_UpperCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A_ : Tuple = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_UpperCAmelCase ): locka.acquire(0 )
286
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase_ : List[str] = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def UpperCAmelCase__ ( ): """simple docstring""" A_ : Union[str, Any] = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) A_ : Tuple = os.path.join(_UpperCAmelCase , 'words.txt' ) A_ : List[Any] = '' with open(_UpperCAmelCase ) as f: A_ : int = f.readline() A_ : Optional[Any] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A_ : Dict = [ word for word in [sum(ord(_UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
286
1
"""simple docstring""" import sys import turtle def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->tuple[float, float]: """simple docstring""" return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->None: """simple docstring""" my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_SCREAMING_SNAKE_CASE , get_mid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , get_mid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , depth - 1 ) triangle(_SCREAMING_SNAKE_CASE , get_mid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , get_mid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , depth - 1 ) triangle(_SCREAMING_SNAKE_CASE , get_mid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , get_mid(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __A = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __A = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
254
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1e-12 ) ->str: """simple docstring""" lowerCAmelCase__ :Tuple = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T lowerCAmelCase__ :int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_SCREAMING_SNAKE_CASE , axis=1 ) , a_min=_SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(_SCREAMING_SNAKE_CASE , norm_emb_a.T ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" __magic_name__ :CLIPConfig __magic_name__ :jnp.dtype = jnp.floataa def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) lowerCAmelCase__ :str = nn.Dense(self.config.projection_dim , use_bias=__UpperCAmelCase , dtype=self.dtype ) lowerCAmelCase__ :Optional[Any] = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) lowerCAmelCase__ :Optional[int] = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCAmelCase__ :Any = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) lowerCAmelCase__ :List[Any] = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.vision_model(__UpperCAmelCase )[1] lowerCAmelCase__ :Optional[int] = self.visual_projection(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = jax_cosine_distance(__UpperCAmelCase , self.special_care_embeds ) lowerCAmelCase__ :Tuple = jax_cosine_distance(__UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCAmelCase__ :Dict = 0.0 lowerCAmelCase__ :List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCAmelCase__ :Optional[Any] = jnp.round(__UpperCAmelCase , 3 ) lowerCAmelCase__ :Tuple = jnp.any(special_scores > 0 , axis=1 , keepdims=__UpperCAmelCase ) # Use a lower threshold if an image has any special care concept lowerCAmelCase__ :List[Any] = is_special_care * 0.01 lowerCAmelCase__ :Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCAmelCase__ :Any = jnp.round(__UpperCAmelCase , 3 ) lowerCAmelCase__ :Tuple = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Tuple = CLIPConfig __magic_name__ :Tuple = """clip_input""" __magic_name__ :str = FlaxStableDiffusionSafetyCheckerModule def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 0 , __UpperCAmelCase = jnp.floataa , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' if input_shape is None: lowerCAmelCase__ :Dict = (1, 2_2_4, 2_2_4, 3) lowerCAmelCase__ :Any = self.module_class(config=__UpperCAmelCase , dtype=__UpperCAmelCase , **__UpperCAmelCase ) super().__init__(__UpperCAmelCase , __UpperCAmelCase , input_shape=__UpperCAmelCase , seed=__UpperCAmelCase , dtype=__UpperCAmelCase , _do_init=_do_init ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :str = jax.random.normal(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = jax.random.split(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = {'params': params_rng, 'dropout': dropout_rng} lowerCAmelCase__ :Optional[int] = self.module.init(__UpperCAmelCase , __UpperCAmelCase )['params'] return random_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = jnp.transpose(__UpperCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
254
1
"""simple docstring""" import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE : Dict = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def lowerCamelCase__ ( _lowerCamelCase : str ) -> str: re.sub('<n>' , '' , _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
183
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
def lowerCamelCase__ ( a , a ) -> float: def get_matched_characters(a , a ) -> str: _A: Any = [] _A: List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _A: List[Any] = int(max(0 , i - limit ) ) _A: int = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a ) _A: List[str] = f"""{_stra[0:_stra.index(a )]} {_stra[_stra.index(a ) + 1:]}""" return "".join(a ) # matching characters _A: Tuple = get_matched_characters(a , a ) _A: str = get_matched_characters(a , a ) _A: Dict = len(a ) # transposition _A: List[str] = ( len([(ca, ca) for ca, ca in zip(a , a ) if ca != ca] ) // 2 ) if not match_count: _A: int = 0.0 else: _A: str = ( 1 / 3 * ( match_count / len(a ) + match_count / len(a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _A: Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
358
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase__ : Tuple = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase__ : Optional[int] = {'facebook/blenderbot_small-90M': 512} def lowerCamelCase__ ( a ) -> Optional[Any]: _A: List[Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: List[Any] = char _A: Union[str, Any] = set(a ) return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]="__start__" , lowerCAmelCase_ : Any="__end__" , lowerCAmelCase_ : Any="__unk__" , lowerCAmelCase_ : Any="__null__" , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: Optional[int] = json.load(lowerCAmelCase_ ) _A: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Dict = merges_handle.read().split('''\n''' )[1:-1] _A: int = [tuple(merge.split() ) for merge in merges] _A: Dict = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Union[str, Any] = {} @property def __magic_name__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] _A: List[Any] = re.sub('''([.,!?()])''' , R''' \1''' , lowerCAmelCase_ ) _A: List[Any] = re.sub('''(\')''' , R''' \1 ''' , lowerCAmelCase_ ) _A: List[Any] = re.sub(R'''\s{2,}''' , ''' ''' , lowerCAmelCase_ ) if "\n" in token: _A: Dict = token.replace('''\n''' , ''' __newln__''' ) _A: Any = token.split(''' ''' ) _A: Optional[Any] = [] for token in tokens: if not len(lowerCAmelCase_ ): continue _A: str = token.lower() _A: List[str] = tuple(lowerCAmelCase_ ) _A: str = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _A: Dict = get_pairs(lowerCAmelCase_ ) if not pairs: words.append(lowerCAmelCase_ ) continue while True: _A: str = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A: Optional[int] = bigram _A: str = [] _A: Dict = 0 while i < len(lowerCAmelCase_ ): try: _A: List[Any] = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) new_word.extend(word[i:j] ) _A: Optional[int] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: Tuple = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[int] = get_pairs(lowerCAmelCase_ ) _A: str = '''@@ '''.join(lowerCAmelCase_ ) _A: Tuple = word[:-4] _A: List[Any] = word words.append(lowerCAmelCase_ ) return " ".join(lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[Any] = [] _A: List[Any] = re.findall(R'''\S+\n?''' , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : str , lowerCAmelCase_ : str ): """simple docstring""" _A: List[str] = token.lower() return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , lowerCAmelCase_ : int ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def __magic_name__ ( self : List[str] , lowerCAmelCase_ : List[str] ): """simple docstring""" _A: List[str] = ''' '''.join(lowerCAmelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Any = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: List[str] = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Optional[int] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
301
0
lowerCAmelCase__ : List[Any] ="\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase__ : int =[{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase__ : Optional[Any] ={ "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
257
from __future__ import annotations from math import pi def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
114
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : def __init__( self : Union[str, Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any=13 , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Tuple=16 , lowerCamelCase__ : List[Any]=[1, 2, 1] , lowerCamelCase__ : Tuple=[2, 2, 4] , lowerCamelCase__ : Dict=2 , lowerCamelCase__ : int=2.0 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : str=0.1 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=0.0_2 , lowerCamelCase__ : Tuple=1E-5 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=10 , lowerCamelCase__ : Optional[Any]=8 , lowerCamelCase__ : Tuple=["stage1", "stage2", "stage3"] , lowerCamelCase__ : Dict=[1, 2, 3] , ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Dict = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : int = embed_dim _UpperCAmelCase : Tuple = depths _UpperCAmelCase : int = num_heads _UpperCAmelCase : Union[str, Any] = window_size _UpperCAmelCase : Tuple = mlp_ratio _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = drop_path_rate _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Union[str, Any] = use_absolute_embeddings _UpperCAmelCase : Union[str, Any] = patch_norm _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : str = is_training _UpperCAmelCase : Optional[int] = scope _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : List[str] = encoder_stride _UpperCAmelCase : List[Any] = out_features _UpperCAmelCase : int = out_indices def lowerCAmelCase__ ( self : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self : Optional[Any] ) ->str: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = MaskFormerSwinModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase : Optional[int] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = MaskFormerSwinBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCamelCase__ ): _UpperCAmelCase : Optional[int] = ["stem"] _UpperCAmelCase : Any = MaskFormerSwinBackbone(config=lowerCamelCase__ ) def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : str = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = config_and_inputs _UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase : Dict = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[Any] = False def lowerCAmelCase__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = MaskFormerSwinModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Dict ) ->Union[str, Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self : Optional[Any] ) ->Any: '''simple docstring''' return def lowerCAmelCase__ ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase__ ( self : int ) ->int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) @unittest.skip("Swin does not use inputs_embeds" ) def lowerCAmelCase__ ( self : int ) ->Any: '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def lowerCAmelCase__ ( self : Tuple ) ->List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Any = [*signature.parameters.keys()] _UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def lowerCAmelCase__ ( self : List[str] ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int ) ->Dict: '''simple docstring''' _UpperCAmelCase : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : str = outputs.hidden_states _UpperCAmelCase : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # Swin has a different seq_length _UpperCAmelCase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase : str = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase : Any = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Dict = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def lowerCAmelCase__ ( self : Dict ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def lowerCAmelCase__ ( self : str ) ->Tuple: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def lowerCAmelCase__ ( self : Dict ) ->Optional[int]: '''simple docstring''' pass def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCamelCase__ : Optional[int] ): _UpperCAmelCase : str = 0 return t def check_equivalence(lowerCamelCase__ : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , lowerCamelCase__ : int={} ): with torch.no_grad(): _UpperCAmelCase : str = model(**lowerCamelCase__ , return_dict=lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Tuple = model(**lowerCamelCase__ , return_dict=lowerCamelCase__ , **lowerCamelCase__ ).to_tuple() def recursive_check(lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] ): if isinstance(lowerCamelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase__ , lowerCamelCase__ ): recursive_check(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCamelCase__ , lowerCamelCase__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCamelCase__ ) , set_nan_tensor_to_zero(lowerCamelCase__ ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(lowerCamelCase__ ).any()} and `inf`: {torch.isinf(lowerCamelCase__ )}. Dict has""" F""" `nan`: {torch.isnan(lowerCamelCase__ ).any()} and `inf`: {torch.isinf(lowerCamelCase__ )}.""" ) , ) recursive_check(lowerCamelCase__ , lowerCamelCase__ ) for model_class in self.all_model_classes: _UpperCAmelCase : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Tuple = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : Tuple = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Dict = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {"output_hidden_states": True} ) _UpperCAmelCase : str = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) _UpperCAmelCase : List[str] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) check_equivalence(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {"output_hidden_states": True} ) @require_torch class lowerCAmelCase__ ( unittest.TestCase , UpperCAmelCase__ ): lowerCAmelCase : int = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase : Dict = MaskFormerSwinConfig def lowerCAmelCase__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = MaskFormerSwinModelTester(self ) def lowerCAmelCase__ ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase : str = backbone_class(lowerCamelCase__ ) backbone.to(lowerCamelCase__ ) backbone.eval() _UpperCAmelCase : Tuple = backbone(**lowerCamelCase__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCamelCase__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase : Optional[Any] = backbone(**lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase : Tuple = backbone(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertIsNotNone(outputs.attentions )
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') lowerCamelCase__ = int(input('Enter number: ').strip()) print(F'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
322
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : int = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) snake_case : str = tokenizer("Hello there" , return_tensors="tf" ).input_ids snake_case : int = tokenizer("Hi I am" , return_tensors="tf" ).input_ids snake_case : List[str] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ).loss snake_case : List[str] = -tf.math.reduce_mean(lowerCAmelCase_ ).numpy() snake_case : Optional[Any] = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
59
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __snake_case : Any = pytest.mark.integration @pytest.mark.parametrize("""path""", ["""paws""", """csv"""] ) def __lowerCamelCase ( __snake_case : Any, __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" inspect_dataset(__snake_case, __snake_case ) A__ : Dict =path + """.py""" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""", ["""accuracy"""] ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Any ) -> int: """simple docstring""" inspect_metric(__snake_case, __snake_case ) A__ : int =path + """.py""" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( """path, config_name, expected_splits""", [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ], ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : Union[str, Any], __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =get_dataset_config_info(__snake_case, config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""", [ ("""paws""", None, ValueError), ], ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Optional[Any], __snake_case : List[Any] ) -> List[str]: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case, config_name=__snake_case ) @pytest.mark.parametrize( """path, expected""", [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ], ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : str ) -> Optional[Any]: """simple docstring""" A__ : Optional[int] =get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""", [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ], ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : Optional[Any] ) -> int: """simple docstring""" A__ : List[Any] =get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs A__ : Optional[int] =expected_configs[0] assert expected_config in infos A__ : List[str] =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""", [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ], ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : List[Any], __snake_case : Optional[Any] ) -> Any: """simple docstring""" A__ : str =get_dataset_infos(__snake_case ) assert expected_config in infos A__ : int =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""", [ ("""paws""", None, ValueError), ], ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : Optional[int], __snake_case : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case, config_name=__snake_case )
134
