code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
315
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class snake_case ( tf.keras.layers.Layer ): def __init__( self : Any , A : Dict[str, int] , A : List[str] , A : int = None , A : int = None ): '''simple docstring''' super().__init__() a : Tuple = pad_token_id a : Any = max_length a : Any = vocab a : Any = merges a : Any = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def lowerCamelCase__ ( cls : int , A : GPTaTokenizer , *A : Tuple , **A : str ): '''simple docstring''' a : Optional[Any] = [' '.join(A ) for m in tokenizer.bpe_ranks.keys()] a : Optional[int] = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def lowerCamelCase__ ( cls : Dict , A : Union[str, os.PathLike] , *A : Tuple , **A : Any ): '''simple docstring''' a : str = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def lowerCamelCase__ ( cls : Any , A : List[Any] ): '''simple docstring''' return cls(**A ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase__ ( self : int , A : Tuple , A : int = None ): '''simple docstring''' a : Optional[Any] = self.tf_tokenizer(A ) a : str = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length a : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: a, a : List[str] = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
186
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = BartphoTokenizer __magic_name__ = False __magic_name__ = True def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() a : Any = ['▁This', '▁is', '▁a', '▁t', 'est'] a : List[Any] = dict(zip(A , range(len(A ) ) ) ) a : int = {'unk_token': '<unk>'} a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a : Optional[int] = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Dict , **A : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A ) def lowerCamelCase__ ( self : Optional[int] , A : Dict ): '''simple docstring''' a : Tuple = 'This is a là test' a : List[Any] = 'This is a<unk><unk> test' return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Tuple = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) a : int = 'This is a là test' a : int = '▁This ▁is ▁a ▁l à ▁t est'.split() a : str = tokenizer.tokenize(A ) self.assertListEqual(A , A ) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Dict = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
186
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any ={ "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =["ChineseCLIPFeatureExtractor"] _lowercase : Union[str, Any] =["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple =[ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _lowercase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
170
import math import sys def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : str = """""" try: with open(_lowercase , """rb""") as binary_file: a__ : Any = binary_file.read() for dat in data: a__ : Dict = F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""") sys.exit() def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : Optional[Any] = {"""0""": """0""", """1""": """1"""} a__ , a__ : Optional[int] = """""", """""" a__ : int = len(_lowercase) for i in range(len(_lowercase)): curr_string += data_bits[i] if curr_string not in lexicon: continue a__ : List[str] = lexicon[curr_string] result += last_match_id a__ : Any = last_match_id + """0""" if math.loga(_lowercase).is_integer(): a__ : Union[str, Any] = {} for curr_key in list(_lowercase): a__ : Optional[Any] = lexicon.pop(_lowercase) a__ : Union[str, Any] = new_lex a__ : str = last_match_id + """1""" index += 1 a__ : List[Any] = """""" return result def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> None: """simple docstring""" a__ : List[Any] = 8 try: with open(_lowercase , """wb""") as opened_file: a__ : Dict = [ to_write[i : i + byte_length] for i in range(0 , len(_lowercase) , _lowercase) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("""10000000""") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowercase , 2).to_bytes(1 , byteorder="""big""")) except OSError: print("""File not accessible""") sys.exit() def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 a__ : Optional[Any] = data_bits[counter:] a__ : Tuple = data_bits[counter + 1 :] return data_bits def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> None: """simple docstring""" a__ : Dict = read_file_binary(_lowercase) a__ : str = remove_prefix(_lowercase) a__ : List[str] = decompress_data(_lowercase) write_file_binary(_lowercase , _lowercase) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
170
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__ ( a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Any , UpperCamelCase__ : bool , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case : Optional[Any] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case : Tuple = torch.zeros(lowercase_ , lowercase_ ) else: snake_case : Any = None snake_case : List[str] = torch.nn.Parameter(lowercase_ ) class snake_case__ ( a_ ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 def __init__( self : Any , UpperCamelCase__ : VQModel , UpperCamelCase__ : CLIPTextModel , UpperCamelCase__ : CLIPTokenizer , UpperCamelCase__ : TransformeraDModel , UpperCamelCase__ : VQDiffusionScheduler , UpperCamelCase__ : LearnedClassifierFreeSamplingEmbeddings , ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules( vqvae=lowercase_ , transformer=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , scheduler=lowercase_ , learned_classifier_free_sampling_embeddings=lowercase_ , ) def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] ) -> Dict: """simple docstring""" snake_case : int = len(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else 1 # get prompt text embeddings snake_case : int = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) snake_case : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) snake_case : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] snake_case : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case : str = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowercase_ ) # duplicate text embeddings for each generation per prompt snake_case : Tuple = prompt_embeds.repeat_interleave(lowercase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings snake_case : str = negative_prompt_embeds.unsqueeze(0 ).repeat(lowercase_ , 1 , 1 ) else: snake_case : List[Any] = [''''''] * batch_size snake_case : Any = text_input_ids.shape[-1] snake_case : Optional[Any] = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='''pt''' , ) snake_case : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case : List[Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowercase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case : Dict = negative_prompt_embeds.shape[1] snake_case : List[Any] = negative_prompt_embeds.repeat(1 , lowercase_ , 1 ) snake_case : str = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , UpperCamelCase__ : Union[str, List[str]] , UpperCamelCase__ : int = 100 , UpperCamelCase__ : float = 5.0 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase__ : int = 1 , ) -> str: """simple docstring""" if isinstance(lowercase_ , lowercase_ ): snake_case : int = 1 elif isinstance(lowercase_ , lowercase_ ): snake_case : Optional[int] = len(lowercase_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}' ) snake_case : Any = batch_size * num_images_per_prompt snake_case : List[Any] = guidance_scale > 1.0 snake_case : Optional[int] = self._encode_prompt(lowercase_ , lowercase_ , lowercase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(lowercase_ )}.' ) # get the initial completely masked latents unless the user supplied it snake_case : int = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case : List[str] = self.transformer.num_vector_embeds - 1 snake_case : Any = torch.full(lowercase_ , lowercase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) snake_case : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) snake_case : Dict = self.scheduler.timesteps.to(self.device ) snake_case : Any = latents for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the sample if we are doing classifier free guidance snake_case : Dict = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case : Dict = self.transformer(lowercase_ , encoder_hidden_states=lowercase_ , timestep=lowercase_ ).sample if do_classifier_free_guidance: snake_case : List[Any] = model_output.chunk(2 ) snake_case : Tuple = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowercase_ , dim=1 , keepdim=lowercase_ ) snake_case : Dict = self.truncate(lowercase_ , lowercase_ ) # remove `log(0)`'s (`-inf`s) snake_case : Optional[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case : List[str] = self.scheduler.step(lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) snake_case : List[str] = self.vqvae.config.vq_embed_dim snake_case : Optional[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case : Optional[Any] = self.vqvae.quantize.get_codebook_entry(lowercase_ , shape=lowercase_ ) snake_case : Dict = self.vqvae.decode(lowercase_ , force_not_quantize=lowercase_ ).sample snake_case : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Optional[Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ ) def lowerCAmelCase ( self : str , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : float ) -> str: """simple docstring""" snake_case : Optional[Any] = torch.sort(lowercase_ , 1 , descending=lowercase_ ) snake_case : Any = torch.exp(lowercase_ ) snake_case : Union[str, Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case : Optional[int] = torch.full_like(keep_mask[:, 0:1, :] , lowercase_ ) snake_case : Tuple = torch.cat((all_true, keep_mask) , dim=1 ) snake_case : List[str] = keep_mask[:, :-1, :] snake_case : Optional[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case : Dict = log_p_x_0.clone() snake_case : Tuple = -torch.inf # -inf = log(0) return rv
358
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """efficientnet""" def __init__( self : str , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 600 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 3.1 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ : List[int] = [] , UpperCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ : float = 0.25 , UpperCamelCase__ : str = "swish" , UpperCamelCase__ : int = 2560 , UpperCamelCase__ : str = "mean" , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 0.001 , UpperCamelCase__ : float = 0.99 , UpperCamelCase__ : float = 0.5 , UpperCamelCase__ : float = 0.2 , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) snake_case : Dict = num_channels snake_case : List[Any] = image_size snake_case : Any = width_coefficient snake_case : int = depth_coefficient snake_case : List[str] = depth_divisor snake_case : Tuple = kernel_sizes snake_case : Optional[Any] = in_channels snake_case : Optional[Any] = out_channels snake_case : Dict = depthwise_padding snake_case : Optional[Any] = strides snake_case : List[str] = num_block_repeats snake_case : Any = expand_ratios snake_case : Any = squeeze_expansion_ratio snake_case : Optional[Any] = hidden_act snake_case : Optional[int] = hidden_dim snake_case : Dict = pooling_type snake_case : Any = initializer_range snake_case : Optional[Any] = batch_norm_eps snake_case : Tuple = batch_norm_momentum snake_case : Any = dropout_rate snake_case : str = drop_connect_rate snake_case : Dict = sum(UpperCamelCase__ ) * 4 class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = version.parse("""1.11""" ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase ( self : Tuple ) -> float: """simple docstring""" return 1e-5
83
0
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase_ = 'CompVis/stable-diffusion-v1-1' lowerCamelCase_ = 'CompVis/stable-diffusion-v1-2' lowerCamelCase_ = 'CompVis/stable-diffusion-v1-3' lowerCamelCase_ = 'CompVis/stable-diffusion-v1-4' class UpperCamelCase_ (UpperCAmelCase_ ): def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int = True , ) -> Tuple: super()._init_() UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = StableDiffusionPipeline( vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , requires_safety_checker=lowerCAmelCase_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict[str, Any]: return {k: getattr(self , lowerCAmelCase_ ) for k in self.config.keys() if not k.startswith("_" )} def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.enable_attention_slicing(lowerCAmelCase_ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] = 512 , lowerCAmelCase_ : Union[str, Any] = 512 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[Any] = 7.5 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = 1 , lowerCAmelCase_ : List[str] = 0.0 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : int = "pil" , lowerCAmelCase_ : str = True , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : List[Any] = 1 , **lowerCAmelCase_ : Any , ) -> int: return self.pipea( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str = 512 , lowerCAmelCase_ : int = 512 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : List[Any] = 7.5 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = 1 , lowerCAmelCase_ : List[Any] = 0.0 , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Any = "pil" , lowerCAmelCase_ : Union[str, Any] = True , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Dict = 1 , **lowerCAmelCase_ : Tuple , ) -> Dict: return self.pipea( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] = 512 , lowerCAmelCase_ : Tuple = 512 , lowerCAmelCase_ : Optional[Any] = 50 , lowerCAmelCase_ : Dict = 7.5 , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Any = 1 , lowerCAmelCase_ : Optional[int] = 0.0 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : int = "pil" , lowerCAmelCase_ : Optional[Any] = True , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : List[str] = 1 , **lowerCAmelCase_ : int , ) -> Union[str, Any]: return self.pipea( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict = 512 , lowerCAmelCase_ : Union[str, Any] = 512 , lowerCAmelCase_ : Tuple = 50 , lowerCAmelCase_ : int = 7.5 , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Dict = 1 , lowerCAmelCase_ : List[str] = 0.0 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Union[str, Any] = "pil" , lowerCAmelCase_ : Any = True , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Optional[Any] = 1 , **lowerCAmelCase_ : Optional[int] , ) -> Optional[int]: return self.pipea( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] = 512 , lowerCAmelCase_ : Tuple = 512 , lowerCAmelCase_ : Any = 50 , lowerCAmelCase_ : Tuple = 7.5 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : List[Any] = 0.0 , lowerCAmelCase_ : str = None , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Optional[Any] = "pil" , lowerCAmelCase_ : List[str] = True , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = 1 , **lowerCAmelCase_ : Tuple , ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" self.to(lowerCAmelCase_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase_ : List[Any] = self.textaimg_sda_a( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase_ : int = self.textaimg_sda_a( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase_ : Tuple = self.textaimg_sda_a( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase_ : Any = self.textaimg_sda_a( prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