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = tempfile.mkdtemp() # fmt: off UpperCamelCase__ :Optional[int] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ :Any = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) UpperCamelCase__ :Any = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCamelCase__ :Optional[int] = {'''unk_token''': '''<unk>'''} UpperCamelCase__ :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) UpperCamelCase__ :Any = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } UpperCamelCase__ :List[str] = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ :int = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_tokenizer() UpperCamelCase__ :int = self.get_rust_tokenizer() UpperCamelCase__ :Union[str, Any] = self.get_image_processor() UpperCamelCase__ :Dict = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Optional[int] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ :str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ :Dict = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) UpperCamelCase__ :Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :Optional[int] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.prepare_image_inputs() UpperCamelCase__ :Tuple = image_processor(UpperCamelCase_ , return_tensors='''np''' ) UpperCamelCase__ :Optional[Any] = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :Union[str, Any] = self.get_tokenizer() UpperCamelCase__ :Any = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = '''lower newer''' UpperCamelCase__ :int = processor(text=UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.get_image_processor() UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :int = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :str = '''lower newer''' UpperCamelCase__ :Tuple = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.get_image_processor() UpperCamelCase__ :Optional[int] = self.get_tokenizer() UpperCamelCase__ :Dict = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = self.prepare_image_inputs() UpperCamelCase__ :Any = processor(images=UpperCamelCase_ , visual_prompt=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.get_image_processor() UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :int = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ :List[Any] = processor.batch_decode(UpperCamelCase_ ) UpperCamelCase__ :str = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
219
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
219
1
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase = '''docs/source/en/_toctree.yml''' def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : Optional[Any] = defaultdict(lowerCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 __UpperCAmelCase : List[Any] = [key for key, value in counts.items() if value > 1] __UpperCAmelCase : Any = [] for duplicate_key in duplicates: __UpperCAmelCase : Tuple = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() ) def lowercase_ ( lowerCAmelCase__ : Tuple=False ): """simple docstring""" with open(lowerCAmelCase__ , encoding="""utf-8""" ) as f: __UpperCAmelCase : Tuple = yaml.safe_load(f.read() ) # Get to the API doc __UpperCAmelCase : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCAmelCase : List[str] = content[api_idx]["""sections"""] # Then to the model doc __UpperCAmelCase : int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __UpperCAmelCase : Tuple = api_doc[model_idx]["""sections"""] __UpperCAmelCase : Tuple = [(idx, section) for idx, section in enumerate(lowerCAmelCase__ ) if """sections""" in section] __UpperCAmelCase : Optional[int] = False for idx, modality_doc in modalities_docs: __UpperCAmelCase : Tuple = modality_doc["""sections"""] __UpperCAmelCase : List[str] = clean_model_doc_toc(lowerCAmelCase__ ) if old_modality_doc != new_modality_doc: __UpperCAmelCase : Union[str, Any] = True if overwrite: __UpperCAmelCase : Union[str, Any] = new_modality_doc if diff: if overwrite: __UpperCAmelCase : Union[str, Any] = model_doc __UpperCAmelCase : List[str] = api_doc with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _UpperCamelCase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
254
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _UpperCamelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizer _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : List[Any] = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCAmelCase : Any = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : Any = False if not self.vocab_file else True __UpperCAmelCase : Optional[int] = extra_ids @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCAmelCase : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , ) return max_model_length def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Any = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCAmelCase : Optional[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ) -> Any: '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
254
1
import math from datetime import datetime, timedelta def lowerCAmelCase__ ( _a : int ): snake_case_ : Union[str, Any] = year % 19 snake_case_ : List[str] = year % 4 snake_case_ : str = year % 7 snake_case_ : Optional[Any] = math.floor(year / 1_00 ) snake_case_ : Dict = math.floor((13 + 8 * leap_day_inhibits) / 25 ) snake_case_ : Union[str, Any] = leap_day_inhibits / 4 snake_case_ : int = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case_ : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case_ : int = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case_ : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_a , 4 , 18 ) else: return datetime(_a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowercase : List[Any] = '''will be''' if year > datetime.now().year else '''was''' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
36
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = DebertaTokenizer A : List[Any] = True A : Dict = DebertaTokenizerFast def _lowerCAmelCase ( self ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] snake_case_ : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ : Optional[int] = {"unk_token": "[UNK]"} snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ : int = "lower newer" snake_case_ : Dict = "lower newer" return input_text, output_text def _lowerCAmelCase ( self ) -> str: snake_case_ : Tuple = self.get_tokenizer() snake_case_ : str = "lower newer" snake_case_ : int = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] snake_case_ : str = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Dict = tokens + [tokenizer.unk_token] snake_case_ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[str] = self.get_tokenizer() snake_case_ : str = tokenizer("Hello" , "World" ) snake_case_ : List[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , _SCREAMING_SNAKE_CASE ) @slow def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : str = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case_ : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = tokenizer.encode( "sequence builders" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case_ : str = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) snake_case_ : str = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case_ : str = tokenizer_class.from_pretrained("microsoft/deberta-base" ) snake_case_ : int = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] snake_case_ : Any = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = [tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) for seq in encoding["input_ids"]] # fmt: off snake_case_ : List[Any] = { "input_ids": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case_ : List[str] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , _SCREAMING_SNAKE_CASE ) for expected, decoded in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
36
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a_ (unittest.TestCase ): __lowerCAmelCase : Optional[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __lowerCAmelCase : int = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = AudioClassificationPipeline(model=snake_case_ , feature_extractor=snake_case_ ) # test with a raw waveform _lowerCAmelCase : Tuple = np.zeros((3_4_0_0_0,) ) _lowerCAmelCase : int = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __UpperCamelCase ( self , snake_case_ , snake_case_ ): _lowerCAmelCase , _lowerCAmelCase : str = examples _lowerCAmelCase : int = audio_classifier(snake_case_ ) # by default a model is initialized with num_labels=2 self.assertEqual( snake_case_ , [ {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, ] , ) _lowerCAmelCase : List[str] = audio_classifier(snake_case_ , top_k=1 ) self.assertEqual( snake_case_ , [ {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, ] , ) self.run_torchaudio(snake_case_ ) @require_torchaudio def __UpperCamelCase ( self , snake_case_ ): import datasets # test with a local file _lowerCAmelCase : Dict = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _lowerCAmelCase : str = dataset[0]["""audio"""]["""array"""] _lowerCAmelCase : Dict = audio_classifier(snake_case_ ) self.assertEqual( snake_case_ , [ {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, {"""score""": ANY(snake_case_ ), """label""": ANY(snake_case_ )}, ] , ) @require_torch def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = """anton-l/wav2vec2-random-tiny-classifier""" _lowerCAmelCase : List[str] = pipeline("""audio-classification""" , model=snake_case_ ) _lowerCAmelCase : Dict = np.ones((8_0_0_0,) ) _lowerCAmelCase : List[str] = audio_classifier(snake_case_ , top_k=4 ) _lowerCAmelCase : Tuple = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] _lowerCAmelCase : Any = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase : int = {"""array""": np.ones((8_0_0_0,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase : str = audio_classifier(snake_case_ , top_k=4 ) self.assertIn(nested_simplify(snake_case_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __UpperCamelCase ( self ): import datasets _lowerCAmelCase : int = """superb/wav2vec2-base-superb-ks""" _lowerCAmelCase : Any = pipeline("""audio-classification""" , model=snake_case_ ) _lowerCAmelCase : Optional[int] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _lowerCAmelCase : Tuple = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _lowerCAmelCase : Tuple = audio_classifier(snake_case_ , top_k=4 ) self.assertEqual( nested_simplify(snake_case_ , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __UpperCamelCase ( self ): pass
309
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : Dict ={ 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] =['MaskFormerFeatureExtractor'] lowerCAmelCase__ : Union[str, Any] =['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int =[ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] lowerCAmelCase__ : str =[ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys lowerCAmelCase__ : Optional[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure)
353
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : int = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Dict = use_labels SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : Dict = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = DistilBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = DistilBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = DistilBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = DistilBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _UpperCAmelCase = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = DistilBertModelTester(self ) SCREAMING_SNAKE_CASE_ : str = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Any = DistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : str = model_class(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.jit.load(os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = DistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
162
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class A_ : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : Any=2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : List[Any]=1_6 , UpperCAmelCase : List[Any]=[1, 2, 1] , UpperCAmelCase : Tuple=[2, 2, 4] , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=2.0 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-5 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=1_0 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : Tuple=["stage1", "stage2", "stage3"] , UpperCAmelCase : List[str]=[1, 2, 3] , ) -> List[str]: __lowerCAmelCase: Any = parent __lowerCAmelCase: List[Any] = batch_size __lowerCAmelCase: int = image_size __lowerCAmelCase: int = patch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: List[str] = embed_dim __lowerCAmelCase: int = depths __lowerCAmelCase: Tuple = num_heads __lowerCAmelCase: List[Any] = window_size __lowerCAmelCase: Dict = mlp_ratio __lowerCAmelCase: Union[str, Any] = qkv_bias __lowerCAmelCase: Optional[int] = hidden_dropout_prob __lowerCAmelCase: Dict = attention_probs_dropout_prob __lowerCAmelCase: Any = drop_path_rate __lowerCAmelCase: Optional[int] = hidden_act __lowerCAmelCase: Optional[int] = use_absolute_embeddings __lowerCAmelCase: str = patch_norm __lowerCAmelCase: Optional[int] = layer_norm_eps __lowerCAmelCase: Optional[int] = initializer_range __lowerCAmelCase: str = is_training __lowerCAmelCase: Any = scope __lowerCAmelCase: Union[str, Any] = use_labels __lowerCAmelCase: Any = type_sequence_label_size __lowerCAmelCase: int = encoder_stride __lowerCAmelCase: Dict = out_features __lowerCAmelCase: int = out_indices def UpperCAmelCase ( self : int ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Tuple = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : str ) -> Any: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ) -> int: __lowerCAmelCase: Tuple = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase: Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: __lowerCAmelCase: List[str] = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = ['stem'] __lowerCAmelCase: Optional[Any] = MaskFormerSwinBackbone(config=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = config_and_inputs __lowerCAmelCase: Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _lowercase : Any = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _lowercase : Optional[int] = False _lowercase : int = False _lowercase : Optional[Any] = False _lowercase : List[Any] = False _lowercase : Any = False def UpperCAmelCase ( self : int ) -> Optional[int]: __lowerCAmelCase: List[Any] = MaskFormerSwinModelTester(self ) __lowerCAmelCase: List[str] = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: pass def UpperCAmelCase ( self : Union[str, Any] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : Any ) -> Any: return def UpperCAmelCase ( self : Tuple ) -> Dict: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase ( self : List[str] ) -> str: pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: pass def UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: Union[str, Any] = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self : str ) -> int: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: str = model_class(UpperCAmelCase ) __lowerCAmelCase: str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: Tuple = [*signature.parameters.keys()] __lowerCAmelCase: int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: pass def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ) -> Any: __lowerCAmelCase: Optional[Any] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase: Tuple = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __lowerCAmelCase: Optional[int] = outputs.hidden_states __lowerCAmelCase: str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length __lowerCAmelCase: int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase: Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase ( self : int ) -> Dict: __lowerCAmelCase , __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase: Dict = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase: Optional[int] = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : List[str] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: List[Any] = 3 __lowerCAmelCase: List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase: Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase: List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase: Optional[int] = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase: Any = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase ( self : str ) -> Any: pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase : List[Any] ): __lowerCAmelCase: str = 0 return t def check_equivalence(UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict={} ): with torch.no_grad(): __lowerCAmelCase: Optional[Any] = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[str] = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase : int , UpperCAmelCase : List[Any] ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has''' F''' `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.''' ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[str] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: List[str] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) __lowerCAmelCase: Tuple = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class A_ ( unittest.TestCase , snake_case__ ): _lowercase : Tuple = (MaskFormerSwinBackbone,) if is_torch_available() else () _lowercase : int = MaskFormerSwinConfig def UpperCAmelCase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase: Tuple = MaskFormerSwinModelTester(self ) def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase: int = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCAmelCase: Dict = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() __lowerCAmelCase: Tuple = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCAmelCase: Any = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Dict = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCAmelCase: Optional[int] = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
322
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : tuple , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowerCAmelCase: str = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __lowerCAmelCase: Dict = 'cpu' __lowerCAmelCase: Optional[int] = Path(SCREAMING_SNAKE_CASE ) # VAE DECODER __lowerCAmelCase: Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' ) __lowerCAmelCase: Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part __lowerCAmelCase: Any = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
322
1
from ...processing_utils import ProcessorMixin class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'WhisperFeatureExtractor' __snake_case = 'WhisperTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> int: super().__init__(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor _SCREAMING_SNAKE_CASE : int = False def UpperCamelCase_ ( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True ) -> List[Any]: return self.tokenizer.get_decoder_prompt_ids(task=__lowerCamelCase , language=__lowerCamelCase , no_timestamps=__lowerCamelCase ) def __call__( self , *__lowerCamelCase , **__lowerCamelCase ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = kwargs.pop("audio" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = kwargs.pop("sampling_rate" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = kwargs.pop("text" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: _SCREAMING_SNAKE_CASE : Dict = args[0] _SCREAMING_SNAKE_CASE : Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: _SCREAMING_SNAKE_CASE : Union[str, Any] = encodings["input_ids"] return inputs def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Any: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Dict: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase="np" ) -> Optional[int]: return self.tokenizer.get_prompt_ids(__lowerCamelCase , return_tensors=__lowerCamelCase )
364
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): # ===== initialization ===== _SCREAMING_SNAKE_CASE : List[Any] = Mock() _SCREAMING_SNAKE_CASE : Optional[Any] = conn, Mock() _SCREAMING_SNAKE_CASE : Dict = iter([1, None] ) _SCREAMING_SNAKE_CASE : Optional[Any] = lambda __lowerCamelCase : next(__lowerCamelCase ) # ===== invoke ===== send_file(filename="mytext.txt", testing=__lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
325
0
from math import factorial, pi def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : int = 30 ) -> float: """simple docstring""" if not isinstance(__UpperCamelCase , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) SCREAMING_SNAKE_CASE__ = float(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__UpperCamelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : int = 30 ) -> float: """simple docstring""" if not isinstance(__UpperCamelCase , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) SCREAMING_SNAKE_CASE__ = float(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
219
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __lowerCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __lowerCamelCase : int = [0, 25, 50] __lowerCamelCase : Tuple = [25, 50, 75] __lowerCamelCase : List[str] = fuzz.membership.trimf(X, abca) __lowerCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __lowerCamelCase : List[str] = np.ones(75) __lowerCamelCase : Tuple = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __lowerCamelCase : str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __lowerCamelCase : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __lowerCamelCase : Union[str, Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __lowerCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __lowerCamelCase : List[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __lowerCamelCase : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __lowerCamelCase : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __lowerCamelCase : str = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
219
1
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = "ybelkada/fonts" def UpperCamelCase_( ) -> Any: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: requires_backends(UpperCamelCase__ , ['torch'] ) _check_torch_version() _lowercase : List[str] = image_tensor.unsqueeze(0 ) _lowercase : str = torch.nn.functional.unfold(UpperCamelCase__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _lowercase : str = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase__ , UpperCamelCase__ , -1 ) _lowercase : Dict = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 36 , lowerCamelCase_ = "black" , lowerCamelCase_ = "white" , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = 5 , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Tuple: requires_backends(UpperCamelCase__ , 'vision' ) # Add new lines so that each line is no more than 80 characters. _lowercase : Tuple = textwrap.TextWrapper(width=80 ) _lowercase : str = wrapper.wrap(text=UpperCamelCase__ ) _lowercase : str = '\n'.join(UpperCamelCase__ ) if font_bytes is not None and font_path is None: _lowercase : int = io.BytesIO(UpperCamelCase__ ) elif font_path is not None: _lowercase : Optional[int] = font_path else: _lowercase : Optional[Any] = hf_hub_download(UpperCamelCase__ , 'Arial.TTF' ) _lowercase : List[str] = ImageFont.truetype(UpperCamelCase__ , encoding='UTF-8' , size=UpperCamelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowercase : int = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCamelCase__ ) ) _lowercase , _lowercase , _lowercase , _lowercase : Any = temp_draw.textbbox((0, 0) , UpperCamelCase__ , UpperCamelCase__ ) # Create the actual image with a bit of padding around the text. _lowercase : str = text_width + left_padding + right_padding _lowercase : str = text_height + top_padding + bottom_padding _lowercase : Optional[int] = Image.new('RGB' , (image_width, image_height) , UpperCamelCase__ ) _lowercase : Dict = ImageDraw.Draw(UpperCamelCase__ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase__ , fill=UpperCamelCase__ , font=UpperCamelCase__ ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) -> Any: requires_backends(UpperCamelCase__ , 'vision' ) # Convert to PIL image if necessary _lowercase : Any = to_pil_image(UpperCamelCase__ ) _lowercase : Optional[int] = render_text(UpperCamelCase__ , **UpperCamelCase__ ) _lowercase : Any = max(header_image.width , image.width ) _lowercase : Optional[Any] = int(image.height * (new_width / image.width) ) _lowercase : Optional[int] = int(header_image.height * (new_width / header_image.width) ) _lowercase : int = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _lowercase : int = to_numpy_array(UpperCamelCase__ ) if infer_channel_dimension_format(UpperCamelCase__ ) == ChannelDimension.LAST: _lowercase : Any = to_channel_dimension_format(UpperCamelCase__ , ChannelDimension.LAST ) return new_image class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = ['''flattened_patches'''] def __init__( self, lowerCamelCase = True, lowerCamelCase = True, lowerCamelCase = None, lowerCamelCase = 20_48, lowerCamelCase = False, **lowerCamelCase, ) -> Any: """simple docstring""" super().__init__(**_a) _lowercase : Tuple = patch_size if patch_size is not None else {'height': 16, 'width': 16} _lowercase : Optional[int] = do_normalize _lowercase : Union[str, Any] = do_convert_rgb _lowercase : List[Any] = max_patches _lowercase : Optional[Any] = is_vqa def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch _lowercase : Optional[int] = to_channel_dimension_format(_a, ChannelDimension.FIRST) _lowercase : Dict = torch.from_numpy(_a) _lowercase , _lowercase : int = patch_size['height'], patch_size['width'] _lowercase , _lowercase : Any = get_image_size(_a) # maximize scale s.t. _lowercase : int = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) _lowercase : str = max(min(math.floor(scale * image_height / patch_height), _a), 1) _lowercase : List[Any] = max(min(math.floor(scale * image_width / patch_width), _a), 1) _lowercase : List[Any] = max(num_feasible_rows * patch_height, 1) _lowercase : Any = max(num_feasible_cols * patch_width, 1) _lowercase : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=_a, antialias=_a, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] _lowercase : List[str] = torch_extract_patches(_a, _a, _a) _lowercase : Dict = patches.shape _lowercase : Optional[int] = patches_shape[1] _lowercase : List[str] = patches_shape[2] _lowercase : Optional[int] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowercase : int = patches.reshape([rows * columns, depth]) # [rows * columns, 1] _lowercase : List[Any] = torch.arange(_a).reshape([rows, 1]).repeat(1, _a).reshape([rows * columns, 1]) _lowercase : Optional[Any] = torch.arange(_a).reshape([1, columns]).repeat(_a, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowercase : str = row_ids.to(torch.floataa) _lowercase : Any = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowercase : Optional[Any] = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowercase : List[str] = torch.nn.functional.pad(_a, [0, 0, 0, max_patches - (rows * columns)]).float() _lowercase : Any = to_numpy_array(_a) return result def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, **lowerCamelCase) -> Optional[Any]: """simple docstring""" if image.dtype == np.uinta: _lowercase : Union[str, Any] = image.astype(np.floataa) # take mean across the whole `image` _lowercase : int = np.mean(_a) _lowercase : Dict = np.std(_a) _lowercase : Optional[Any] = max(_a, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(_a, mean=_a, std=_a, **_a) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = ChannelDimension.FIRST, **lowerCamelCase, ) -> Any: """simple docstring""" _lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize _lowercase : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowercase : Any = patch_size if patch_size is not None else self.patch_size _lowercase : List[Any] = max_patches if max_patches is not None else self.max_patches _lowercase : Optional[int] = self.is_vqa if kwargs.get('data_format', _a) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') _lowercase : Dict = make_list_of_images(_a) if not valid_images(_a): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: _lowercase : int = [convert_to_rgb(_a) for image in images] # All transformations expect numpy arrays. _lowercase : Optional[int] = [to_numpy_array(_a) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') _lowercase : List[Any] = kwargs.pop('font_bytes', _a) _lowercase : Optional[Any] = kwargs.pop('font_path', _a) if isinstance(_a, _a): _lowercase : List[Any] = [header_text] * len(_a) _lowercase : Any = [ render_header(_a, header_text[i], font_bytes=_a, font_path=_a) for i, image in enumerate(_a) ] if do_normalize: _lowercase : Optional[int] = [self.normalize(image=_a) for image in images] # convert to torch tensor and permute _lowercase : Optional[int] = [ self.extract_flattened_patches(image=_a, max_patches=_a, patch_size=_a) for image in images ] # create attention mask in numpy _lowercase : Union[str, Any] = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] _lowercase : Tuple = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=_a) return encoded_outputs
363
def UpperCamelCase_( lowerCamelCase_ = 1000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
84
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( a): lowerCamelCase__ = ['image_processor', 'tokenizer'] lowerCamelCase__ = 'AutoImageProcessor' lowerCamelCase__ = 'AutoTokenizer' def __init__( self, __a, __a): '''simple docstring''' super().__init__(__a, __a) _lowerCAmelCase : int = self.image_processor def __call__( self, __a=None, __a=None, __a=None, **__a): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: _lowerCAmelCase : List[str] = self.tokenizer(__a, return_tensors=__a, **__a) if images is not None: _lowerCAmelCase : Tuple = self.image_processor(__a, return_tensors=__a, **__a) if text is not None and images is not None: _lowerCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a), tensor_type=__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a) @property def snake_case__ ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
36
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'wav2vec2' def __init__( self, __a=32, __a=768, __a=12, __a=12, __a=3072, __a="gelu", __a=0.1, __a=0.1, __a=0.1, __a=0.0, __a=0.0, __a=0.1, __a=0.1, __a=0.02, __a=1E-5, __a="group", __a="gelu", __a=(512, 512, 512, 512, 512, 512, 512), __a=(5, 2, 2, 2, 2, 2, 2), __a=(10, 3, 3, 3, 3, 2, 2), __a=False, __a=128, __a=16, __a=False, __a=True, __a=0.05, __a=10, __a=2, __a=0.0, __a=10, __a=0, __a=320, __a=2, __a=0.1, __a=100, __a=256, __a=256, __a=0.1, __a="sum", __a=False, __a=False, __a=256, __a=(512, 512, 512, 512, 1500), __a=(5, 3, 3, 1, 1), __a=(1, 2, 3, 1, 1), __a=512, __a=0, __a=1, __a=2, __a=False, __a=3, __a=2, __a=3, __a=None, __a=None, **__a, ): '''simple docstring''' super().__init__(**__a, pad_token_id=__a, bos_token_id=__a, eos_token_id=__a) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Union[str, Any] = feat_extract_activation _lowerCAmelCase : Optional[Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : str = list(__a) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : str = num_conv_pos_embeddings _lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : str = len(self.conv_dim) _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_dropout _lowerCAmelCase : List[str] = attention_dropout _lowerCAmelCase : Tuple = activation_dropout _lowerCAmelCase : int = feat_proj_dropout _lowerCAmelCase : List[str] = final_dropout _lowerCAmelCase : int = layerdrop _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[Any] = do_stable_layer_norm _lowerCAmelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : str = apply_spec_augment _lowerCAmelCase : Optional[Any] = mask_time_prob _lowerCAmelCase : Optional[int] = mask_time_length _lowerCAmelCase : List[str] = mask_time_min_masks _lowerCAmelCase : Optional[int] = mask_feature_prob _lowerCAmelCase : Optional[int] = mask_feature_length _lowerCAmelCase : List[str] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Union[str, Any] = num_codevectors_per_group _lowerCAmelCase : str = num_codevector_groups _lowerCAmelCase : Optional[int] = contrastive_logits_temperature _lowerCAmelCase : Optional[int] = feat_quantizer_dropout _lowerCAmelCase : Optional[int] = num_negatives _lowerCAmelCase : Union[str, Any] = codevector_dim _lowerCAmelCase : Any = proj_codevector_dim _lowerCAmelCase : Optional[int] = diversity_loss_weight # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : Tuple = ctc_zero_infinity # adapter _lowerCAmelCase : List[Any] = add_adapter _lowerCAmelCase : List[str] = adapter_kernel_size _lowerCAmelCase : str = adapter_stride _lowerCAmelCase : List[str] = num_adapter_layers _lowerCAmelCase : str = output_hidden_size or hidden_size _lowerCAmelCase : Tuple = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : str = list(__a) _lowerCAmelCase : Union[str, Any] = list(__a) _lowerCAmelCase : List[str] = list(__a) _lowerCAmelCase : Tuple = xvector_output_dim @property def snake_case__ ( self): '''simple docstring''' return functools.reduce(operator.mul, self.conv_stride, 1)
36
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Any = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class snake_case_( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCamelCase_ : float , UpperCamelCase_ : Callable , UpperCamelCase_ : int , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : str = None , ): super().__init__() lowerCAmelCase : Dict = initial_learning_rate lowerCAmelCase : List[str] = warmup_steps lowerCAmelCase : Union[str, Any] = power lowerCAmelCase : Dict = decay_schedule_fn lowerCAmelCase : str = name def __call__( self : Dict , UpperCamelCase_ : Optional[Any] ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase : Dict = tf.cast(UpperCamelCase_ , tf.floataa ) lowerCAmelCase : List[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase : str = global_step_float / warmup_steps_float lowerCAmelCase : Any = self.initial_learning_rate * tf.math.pow(UpperCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCamelCase_ , ) def lowerCamelCase__ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _snake_case ( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1E-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): lowerCAmelCase : Dict = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: lowerCAmelCase : List[str] = WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: lowerCAmelCase : Dict = AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_snake_case , ) else: lowerCAmelCase : Any = tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class snake_case_( a__ ): def __init__( self : Optional[int] , UpperCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCamelCase_ : float = 0.9 , UpperCamelCase_ : float = 0.999 , UpperCamelCase_ : float = 1E-7 , UpperCamelCase_ : bool = False , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "AdamWeightDecay" , **UpperCamelCase_ : List[Any] , ): super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase : Tuple = weight_decay_rate lowerCAmelCase : List[str] = include_in_weight_decay lowerCAmelCase : Union[str, Any] = exclude_from_weight_decay @classmethod def lowerCamelCase__ ( cls : int , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Tuple = {'''WarmUp''': WarmUp} return super(UpperCamelCase_ , cls ).from_config(UpperCamelCase_ , custom_objects=UpperCamelCase_ ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ): super(UpperCamelCase_ , self )._prepare_local(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ): lowerCAmelCase, lowerCAmelCase : List[Any] = list(zip(*UpperCamelCase_ ) ) return super(UpperCamelCase_ , self ).apply_gradients(zip(UpperCamelCase_ , UpperCamelCase_ ) , name=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase : Dict = apply_state or {} lowerCAmelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase : Optional[Any] = self._fallback_apply_state(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : str = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=None ): lowerCAmelCase, lowerCAmelCase : Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : List[str] = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_dense(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=None ): lowerCAmelCase, lowerCAmelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCamelCase_ ) lowerCAmelCase : Tuple = self._decay_weights_op(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with tf.control_dependencies([decay] ): return super(UpperCamelCase_ , self )._resource_apply_sparse(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : str = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : List[str] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCamelCase_ , UpperCamelCase_ ) is not None: return False return True class snake_case_( a__ ): def __init__( self : Any ): lowerCAmelCase : Any = [] lowerCAmelCase : List[str] = None @property def lowerCamelCase__ ( self : List[str] ): if self._accum_steps is None: lowerCAmelCase : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowerCamelCase__ ( self : Any ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCamelCase_ : List[Any] ): if not self._gradients: lowerCAmelCase : Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCamelCase_ ) , trainable=UpperCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCamelCase_ ) self._accum_steps.assign_add(1 ) def lowerCamelCase__ ( self : Union[str, Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCamelCase_ ) )
314