268
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''gptj''' __SCREAMING_SNAKE_CASE = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? __UpperCamelCase = 0 @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) __UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowerCamelCase ( self ) -> int: return self._config.n_layer @property def __lowerCamelCase ( self ) -> int: return self._config.n_head def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ) -> int: return 1_3
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : List[Any] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] _lowerCAmelCase = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
98
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _UpperCamelCase = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _UpperCamelCase = { "camembert-base": 512, } _UpperCamelCase = "▁" class __lowercase (_UpperCAmelCase ): _UpperCamelCase = VOCAB_FILES_NAMES _UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase = ["""input_ids""", """attention_mask"""] _UpperCamelCase = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) __lowerCAmelCase : List[str] = vocab_file __lowerCAmelCase : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , A_ , A_ = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase : Any = [self.cls_token_id] __lowerCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , A_ , A_ = None ) ->List[int]: '''simple docstring''' __lowerCAmelCase : List[str] = [self.sep_token_id] __lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self , A_ , A_ = None ) ->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase : Tuple = os.path.join( A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
275
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Dict = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ ) else: __lowerCAmelCase : Optional[int] = np.full((len(lowercase__ ), sequence_length) , lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : int = tensor[:sequence_length] else: if isinstance(lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = tensor[:sequence_length] else: __lowerCAmelCase : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def _lowercase ( lowercase__ ): __lowerCAmelCase : Union[str, Any] = ord(lowercase__ ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True __lowerCAmelCase : int = unicodedata.category(lowercase__ ) if cat.startswith('''P''' ): return True return False @dataclass class __lowercase (_UpperCAmelCase ): _UpperCamelCase = 42 _UpperCamelCase = True _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = -100 _UpperCamelCase = "pt" def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' import torch __lowerCAmelCase : List[str] = '''label''' if '''label''' in features[0].keys() else '''labels''' __lowerCAmelCase : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowerCAmelCase : List[Any] = self.tokenizer.pad( A_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __lowerCAmelCase : Dict = torch.tensor(batch['''entity_ids'''] ).shape[1] __lowerCAmelCase : Optional[int] = self.tokenizer.padding_side if padding_side == "right": __lowerCAmelCase : Any = [ list(A_ ) + [self.label_pad_token_id] * (sequence_length - len(A_ )) for label in labels ] else: __lowerCAmelCase : Optional[int] = [ [self.label_pad_token_id] * (sequence_length - len(A_ )) + list(A_ ) for label in labels ] __lowerCAmelCase : Tuple = [feature['''ner_tags'''] for feature in features] __lowerCAmelCase : List[Any] = padding_tensor(A_ , -1 , A_ , A_ ) __lowerCAmelCase : Optional[int] = [feature['''original_entity_spans'''] for feature in features] __lowerCAmelCase : Any = padding_tensor(A_ , (-1, -1) , A_ , A_ ) __lowerCAmelCase : Optional[Any] = {k: torch.tensor(A_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
275
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = '''vision-encoder-decoder''' __UpperCAmelCase : Tuple = True def __init__( self : List[Any] ,**_a : List[Any] ): '''simple docstring''' super().__init__(**_a ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _a : Tuple = kwargs.pop('encoder' ) _a : int = encoder_config.pop('model_type' ) _a : List[str] = kwargs.pop('decoder' ) _a : Union[str, Any] = decoder_config.pop('model_type' ) _a : Optional[Any] = AutoConfig.for_model(_a ,**_a ) _a : List[Any] = AutoConfig.for_model(_a ,**_a ) _a : int = True @classmethod def __lowercase ( cls : List[Any] ,_a : PretrainedConfig ,_a : PretrainedConfig ,**_a : Dict ): '''simple docstring''' logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _a : Optional[int] = True _a : str = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**_a ) def __lowercase ( self : int ): '''simple docstring''' _a : Optional[int] = copy.deepcopy(self.__dict__ ) _a : Tuple = self.encoder.to_dict() _a : Optional[Any] = self.decoder.to_dict() _a : str = self.__class__.model_type return output class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = version.parse('''1.11''' ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowercase ( self : List[str] ): '''simple docstring''' return 1E-4 @property def __lowercase ( self : Optional[int] ): '''simple docstring''' return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Any ): '''simple docstring''' _a : str = OrderedDict() _a : Optional[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _a : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _a : Any = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def __lowercase ( self : Any ,_a : "PreTrainedTokenizerBase" ,_a : int = -1 ,_a : int = -1 ,_a : bool = False ,_a : Optional["TensorType"] = None ,): '''simple docstring''' import torch _a : List[str] = OrderedDict() _a : Optional[Any] = super().generate_dummy_inputs( _a ,batch_size=_a ,seq_length=_a ,is_pair=_a ,framework=_a ) _a, _a : Optional[int] = dummy_input['input_ids'].shape _a : Dict = (batch, encoder_sequence, self._config.encoder_hidden_size) _a : Tuple = dummy_input.pop('input_ids' ) _a : int = dummy_input.pop('attention_mask' ) _a : str = torch.zeros(_a ) return common_inputs class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass def __lowercase ( self : List[str] ,_a : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_a ) def __lowercase ( self : List[str] ,_a : PretrainedConfig ,_a : PretrainedConfig ,_a : str = "default" ): '''simple docstring''' _a : Optional[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_a ,_a )
5
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets __lowerCAmelCase = datasets.logging.get_logger(__name__) __lowerCAmelCase = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ __lowerCAmelCase = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ __lowerCAmelCase = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def __lowercase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://unbabel.github.io/COMET/html/index.html' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'sources': datasets.Value('string' ,id='sequence' ), 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/Unbabel/COMET'] ,reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] ,) def __lowercase ( self : int ,_a : int ): '''simple docstring''' if self.config_name == "default": _a : List[Any] = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Dict ,_a : Optional[Any] ,_a : List[str]=None ,_a : Tuple=False ): '''simple docstring''' if gpus is None: _a : str = 1 if torch.cuda.is_available() else 0 _a : Optional[Any] = {'src': sources, 'mt': predictions, 'ref': references} _a : Optional[Any] = [dict(zip(_a ,_a ) ) for t in zip(*data.values() )] _a, _a : Tuple = self.scorer.predict(_a ,gpus=_a ,progress_bar=_a ) return {"mean_score": mean_score, "scores": scores}
5
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCamelCase = False class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = '''A painting of a squirrel eating a burger ''' A_ : str = torch.manual_seed(0 ) A_ : str = pipe( prompt=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = generator.manual_seed(0 ) A_ : Union[str, Any] = pipe( prompt=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Dict = '''A painting of a squirrel eating a burger ''' A_ : str = torch.manual_seed(0 ) A_ : Optional[int] = pipe( prompt=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images A_ : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A_ : Optional[int] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
186
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "t5" snake_case = ["past_key_values"] snake_case = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _SCREAMING_SNAKE_CASE=3_2128 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : List[Any] = vocab_size A_ : int = d_model A_ : Optional[Any] = d_kv A_ : str = d_ff A_ : int = num_layers A_ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : Optional[Any] = num_heads A_ : Union[str, Any] = relative_attention_num_buckets A_ : Dict = relative_attention_max_distance A_ : List[str] = dropout_rate A_ : Dict = layer_norm_epsilon A_ : str = initializer_factor A_ : Dict = feed_forward_proj A_ : int = use_cache A_ : Optional[int] = self.feed_forward_proj.split('''-''' ) A_ : Optional[Any] = act_info[-1] A_ : Optional[Any] = act_info[0] == '''gated''' if len(_SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(_SCREAMING_SNAKE_CASE ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A_ : Tuple = '''gelu_new''' super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ : Union[str, Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: A_ : List[str] = '''past_encoder_sequence + sequence''' A_ : Optional[int] = {0: '''batch'''} A_ : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs @property def _snake_case ( self )->int: '''simple docstring''' return 13
186
1
"""simple docstring""" from math import ceil def _snake_case ( lowercase__ : Optional[Any] = 1_0_0_1 ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ :List[Any] = 2 * i + 1 lowerCAmelCase_ :Tuple = 2 * i lowerCAmelCase_ :Optional[int] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
354
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _snake_case ( lowercase__ : bool = True , *lowercase__ : Optional[int] , **lowercase__ : str ) -> Optional[Any]: '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) lowerCAmelCase_ :Tuple = False if main_process_only: lowerCAmelCase_ :Dict = PartialState().local_process_index == 0 return _tqdm(*lowercase__ , **lowercase__ , disable=lowercase__ )
1
0
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : str = FlaxAutoencoderKL @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = 4 _lowerCamelCase : List[str] = 3 _lowerCamelCase : List[Any] = (3_2, 3_2) _lowerCamelCase : str = jax.random.PRNGKey(0 ) _lowerCamelCase : int = jax.random.uniform(__lowerCAmelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _lowerCamelCase : Tuple = self.dummy_input return init_dict, inputs_dict
72
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = abs(UpperCAmelCase_ ) _UpperCamelCase : int = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = abs(UpperCAmelCase_ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def A__ ( UpperCAmelCase_ ): return sum(int(UpperCAmelCase_ ) for c in str(abs(UpperCAmelCase_ ) ) ) def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: _UpperCamelCase : str = f'{func.__name__}({value})' _UpperCamelCase : Tuple = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(UpperCAmelCase_ )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
83
0