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ReformerTokenizer _UpperCamelCase : Tuple = ReformerTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = True def __A ( self ): super().setUp() _lowerCAmelCase : Any = ReformerTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : Optional[int] = """<s>""" _lowerCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(a__ ) , 1000 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = self.get_rust_tokenizer() _lowerCAmelCase : Any = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : Any = tokenizer.tokenize(a__ ) _lowerCAmelCase : Dict = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : int = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : List[Any] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : str = tokenizer.encode(a__ ) _lowerCAmelCase : Dict = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def __A ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input _lowerCAmelCase : List[str] = """This is a simple input""" _lowerCAmelCase : Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] _lowerCAmelCase : List[Any] = ("""This is a simple input""", """This is a pair""") _lowerCAmelCase : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="""max_length""" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="""max_length""" , ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Optional[Any] = ReformerTokenizer(a__ , keep_accents=a__ ) _lowerCAmelCase : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [285, 46, 10, 170, 382] , ) _lowerCAmelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __A ( self ): return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def __A ( self ): _lowerCAmelCase : Union[str, Any] = """Hello World!""" _lowerCAmelCase : Tuple = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): _lowerCAmelCase : Dict = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _lowerCAmelCase : Union[str, Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @require_torch @slow def __A ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowerCAmelCase : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowerCAmelCase : Dict = """ """.join(a__ ) _lowerCAmelCase : List[str] = self.big_tokenizer.encode_plus(a__ , return_tensors="""pt""" ) _lowerCAmelCase : Optional[int] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) _lowerCAmelCase : List[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowerCAmelCase : Optional[int] = encoded_sequence["""input_ids"""].shape _lowerCAmelCase : Any = ReformerModel(a__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a__ ) model(**a__ ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : Dict = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowerCAmelCase : str = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=a__ , sequences=a__ , )
44
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A__ ( _snake_case , unittest.TestCase ): lowercase = ShapEPipeline lowercase = ["prompt"] lowercase = ["prompt"] lowercase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 8 @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ = PriorTransformer(**UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ = ShapERenderer(**UpperCamelCase__ ) return model def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_renderer A_ = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) A_ = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.images[0] A_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = 1 A_ = 2 A_ = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: A_ = batch_size * [inputs[key]] A_ = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) A_ = ShapEPipeline.from_pretrained("""openai/shap-e""" ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A_ = pipe( """a shark""" , generator=UpperCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
162
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE = """docs/source/en/_toctree.yml""" def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[Any] = defaultdict(__a ) snake_case_ : Optional[Any] = [] snake_case_ : Optional[Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(__a ) snake_case_ : Any = new_doc_list snake_case_ : str = [key for key, value in counts.items() if value > 1] snake_case_ : Any = [] for duplicate_key in duplicates: snake_case_ : Any = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) snake_case_ : str = sorted(__a , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__a ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(__a ) # Sort return overview_doc def SCREAMING_SNAKE_CASE__ ( __a=False ): with open(__a , encoding='utf-8' ) as f: snake_case_ : int = yaml.safe_load(f.read() ) # Get to the API doc snake_case_ : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ : Dict = content[api_idx]['sections'] # Then to the model doc snake_case_ : Tuple = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 snake_case_ : Union[str, Any] = api_doc[scheduler_idx]['sections'] snake_case_ : Optional[Any] = clean_doc_toc(__a ) snake_case_ : int = False if new_scheduler_doc != scheduler_doc: snake_case_ : int = True if overwrite: snake_case_ : Union[str, Any] = new_scheduler_doc if diff: if overwrite: snake_case_ : Optional[int] = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def SCREAMING_SNAKE_CASE__ ( __a=False ): with open(__a , encoding='utf-8' ) as f: snake_case_ : Dict = yaml.safe_load(f.read() ) # Get to the API doc snake_case_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ : str = content[api_idx]['sections'] # Then to the model doc snake_case_ : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 snake_case_ : Dict = False snake_case_ : Union[str, Any] = api_doc[pipeline_idx]['sections'] snake_case_ : Union[str, Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: snake_case_ : Optional[Any] = pipeline_doc['section'] snake_case_ : Optional[int] = clean_doc_toc(__a ) if overwrite: snake_case_ : Tuple = new_sub_pipeline_doc new_pipeline_docs.append(__a ) # sort overall pipeline doc snake_case_ : Optional[Any] = clean_doc_toc(__a ) if new_pipeline_docs != pipeline_docs: snake_case_ : List[str] = True if overwrite: snake_case_ : List[str] = new_pipeline_docs if diff: if overwrite: snake_case_ : List[Any] = api_doc with open(__a , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _SCREAMING_SNAKE_CASE = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
88
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( lowerCAmelCase__ ): """simple docstring""" UpperCamelCase_ : List[Any] =( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : List[Any] ="CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Dict ="image_segmenter" UpperCamelCase_ : Union[str, Any] =CLIPSegForImageSegmentation UpperCamelCase_ : List[Any] =["image", "text"] UpperCamelCase_ : Union[str, Any] =["image"] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='''pt''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Any: with torch.no_grad(): UpperCamelCase :Any = self.model(**_UpperCAmelCase ).logits return logits def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase :int = outputs.cpu().detach().numpy() UpperCamelCase :Optional[int] = 0 UpperCamelCase :int = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
259
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
0
from __future__ import annotations from random import choice def _UpperCamelCase ( snake_case__ ) -> int: return choice(snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : List[Any] = random_pivot(snake_case__ ) # partition based on pivot # linear time __UpperCAmelCase : str = [e for e in lst if e < pivot] __UpperCAmelCase : int = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case__ ) < k - 1: return kth_number(snake_case__, k - len(snake_case__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case__, snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : List[str] = logging.get_logger(__name__) __A : List[str] = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class _UpperCAmelCase ( _A , _A ): SCREAMING_SNAKE_CASE_ : str = "focalnet" def __init__( self : Tuple , A : Tuple=2_24 , A : Tuple=4 , A : Union[str, Any]=3 , A : Optional[Any]=96 , A : List[Any]=False , A : int=[1_92, 3_84, 7_68, 7_68] , A : Tuple=[2, 2, 6, 2] , A : Union[str, Any]=[2, 2, 2, 2] , A : int=[3, 3, 3, 3] , A : Optional[int]="gelu" , A : Optional[Any]=4.0 , A : Optional[Any]=0.0 , A : Any=0.1 , A : Optional[int]=False , A : Any=1e-4 , A : Optional[int]=False , A : List[Any]=False , A : Dict=False , A : Dict=0.02 , A : Optional[Any]=1e-5 , A : Tuple=32 , A : Dict=None , A : int=None , **A : List[str] , ) -> Union[str, Any]: super().__init__(**A ) lowercase_ : Dict = image_size lowercase_ : int = patch_size lowercase_ : List[str] = num_channels lowercase_ : Union[str, Any] = embed_dim lowercase_ : Union[str, Any] = use_conv_embed lowercase_ : List[Any] = hidden_sizes lowercase_ : Union[str, Any] = depths lowercase_ : Tuple = focal_levels lowercase_ : List[Any] = focal_windows lowercase_ : Optional[Any] = hidden_act lowercase_ : List[Any] = mlp_ratio lowercase_ : Any = hidden_dropout_prob lowercase_ : str = drop_path_rate lowercase_ : int = use_layerscale lowercase_ : List[Any] = layerscale_value lowercase_ : Optional[Any] = use_post_layernorm lowercase_ : List[Any] = use_post_layernorm_in_modulation lowercase_ : int = normalize_modulator lowercase_ : Tuple = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Tuple = encoder_stride lowercase_ : Union[str, Any] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] lowercase_ , lowercase_ : Optional[int] = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names )
33
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def _snake_case ( ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = 1_0 lowerCAmelCase_ :Optional[int] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) lowerCAmelCase_ :int = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(lowercase__ ) ), } , features=lowercase__ , ) return dataset @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple , lowercase__ : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :List[str] = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowercase__ ) return filename # FILE_CONTENT + files __UpperCAmelCase = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : str ) -> str: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" lowerCAmelCase_ :List[Any] = FILE_CONTENT with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return filename @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[Any] ) -> Tuple: '''simple docstring''' import bza lowerCAmelCase_ :Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" lowerCAmelCase_ :Tuple = bytes(lowercase__ , """utf-8""" ) with bza.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Optional[Any] ) -> Dict: '''simple docstring''' import gzip lowerCAmelCase_ :int = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) lowerCAmelCase_ :Tuple = bytes(lowercase__ , """utf-8""" ) with gzip.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Dict ) -> Optional[int]: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCAmelCase_ :List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" lowerCAmelCase_ :int = bytes(lowercase__ , """utf-8""" ) with lza.frame.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Dict , lowercase__ : Optional[int] ) -> Any: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCAmelCase_ :Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowercase__ , """w""" ) as archive: archive.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' import tarfile lowerCAmelCase_ :Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowercase__ , """w""" ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple ) -> str: '''simple docstring''' import lzma lowerCAmelCase_ :Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" lowerCAmelCase_ :Optional[Any] = bytes(lowercase__ , """utf-8""" ) with lzma.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Union[str, Any] , lowercase__ : List[Any] ) -> Any: '''simple docstring''' import zipfile lowerCAmelCase_ :Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : int ) -> Tuple: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCAmelCase_ :Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" lowerCAmelCase_ :Any = bytes(lowercase__ , """utf-8""" ) with zstd.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ :str = tmp_path_factory.mktemp("""data""" ) / """file.xml""" lowerCAmelCase_ :Any = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return filename __UpperCAmelCase = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCAmelCase = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCAmelCase = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCAmelCase = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="""session""" ) def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : int ) -> Any: '''simple docstring''' lowerCAmelCase_ :Tuple = datasets.Dataset.from_dict(lowercase__ ) lowerCAmelCase_ :List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : int ) -> str: '''simple docstring''' lowerCAmelCase_ :List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowercase__ ) ) as con: lowerCAmelCase_ :Union[str, Any] = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple ) -> int: '''simple docstring''' lowerCAmelCase_ :List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowercase__ , """w""" , newline="""""" ) as f: lowerCAmelCase_ :Optional[int] = csv.DictWriter(lowercase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ :str = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowercase__ , """w""" , newline="""""" ) as f: lowerCAmelCase_ :Dict = csv.DictWriter(lowercase__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : str , lowercase__ : Dict ) -> Union[str, Any]: '''simple docstring''' import bza lowerCAmelCase_ :int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowercase__ , """rb""" ) as f: lowerCAmelCase_ :Union[str, Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :str = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :str = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowercase__ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : str ) -> Any: '''simple docstring''' lowerCAmelCase_ :int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) lowerCAmelCase_ :Optional[Any] = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowercase__ , """wb""" ) as f: lowerCAmelCase_ :Optional[int] = pq.ParquetWriter(lowercase__ , schema=lowercase__ ) lowerCAmelCase_ :List[str] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase__ ) )] for k in DATA[0]} , schema=lowercase__ ) writer.write_table(lowercase__ ) writer.close() return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowerCAmelCase_ :Union[str, Any] = {"""data""": DATA} with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowerCAmelCase_ :Optional[Any] = {"""data""": DATA_DICT_OF_LISTS} with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowercase__ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowercase__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : int , lowercase__ : Dict ) -> Optional[int]: '''simple docstring''' import gzip lowerCAmelCase_ :Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowercase__ , """rb""" ) as orig_file: with gzip.open(lowercase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[str] , lowercase__ : List[Any] ) -> Any: '''simple docstring''' import gzip lowerCAmelCase_ :Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowercase__ , """rb""" ) as orig_file: with gzip.open(lowercase__ , """wb""" ) as zipped_file: zipped_file.writelines(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Any , lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""nested""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[str] ) -> int: '''simple docstring''' lowerCAmelCase_ :str = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Any , lowercase__ : str , lowercase__ : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Any = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowercase__ , """w""" ) as f: f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.add(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Dict , lowercase__ : str , lowercase__ : List[str] , lowercase__ : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ :int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowercase__ , """w""" ) as f: f.add(lowercase__ , arcname=os.path.join("""nested""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :str = ["""0""", """1""", """2""", """3"""] lowerCAmelCase_ :List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowercase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase_ :int = ["""0""", """1""", """2""", """3"""] lowerCAmelCase_ :List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowercase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :Dict = ["""0""", """1""", """2""", """3"""] lowerCAmelCase_ :Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowercase__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : List[str] , lowercase__ : str , lowercase__ : int ) -> str: '''simple docstring''' lowerCAmelCase_ :Any = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :str = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) f.write(lowercase__ , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase__ ) ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Any , lowercase__ : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowercase__ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) lowerCAmelCase_ :str = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase__ ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( ) -> int: '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def _snake_case ( ) -> Tuple: '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Any , lowercase__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowercase__ , """w""" ) as f: f.write(lowercase__ , arcname=os.path.basename(lowercase__ ) ) f.write(lowercase__ , arcname=os.path.basename(lowercase__ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def _snake_case ( lowercase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ :int = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
84
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : Dict = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCamelCase_ ( lowerCamelCase__ ): '''simple docstring''' lowercase_ = "gptj" lowercase_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , _lowerCAmelCase : Union[str, Any]=50_400 , _lowerCAmelCase : Any=2_048 , _lowerCAmelCase : Optional[Any]=4_096 , _lowerCAmelCase : Tuple=28 , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]="gelu_new" , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Optional[int]=1E-5 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : int=True , _lowerCAmelCase : Any=50_256 , _lowerCAmelCase : Optional[Any]=50_256 , _lowerCAmelCase : int=False , **_lowerCAmelCase : Any , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = n_positions SCREAMING_SNAKE_CASE_ = n_embd SCREAMING_SNAKE_CASE_ = n_layer SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = n_inner SCREAMING_SNAKE_CASE_ = rotary_dim SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = resid_pdrop SCREAMING_SNAKE_CASE_ = embd_pdrop SCREAMING_SNAKE_CASE_ = attn_pdrop SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id super().__init__( bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , **_lowerCAmelCase ) class lowerCamelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : PretrainedConfig , _lowerCAmelCase : str = "default" , _lowerCAmelCase : List[PatchingSpec] = None , _lowerCAmelCase : bool = False , ): super().__init__(_lowerCAmelCase , task=_lowerCAmelCase , patching_specs=_lowerCAmelCase , use_past=_lowerCAmelCase ) if not getattr(self._config , 'pad_token_id' , _lowerCAmelCase ): # TODO: how to do that better? SCREAMING_SNAKE_CASE_ = 0 @property def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs' ) SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCAmelCase_ ( self : Any ): return self._config.n_layer @property def lowerCAmelCase_ ( self : str ): return self._config.n_head def lowerCAmelCase_ ( self : int , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_ = super(_lowerCAmelCase , self ).generate_dummy_inputs( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE_ = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase_ ( self : str ): return 13
354
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod @abstractmethod def lowerCAmelCase_ ( _lowerCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCAmelCase_ ( self : Dict ): raise NotImplementedError()
210
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ : Optional[int] = 4 UpperCAmelCase_ : Dict = 3 class SCREAMING_SNAKE_CASE__ ( lowercase__ ): pass def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> Union[str, Any]: """simple docstring""" for shard in shards: for i in range(__A ): yield {"i": i, "shard": shard} def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" a_ : List[str] = int(os.environ['RANK'] ) a_ : List[str] = int(os.environ['WORLD_SIZE'] ) a_ : List[Any] = ArgumentParser() parser.add_argument('--streaming' , type=__A ) parser.add_argument('--local_rank' , type=__A ) parser.add_argument('--num_workers' , type=__A , default=0 ) a_ : Any = parser.parse_args() a_ : Tuple = args.streaming a_ : str = args.num_workers a_ : Union[str, Any] = {'shards': [F"""shard_{shard_idx}""" for shard_idx in range(__A )]} a_ : List[str] = IterableDataset.from_generator(__A , gen_kwargs=__A ) if not streaming: a_ : Union[str, Any] = Dataset.from_list(list(__A ) ) a_ : Tuple = split_dataset_by_node(__A , rank=__A , world_size=__A ) a_ : Optional[Any] = torch.utils.data.DataLoader(__A , num_workers=__A ) a_ : Any = NUM_SHARDS * NUM_ITEMS_PER_SHARD a_ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) a_ : Optional[Any] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
32
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : str = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
def a__ ( A_ ): '''simple docstring''' if isinstance(A_, A_ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(A_, A_ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __magic_name__ = False if num < 0: __magic_name__ = True __magic_name__ = -num __magic_name__ = [] while num > 0: binary.insert(0, num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A_ ) for e in binary ) return "0b" + "".join(str(A_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
88
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : Any=[1, 2, 1] , UpperCamelCase__ : int=[2, 2, 4] , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[int]=2.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Union[str, Any]=1E-5 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : Dict=8 , UpperCamelCase__ : Tuple=["stage1", "stage2", "stage3"] , UpperCamelCase__ : Tuple=[1, 2, 3] , ) -> Dict: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads __magic_name__ = window_size __magic_name__ = mlp_ratio __magic_name__ = qkv_bias __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = drop_path_rate __magic_name__ = hidden_act __magic_name__ = use_absolute_embeddings __magic_name__ = patch_norm __magic_name__ = layer_norm_eps __magic_name__ = initializer_range __magic_name__ = is_training __magic_name__ = scope __magic_name__ = use_labels __magic_name__ = type_sequence_label_size __magic_name__ = encoder_stride __magic_name__ = out_features __magic_name__ = out_indices def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ) -> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" __magic_name__ = MaskFormerSwinModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ ) __magic_name__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __magic_name__ = MaskFormerSwinBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCamelCase__ ): __magic_name__ = ["""stem"""] __magic_name__ = MaskFormerSwinBackbone(config=UpperCamelCase__ ) def _lowercase ( self : Any ) -> Any: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a__ = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False a__ = False def _lowercase ( self : Any ) -> List[str]: """simple docstring""" __magic_name__ = MaskFormerSwinModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass def _lowercase ( self : str ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" return def _lowercase ( self : str ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : int ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _lowercase ( self : Any ) -> int: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _lowercase ( self : str ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _lowercase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" pass def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" __magic_name__ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): __magic_name__ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __magic_name__ = outputs.hidden_states __magic_name__ = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # Swin has a different seq_length __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowercase ( self : Dict ) -> Dict: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = 3 __magic_name__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __magic_name__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _lowercase ( self : Optional[int] ) -> int: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _lowercase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass def _lowercase ( self : Dict ) -> Any: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCamelCase__ : Union[str, Any] ): __magic_name__ = 0 return t def check_equivalence(UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int={} ): with torch.no_grad(): __magic_name__ = model(**UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = model(**UpperCamelCase__ , return_dict=UpperCamelCase__ , **UpperCamelCase__ ).to_tuple() def recursive_check(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): if isinstance(UpperCamelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCamelCase__ , UpperCamelCase__ ): recursive_check(UpperCamelCase__ , UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCamelCase__ , UpperCamelCase__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCamelCase__ ) , set_nan_tensor_to_zero(UpperCamelCase__ ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(UpperCamelCase__ ).any()} and `inf`: {torch.isinf(UpperCamelCase__ )}. Dict has''' F''' `nan`: {torch.isnan(UpperCamelCase__ ).any()} and `inf`: {torch.isinf(UpperCamelCase__ )}.''' ) , ) recursive_check(UpperCamelCase__ , UpperCamelCase__ ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) check_equivalence(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , {"""output_hidden_states""": True} ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , _A ): '''simple docstring''' a__ = (MaskFormerSwinBackbone,) if is_torch_available() else () a__ = MaskFormerSwinConfig def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __magic_name__ = MaskFormerSwinModelTester(self ) def _lowercase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __magic_name__ = backbone_class(UpperCamelCase__ ) backbone.to(UpperCamelCase__ ) backbone.eval() __magic_name__ = backbone(**UpperCamelCase__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCamelCase__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __magic_name__ = backbone(**UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __magic_name__ , __magic_name__ , __magic_name__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __magic_name__ = backbone(**UpperCamelCase__ , output_attentions=UpperCamelCase__ ) self.assertIsNotNone(outputs.attentions )
88
1
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __UpperCAmelCase = {'''facebook/blenderbot_small-90M''': 512} def _snake_case ( A ) -> List[str]: lowerCAmelCase__ = set() lowerCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ = char lowerCAmelCase__ = set(A ) return pairs class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="__start__" , lowerCamelCase_="__end__" , lowerCamelCase_="__unk__" , lowerCamelCase_="__null__" , **lowerCamelCase_ , ) -> Dict: super().__init__(unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , **lowerCamelCase_ ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ = json.load(lowerCamelCase_ ) lowerCAmelCase__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCAmelCase__ = {} @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return len(self.encoder ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: if token in self.cache: return self.cache[token] lowerCAmelCase__ = re.sub('''([.,!?()])''' , r''' \1''' , lowerCamelCase_ ) lowerCAmelCase__ = re.sub('''(\')''' , r''' \1 ''' , lowerCamelCase_ ) lowerCAmelCase__ = re.sub(r'''\s{2,}''' , ''' ''' , lowerCamelCase_ ) if "\n" in token: lowerCAmelCase__ = token.replace('''\n''' , ''' __newln__''' ) lowerCAmelCase__ = token.split(''' ''' ) lowerCAmelCase__ = [] for token in tokens: if not len(lowerCamelCase_ ): continue lowerCAmelCase__ = token.lower() lowerCAmelCase__ = tuple(lowerCamelCase_ ) lowerCAmelCase__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase__ = get_pairs(lowerCamelCase_ ) if not pairs: words.append(lowerCamelCase_ ) continue while True: lowerCAmelCase__ = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ = bigram lowerCAmelCase__ = [] lowerCAmelCase__ = 0 while i < len(lowerCamelCase_ ): try: lowerCAmelCase__ = word.index(lowerCamelCase_ , lowerCamelCase_ ) new_word.extend(word[i:j] ) lowerCAmelCase__ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ = tuple(lowerCamelCase_ ) lowerCAmelCase__ = new_word if len(lowerCamelCase_ ) == 1: break else: lowerCAmelCase__ = get_pairs(lowerCamelCase_ ) lowerCAmelCase__ = '''@@ '''.join(lowerCamelCase_ ) lowerCAmelCase__ = word[:-4] lowerCAmelCase__ = word words.append(lowerCamelCase_ ) return " ".join(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = [] lowerCAmelCase__ = re.findall(r'''\S+\n?''' , lowerCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(''' ''' ) ) ) return split_tokens def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = token.lower() return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: return self.decoder.get(lowerCamelCase_ , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: lowerCAmelCase__ = ''' '''.join(lowerCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) lowerCAmelCase__ = 0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ = token_index writer.write(''' '''.join(lowerCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
228
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _snake_case ( A , A , A , A=5 ) -> List[str]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 lowerCAmelCase__ = torch.tensor(tokenizer.encode(A , add_special_tokens=A ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase__ = model(A )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase__ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase__ = logits[0, masked_index, :] lowerCAmelCase__ = logits.softmax(dim=0 ) lowerCAmelCase__ , lowerCAmelCase__ = prob.topk(k=A , dim=0 ) lowerCAmelCase__ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A ) )] ) lowerCAmelCase__ = tokenizer.mask_token lowerCAmelCase__ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): lowerCAmelCase__ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(A ) , A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A , A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __UpperCAmelCase = CamembertTokenizer.from_pretrained('''camembert-base''') __UpperCAmelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() __UpperCAmelCase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
228
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' if not isinstance(_A , _A ): UpperCAmelCase__ = F'''Input value of [number={number}] must be an integer''' raise TypeError(_A ) if number < 0: return False UpperCAmelCase__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
346
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'decision_transformer' lowerCamelCase = ['past_key_values'] lowerCamelCase = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[Any],lowercase_ : Tuple=1_7,lowercase_ : Union[str, Any]=4,lowercase_ : Any=1_2_8,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : Optional[Any]=True,lowercase_ : int=1,lowercase_ : str=1_0_2_4,lowercase_ : Union[str, Any]=3,lowercase_ : Dict=1,lowercase_ : Any=None,lowercase_ : Dict="relu",lowercase_ : int=0.1,lowercase_ : Optional[Any]=0.1,lowercase_ : Optional[Any]=0.1,lowercase_ : List[Any]=1E-5,lowercase_ : Optional[int]=0.02,lowercase_ : Union[str, Any]=True,lowercase_ : Dict=True,lowercase_ : List[str]=5_0_2_5_6,lowercase_ : int=5_0_2_5_6,lowercase_ : Any=False,lowercase_ : List[Any]=False,**lowercase_ : Union[str, Any],)-> List[Any]: '''simple docstring''' A__ = state_dim A__ = act_dim A__ = hidden_size A__ = max_ep_len A__ = action_tanh A__ = vocab_size A__ = n_positions A__ = n_layer A__ = n_head A__ = n_inner A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = scale_attn_weights A__ = use_cache A__ = scale_attn_by_inverse_layer_idx A__ = reorder_and_upcast_attn A__ = bos_token_id A__ = eos_token_id super().__init__(bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ )
361
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 3 A__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
282
0
def lowerCAmelCase_ ( __A, __A ) -> None: '''simple docstring''' UpperCAmelCase__ = len(__A ) print("The following activities are selected:" ) # The first activity is always selected UpperCAmelCase__ = 0 print(__A, end="," ) # Consider rest of the activities for j in range(__A ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__A, end="," ) UpperCAmelCase__ = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = [1, 3, 0, 5, 8, 5] UpperCamelCase__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
65
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : int = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''wavlm''' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="group" , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=1_28 , lowerCAmelCase__=16 , lowerCAmelCase__=3_20 , lowerCAmelCase__=8_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.05 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=3_20 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_00 , lowerCAmelCase__=2_56 , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__="mean" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=80 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = conv_bias __lowercase = num_buckets __lowercase = max_bucket_distance __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = num_ctc_classes __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum __lowercase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) __lowercase = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
210
0
from __future__ import annotations from math import ceil, floor, sqrt def __lowercase ( _SCREAMING_SNAKE_CASE = 2_00_00_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [0] SCREAMING_SNAKE_CASE = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target SCREAMING_SNAKE_CASE = 0 # the area corresponding to the grid that gives the product closest to target SCREAMING_SNAKE_CASE = 0 # an estimate of b, using the quadratic formula SCREAMING_SNAKE_CASE = 42 # the largest integer less than b_estimate SCREAMING_SNAKE_CASE = 42 # the largest integer less than b_estimate SCREAMING_SNAKE_CASE = 42 # the triangle number corresponding to b_floor SCREAMING_SNAKE_CASE = 42 # the triangle number corresponding to b_ceil SCREAMING_SNAKE_CASE = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): SCREAMING_SNAKE_CASE = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 SCREAMING_SNAKE_CASE = floor(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = ceil(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = triangle_numbers[b_floor] SCREAMING_SNAKE_CASE = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE = triangle_b_first_guess * triangle_a SCREAMING_SNAKE_CASE = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE = triangle_b_second_guess * triangle_a SCREAMING_SNAKE_CASE = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
368
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE_ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : Optional[str] = "relu" ,) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad( lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=lowerCamelCase__ ,stride=lowerCamelCase__ ,padding=kernel_size // 2 ,groups=lowerCamelCase__ ,bias=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : RegNetConfig ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) SCREAMING_SNAKE_CASE = config.num_channels def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,stride=lowerCamelCase__ ,bias=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Tensor ) -> Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> int: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) SCREAMING_SNAKE_CASE = nn.Sequential( nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.Sigmoid() ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.attention(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_state * attention return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> Optional[int]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetSELayer(lowerCamelCase__ ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ,lowerCamelCase__ : int = 2 ,) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer SCREAMING_SNAKE_CASE = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,) ,*[layer(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for _ in range(depth - 1 )] ,) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.layers(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : RegNetConfig ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) SCREAMING_SNAKE_CASE = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase__ ,config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,depth=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE = stage_module(lowerCamelCase__ ) if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ ,hidden_states=lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = RegNetConfig __snake_case : Union[str, Any] = "regnet" __snake_case : Optional[Any] = "pixel_values" __snake_case : List[Any] = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : int ) -> Any: '''simple docstring''' if isinstance(lowerCamelCase__ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="""fan_out""" ,nonlinearity="""relu""" ) elif isinstance(lowerCamelCase__ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str=False ) -> str: '''simple docstring''' if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE_ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE_ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = RegNetEmbeddings(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RegNetEncoder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.encoder( lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = encoder_outputs[0] SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ ,pooler_output=lowerCamelCase__ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = RegNetModel(lowerCamelCase__ ) # classification head SCREAMING_SNAKE_CASE = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Optional[torch.FloatTensor] = None ,lowerCamelCase__ : Optional[torch.LongTensor] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.regnet(lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE = self.classifier(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = """single_label_classification""" else: SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() ,labels.squeeze() ) else: SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase__ ,logits=lowerCamelCase__ ,hidden_states=outputs.hidden_states )