"""simple docstring""" import argparse import os import re snake_case = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict snake_case = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings snake_case = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""") def lowerCamelCase__ ( lowercase , lowercase = False ): """simple docstring""" with open(_snake_case , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE : str = f.read() SCREAMING_SNAKE_CASE : List[Any] = content.split("\n" ) SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[Any] = 0 while line_idx < len(_snake_case ): if _re_intro_mapping.search(lines[line_idx] ) is not None: SCREAMING_SNAKE_CASE : List[str] = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 SCREAMING_SNAKE_CASE : str = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": SCREAMING_SNAKE_CASE : Optional[Any] = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers SCREAMING_SNAKE_CASE : Optional[int] = sorted(_snake_case , key=lambda lowercase : _re_identifier.search(_snake_case ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write("\n".join(_snake_case ) ) elif "\n".join(_snake_case ) != content: return True def lowerCamelCase__ ( lowercase = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [os.path.join(_snake_case , _snake_case ) for f in os.listdir(_snake_case ) if f.endswith(".py" )] SCREAMING_SNAKE_CASE : Optional[Any] = [sort_auto_mapping(_snake_case , overwrite=_snake_case ) for fname in fnames] if not overwrite and any(_snake_case ): SCREAMING_SNAKE_CASE : List[str] = [f for f, d in zip(_snake_case , _snake_case ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {', '.join(_snake_case )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") snake_case = parser.parse_args() sort_all_auto_mappings(not args.check_only)
352
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase_ ( __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase: Any = '''bert''' def __init__( self : List[str] ,A_ : Any=3_0522 ,A_ : Any=768 ,A_ : List[Any]=12 ,A_ : Optional[Any]=12 ,A_ : int=3072 ,A_ : Optional[Any]="gelu" ,A_ : Optional[int]=0.1 ,A_ : Union[str, Any]=0.1 ,A_ : Any=512 ,A_ : Tuple=2 ,A_ : List[str]=0.02 ,A_ : Optional[Any]=1e-12 ,A_ : Optional[int]=0 ,A_ : str="absolute" ,A_ : Dict=True ,A_ : List[Any]=None ,**A_ : Optional[Any] ,) -> Tuple: super().__init__(pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = classifier_dropout class lowerCAmelCase_ ( __UpperCAmelCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
74
"""simple docstring""" import math def a_ ( lowerCamelCase , lowerCamelCase ): if ( not isinstance(lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def a_ ( lowerCamelCase , lowerCamelCase ): if ( not isinstance(lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
98
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE_:List[str] = 16 SCREAMING_SNAKE_CASE_:Tuple = 32 def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> Tuple: """simple docstring""" A : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A : str = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) A : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A : Optional[int] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. A : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": A : int = 8 else: A : List[Any] = None return tokenizer.pad( _lowerCAmelCase , padding="""longest""" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. A : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) A : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE_:List[str] = mocked_dataloaders # noqa: F811 def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCAmelCase ) == "1": A : str = 2 # Initialize accelerator A : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : Dict = config["""lr"""] A : str = int(config["""num_epochs"""] ) A : Tuple = int(config["""seed"""] ) A : Dict = int(config["""batch_size"""] ) A : List[Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation A : Tuple = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE A : Tuple = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) A , A : Optional[int] = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A : List[Any] = model.to(accelerator.device ) # Instantiate optimizer A : List[str] = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler A : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A : Any = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A : Union[str, Any] = model(**_lowerCAmelCase ) A : Tuple = outputs.loss A : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A : Optional[int] = 0 for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : List[str] = model(**_lowerCAmelCase ) A : Union[str, Any] = outputs.logits.argmax(dim=-1 ) A , A : List[str] = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_lowerCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] A : List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) A : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _lowerCAmelCase ) def __UpperCamelCase ( ) -> int: """simple docstring""" A : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) A : int = parser.parse_args() A : Any = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
115
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Union[str, Any] = """https://openaipublic.azureedge.net/jukebox/models/""" SCREAMING_SNAKE_CASE_:Optional[int] = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: A : Optional[int] = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: A : Any = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: A : str = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: A : Optional[Any] = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: A : List[str] = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: A : Tuple = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A : List[str] = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: A : Optional[int] = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: """simple docstring""" A : List[str] = {} import re A : Any = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A : str = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A : Union[str, Any] = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A : List[Any] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A : Optional[Any] = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A : List[str] = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A : Optional[Any] = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) A : Tuple = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A : List[Any] = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_lowerCAmelCase ): A : Optional[Any] = re_encoder_block_conv_in.match(_lowerCAmelCase ) A : Tuple = regex_match.groups() A : str = int(groups[2] ) * 2 + int(groups[3] ) A : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' A : Any = re_encoder_block_conv_in.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_encoder_block_resnet.fullmatch(_lowerCAmelCase ): A : Optional[int] = re_encoder_block_resnet.match(_lowerCAmelCase ) A : str = regex_match.groups() A : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) A : Any = {"""1""": 1, """3""": 2}[groups[-2]] A : int = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' A : List[str] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A : str = prefix + resnet_block A : str = re_encoder_block_resnet.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_lowerCAmelCase ): A : List[str] = re_encoder_block_proj_out.match(_lowerCAmelCase ) A : List[Any] = regex_match.groups() A : List[Any] = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' A : Optional[int] = re_encoder_block_proj_out.sub(_lowerCAmelCase , _lowerCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_lowerCAmelCase ): A : Union[str, Any] = re_decoder_block_conv_out.match(_lowerCAmelCase ) A : Dict = regex_match.groups() A : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 A : Optional[int] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' A : int = re_decoder_block_conv_out.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_decoder_block_resnet.fullmatch(_lowerCAmelCase ): A : Optional[int] = re_decoder_block_resnet.match(_lowerCAmelCase ) A : List[Any] = regex_match.groups() A : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 A : str = {"""1""": 1, """3""": 2}[groups[-2]] A : Optional[int] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' A : Union[str, Any] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A : Tuple = prefix + resnet_block A : Tuple = re_decoder_block_resnet.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_lowerCAmelCase ): A : Optional[Any] = re_decoder_block_proj_in.match(_lowerCAmelCase ) A : Any = regex_match.groups() A : Optional[Any] = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' A : Dict = re_decoder_block_proj_in.sub(_lowerCAmelCase , _lowerCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_lowerCAmelCase ): A : Optional[int] = re_prior_cond_conv_out.match(_lowerCAmelCase ) A : List[Any] = regex_match.groups() A : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 A : Tuple = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' A : List[str] = re_prior_cond_conv_out.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_prior_cond_resnet.fullmatch(_lowerCAmelCase ): A : Any = re_prior_cond_resnet.match(_lowerCAmelCase ) A : Any = regex_match.groups() A : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 A : Optional[Any] = {"""1""": 1, """3""": 2}[groups[-2]] A : Tuple = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' A : List[str] = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' A : Dict = prefix + resnet_block A : Union[str, Any] = re_prior_cond_resnet.sub(_lowerCAmelCase , _lowerCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_lowerCAmelCase ): A : List[Any] = re_prior_cond_proj_in.match(_lowerCAmelCase ) A : Optional[int] = regex_match.groups() A : Tuple = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' A : Optional[int] = re_prior_cond_proj_in.sub(_lowerCAmelCase , _lowerCAmelCase ) # keep original key else: A : str = original_key A : List[str] = replace_key(_lowerCAmelCase ) if f'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(f'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape: A : str = model_state_dict[f'''{key_prefix}.{key}'''] print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) A : Union[str, Any] = original_key A : Union[str, Any] = original_key A : List[str] = value return new_dict @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Tuple: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): A : Optional[Any] = requests.get(f'''{PREFIX}{file}''' , allow_redirects=_lowerCAmelCase ) os.makedirs(f'''{pytorch_dump_folder_path}/''' , exist_ok=_lowerCAmelCase ) open(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , """wb""" ).write(r.content ) A : Optional[int] = MODEL_MAPPING[model_name.split("""/""" )[-1]] A : List[Any] = JukeboxConfig.from_pretrained(_lowerCAmelCase ) A : Dict = JukeboxModel(_lowerCAmelCase ) A : str = [] A : Optional[int] = {} for i, dict_name in enumerate(_lowerCAmelCase ): A : str = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["""model"""] A : Optional[int] = {} for k in old_dic.keys(): if k.endswith(""".b""" ): A : Dict = old_dic[k] elif k.endswith(""".w""" ): A : Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A : Union[str, Any] = old_dic[k] else: A : Optional[int] = old_dic[k] A : List[str] = """vqvae""" if i == 0 else f'''priors.{3 - i}''' A : List[Any] = fix_jukebox_keys(_lowerCAmelCase , model.state_dict() , _lowerCAmelCase , _lowerCAmelCase ) weight_dict.append(_lowerCAmelCase ) A : List[Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) with open(f'''{pytorch_dump_folder_path}/mapping.json''' , """w""" ) as txtfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) return weight_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) SCREAMING_SNAKE_CASE_:int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
115
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''vision-encoder-decoder''' SCREAMING_SNAKE_CASE__ = True def __init__(self , **UpperCAmelCase ) -> str: super().__init__(**UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) _lowercase =kwargs.pop('''encoder''' ) _lowercase =encoder_config.pop('''model_type''' ) _lowercase =kwargs.pop('''decoder''' ) _lowercase =decoder_config.pop('''model_type''' ) _lowercase =AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) _lowercase =AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) _lowercase =True @classmethod def __A (cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> PretrainedConfig: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _lowercase =True _lowercase =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase ) def __A (self ) -> Optional[Any]: _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.encoder.to_dict() _lowercase =self.decoder.to_dict() _lowercase =self.__class__.model_type return output class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = version.parse('''1.11''') @property def __A (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A (self ) -> float: return 1e-4 @property def __A (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowerCamelCase__ ( lowerCAmelCase): @property def __A (self ) -> Mapping[str, Mapping[int, str]]: _lowercase =OrderedDict() _lowercase ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _lowercase ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _lowercase ={0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __A (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch _lowercase =OrderedDict() _lowercase =super().generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) _lowercase , _lowercase =dummy_input['''input_ids'''].shape _lowercase =(batch, encoder_sequence, self._config.encoder_hidden_size) _lowercase =dummy_input.pop('''input_ids''' ) _lowercase =dummy_input.pop('''attention_mask''' ) _lowercase =torch.zeros(UpperCAmelCase ) return common_inputs class lowerCamelCase__ ( lowerCAmelCase): @property def __A (self ) -> None: pass def __A (self , UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "default" ) -> OnnxConfig: _lowercase =encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(UpperCAmelCase , UpperCAmelCase )
5
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( __snake_case = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" _lowercase =BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) _lowercase =soup.findAll('''h1''' ) _lowercase =soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