193
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _A : Dict[str, int] , _A : List[str] , _A : int = None , _A : int = None ) -> Tuple: """simple docstring""" super().__init__() lowercase : Tuple = pad_token_id lowercase : Any = max_length lowercase : int = vocab lowercase : Optional[int] = merges lowercase : List[Any] = BytePairTokenizer(_A , _A , sequence_length=_A ) @classmethod def __a ( cls : List[Any] , _A : GPTaTokenizer , *_A : Optional[int] , **_A : Dict ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] = [''' '''.join(_A ) for m in tokenizer.bpe_ranks.keys()] lowercase : Dict = tokenizer.get_vocab() return cls(_A , _A , *_A , **_A ) @classmethod def __a ( cls : Any , _A : Union[str, os.PathLike] , *_A : List[str] , **_A : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : Optional[Any] = GPTaTokenizer.from_pretrained(_A , *_A , **_A ) return cls.from_tokenizer(_A , *_A , **_A ) @classmethod def __a ( cls : int , _A : List[Any] ) -> Optional[Any]: """simple docstring""" return cls(**_A ) def __a ( self : str ) -> Optional[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __a ( self : Any , _A : Optional[int] , _A : int = None ) -> Tuple: """simple docstring""" lowercase : Optional[int] = self.tf_tokenizer(_A ) lowercase : Any = tf.ones_like(_A ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: lowercase , lowercase : List[str] = pad_model_inputs( _A , max_seq_length=_A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
308
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
1
from manim import * class lowerCamelCase (_lowerCAmelCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : Any = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ : List[str] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Any = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Union[str, Any] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : Any = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : Optional[int] = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : Dict = Text('CPU' , font_size=2_4 ) UpperCAmelCase_ : Optional[Any] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) UpperCAmelCase_ : List[str] = [mem.copy() for i in range(4 )] UpperCAmelCase_ : List[Any] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : Tuple = Text('GPU' , font_size=2_4 ) UpperCAmelCase_ : int = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.move_to([-1, -1, 0] ) self.add(_lowercase ) UpperCAmelCase_ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Optional[Any] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : Union[str, Any] = Text('Model' , font_size=2_4 ) UpperCAmelCase_ : int = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.add(_lowercase ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : int = [] for i, rect in enumerate(_lowercase ): rect.set_stroke(_lowercase ) UpperCAmelCase_ : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowercase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_lowercase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_lowercase , buff=0.0 ) self.add(_lowercase ) model_cpu_arr.append(_lowercase ) self.add(*_lowercase , *_lowercase , *_lowercase ) UpperCAmelCase_ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : str = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : str = Text('Loaded Checkpoint' , font_size=2_4 ) UpperCAmelCase_ : Union[str, Any] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) checkpoint.move_to([3, 0.5, 0] ) self.add(_lowercase ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = [] for i, rect in enumerate(_lowercase ): UpperCAmelCase_ : List[str] = fill.copy().set_fill(_lowercase , opacity=0.7 ) target.move_to(_lowercase ) ckpt_arr.append(_lowercase ) UpperCAmelCase_ : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_lowercase ) self.add(*_lowercase , *_lowercase ) UpperCAmelCase_ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : Optional[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowercase , _lowercase ) UpperCAmelCase_ : List[str] = MarkupText( f"<span fgcolor=\'{BLUE}\'>●</span> Checkpoint" , font_size=1_8 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowercase ) UpperCAmelCase_ : int = MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) UpperCAmelCase_ : str = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : Any = [meta_mem.copy() for i in range(6 )] UpperCAmelCase_ : str = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : List[Any] = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : Optional[int] = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) UpperCAmelCase_ : str = Text('Disk' , font_size=2_4 ) UpperCAmelCase_ : List[str] = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_lowercase , run_time=3 ) , Write(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) ) UpperCAmelCase_ : Dict = [] for i, rect in enumerate(_lowercase ): UpperCAmelCase_ : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(FadeOut(_lowercase ) ) UpperCAmelCase_ : Tuple = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) ) self.play( FadeOut(_lowercase , _lowercase , *_lowercase , *_lowercase ) , ) self.wait()
370
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __UpperCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __UpperCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' def remove_articles(__snake_case : Tuple ): UpperCAmelCase_ : Optional[int] = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__snake_case , ' ' , __snake_case ) def white_space_fix(__snake_case : int ): return " ".join(text.split() ) def remove_punc(__snake_case : int ): UpperCAmelCase_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = [any(compute_exact(__snake_case , __snake_case ) for ref in refs ) for pred, refs in zip(__snake_case , __snake_case )] return (sum(__snake_case ) / len(__snake_case )) * 100 def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_ : str = Counter(__snake_case ) UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : int = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_ : Any = scount * numref UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : Dict = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_ : int = ccount * numref # KEEP UpperCAmelCase_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_ : Any = keepgramcounter_rep & rgramcounter UpperCAmelCase_ : Union[str, Any] = sgramcounter_rep & rgramcounter UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Optional[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : List[str] = keeptmpscorea / len(__snake_case ) if len(__snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_ : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_ : Optional[int] = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_ : Dict = delgramcounter_rep - rgramcounter UpperCAmelCase_ : Optional[Any] = sgramcounter_rep - rgramcounter UpperCAmelCase_ : str = 0 UpperCAmelCase_ : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = deltmpscorea / len(__snake_case ) # ADDITION UpperCAmelCase_ : Tuple = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : Union[str, Any] = set(__snake_case ) & set(__snake_case ) UpperCAmelCase_ : Dict = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Any = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = addtmpscore / len(__snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Optional[int] = addtmpscore / len(__snake_case ) UpperCAmelCase_ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = len(__snake_case ) UpperCAmelCase_ : List[str] = ssent.split(' ' ) UpperCAmelCase_ : Union[str, Any] = csent.split(' ' ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Tuple = [] for rsent in rsents: UpperCAmelCase_ : List[Any] = rsent.split(' ' ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = [] ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Tuple = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : str = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Optional[int] = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : Tuple = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : List[str] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_ : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase__ ( __snake_case : List[Any] , __snake_case : bool = True , __snake_case : str = "13a" , __snake_case : bool = True ): '''simple docstring''' if lowercase: UpperCAmelCase_ : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_ : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__snake_case )()(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__snake_case ) elif tokenizer == "moses": UpperCAmelCase_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(__snake_case , return_str=__snake_case , escape=__snake_case ) elif tokenizer == "penn": UpperCAmelCase_ : Dict = sacremoses.MosesTokenizer().penn_tokenize(__snake_case , return_str=__snake_case ) else: UpperCAmelCase_ : int = sentence if not return_str: UpperCAmelCase_ : Any = normalized_sent.split() return normalized_sent def lowercase__ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict ): '''simple docstring''' if not (len(__snake_case ) == len(__snake_case ) == len(__snake_case )): raise ValueError('Sources length must match predictions and references lengths.' ) UpperCAmelCase_ : Tuple = 0 for src, pred, refs in zip(__snake_case , __snake_case , __snake_case ): sari_score += SARIsent(normalize(__snake_case ) , normalize(__snake_case ) , [normalize(__snake_case ) for sent in refs] ) UpperCAmelCase_ : Any = sari_score / len(__snake_case ) return 100 * sari_score def lowercase__ ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : str="exp" , __snake_case : Any=None , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=False , __snake_case : List[str]=False , ): '''simple docstring''' UpperCAmelCase_ : int = len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase_ : Dict = [[refs[i] for refs in references] for i in range(__snake_case )] UpperCAmelCase_ : str = sacrebleu.corpus_bleu( __snake_case , __snake_case , smooth_method=__snake_case , smooth_value=__snake_case , force=__snake_case , lowercase=__snake_case , use_effective_order=__snake_case , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : List[Any] = {} result.update({'sari': compute_sari(sources=_UpperCamelCase , predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'exact': compute_em(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) return result
145
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __lowerCAmelCase ( __magic_name__ ): def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :str ): '''simple docstring''' with open(__magic_name__ , encoding="""utf-8""" ) as input_file: a = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) a = input_file.read() a = regexp.search(__magic_name__ ) return match def lowerCamelCase__ ( self :List[str] , __magic_name__ :str ): '''simple docstring''' with open(__magic_name__ , encoding="""utf-8""" ) as input_file: a = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` a = regexp.finditer(__magic_name__ ) a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase__ ( self :int ): '''simple docstring''' a = Path("""./datasets""" ) a = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__magic_name__ ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = Path("""./datasets""" ) a = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__magic_name__ ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
228
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase = None ) -> list[list[str]]: a = word_bank or [] # create a table a = len(__lowerCamelCase ) + 1 a = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value a = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
228
1
import os a_ = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Any = 0 UpperCamelCase_ : List[str] = 0 while index < len(lowerCamelCase ) - 1: UpperCamelCase_ : Optional[int] = SYMBOLS[numerals[index]] UpperCamelCase_ : Tuple = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : List[Any] = '' UpperCamelCase_ : int = num // 1000 numerals += m_count * "M" num %= 1000 UpperCamelCase_ : Tuple = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase_ : Optional[int] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowercase ( lowerCamelCase : str = "/p089_roman.txt" ): UpperCamelCase_ : Optional[Any] = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: UpperCamelCase_ : Union[str, Any] = filea.readlines() for line in lines: UpperCamelCase_ : Dict = line.strip() UpperCamelCase_ : str = parse_roman_numerals(lowerCamelCase ) UpperCamelCase_ : List[str] = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
50
from typing import Any class _lowercase : def __init__( self : Optional[Any] , snake_case : Any ) -> Any: """simple docstring""" UpperCamelCase_ : Union[str, Any] = data UpperCamelCase_ : Any = None def __repr__( self : int ) -> str: """simple docstring""" return f"Node({self.data})" class _lowercase : def __init__( self : str ) -> int: """simple docstring""" UpperCamelCase_ : int = None def __iter__( self : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : Tuple = self.head while node: yield node.data UpperCamelCase_ : Dict = node.next def __len__( self : int ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self : List[Any] ) -> str: """simple docstring""" return "->".join([str(snake_case ) for item in self] ) def __getitem__( self : Union[str, Any] , snake_case : int ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Any , snake_case : int , snake_case : Any ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCamelCase_ : int = self.head for _ in range(snake_case ): UpperCamelCase_ : Union[str, Any] = current.next UpperCamelCase_ : Any = data def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Any ) -> None: """simple docstring""" self.insert_nth(0 , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : int , snake_case : Any ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCamelCase_ : Union[str, Any] = Node(snake_case ) if self.head is None: UpperCamelCase_ : Union[str, Any] = new_node elif index == 0: UpperCamelCase_ : int = self.head # link new_node to head UpperCamelCase_ : List[str] = new_node else: UpperCamelCase_ : List[str] = self.head for _ in range(index - 1 ): UpperCamelCase_ : Union[str, Any] = temp.next UpperCamelCase_ : Dict = temp.next UpperCamelCase_ : Optional[Any] = new_node def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> None: # print every node data """simple docstring""" print(self ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" return self.delete_nth(0 ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : int = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCamelCase_ : str = self.head # default first node if index == 0: UpperCamelCase_ : List[Any] = self.head.next else: UpperCamelCase_ : Dict = self.head for _ in range(index - 1 ): UpperCamelCase_ : Tuple = temp.next UpperCamelCase_ : List[Any] = temp.next UpperCamelCase_ : Dict = temp.next.next return delete_node.data def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> bool: """simple docstring""" return self.head is None def SCREAMING_SNAKE_CASE__ ( self : str ) -> None: """simple docstring""" UpperCamelCase_ : str = None UpperCamelCase_ : int = self.head while current: # Store the current node's next node. UpperCamelCase_ : Tuple = current.next # Make the current node's next point backwards UpperCamelCase_ : Tuple = prev # Make the previous node be the current node UpperCamelCase_ : List[Any] = current # Make the current node the next node (to progress iteration) UpperCamelCase_ : Dict = next_node # Return prev in order to put the head at the end UpperCamelCase_ : Union[str, Any] = prev def __lowercase ( ): UpperCamelCase_ : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(lowerCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowerCamelCase ) == i linked_list.insert_nth(lowerCamelCase , i + 1 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowerCamelCase ) == 9 assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase_ : Optional[int] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowerCamelCase ) == "->".join(str(lowerCamelCase ) for i in range(-8 , 1 ) ) def __lowercase ( ): UpperCamelCase_ : List[str] = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] UpperCamelCase_ : Optional[int] = LinkedList() for i in test_input: linked_list.insert_tail(lowerCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowerCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase_ : List[Any] = linked_list.delete_head() assert result == -9 assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase_ : Tuple = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase_ : Optional[Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(lowerCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowerCamelCase ) assert ( str(lowerCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowerCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __lowercase ( ): from doctest import testmod testmod() UpperCamelCase_ : Dict = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(lowerCamelCase ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) UpperCamelCase_ : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(lowerCamelCase ) print(F"length of linked_list is : {len(lowerCamelCase )}" ) if __name__ == "__main__": main()
50
1
"""simple docstring""" import random def __magic_name__ ( __snake_case : list , __snake_case : Dict ) -> tuple: lowercase , lowercase , lowercase : Tuple = [], [], [] for element in data: if element < pivot: less.append(__lowercase ) elif element > pivot: greater.append(__lowercase ) else: equal.append(__lowercase ) return less, equal, greater def __magic_name__ ( __snake_case : list , __snake_case : int ) -> str: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__lowercase ) or index < 0: return None lowercase : List[str] = items[random.randint(0 , len(__lowercase ) - 1 )] lowercase : Tuple = 0 lowercase , lowercase , lowercase : Optional[Any] = _partition(__lowercase , __lowercase ) lowercase : Optional[int] = len(__lowercase ) lowercase : Dict = len(__lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__lowercase , __lowercase ) # must be in larger else: return quick_select(__lowercase , index - (m + count) )
202
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Tuple , lowercase : int , lowercase : int , lowercase : float = 0 ): '''simple docstring''' _snake_case , _snake_case = row, column _snake_case = [[default_value for c in range(lowercase )] for r in range(lowercase )] def __str__( self : int ): '''simple docstring''' _snake_case = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _snake_case = 0 for row_vector in self.array: for obj in row_vector: _snake_case = max(lowercase , len(str(lowercase ) ) ) _snake_case = f'''%{max_element_length}s''' # Make string and return def single_line(lowercase : list[float] ) -> str: nonlocal string_format_identifier _snake_case = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase ) for row_vector in self.array ) return s def __repr__( self : Dict ): '''simple docstring''' return str(self ) def A ( self : str , lowercase : tuple[int, int] ): '''simple docstring''' if not (isinstance(lowercase , (list, tuple) ) and len(lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , lowercase : tuple[int, int] ): '''simple docstring''' assert self.validate_indicies(lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self : str , lowercase : tuple[int, int] , lowercase : float ): '''simple docstring''' assert self.validate_indicies(lowercase ) _snake_case = value def __add__( self : str , lowercase : Matrix ): '''simple docstring''' assert isinstance(lowercase , lowercase ) assert self.row == another.row and self.column == another.column # Add _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] + another[r, c] return result def __neg__( self : Tuple ): '''simple docstring''' _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = -self[r, c] return result def __sub__( self : List[str] , lowercase : Matrix ): '''simple docstring''' return self + (-another) def __mul__( self : Dict , lowercase : int | float | Matrix ): '''simple docstring''' if isinstance(lowercase , (int, float) ): # Scalar multiplication _snake_case = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] * another return result elif isinstance(lowercase , lowercase ): # Matrix multiplication assert self.column == another.row _snake_case = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _snake_case = f'''Unsupported type given for another ({type(lowercase )})''' raise TypeError(lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _snake_case = self[r, c] return result def A ( self : List[Any] , lowercase : Matrix , lowercase : Matrix ): '''simple docstring''' assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _snake_case = v.transpose() _snake_case = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a_ ( ) -> None: # a^(-1) _snake_case = Matrix(3 , 3 , 0 ) for i in range(3 ): _snake_case = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _snake_case = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case = 1, 2, -3 _snake_case = Matrix(3 , 1 , 0 ) _snake_case , _snake_case , _snake_case = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowercase , __lowercase )}''' ) def a_ ( ) -> None: import doctest doctest.testmod() testa()
282
0
from __future__ import annotations import math import random from typing import Any class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any]) -> None: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = 0 def __UpperCAmelCase ( self : Any) -> bool: """simple docstring""" return self.head == self.tail def __UpperCAmelCase ( self : List[str] , lowercase_ : Any) -> None: """simple docstring""" self.data.append(UpperCAmelCase__) _UpperCamelCase = self.tail + 1 def __UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCamelCase = self.data[self.head] _UpperCamelCase = self.head + 1 return ret def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" return self.tail - self.head def __UpperCAmelCase ( self : Optional[int]) -> None: """simple docstring""" print(self.data) print("**************") print(self.data[self.head : self.tail]) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Any) -> None: """simple docstring""" _UpperCamelCase = data _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 1 def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" return self.data def __UpperCAmelCase ( self : Union[str, Any]) -> MyNode | None: """simple docstring""" return self.left def __UpperCAmelCase ( self : Any) -> MyNode | None: """simple docstring""" return self.right def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return self.height def __UpperCAmelCase ( self : Dict , lowercase_ : Any) -> None: """simple docstring""" _UpperCamelCase = data def __UpperCAmelCase ( self : str , lowercase_ : MyNode | None) -> None: """simple docstring""" _UpperCamelCase = node def __UpperCAmelCase ( self : Dict , lowercase_ : MyNode | None) -> None: """simple docstring""" _UpperCamelCase = node def __UpperCAmelCase ( self : List[Any] , lowercase_ : int) -> None: """simple docstring""" _UpperCamelCase = height def lowerCAmelCase__ ( a__ ) ->List[str]: '''simple docstring''' if node is None: return 0 return node.get_height() def lowerCAmelCase__ ( a__ , a__ ) ->Tuple: '''simple docstring''' if a > b: return a return b def lowerCAmelCase__ ( a__ ) ->List[str]: '''simple docstring''' print("left rotation node:" , node.get_data() ) _UpperCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(a__ ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a__ ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a__ ) return ret def lowerCAmelCase__ ( a__ ) ->Dict: '''simple docstring''' print("right rotation node:" , node.get_data() ) _UpperCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(a__ ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a__ ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a__ ) return ret def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(a__ ) ) return right_rotation(a__ ) def lowerCAmelCase__ ( a__ ) ->Tuple: '''simple docstring''' _UpperCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(a__ ) ) return left_rotation(a__ ) def lowerCAmelCase__ ( a__ , a__ ) ->Optional[Any]: '''simple docstring''' if node is None: return MyNode(a__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , a__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _UpperCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _UpperCamelCase = right_rotation(a__ ) else: _UpperCamelCase = lr_rotation(a__ ) else: node.set_right(insert_node(node.get_right() , a__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _UpperCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): _UpperCamelCase = rl_rotation(a__ ) else: _UpperCamelCase = left_rotation(a__ ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a__ ) return node def lowerCAmelCase__ ( a__ ) ->Optional[Any]: '''simple docstring''' while True: _UpperCamelCase = root.get_right() if right_child is None: break _UpperCamelCase = right_child return root.get_data() def lowerCAmelCase__ ( a__ ) ->List[Any]: '''simple docstring''' while True: _UpperCamelCase = root.get_left() if left_child is None: break _UpperCamelCase = left_child return root.get_data() def lowerCAmelCase__ ( a__ , a__ ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = root.get_left() _UpperCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _UpperCamelCase = get_left_most(a__ ) root.set_data(a__ ) root.set_right(del_node(a__ , a__ ) ) elif left_child is not None: _UpperCamelCase = left_child elif right_child is not None: _UpperCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(a__ , a__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(a__ , a__ ) ) if get_height(a__ ) - get_height(a__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _UpperCamelCase = left_rotation(a__ ) else: _UpperCamelCase = rl_rotation(a__ ) elif get_height(a__ ) - get_height(a__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _UpperCamelCase = right_rotation(a__ ) else: _UpperCamelCase = lr_rotation(a__ ) _UpperCamelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(a__ ) return root class _UpperCAmelCase : '''simple docstring''' def __init__( self : str) -> None: """simple docstring""" _UpperCamelCase = None def __UpperCAmelCase ( self : Any) -> int: """simple docstring""" return get_height(self.root) def __UpperCAmelCase ( self : Tuple , lowercase_ : Any) -> None: """simple docstring""" print("insert:" + str(UpperCAmelCase__)) _UpperCamelCase = insert_node(self.root , UpperCAmelCase__) def __UpperCAmelCase ( self : Dict , lowercase_ : Any) -> None: """simple docstring""" print("delete:" + str(UpperCAmelCase__)) if self.root is None: print("Tree is empty!") return _UpperCamelCase = del_node(self.root , UpperCAmelCase__) def __str__( self : Optional[Any] , ) -> str: # a level traversale, gives a more intuitive look on the tree """simple docstring""" _UpperCamelCase = "" _UpperCamelCase = MyQueue() q.push(self.root) _UpperCamelCase = self.get_height() if layer == 0: return output _UpperCamelCase = 0 while not q.is_empty(): _UpperCamelCase = q.pop() _UpperCamelCase = " " * int(math.pow(2 , layer - 1)) output += space if node is None: output += "*" q.push(UpperCAmelCase__) q.push(UpperCAmelCase__) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space _UpperCamelCase = cnt + 1 for i in range(100): if cnt == math.pow(2 , UpperCAmelCase__) - 1: _UpperCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCAmelCase__ ( ) ->Union[str, Any]: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCamelCase__ = AVLtree() lowerCamelCase__ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
361
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> list[int]: A: Tuple = [True] * limit A: List[Any] = False A: Tuple = False A: Dict = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): A: Tuple = i * 2 while index < limit: A: int = False A: int = index + i A: List[Any] = [2] for i in range(3 , UpperCamelCase__ , 2 ): if is_prime[i]: primes.append(UpperCamelCase__ ) return primes def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0_0_0_0_0 ) -> int: A: List[Any] = prime_sieve(UpperCamelCase__ ) A: List[str] = 0 A: Any = 0 for i in range(len(UpperCamelCase__ ) ): for j in range(i + length , len(UpperCamelCase__ ) ): A: str = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: A: Union[str, Any] = j - i A: Dict = sol return largest if __name__ == "__main__": print(f'{solution() = }')
319
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a__: List[str] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''sequence-classification''' def __init__( self,__lowerCamelCase ): if type(__lowerCamelCase ) == dict: A__ = Namespace(**__lowerCamelCase ) A__ = glue_output_modes[hparams.task] A__ = glue_tasks_num_labels[hparams.task] super().__init__(__lowerCamelCase,__lowerCamelCase,self.mode ) def UpperCamelCase ( self,**__lowerCamelCase ): return self.model(**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A__ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A__ = self(**__lowerCamelCase ) A__ = outputs[0] A__ = self.trainer.lr_schedulers[0]['''scheduler'''] A__ = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def UpperCamelCase ( self ): A__ = self.hparams A__ = processors[args.task]() A__ = processor.get_labels() for mode in ["train", "dev"]: A__ = self._feature_file(__lowerCamelCase ) if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''',__lowerCamelCase ) else: logger.info('''Creating features from dataset file at %s''',args.data_dir ) A__ = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) A__ = convert_examples_to_features( __lowerCamelCase,self.tokenizer,max_length=args.max_seq_length,label_list=self.labels,output_mode=args.glue_output_mode,) logger.info('''Saving features into cached file %s''',__lowerCamelCase ) torch.save(__lowerCamelCase,__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = False ): A__ = '''dev''' if mode == '''test''' else mode A__ = self._feature_file(__lowerCamelCase ) logger.info('''Loading features from cached file %s''',__lowerCamelCase ) A__ = torch.load(__lowerCamelCase ) A__ = torch.tensor([f.input_ids for f in features],dtype=torch.long ) A__ = torch.tensor([f.attention_mask for f in features],dtype=torch.long ) A__ = torch.tensor([f.token_type_ids for f in features],dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A__ = torch.tensor([f.label for f in features],dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A__ = torch.tensor([f.label for f in features],dtype=torch.float ) return DataLoader( TensorDataset(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ),batch_size=__lowerCamelCase,shuffle=__lowerCamelCase,) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A__ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A__ = self(**__lowerCamelCase ) A__ , A__ = outputs[:2] A__ = logits.detach().cpu().numpy() A__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def UpperCamelCase ( self,__lowerCamelCase ): A__ = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() A__ = np.concatenate([x['''pred'''] for x in outputs],axis=0 ) if self.hparams.glue_output_mode == "classification": A__ = np.argmax(__lowerCamelCase,axis=1 ) elif self.hparams.glue_output_mode == "regression": A__ = np.squeeze(__lowerCamelCase ) A__ = np.concatenate([x['''target'''] for x in outputs],axis=0 ) A__ = [[] for _ in range(out_label_ids.shape[0] )] A__ = [[] for _ in range(out_label_ids.shape[0] )] A__ = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task,__lowerCamelCase,__lowerCamelCase )} A__ = dict(results.items() ) A__ = results return ret, preds_list, out_label_list def UpperCamelCase ( self,__lowerCamelCase ): A__ , A__ , A__ = self._eval_end(__lowerCamelCase ) A__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def UpperCamelCase ( self,__lowerCamelCase ): A__ , A__ , A__ = self._eval_end(__lowerCamelCase ) A__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def UpperCamelCase ( __lowerCamelCase,__lowerCamelCase ): BaseTransformer.add_model_specific_args(__lowerCamelCase,__lowerCamelCase ) parser.add_argument( '''--max_seq_length''',default=128,type=__lowerCamelCase,help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ),) parser.add_argument( '''--task''',default='''''',type=__lowerCamelCase,required=__lowerCamelCase,help='''The GLUE task to run''',) parser.add_argument( '''--gpus''',default=0,type=__lowerCamelCase,help='''The number of GPUs allocated for this, it is by default 0 meaning none''',) parser.add_argument( '''--overwrite_cache''',action='''store_true''',help='''Overwrite the cached training and evaluation sets''' ) return parser def UpperCamelCase__( )->Any: A__ = argparse.ArgumentParser() add_generic_args(UpperCamelCase__ , os.getcwd() ) A__ = GLUETransformer.add_model_specific_args(UpperCamelCase__ , os.getcwd() ) A__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A__ = os.path.join( '''./results''' , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) A__ = GLUETransformer(UpperCamelCase__ ) A__ = generic_train(UpperCamelCase__ , UpperCamelCase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A__ = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=UpperCamelCase__ ) ) A__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(UpperCamelCase__ ) if __name__ == "__main__": main()
193
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowercase_ ( __lowercase , __lowercase ): @register_to_config def __init__( self : Optional[Any] , A__ : int = 768 , ) -> Any: super().__init__() _snake_case = nn.Parameter(torch.zeros(1 , A__ ) ) _snake_case = nn.Parameter(torch.ones(1 , A__ ) ) def UpperCamelCase_ ( self : Tuple , A__ : Optional[Union[str, torch.device]] = None , A__ : Optional[torch.dtype] = None , ) -> Union[str, Any]: _snake_case = nn.Parameter(self.mean.to(A__ ).to(A__ ) ) _snake_case = nn.Parameter(self.std.to(A__ ).to(A__ ) ) return self def UpperCamelCase_ ( self : Union[str, Any] , A__ : Optional[Any] ) -> List[Any]: _snake_case = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase_ ( self : Optional[Any] , A__ : List[str] ) -> Optional[Any]: _snake_case = (embeds * self.std) + self.mean return embeds
351
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class lowercase_ ( __lowercase ): def __init__( self : Optional[Any] , *A__ : List[Any] , **A__ : int ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A__ , ) super().__init__(*A__ , **A__ )
278
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : MutableSequence[float] ): '''simple docstring''' if len(lowerCamelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _UpperCamelCase : list[float] = list(lowerCamelCase__ ) _UpperCamelCase : Tuple = degree def __add__( self : Optional[int] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: _UpperCamelCase : str = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree ,lowerCamelCase__ ) else: _UpperCamelCase : str = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree ,lowerCamelCase__ ) def __sub__( self : Dict ,lowerCamelCase__ : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 ,[-1] ) def __neg__( self : Dict ): '''simple docstring''' return Polynomial(self.degree ,[-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] ,lowerCamelCase__ : Polynomial ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : int | float ): '''simple docstring''' _UpperCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Dict = '' for i in range(self.degree ,-1 ,-1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase__ ) return polynomial def __repr__( self : List[str] ): '''simple docstring''' return self.__str__() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): _UpperCamelCase : Optional[int] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : int | float = 0 ): '''simple docstring''' _UpperCamelCase : list[float] = [0] * (self.degree + 2) _UpperCamelCase : Any = constant for i in range(self.degree + 1 ): _UpperCamelCase : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 ,lowerCamelCase__ ) def __eq__( self : str ,lowerCamelCase__ : object ): '''simple docstring''' if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[str] ,lowerCamelCase__ : object ): '''simple docstring''' return not self.__eq__(lowerCamelCase__ )