5
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]="resnet50" , lowerCAmelCase : str=3 , lowerCAmelCase : Union[str, Any]=32 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=True , lowerCAmelCase : List[str]=True , ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Tuple = parent __lowerCAmelCase : int = out_indices if out_indices is not None else [4] __lowerCAmelCase : int = stage_names __lowerCAmelCase : Dict = out_features __lowerCAmelCase : Optional[int] = backbone __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : Optional[Any] = image_size __lowerCAmelCase : int = num_channels __lowerCAmelCase : Union[str, Any] = use_pretrained_backbone __lowerCAmelCase : int = is_training def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: """simple docstring""" __lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : List[Any] = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = TimmBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: """simple docstring""" __lowerCAmelCase : str = self.prepare_config_and_inputs() __lowerCAmelCase ,__lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =(TimmBackbone,) if is_torch_available() else () lowerCamelCase : Optional[Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} lowerCamelCase : Dict =False lowerCamelCase : Tuple =False lowerCamelCase : Union[str, Any] =False lowerCamelCase : List[str] =False def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = TimmBackboneModelTester(self ) __lowerCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = """resnet18""" __lowerCAmelCase : Optional[Any] = """microsoft/resnet-18""" __lowerCAmelCase : Dict = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase ) __lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(lowerCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase : Tuple = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase , out_indices=[1, 2, 3] ) __lowerCAmelCase : Optional[Any] = AutoBackbone.from_pretrained(lowerCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Any = model_class(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : str = [*signature.parameters.keys()] __lowerCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Any = True __lowerCAmelCase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase : List[Any] = self.all_model_classes[0] __lowerCAmelCase : Dict = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = model(**lowerCAmelCase ) __lowerCAmelCase : Dict = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase : Union[str, Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase : Dict = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : int = model(**lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase : Any = copy.deepcopy(lowerCAmelCase ) __lowerCAmelCase : List[Any] = None __lowerCAmelCase : Dict = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(**lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase : Any = copy.deepcopy(lowerCAmelCase ) __lowerCAmelCase : Tuple = False __lowerCAmelCase : Union[str, Any] = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Union[str, Any] = model(**lowerCAmelCase )
139
import numpy as np import qiskit def snake_case_ (__A : int = 8 , __A : int | None = None ) -> str: __lowerCAmelCase : List[Any] = np.random.default_rng(seed=__A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowerCAmelCase : Tuple = 6 * key_len # Measurement basis for Alice's qubits. __lowerCAmelCase : List[Any] = rng.integers(2 , size=__A ) # The set of states Alice will prepare. __lowerCAmelCase : List[str] = rng.integers(2 , size=__A ) # Measurement basis for Bob's qubits. __lowerCAmelCase : List[Any] = rng.integers(2 , size=__A ) # Quantum Circuit to simulate BB84 __lowerCAmelCase : int = qiskit.QuantumCircuit(__A , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__A ): if alice_state[index] == 1: bbaa_circ.x(__A ) if alice_basis[index] == 1: bbaa_circ.h(__A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__A ): if bob_basis[index] == 1: bbaa_circ.h(__A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowerCAmelCase : Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowerCAmelCase : Optional[Any] = qiskit.execute(__A , __A , shots=1 , seed_simulator=__A ) # Returns the result of measurement. __lowerCAmelCase : List[Any] = job.result().get_counts(__A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowerCAmelCase : Optional[int] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __A , __A , __A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __lowerCAmelCase : Tuple = gen_key[:key_len] if len(__A ) >= key_len else gen_key.ljust(__A , """0""" ) return key if __name__ == "__main__": print(F'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
139
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 2_55 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = size if size is not None else {'''height''': 3_84, '''width''': 3_84} lowercase_ : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = do_resize lowercase_ : Dict = size lowercase_ : Optional[Any] = resample lowercase_ : Tuple = do_rescale lowercase_ : str = rescale_factor lowercase_ : Union[str, Any] = do_normalize lowercase_ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ : Dict = do_convert_rgb def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) lowercase_ : Any = (size['''height'''], size['''width''']) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Dict = resample if resample is not None else self.resample lowercase_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase_ : List[Any] = image_std if image_std is not None else self.image_std lowercase_ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ : List[Any] = size if size is not None else self.size lowercase_ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ : int = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. lowercase_ : Union[str, Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowercase_ : List[Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowercase_ : Any = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowercase_ : str = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] lowercase_ : List[str] = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] lowercase_ : Dict = BatchFeature(data={'''pixel_values''': images} , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_outputs
93
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __A ( UpperCamelCase__ ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = 5 # Realm tok UpperCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) UpperCAmelCase_ = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase_ = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def _lowercase (self : Optional[Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def _lowercase (self : Any ): shutil.rmtree(self.tmpdirname ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = RealmConfig(num_block_records=self.num_block_records ) return config def _lowercase (self : List[str] ): UpperCAmelCase_ = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def _lowercase (self : Any ): UpperCAmelCase_ = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _lowercase (self : int ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_config() UpperCAmelCase_ = self.get_dummy_retriever() UpperCAmelCase_ = retriever.tokenizer UpperCAmelCase_ = np.array([0, 3, 5] , dtype="long" ) UpperCAmelCase_ = tokenizer(["Test question"] ).input_ids UpperCAmelCase_ = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids UpperCAmelCase_ = config.reader_seq_len UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path UpperCAmelCase_ = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: UpperCAmelCase_ = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase_ = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
1
0
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Tuple=3_2 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : List[str]=1_0 , __UpperCamelCase : List[Any]=[8, 1_6, 3_2, 6_4] , __UpperCamelCase : List[Any]=[1, 1, 2, 1] , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]="relu" , __UpperCamelCase : int=3 , __UpperCamelCase : Dict=None , __UpperCamelCase : Any=["stage2", "stage3", "stage4"] , __UpperCamelCase : Dict=[2, 3, 4] , __UpperCamelCase : Union[str, Any]=1 , )->Optional[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = out_features _UpperCAmelCase = out_indices _UpperCAmelCase = num_groups def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] )->Tuple: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple )->Union[str, Any]: _UpperCAmelCase = BitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : int )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = BitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] )->Dict: _UpperCAmelCase = BitBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = BitBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self : Any )->Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCamelCase__ = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Any )->List[Any]: _UpperCAmelCase = BitModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowercase__ ( self : Tuple )->Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] )->List[str]: return @unittest.skip(reason='''Bit does not output attentions''' ) def lowercase__ ( self : Union[str, Any] )->int: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowercase__ ( self : Any )->Any: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowercase__ ( self : Any )->Any: pass def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[int]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__UpperCamelCase ) for name, module in model.named_modules(): if isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def lowercase__ ( self : Tuple )->Dict: def check_hidden_states_output(__UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowercase__ ( self : int )->Union[str, Any]: pass def lowercase__ ( self : List[str] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[Any] )->Union[str, Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = BitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase): """simple docstring""" @cached_property def lowercase__ ( self : Optional[int] )->Any: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) ) @require_torch class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (BitBackbone,) if is_torch_available() else () UpperCamelCase__ = BitConfig UpperCamelCase__ = False def lowercase__ ( self : int )->Optional[int]: _UpperCAmelCase = BitModelTester(self )
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
import random def lowerCamelCase_ ( _a : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = num - 1 UpperCAmelCase_ : Optional[Any] = 0 while s % 2 == 0: UpperCAmelCase_ : List[Any] = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase_ : List[str] = random.randrange(2 , num - 1 ) UpperCAmelCase_ : Optional[Any] = pow(_a , _a , _a ) if v != 1: UpperCAmelCase_ : Optional[Any] = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase_ : Optional[Any] = i + 1 UpperCAmelCase_ : Optional[int] = (v**2) % num return True def lowerCamelCase_ ( _a : int ): '''simple docstring''' if num < 2: return False UpperCAmelCase_ : List[str] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_a ) def lowerCamelCase_ ( _a : int = 1024 ): '''simple docstring''' while True: UpperCAmelCase_ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_a ): return num if __name__ == "__main__": UpperCamelCase_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
345
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
1