83
'''simple docstring''' def __UpperCAmelCase ( a_: str, a_: str ): if len(a_ ) != len(a_ ): raise ValueError("String lengths must match!" ) _UpperCAmelCase : Dict = 0 for chara, chara in zip(a_, a_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
145
0
"""simple docstring""" import itertools import string from collections.abc import Generator, Iterable def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Optional[int] = iter(A_ ) while True: lowerCAmelCase__ : Union[str, Any] = tuple(itertools.islice(A_ , A_ ) ) if not chunk: return yield chunk def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Tuple = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase__ : Optional[int] = '''''' if len(A_ ) < 2: return dirty for i in range(len(A_ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(A_ ) & 1: clean += "X" return clean def __SCREAMING_SNAKE_CASE ( A_ ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCAmelCase__ : Optional[Any] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase__ : List[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(A_ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(A_ ) return table def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Tuple = generate_table(A_ ) lowerCAmelCase__ : Optional[int] = prepare_input(A_ ) lowerCAmelCase__ : Dict = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A_ , 2 ): lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = divmod(table.index(A_ ) , 5 ) lowerCAmelCase__ ,lowerCAmelCase__ : Dict = divmod(table.index(A_ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : int = generate_table(A_ ) lowerCAmelCase__ : Dict = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A_ , 2 ): lowerCAmelCase__ ,lowerCAmelCase__ : str = divmod(table.index(A_ ) , 5 ) lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = divmod(table.index(A_ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
74
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : int=1_3 ,lowercase_ : Optional[int]=3_0 ,lowercase_ : int=2 ,lowercase_ : List[Any]=3 ,lowercase_ : str=True ,lowercase_ : int=True ,lowercase_ : str=3_2 ,lowercase_ : Optional[int]=5 ,lowercase_ : Optional[Any]=4 ,lowercase_ : Any=3_7 ,lowercase_ : str="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : str=0.02 ,): lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : str = image_size lowerCAmelCase__ : Dict = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (image_size // patch_size) ** 2 lowerCAmelCase__ : Dict = num_patches + 1 def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values def __lowerCAmelCase ( self : Tuple ,lowercase_ : List[Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : Optional[Any] = FlaxViTModel(config=lowercase_ ) lowerCAmelCase__ : Dict = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (self.image_size, self.image_size) lowerCAmelCase__ : int = (self.patch_size, self.patch_size) lowerCAmelCase__ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ,lowercase_ : List[str] ): lowerCAmelCase__ : Optional[int] = self.type_sequence_label_size lowerCAmelCase__ : Any = FlaxViTForImageClassification(config=lowercase_ ) lowerCAmelCase__ : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : Tuple = FlaxViTForImageClassification(lowercase_ ) lowerCAmelCase__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : str = model(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Tuple = FlaxViTModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(lowercase_ ) lowerCAmelCase__ : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Dict = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : List[Any] ,**lowercase_ : Optional[int] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Optional[Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Optional[int] = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowerCAmelCase ( self : List[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) lowerCAmelCase__ : Optional[int] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ )
74
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _UpperCAmelCase : int = logging.get_logger(__name__) _UpperCAmelCase : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : Optional[int] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = RobertaTokenizer def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]="replace" , UpperCAmelCase : Any="<s>" , UpperCAmelCase : Union[str, Any]="</s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : Optional[Any]="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[Any]="<pad>" , UpperCAmelCase : int="<mask>" , UpperCAmelCase : int=False , UpperCAmelCase : str=True , **UpperCAmelCase : Tuple , ) -> List[str]: super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase ) != add_prefix_space: lowerCamelCase__ : int = getattr(UpperCAmelCase , pre_tok_state.pop('type' ) ) lowerCamelCase__ : int = add_prefix_space lowerCamelCase__ : Tuple = pre_tok_class(**UpperCAmelCase ) lowerCamelCase__ : List[str] = add_prefix_space lowerCamelCase__ : str = 'post_processor' lowerCamelCase__ : Union[str, Any] = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowerCamelCase__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : int = tuple(state['sep'] ) if "cls" in state: lowerCamelCase__ : str = tuple(state['cls'] ) lowerCamelCase__ : Union[str, Any] = False if state.get('add_prefix_space' , UpperCAmelCase ) != add_prefix_space: lowerCamelCase__ : int = add_prefix_space lowerCamelCase__ : int = True if state.get('trim_offsets' , UpperCAmelCase ) != trim_offsets: lowerCamelCase__ : List[str] = trim_offsets lowerCamelCase__ : Union[str, Any] = True if changes_to_apply: lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , state.pop('type' ) ) lowerCamelCase__ : str = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A_ ( self : Optional[int] ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self : Optional[int] , UpperCAmelCase : List[str] ) -> str: lowerCamelCase__ : List[str] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowerCamelCase__ : Union[str, Any] = value def A_ ( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Any ) -> BatchEncoding: lowerCamelCase__ : Optional[Any] = kwargs.get('is_split_into_words' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Optional[int] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ) -> BatchEncoding: lowerCamelCase__ : Optional[Any] = kwargs.get('is_split_into_words' , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=None ) -> Dict: lowerCamelCase__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
50
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[int]: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=UpperCAmelCase , ) assert hasattr(self , """env""" ) def lowercase (self , UpperCAmelCase ) -> str: # configuration for running training on smdistributed Model Parallel _snake_case = { """enabled""": True, """processes_per_host""": 8, } _snake_case = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } _snake_case = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} _snake_case = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=UpperCAmelCase , py_version="""py36""" , ) def lowercase (self , UpperCAmelCase ) -> Tuple: TrainingJobAnalytics(UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase (self , UpperCAmelCase ) -> int: # create estimator _snake_case = self.create_estimator(UpperCAmelCase ) # run training estimator.fit() # result dataframe _snake_case = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _snake_case = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _snake_case = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _snake_case = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , UpperCAmelCase )
370
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = DiTPipeline lowerCAmelCase_ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCAmelCase_ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase_ = False def lowercase (self ) -> Union[str, Any]: torch.manual_seed(0 ) _snake_case = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=UpperCAmelCase , ) _snake_case = AutoencoderKL() _snake_case = DDIMScheduler() _snake_case = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def lowercase (self , UpperCAmelCase , UpperCAmelCase=0 ) -> List[str]: if str(UpperCAmelCase ).startswith("""mps""" ): _snake_case = torch.manual_seed(UpperCAmelCase ) else: _snake_case = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) _snake_case = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowercase (self ) -> Union[str, Any]: _snake_case = """cpu""" _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = self.get_dummy_inputs(UpperCAmelCase ) _snake_case = pipe(**UpperCAmelCase ).images _snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _snake_case = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def lowercase (self ) -> List[str]: self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase (self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase (self ) -> Any: _snake_case = torch.manual_seed(0 ) _snake_case = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _snake_case = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _snake_case = pipe.get_label_ids(UpperCAmelCase ) _snake_case = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): _snake_case = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase (self ) -> Union[str, Any]: _snake_case = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _snake_case = ["""vase""", """umbrella"""] _snake_case = pipe.get_label_ids(UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pipe(UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(UpperCAmelCase , UpperCAmelCase ): _snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
270
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE_ : str =True SCREAMING_SNAKE_CASE_ : Dict ="ml.p3.2xlarge" SCREAMING_SNAKE_CASE_ : Dict ="accelerate_sagemaker_execution_role" SCREAMING_SNAKE_CASE_ : Any ="hf-sm" SCREAMING_SNAKE_CASE_ : List[Any] ="us-east-1" SCREAMING_SNAKE_CASE_ : Any =1 SCREAMING_SNAKE_CASE_ : List[Any] ="accelerate-sagemaker-1" SCREAMING_SNAKE_CASE_ : Optional[Any] ="1.6" SCREAMING_SNAKE_CASE_ : Dict ="4.4" SCREAMING_SNAKE_CASE_ : Optional[Any] ="train.py" SCREAMING_SNAKE_CASE_ : List[Any] =[ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] SCREAMING_SNAKE_CASE_ : Tuple =[ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : Tuple ): # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , __A ) assert isinstance(converted_args['do_train'] , __A ) assert isinstance(converted_args['epochs'] , __A ) assert isinstance(converted_args['learning_rate'] , __A ) assert isinstance(converted_args['max_steps'] , __A ) with pytest.raises(__A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
53
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]=0.999 , UpperCAmelCase_ : str="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ : List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a :Union[str, Any] = [] for i in range(UpperCAmelCase_ ): a :Optional[Any] = i / num_diffusion_timesteps a :int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class _snake_case ( _snake_case , _snake_case ): @register_to_config def __init__( self , _lowerCamelCase = 1000 , _lowerCamelCase = "fixed_small_log" , _lowerCamelCase = True , _lowerCamelCase = 1.0 , _lowerCamelCase = "epsilon" , _lowerCamelCase = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) a :List[Any] = betas_for_alpha_bar(_lowerCamelCase ) a :Any = 1.0 - self.betas a :int = torch.cumprod(self.alphas , dim=0 ) a :Union[str, Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution a :List[Any] = 1.0 # setable values a :Optional[Any] = None a :List[str] = torch.from_numpy(np.arange(0 , _lowerCamelCase )[::-1].copy() ) a :List[str] = variance_type def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): return sample def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :Optional[int] = num_inference_steps a :Union[str, Any] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) a :int = (np.arange(0 , _lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) a :List[str] = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ): if prev_timestep is None: a :Union[str, Any] = t - 1 a :Dict = self.alphas_cumprod[t] a :str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one a :Optional[Any] = 1 - alpha_prod_t a :Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: a :int = self.betas[t] else: a :Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample a :str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: a :Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": a :Dict = torch.log(torch.clamp(_lowerCamelCase , min=1e-20 ) ) a :Optional[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler a :List[Any] = variance.log() a :Any = beta.log() a :List[Any] = (predicted_variance + 1) / 2 a :Dict = frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = True , ): a :Optional[int] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": a , a :Optional[int] = torch.split(_lowerCamelCase , sample.shape[1] , dim=1 ) else: a :int = None # 1. compute alphas, betas if prev_timestep is None: a :Any = t - 1 a :Tuple = self.alphas_cumprod[t] a :Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one a :Tuple = 1 - alpha_prod_t a :List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: a :Union[str, Any] = self.betas[t] a :Optional[Any] = self.alphas[t] else: a :Dict = 1 - alpha_prod_t / alpha_prod_t_prev a :Optional[Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": a :List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": a :List[str] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: a :List[str] = torch.clamp( _lowerCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a :List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t a :Any = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a :Optional[int] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise a :Dict = 0 if t > 0: a :Optional[int] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowerCamelCase , device=model_output.device ) a :Dict = self._get_variance( _lowerCamelCase , predicted_variance=_lowerCamelCase , prev_timestep=_lowerCamelCase , ) if self.variance_type == "fixed_small_log": a :Optional[int] = variance elif self.variance_type == "learned_range": a :Union[str, Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) a :Optional[int] = variance * variance_noise a :List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples a :List[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) a :Optional[Any] = timesteps.to(original_samples.device ) a :Tuple = alphas_cumprod[timesteps] ** 0.5 a :List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): a :Any = sqrt_alpha_prod.unsqueeze(-1 ) a :List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 a :Optional[int] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): a :List[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) a :str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
281
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = CycleDiffusionPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - {'latents'} SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) SCREAMING_SNAKE_CASE__ = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) a :List[str] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , num_train_timesteps=1000 , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) a :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) a :Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a :str = CLIPTextModel(_lowerCamelCase ) a :List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a :Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :Tuple = image / 2 + 0.5 if str(_lowerCamelCase ).startswith('''mps''' ): a :List[str] = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :int = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator a :Optional[Any] = self.get_dummy_components() a :Dict = CycleDiffusionPipeline(**_lowerCamelCase ) a :Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :List[str] = self.get_dummy_inputs(_lowerCamelCase ) a :Any = pipe(**_lowerCamelCase ) a :List[Any] = output.images a :str = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a :List[Any] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowerCamelCase , '''half''' ): a :Union[str, Any] = module.half() a :List[Any] = CycleDiffusionPipeline(**_lowerCamelCase ) a :Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Tuple = self.get_dummy_inputs(_lowerCamelCase ) a :Optional[int] = pipe(**_lowerCamelCase ) a :Optional[Any] = output.images a :List[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a :str = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def SCREAMING_SNAKE_CASE__ ( self ): return super().test_inference_batch_single_identical() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE__ ( self ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): a :str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) a :Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) a :Optional[Any] = init_image.resize((512, 512) ) a :List[str] = '''CompVis/stable-diffusion-v1-4''' a :List[str] = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) a :Tuple = CycleDiffusionPipeline.from_pretrained( _lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() a :Optional[Any] = '''A black colored car''' a :Any = '''A blue colored car''' a :str = torch.manual_seed(0 ) a :List[Any] = pipe( prompt=_lowerCamelCase , source_prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCamelCase , output_type='''np''' , ) a :int = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def SCREAMING_SNAKE_CASE__ ( self ): a :str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) a :Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) a :List[str] = init_image.resize((512, 512) ) a :List[str] = '''CompVis/stable-diffusion-v1-4''' a :Any = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' ) a :int = CycleDiffusionPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() a :Optional[int] = '''A black colored car''' a :Any = '''A blue colored car''' a :Optional[int] = torch.manual_seed(0 ) a :Union[str, Any] = pipe( prompt=_lowerCamelCase , source_prompt=_lowerCamelCase , image=_lowerCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowerCamelCase , output_type='''np''' , ) a :Optional[int] = output.images assert np.abs(image - expected_image ).max() < 2e-2
281
1