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A ( _a ): lowercase_ = ['vqvae'] def __init__( self : int , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Mel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , mel=lowerCAmelCase_ , vqvae=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , lowerCAmelCase_ ) else 10_00 @torch.no_grad() def __call__( self : Optional[Any] , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = None , lowerCAmelCase_ : np.ndarray = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = None , lowerCAmelCase_ : torch.Generator = None , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : torch.Generator = None , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : torch.Tensor = None , lowerCAmelCase_ : torch.Tensor = None , lowerCAmelCase_ : Any=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" _a = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCAmelCase_ ) _a = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _a = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _a = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCAmelCase_ , device=self.device , ) _a = noise _a = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCAmelCase_ , lowerCAmelCase_ ) _a = self.mel.audio_slice_to_image(lowerCAmelCase_ ) _a = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _a = (input_image / 2_55) * 2 - 1 _a = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _a = self.vqvae.encode(torch.unsqueeze(lowerCAmelCase_ , 0 ) ).latent_dist.sample( generator=lowerCAmelCase_ )[0] _a = self.vqvae.config.scaling_factor * input_images if start_step > 0: _a = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , self.scheduler.timesteps[start_step - 1] ) _a = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _a = int(mask_start_secs * pixels_per_second ) _a = int(mask_end_secs * pixels_per_second ) _a = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowerCAmelCase_ ): _a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )['''sample'''] else: _a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ )['''sample'''] if isinstance(self.scheduler , lowerCAmelCase_ ): _a = self.scheduler.step( model_output=lowerCAmelCase_ , timestep=lowerCAmelCase_ , sample=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , )['''prev_sample'''] else: _a = self.scheduler.step( model_output=lowerCAmelCase_ , timestep=lowerCAmelCase_ , sample=lowerCAmelCase_ , generator=lowerCAmelCase_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: _a = mask[:, step, :, :mask_start] if mask_end > 0: _a = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _a = 1 / self.vqvae.config.scaling_factor * images _a = self.vqvae.decode(lowerCAmelCase_ )['''sample'''] _a = (images / 2 + 0.5).clamp(0 , 1 ) _a = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _a = (images * 2_55).round().astype('''uint8''' ) _a = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCAmelCase_ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _a = [self.mel.image_to_audio(lowerCAmelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCAmelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCAmelCase_ ) ) @torch.no_grad() def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Image.Image] , lowerCAmelCase_ : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , lowerCAmelCase_ ) self.scheduler.set_timesteps(lowerCAmelCase_ ) _a = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _a = (sample / 2_55) * 2 - 1 _a = torch.Tensor(lowerCAmelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _a = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _a = self.scheduler.alphas_cumprod[t] _a = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _a = 1 - alpha_prod_t _a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ )['''sample'''] _a = (1 - alpha_prod_t_prev) ** 0.5 * model_output _a = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _a = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : torch.Tensor , lowerCAmelCase_ : float ) -> torch.Tensor: """simple docstring""" _a = acos(torch.dot(torch.flatten(lowerCAmelCase_ ) , torch.flatten(lowerCAmelCase_ ) ) / torch.norm(lowerCAmelCase_ ) / torch.norm(lowerCAmelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCAmelCase_ ) + sin(alpha * theta ) * xa / sin(lowerCAmelCase_ )
179
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A ( _a ): lowercase_ = 42 lowercase_ = jnp.floataa lowercase_ = True def __lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setup() _a = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Dict ) -> List[Any]: """simple docstring""" _a = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) _a = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A ( _a ): lowercase_ = FlaxBigBirdForNaturalQuestionsModule def snake_case_ (UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' def cross_entropy(UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str]=None ): _a = logits.shape[-1] _a = (labels[..., None] == jnp.arange(UpperCamelCase )[None]).astype('''f4''' ) _a = jax.nn.log_softmax(UpperCamelCase , axis=-1 ) _a = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _a = reduction(UpperCamelCase ) return loss _a = partial(UpperCamelCase , reduction=jnp.mean ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) _a = cross_entropy(UpperCamelCase , UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A : lowercase_ = "google/bigbird-roberta-base" lowercase_ = 3000 lowercase_ = 1_0500 lowercase_ = 128 lowercase_ = 3 lowercase_ = 1 lowercase_ = 5 # tx_args lowercase_ = 3e-5 lowercase_ = 0.0 lowercase_ = 2_0000 lowercase_ = 0.0095 lowercase_ = "bigbird-roberta-natural-questions" lowercase_ = "training-expt" lowercase_ = "data/nq-training.jsonl" lowercase_ = "data/nq-validation.jsonl" def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase_ ) _a = os.path.join(self.base_dir , self.save_dir ) _a = self.batch_size_per_device * jax.device_count() @dataclass class A : lowercase_ = 42 lowercase_ = 4096 # no dynamic padding on TPUs def __call__( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a = self.collate_fn(lowerCAmelCase_ ) _a = jax.tree_util.tree_map(lowerCAmelCase_ , lowerCAmelCase_ ) return batch def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[Any] ) -> int: """simple docstring""" _a , _a = self.fetch_inputs(features['''input_ids'''] ) _a = { '''input_ids''': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : list ) -> List[Any]: """simple docstring""" _a = [self._fetch_inputs(lowerCAmelCase_ ) for ids in input_ids] return zip(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : list ) -> str: """simple docstring""" _a = [1 for _ in range(len(lowerCAmelCase_ ) )] while len(lowerCAmelCase_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Dict=None ): '''simple docstring''' if seed is not None: _a = dataset.shuffle(seed=UpperCamelCase ) for i in range(len(UpperCamelCase ) // batch_size ): _a = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase ) @partial(jax.pmap , axis_name='''batch''' ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' def loss_fn(UpperCamelCase : List[str] ): _a = model_inputs.pop('''start_labels''' ) _a = model_inputs.pop('''end_labels''' ) _a = model_inputs.pop('''pooled_labels''' ) _a = state.apply_fn(**UpperCamelCase , params=UpperCamelCase , dropout_rng=UpperCamelCase , train=UpperCamelCase ) _a , _a , _a = outputs return state.loss_fn( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) _a , _a = jax.random.split(UpperCamelCase ) _a = jax.value_and_grad(UpperCamelCase ) _a , _a = grad_fn(state.params ) _a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _a = jax.lax.pmean(UpperCamelCase , '''batch''' ) _a = state.apply_gradients(grads=UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def snake_case_ (UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' _a = model_inputs.pop('''start_labels''' ) _a = model_inputs.pop('''end_labels''' ) _a = model_inputs.pop('''pooled_labels''' ) _a = state.apply_fn(**UpperCamelCase , params=state.params , train=UpperCamelCase ) _a , _a , _a = outputs _a = state.loss_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class A ( train_state.TrainState ): lowercase_ = struct.field(pytree_node=_a ) @dataclass class A : lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = None def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=None ) -> List[str]: """simple docstring""" _a = model.params _a = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , loss_fn=lowerCAmelCase_ , ) if ckpt_dir is not None: _a , _a , _a , _a , _a = restore_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) _a = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _a , _a = build_tx(**lowerCAmelCase_ ) _a = train_state.TrainState( step=lowerCAmelCase_ , apply_fn=model.__call__ , params=lowerCAmelCase_ , tx=lowerCAmelCase_ , opt_state=lowerCAmelCase_ , ) _a = args _a = data_collator _a = lr _a = params _a = jax_utils.replicate(lowerCAmelCase_ ) return state def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> int: """simple docstring""" _a = self.args _a = len(lowerCAmelCase_ ) // args.batch_size _a = jax.random.PRNGKey(0 ) _a = jax.random.split(lowerCAmelCase_ , jax.device_count() ) for epoch in range(args.max_epochs ): _a = jnp.array(0 , dtype=jnp.floataa ) _a = get_batched_dataset(lowerCAmelCase_ , args.batch_size , seed=lowerCAmelCase_ ) _a = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc=F'Running EPOCH-{epoch}' ): _a = self.data_collator(lowerCAmelCase_ ) _a , _a , _a = self.train_step_fn(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _a = jax_utils.unreplicate(state.step ) _a = running_loss.item() / i _a = self.scheduler_fn(state_step - 1 ) _a = self.evaluate(lowerCAmelCase_ , lowerCAmelCase_ ) _a = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowerCAmelCase_ ) ) self.logger.log(lowerCAmelCase_ , commit=lowerCAmelCase_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str ) -> List[str]: """simple docstring""" _a = get_batched_dataset(lowerCAmelCase_ , self.args.batch_size ) _a = len(lowerCAmelCase_ ) // self.args.batch_size _a = jnp.array(0 , dtype=jnp.floataa ) _a = 0 for batch in tqdm(lowerCAmelCase_ , total=lowerCAmelCase_ , desc='''Evaluating ... ''' ): _a = self.data_collator(lowerCAmelCase_ ) _a = self.val_step_fn(lowerCAmelCase_ , **lowerCAmelCase_ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def __lowerCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> int: """simple docstring""" _a = jax_utils.unreplicate(lowerCAmelCase_ ) print(F'SAVING CHECKPOINT IN {save_dir}' , end=''' ... ''' ) self.model_save_fn(lowerCAmelCase_ , params=state.params ) with open(os.path.join(lowerCAmelCase_ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase_ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase_ , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCAmelCase_ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowerCAmelCase_ ) print('''DONE''' ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=''' ... ''' ) with open(os.path.join(UpperCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _a = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _a = from_bytes(state.opt_state , f.read() ) _a = joblib.load(os.path.join(UpperCamelCase , '''args.joblib''' ) ) _a = joblib.load(os.path.join(UpperCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(UpperCamelCase , '''training_state.json''' ) , '''r''' ) as f: _a = json.load(UpperCamelCase ) _a = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' _a = num_train_steps - warmup_steps _a = optax.linear_schedule(init_value=UpperCamelCase , end_value=UpperCamelCase , transition_steps=UpperCamelCase ) _a = optax.linear_schedule(init_value=UpperCamelCase , end_value=1e-7 , transition_steps=UpperCamelCase ) _a = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' def weight_decay_mask(UpperCamelCase : Dict ): _a = traverse_util.flatten_dict(UpperCamelCase ) _a = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase ) _a = scheduler_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = optax.adamw(learning_rate=UpperCamelCase , weight_decay=UpperCamelCase , mask=UpperCamelCase ) return tx, lr
179
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ort.SessionOptions() __UpperCAmelCase : Tuple = False return options def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __UpperCAmelCase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __UpperCAmelCase : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : Optional[Any] = """A red cat sitting on a park bench""" __UpperCAmelCase : List[str] = np.random.RandomState(0 ) __UpperCAmelCase : List[str] = pipe( prompt=UpperCamelCase , image=UpperCamelCase , mask_image=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase , output_type="""np""" , ) __UpperCAmelCase : int = output.images __UpperCAmelCase : int = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __UpperCAmelCase : List[str] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __UpperCAmelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __UpperCAmelCase : List[str] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) __UpperCAmelCase : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __UpperCAmelCase : Dict = """A red cat sitting on a park bench""" __UpperCAmelCase : List[str] = np.random.RandomState(0 ) __UpperCAmelCase : Optional[int] = pipe( prompt=UpperCamelCase , image=UpperCamelCase , mask_image=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCamelCase , output_type="""np""" , ) __UpperCAmelCase : Optional[int] = output.images __UpperCAmelCase : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __UpperCAmelCase : Optional[Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
115
"""simple docstring""" import numpy as np UpperCAmelCase : Optional[Any] = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = np.array(UpperCamelCase ) def lowerCamelCase__ ( self : int , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = np.where(letter == self.SQUARE ) __UpperCAmelCase : Optional[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCamelCase__ ( self : Any , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : str = message.lower() __UpperCAmelCase : List[Any] = message.replace(""" """ , """""" ) __UpperCAmelCase : List[Any] = message.replace("""j""" , """i""" ) __UpperCAmelCase : Optional[int] = np.empty((2, len(UpperCamelCase )) ) for letter_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : List[Any] = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : str = numbers[0] __UpperCAmelCase : int = numbers[1] __UpperCAmelCase : Union[str, Any] = first_step.reshape(2 * len(UpperCamelCase ) ) __UpperCAmelCase : Optional[Any] = """""" for numbers_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Any = int(second_step[numbers_index * 2] ) __UpperCAmelCase : Any = int(second_step[(numbers_index * 2) + 1] ) __UpperCAmelCase : str = self.numbers_to_letter(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = encoded_message + letter return encoded_message def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = message.lower() message.replace(""" """ , """""" ) __UpperCAmelCase : int = np.empty(2 * len(UpperCamelCase ) ) for letter_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Any = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : Any = numbers[0] __UpperCAmelCase : Dict = numbers[1] __UpperCAmelCase : str = first_step.reshape((2, len(UpperCamelCase )) ) __UpperCAmelCase : Union[str, Any] = """""" for numbers_index in range(len(UpperCamelCase ) ): __UpperCAmelCase : Optional[int] = int(second_step[0, numbers_index] ) __UpperCAmelCase : Tuple = int(second_step[1, numbers_index] ) __UpperCAmelCase : Tuple = self.numbers_to_letter(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Any = decoded_message + letter return decoded_message
115
1
import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : List[str] = None try: import msvcrt except ImportError: _UpperCAmelCase : Tuple = None try: import fcntl except ImportError: _UpperCAmelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : Tuple = OSError # Data # ------------------------------------------------ _UpperCAmelCase : Optional[int] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _UpperCAmelCase : Optional[Any] = "3.0.12" _UpperCAmelCase : int = None def UpperCAmelCase__ ( ): global _logger lowercase :List[str] = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: Dict ): lowercase :Any = lock_file return None def __str__( self: Dict ): lowercase :str = F"The file lock '{self.lock_file}' could not be acquired." return temp class __lowerCAmelCase : def __init__( self: Tuple , _lowerCAmelCase: Any ): lowercase :Optional[Any] = lock return None def __enter__( self: List[Any] ): return self.lock def __exit__( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[int] ): self.lock.release() return None class __lowerCAmelCase : def __init__( self: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Tuple=-1 , _lowerCAmelCase: int=None ): lowercase :Any = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long lowercase :int = self.hash_filename_if_too_long(_lowerCAmelCase , _lowerCAmelCase ) # The path to the lock file. lowercase :List[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase :Any = None # The default timeout value. lowercase :Any = timeout # We use this lock primarily for the lock counter. lowercase :Optional[int] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase :Optional[int] = 0 return None @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): return self._lock_file @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[str] ): lowercase :Tuple = float(_lowerCAmelCase ) return None def SCREAMING_SNAKE_CASE ( self: int ): raise NotImplementedError() def SCREAMING_SNAKE_CASE ( self: int ): raise NotImplementedError() @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Union[str, Any]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: lowercase :List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase :Any = id(self ) lowercase :Optional[int] = self._lock_file lowercase :Optional[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(_lowerCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase :Union[str, Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: Tuple=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase :Union[str, Any] = id(self ) lowercase :str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() lowercase :List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self: Tuple ): self.acquire() return self def __exit__( self: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Dict ): self.release() return None def __del__( self: Optional[Any] ): self.release(force=_lowerCAmelCase ) return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: int ): lowercase :Union[str, Any] = os.path.basename(_lowerCAmelCase ) if len(_lowerCAmelCase ) > max_length and max_length > 0: lowercase :Dict = os.path.dirname(_lowerCAmelCase ) lowercase :Any = str(hash(_lowerCAmelCase ) ) lowercase :Union[str, Any] = filename[: max_length - len(_lowerCAmelCase ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(_lowerCAmelCase , _lowerCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Any]=-1 , _lowerCAmelCase: List[Any]=None ): from .file_utils import relative_to_absolute_path super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) lowercase :Optional[int] = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :int = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase :Tuple = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: try: msvcrt.locking(_lowerCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_lowerCAmelCase ) else: lowercase :Any = fd return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Any = self._lock_file_fd lowercase :Tuple = None msvcrt.locking(_lowerCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(_lowerCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: Dict=-1 , _lowerCAmelCase: Tuple=None ): lowercase :List[str] = os.statvfs(os.path.dirname(_lowerCAmelCase ) ).f_namemax super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase :Optional[int] = os.open(self._lock_file , _lowerCAmelCase ) try: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_lowerCAmelCase ) else: lowercase :Optional[Any] = fd return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowercase :Dict = self._lock_file_fd lowercase :Union[str, Any] = None fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) os.close(_lowerCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase): def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :str = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase :List[Any] = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: lowercase :int = fd return None def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): os.close(self._lock_file_fd ) lowercase :int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : Tuple = None if msvcrt: _UpperCAmelCase : str = WindowsFileLock elif fcntl: _UpperCAmelCase : List[Any] = UnixFileLock else: _UpperCAmelCase : Optional[int] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
158
import pytest _UpperCAmelCase : List[Any] = "__dummy_dataset1__" _UpperCAmelCase : Union[str, Any] = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def UpperCAmelCase__ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCAmelCase__ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :Tuple = dataset_loading_script_name lowercase :Dict = tmp_path / "datasets" / script_name script_dir.mkdir(parents=lowerCamelCase ) lowercase :int = script_dir / F"{script_name}.py" with open(lowerCamelCase, "w" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase )
158
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor A_ = random.Random() def A_ ( snake_case , snake_case=1.0 , snake_case=None , snake_case=None ): if rng is None: SCREAMING_SNAKE_CASE:Tuple = global_rng SCREAMING_SNAKE_CASE:Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=7 ,SCREAMING_SNAKE_CASE__ : Dict=400 ,SCREAMING_SNAKE_CASE__ : List[str]=2_000 ,SCREAMING_SNAKE_CASE__ : List[Any]=24 ,SCREAMING_SNAKE_CASE__ : Optional[int]=24 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : Dict=16_000 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,): SCREAMING_SNAKE_CASE:Optional[Any] = parent SCREAMING_SNAKE_CASE:List[str] = batch_size SCREAMING_SNAKE_CASE:List[str] = min_seq_length SCREAMING_SNAKE_CASE:List[str] = max_seq_length SCREAMING_SNAKE_CASE:Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE:List[str] = feature_size SCREAMING_SNAKE_CASE:Any = num_mel_bins SCREAMING_SNAKE_CASE:List[str] = padding_value SCREAMING_SNAKE_CASE:Tuple = sampling_rate SCREAMING_SNAKE_CASE:Dict = return_attention_mask SCREAMING_SNAKE_CASE:Optional[Any] = do_normalize def __UpperCamelCase ( self : Any ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : List[Any]=False ): def _flatten(SCREAMING_SNAKE_CASE__ : Optional[int] ): return list(itertools.chain(*SCREAMING_SNAKE_CASE__ ) ) if equal_length: SCREAMING_SNAKE_CASE:Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE:Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE:Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( _a , unittest.TestCase ): _A : Union[str, Any] = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = SpeechaTextFeatureExtractionTester(self ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[Any] ): self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE__ ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE__ ,axis=0 ) - 1 ) < 1e-3 ) ) def __UpperCamelCase ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE:Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE:Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] SCREAMING_SNAKE_CASE:List[str] = [np.asarray(SCREAMING_SNAKE_CASE__ ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE:Optional[Any] = feature_extractor(SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input SCREAMING_SNAKE_CASE:Optional[Any] = feature_extractor(speech_inputs[0] ,return_tensors="np" ).input_features SCREAMING_SNAKE_CASE:Optional[Any] = feature_extractor(np_speech_inputs[0] ,return_tensors="np" ).input_features self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE:int = feature_extractor(SCREAMING_SNAKE_CASE__ ,return_tensors="np" ).input_features SCREAMING_SNAKE_CASE:List[Any] = feature_extractor(SCREAMING_SNAKE_CASE__ ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE:List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE:Dict = np.asarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[Any] = feature_extractor(SCREAMING_SNAKE_CASE__ ,return_tensors="np" ).input_features SCREAMING_SNAKE_CASE:List[str] = feature_extractor(SCREAMING_SNAKE_CASE__ ,return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,atol=1e-3 ) ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE:int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] SCREAMING_SNAKE_CASE:str = ["longest", "max_length", "do_not_pad"] SCREAMING_SNAKE_CASE:str = [None, 16, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:List[str] = feature_extractor( SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = inputs.input_features SCREAMING_SNAKE_CASE:List[str] = inputs.attention_mask SCREAMING_SNAKE_CASE:Union[str, Any] = [np.sum(SCREAMING_SNAKE_CASE__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE:Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] SCREAMING_SNAKE_CASE:Any = ["longest", "max_length", "do_not_pad"] SCREAMING_SNAKE_CASE:Optional[int] = [None, 16, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE:Any = feature_extractor( SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,return_tensors="np" ,return_attention_mask=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = inputs.input_features SCREAMING_SNAKE_CASE:List[str] = inputs.attention_mask SCREAMING_SNAKE_CASE:Dict = [np.sum(SCREAMING_SNAKE_CASE__ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE:int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] SCREAMING_SNAKE_CASE:Optional[Any] = feature_extractor( SCREAMING_SNAKE_CASE__ ,padding="max_length" ,max_length=4 ,truncation=SCREAMING_SNAKE_CASE__ ,return_tensors="np" ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:int = inputs.input_features SCREAMING_SNAKE_CASE:List[str] = inputs.attention_mask SCREAMING_SNAKE_CASE:Optional[Any] = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE:Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] SCREAMING_SNAKE_CASE:Any = feature_extractor( SCREAMING_SNAKE_CASE__ ,padding="longest" ,max_length=4 ,truncation=SCREAMING_SNAKE_CASE__ ,return_tensors="np" ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:List[Any] = inputs.input_features SCREAMING_SNAKE_CASE:Dict = inputs.attention_mask SCREAMING_SNAKE_CASE:List[str] = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 4, 24) ) SCREAMING_SNAKE_CASE:List[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] SCREAMING_SNAKE_CASE:Any = feature_extractor( SCREAMING_SNAKE_CASE__ ,padding="longest" ,max_length=16 ,truncation=SCREAMING_SNAKE_CASE__ ,return_tensors="np" ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:str = inputs.input_features SCREAMING_SNAKE_CASE:Union[str, Any] = inputs.attention_mask SCREAMING_SNAKE_CASE:List[Any] = np.sum(attention_mask == 1 ,axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape ,(3, 6, 24) ) def __UpperCamelCase ( self : int ): import torch SCREAMING_SNAKE_CASE:Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE:Optional[int] = np.random.rand(100 ,32 ).astype(np.floataa ) SCREAMING_SNAKE_CASE:str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE:Dict = feature_extractor.pad([{"input_features": inputs}] ,return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) SCREAMING_SNAKE_CASE:Dict = feature_extractor.pad([{"input_features": inputs}] ,return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : str ): from datasets import load_dataset SCREAMING_SNAKE_CASE:List[Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" ,"clean" ,split="validation" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE:List[str] = ds.sort("id" ).select(range(SCREAMING_SNAKE_CASE__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : str ): # fmt: off SCREAMING_SNAKE_CASE:List[str] = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on SCREAMING_SNAKE_CASE:Optional[Any] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE:Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE:List[Any] = feature_extractor(SCREAMING_SNAKE_CASE__ ,return_tensors="pt" ).input_features self.assertEquals(input_features.shape ,(1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] ,SCREAMING_SNAKE_CASE__ ,atol=1e-4 ) )
139
'''simple docstring''' import numpy # List of input, output pairs A_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) A_ = [2, 4, 1, 5] A_ = len(train_data) A_ = 0.009 def A_ ( snake_case , snake_case="train" ): return calculate_hypothesis_value(snake_case , snake_case ) - output( snake_case , snake_case ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = 0 for i in range(len(snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A_ ( snake_case , snake_case ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A_ ( snake_case , snake_case ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A_ ( snake_case , snake_case=m ): SCREAMING_SNAKE_CASE:Dict = 0 for i in range(snake_case ): if index == -1: summation_value += _error(snake_case ) else: summation_value += _error(snake_case ) * train_data[i][0][index] return summation_value def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = summation_of_cost_derivative(snake_case , snake_case ) / m return cost_derivative_value def A_ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output SCREAMING_SNAKE_CASE:List[str] = 0.00_0002 SCREAMING_SNAKE_CASE:Union[str, Any] = 0 SCREAMING_SNAKE_CASE:Union[str, Any] = 0 while True: j += 1 SCREAMING_SNAKE_CASE:List[str] = [0, 0, 0, 0] for i in range(0 , len(snake_case ) ): SCREAMING_SNAKE_CASE:Union[str, Any] = get_cost_derivative(i - 1 ) SCREAMING_SNAKE_CASE:Union[str, Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( snake_case , snake_case , atol=snake_case , rtol=snake_case , ): break SCREAMING_SNAKE_CASE:List[str] = temp_parameter_vector print(("Number of iterations:", j) ) def A_ ( ): for i in range(len(snake_case ) ): print(("Actual output value:", output(snake_case , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(snake_case , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
139
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def lowercase__ ( self : int ): debug_launcher(test_script.main ) def lowercase__ ( self : Dict ): debug_launcher(test_ops.main )
365
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : str = logging.getLogger(__name__) class __A ( lowerCAmelCase ): def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None ): lowerCAmelCase : List[Any] = self.layer[current_layer](UpperCAmelCase_ , UpperCAmelCase_ , head_mask[current_layer] ) lowerCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Dict , UpperCAmelCase_ : Optional[int] ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = BertEncoderWithPabee(UpperCAmelCase_ ) self.init_weights() lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : Dict = 0 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): lowerCAmelCase : int = threshold def lowercase__ ( self : Tuple , UpperCAmelCase_ : Dict ): lowerCAmelCase : Optional[Any] = patience def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = 0 lowerCAmelCase : Tuple = 0 def lowercase__ ( self : Dict ): lowerCAmelCase : Optional[int] = self.inference_layers_num / self.inference_instances_num lowerCAmelCase : List[Any] = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: lowerCAmelCase : Union[str, Any] = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = encoder_hidden_states.size() lowerCAmelCase : Optional[int] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowerCAmelCase : Any = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) lowerCAmelCase : Tuple = self.invert_attention_mask(UpperCAmelCase_ ) else: lowerCAmelCase : List[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase : Optional[Any] = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) lowerCAmelCase : int = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) lowerCAmelCase : List[str] = embedding_output if self.training: lowerCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): lowerCAmelCase : Dict = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : List[str] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = output_layers[i](output_dropout(UpperCAmelCase_ ) ) res.append(UpperCAmelCase_ ) elif self.patience == 0: # Use all layers for inference lowerCAmelCase : Union[str, Any] = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = self.pooler(encoder_outputs[0] ) lowerCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](UpperCAmelCase_ )] else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowerCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( UpperCAmelCase_ , current_layer=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = self.pooler(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = output_layers[i](UpperCAmelCase_ ) if regression: lowerCAmelCase : List[str] = logits.detach() if patient_result is not None: lowerCAmelCase : List[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowerCAmelCase : Any = 0 else: lowerCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: lowerCAmelCase : Optional[Any] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCAmelCase_ ) ): patient_counter += 1 else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = logits if patient_counter == self.patience: break lowerCAmelCase : Dict = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , lowerCAmelCase , ) class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : Tuple = config.num_labels lowerCAmelCase : int = BertModelWithPabee(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase : List[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=None , ): lowerCAmelCase : int = self.bert( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowerCAmelCase : Any = (logits[-1],) if labels is not None: lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[int] = 0 for ix, logits_item in enumerate(UpperCAmelCase_ ): if self.num_labels == 1: # We are doing regression lowerCAmelCase : Tuple = MSELoss() lowerCAmelCase : Any = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase : Tuple = CrossEntropyLoss() lowerCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: lowerCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowerCAmelCase : str = (total_loss / total_weights,) + outputs return outputs
323
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[8, 16, 32, 64] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=[2, 3, 4] , UpperCAmelCase=1 , ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = parent __snake_case : List[str] = batch_size __snake_case : Optional[int] = image_size __snake_case : Tuple = num_channels __snake_case : List[Any] = embeddings_size __snake_case : Optional[Any] = hidden_sizes __snake_case : List[Any] = depths __snake_case : Union[str, Any] = is_training __snake_case : str = use_labels __snake_case : Dict = hidden_act __snake_case : Any = num_labels __snake_case : Union[str, Any] = scope __snake_case : Optional[Any] = len(UpperCAmelCase ) __snake_case : int = out_features __snake_case : Optional[Any] = out_indices __snake_case : Union[str, Any] = num_groups def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[int] = BitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Optional[Any] = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : Optional[Any] = BitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Optional[int] = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : int = BitBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Tuple = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : int = None __snake_case : Tuple = BitBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : str = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : int = config_and_inputs __snake_case : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( a , a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Any =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase_ : Tuple =( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ : List[Any] =False UpperCAmelCase_ : str =False UpperCAmelCase_ : List[Any] =False UpperCAmelCase_ : Union[str, Any] =False UpperCAmelCase_ : Dict =False def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = BitModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason="Bit does not output attentions" ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(config=UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __snake_case : Optional[int] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Tuple = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case : Optional[Any] = layer_type __snake_case : Union[str, Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' pass def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = BitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> str: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase ) __snake_case : List[str] = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Dict = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**UpperCAmelCase ) # verify the logits __snake_case : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __snake_case : Optional[Any] = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @require_torch class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[int] =(BitBackbone,) if is_torch_available() else () UpperCAmelCase_ : Union[str, Any] =BitConfig UpperCAmelCase_ : Union[str, Any] =False def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : List[Any] = BitModelTester(self )
326
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> bool: __lowerCamelCase : int = get_failure_array(lowerCamelCase__ ) # 2) Step through text searching for pattern __lowerCamelCase , __lowerCamelCase : Any = 0, 0 # index into text, pattern while i < len(lowerCamelCase__ ): if pattern[j] == text[i]: if j == (len(lowerCamelCase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowerCamelCase : Optional[Any] = failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list[int]: __lowerCamelCase : Dict = [0] __lowerCamelCase : Any = 0 __lowerCamelCase : Tuple = 1 while j < len(lowerCamelCase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowerCamelCase : Any = failure[i - 1] continue j += 1 failure.append(lowerCamelCase__ ) return failure if __name__ == "__main__": # Test 1) a ="""abc1abc12""" a ="""alskfjaldsabc1abc1abc12k23adsfabcabc""" a ="""alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) a ="""ABABX""" a ="""ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) a ="""AAAB""" a ="""ABAAAAAB""" assert kmp(pattern, text) # Test 4) a ="""abcdabcy""" a ="""abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) a ="""aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
113
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a =open # noqa: we just need to have a builtin inside this module to test it properly
113
1
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __lowercase ( snake_case_ : int ,snake_case_ : Any ) ->List[Any]: '''simple docstring''' __A : List[str] = XCLIPTextConfig() # derive patch size from model name __A : List[Any] = model_name.find('''patch''' ) __A : List[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __A : Dict = XCLIPVisionConfig(patch_size=snake_case_ ,num_frames=snake_case_ ) if "large" in model_name: __A : Dict = 768 __A : Dict = 3072 __A : Any = 12 __A : str = 1024 __A : str = 4096 __A : List[str] = 16 __A : Union[str, Any] = 24 __A : Optional[int] = 768 __A : List[str] = 3072 if model_name == "xclip-large-patch14-16-frames": __A : int = 336 __A : str = XCLIPConfig.from_text_vision_configs(snake_case_ ,snake_case_ ) if "large" in model_name: __A : Union[str, Any] = 768 return config def __lowercase ( snake_case_ : List[str] ) ->str: '''simple docstring''' if name == "token_embedding.weight": __A : str = name.replace('''token_embedding.weight''' ,'''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __A : Optional[Any] = name.replace('''positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __A : Tuple = name.replace('''ln_1''' ,'''layer_norm1''' ) if "ln_2" in name: __A : Dict = name.replace('''ln_2''' ,'''layer_norm2''' ) if "c_fc" in name: __A : Any = name.replace('''c_fc''' ,'''fc1''' ) if "c_proj" in name: __A : str = name.replace('''c_proj''' ,'''fc2''' ) if name.startswith('''transformer.resblocks''' ): __A : int = name.replace('''transformer.resblocks''' ,'''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __A : Dict = name.replace('''attn.out_proj''' ,'''self_attn.out_proj''' ) if "ln_final" in name: __A : Union[str, Any] = name.replace('''ln_final''' ,'''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __A : List[str] = name.replace('''visual.class_embedding''' ,'''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __A : str = name.replace('''visual.positional_embedding''' ,'''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __A : str = name.replace('''visual.transformer.resblocks''' ,'''vision_model.encoder.layers''' ) if "visual.conv1" in name: __A : Optional[Any] = name.replace('''visual.conv1''' ,'''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __A : int = name.replace('''visual.ln_pre''' ,'''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __A : int = name.replace('''visual.ln_post''' ,'''vision_model.post_layernorm''' ) if "visual.proj" in name: __A : int = name.replace('''visual.proj''' ,'''visual_projection.weight''' ) if "text_projection" in name: __A : Union[str, Any] = name.replace('''text_projection''' ,'''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __A : Optional[int] = name.replace('''prompts_visual_proj''' ,'''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __A : Tuple = name.replace('''prompts_visual_ln''' ,'''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __A : Union[str, Any] = name.replace('''positional''' ,'''position''' ) if name.startswith('''mit.resblocks''' ): __A : Any = name.replace('''mit.resblocks''' ,'''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __A : str = name.replace('''prompts_generator.norm''' ,'''prompts_generator.layernorm''' ) return name def __lowercase ( snake_case_ : List[Any] ,snake_case_ : Dict ) ->List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __A : int = orig_state_dict.pop(snake_case_ ) if "attn.in_proj" in key: __A : Tuple = key.split('''.''' ) if key.startswith('''visual''' ): __A : Any = key_split[3] __A : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __A : Optional[Any] = val[ :dim, : ] __A : int = val[ dim : dim * 2, : ] __A : Dict = val[ -dim:, : ] else: __A : Optional[int] = val[ :dim ] __A : str = val[ dim : dim * 2 ] __A : List[Any] = val[ -dim: ] else: if "weight" in key: __A : str = val[ :dim, : ] __A : Tuple = val[ dim : dim * 2, : ] __A : Dict = val[ -dim:, : ] else: __A : Optional[Any] = val[:dim] __A : Union[str, Any] = val[ dim : dim * 2 ] __A : int = val[-dim:] elif key.startswith('''mit''' ): __A : List[str] = key_split[2] __A : Optional[int] = config.vision_config.mit_hidden_size if "weight" in key: __A : List[str] = val[:dim, :] __A : List[str] = val[dim : dim * 2, :] __A : int = val[-dim:, :] else: __A : Tuple = val[:dim] __A : Optional[Any] = val[dim : dim * 2] __A : Tuple = val[-dim:] else: __A : Any = key_split[2] __A : Optional[int] = config.text_config.hidden_size if "weight" in key: __A : Optional[Any] = val[:dim, :] __A : Tuple = val[ dim : dim * 2, : ] __A : Optional[int] = val[-dim:, :] else: __A : List[Any] = val[:dim] __A : Dict = val[ dim : dim * 2 ] __A : str = val[-dim:] else: __A : List[Any] = rename_key(snake_case_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __A : Dict = val.T __A : str = val return orig_state_dict def __lowercase ( snake_case_ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' if num_frames == 8: __A : Optional[Any] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __A : Tuple = '''eating_spaghetti.npy''' elif num_frames == 32: __A : Dict = '''eating_spaghetti_32_frames.npy''' __A : Optional[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename=snake_case_ ,repo_type='''dataset''' ,) __A : Dict = np.load(snake_case_ ) return list(snake_case_ ) def __lowercase ( snake_case_ : int ,snake_case_ : Optional[Any]=None ,snake_case_ : Union[str, Any]=False ) ->int: '''simple docstring''' __A : Optional[Any] = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __A : Tuple = model_to_url[model_name] __A : Any = 8 if "16-frames" in model_name: __A : Tuple = 16 elif "shot" in model_name: __A : Optional[int] = 32 __A : Any = get_xclip_config(snake_case_ ,snake_case_ ) __A : List[str] = XCLIPModel(snake_case_ ) model.eval() if "drive" in checkpoint_url: __A : str = '''pytorch_model.bin''' gdown.cached_download(snake_case_ ,snake_case_ ,quiet=snake_case_ ) __A : Optional[Any] = torch.load(snake_case_ ,map_location='''cpu''' )['''model'''] else: __A : List[Any] = torch.hub.load_state_dict_from_url(snake_case_ )['''model'''] __A : List[str] = convert_state_dict(snake_case_ ,snake_case_ ) __A : int = XCLIPModel(snake_case_ ) __A , __A : Dict = model.load_state_dict(snake_case_ ,strict=snake_case_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __A : Dict = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __A : Union[str, Any] = VideoMAEImageProcessor(size=snake_case_ ) __A : Dict = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __A : Any = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __A : Optional[Any] = XCLIPProcessor(image_processor=snake_case_ ,tokenizer=snake_case_ ) __A : int = prepare_video(snake_case_ ) __A : Optional[Any] = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] ,videos=snake_case_ ,return_tensors='''pt''' ,padding=snake_case_ ) print('''Shape of pixel values:''' ,inputs.pixel_values.shape ) with torch.no_grad(): __A : Optional[int] = model(**snake_case_ ) # Verify outputs __A : Dict = outputs.logits_per_video __A : Union[str, Any] = logits_per_video.softmax(dim=1 ) print('''Probs:''' ,snake_case_ ) # kinetics-400 if model_name == "xclip-base-patch32": __A : int = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": __A : Any = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": __A : Union[str, Any] = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": __A : Tuple = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": __A : str = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": __A : List[str] = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __A : List[str] = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __A : Dict = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __A : int = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __A : Union[str, Any] = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __A : Optional[Any] = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __A : Any = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __A : Dict = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __A : Union[str, Any] = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __A : Union[str, Any] = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __A : Optional[Any] = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __A : Tuple = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __A : Union[str, Any] = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(snake_case_ ,snake_case_ ,atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(snake_case_ ,organization='''nielsr''' ) processor.push_to_hub(snake_case_ ,organization='''nielsr''' ) slow_tokenizer.push_to_hub(snake_case_ ,organization='''nielsr''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
179
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = ["""vqvae"""] def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ): '''simple docstring''' super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase , mel=__lowerCamelCase , vqvae=__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' return 50 if isinstance(self.scheduler , __lowerCamelCase ) else 1000 @torch.no_grad() def __call__( self , __lowerCamelCase = 1 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=True , ): '''simple docstring''' __A : Union[str, Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(__lowerCamelCase ) __A : Any = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __A : Optional[Any] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __A : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowerCamelCase , device=self.device , ) __A : Optional[int] = noise __A : int = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowerCamelCase , __lowerCamelCase ) __A : int = self.mel.audio_slice_to_image(__lowerCamelCase ) __A : Optional[Any] = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __A : Union[str, Any] = (input_image / 255) * 2 - 1 __A : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __A : Any = self.vqvae.encode(torch.unsqueeze(__lowerCamelCase , 0 ) ).latent_dist.sample( generator=__lowerCamelCase )[0] __A : Optional[Any] = self.vqvae.config.scaling_factor * input_images if start_step > 0: __A : Union[str, Any] = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , self.scheduler.timesteps[start_step - 1] ) __A : Optional[int] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __A : int = int(mask_start_secs * pixels_per_second ) __A : Dict = int(mask_end_secs * pixels_per_second ) __A : int = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowerCamelCase ): __A : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )['''sample'''] else: __A : List[str] = self.unet(__lowerCamelCase , __lowerCamelCase )['''sample'''] if isinstance(self.scheduler , __lowerCamelCase ): __A : Optional[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , )['''prev_sample'''] else: __A : Optional[Any] = self.scheduler.step( model_output=__lowerCamelCase , timestep=__lowerCamelCase , sample=__lowerCamelCase , generator=__lowerCamelCase , )['''prev_sample'''] if mask is not None: if mask_start > 0: __A : Optional[Any] = mask[:, step, :, :mask_start] if mask_end > 0: __A : Tuple = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __A : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images __A : List[str] = self.vqvae.decode(__lowerCamelCase )['''sample'''] __A : Any = (images / 2 + 0.5).clamp(0 , 1 ) __A : Any = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __A : Any = (images * 255).round().astype('''uint8''' ) __A : List[Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowerCamelCase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) __A : Dict = [self.mel.image_to_audio(__lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowerCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowerCamelCase ) ) @torch.no_grad() def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = 50 ): '''simple docstring''' assert isinstance(self.scheduler , __lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ) __A : str = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __A : Any = (sample / 255) * 2 - 1 __A : Dict = torch.Tensor(__lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __A : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __A : List[Any] = self.scheduler.alphas_cumprod[t] __A : Optional[int] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __A : List[Any] = 1 - alpha_prod_t __A : int = self.unet(__lowerCamelCase , __lowerCamelCase )['''sample'''] __A : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output __A : List[Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __A : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Tuple = acos(torch.dot(torch.flatten(__lowerCamelCase ) , torch.flatten(__lowerCamelCase ) ) / torch.norm(__lowerCamelCase ) / torch.norm(__lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowerCamelCase ) + sin(alpha * theta ) * xa / sin(__lowerCamelCase )
179
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _UpperCamelCase (a__ :Optional[Any] , a__ :Union[str, Any] , a__ :str , a__ :List[str] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: UpperCamelCase__ = TOKENIZER_CLASSES else: UpperCamelCase__ = {tokenizer_name: getattr(a__ , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: UpperCamelCase__ = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase__ = True if checkpoint_name is None: UpperCamelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCamelCase__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer UpperCamelCase__ = tokenizer_class.from_pretrained(a__ , force_download=a__ ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase__ , UpperCamelCase__ = checkpoint.split("""/""" ) UpperCamelCase__ = os.path.join(a__ , a__ ) elif add_prefix: UpperCamelCase__ = checkpoint UpperCamelCase__ = dump_path else: UpperCamelCase__ = None UpperCamelCase__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCamelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCamelCase__ = file_path.split(a__ )[-1][0] if next_char == "/": UpperCamelCase__ = os.path.join(a__ , a__ ) UpperCamelCase__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) UpperCamelCase__ = tokenizer.save_pretrained( a__ , legacy_format=a__ , filename_prefix=a__ ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(a__ ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) UpperCamelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
87
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' while a != 0: _lowerCAmelCase , _lowerCAmelCase = b % a, a return b def __a(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) != 1: _lowerCAmelCase = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1, 0, a _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0, 1, m while va != 0: _lowerCAmelCase = ua // va _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
158
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=14 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=0.02 , ) -> Any: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = rotary_dim _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = None _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 _lowerCAmelCase = vocab_size - 1 def _snake_case ( self ) -> str: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = 20 _lowerCAmelCase = model_class_name(_lowerCAmelCase ) _lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) _lowerCAmelCase = model.init_cache(input_ids.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) _lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) _lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowerCAmelCase , position_ids=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : str = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _snake_case ( self ) -> List[str]: _lowerCAmelCase = FlaxGPTJModelTester(self ) def _snake_case ( self ) -> List[str]: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: for model_class_name in self.all_model_classes: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @tooslow def _snake_case ( self ) -> Any: _lowerCAmelCase = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) _lowerCAmelCase = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) _lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = False _lowerCAmelCase = model.config.eos_token_id _lowerCAmelCase = jax.jit(model.generate ) _lowerCAmelCase = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @is_pt_flax_cross_test def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowerCAmelCase ) _lowerCAmelCase = fx_state with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model_class.from_pretrained(_lowerCAmelCase , from_pt=_lowerCAmelCase ) _lowerCAmelCase = fx_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def _snake_case ( self ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase = getattr(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = pt_model_class(_lowerCAmelCase ).eval() _lowerCAmelCase = model_class(_lowerCAmelCase , dtype=jnp.floataa ) _lowerCAmelCase = load_flax_weights_in_pytorch_model(_lowerCAmelCase , fx_model.params ) _lowerCAmelCase , _lowerCAmelCase = pt_inputs["input_ids"].shape _lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowerCAmelCase ): _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 0 _lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _lowerCAmelCase = pt_model(**_lowerCAmelCase ).to_tuple() _lowerCAmelCase = fx_model(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = pt_model_class.from_pretrained(_lowerCAmelCase , from_flax=_lowerCAmelCase ) with torch.no_grad(): _lowerCAmelCase = pt_model_loaded(**_lowerCAmelCase ).to_tuple() self.assertEqual( len(_lowerCAmelCase ) , len(_lowerCAmelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def _snake_case ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _lowerCAmelCase = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
158
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a_ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } a_ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" a_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowercase ( snake_case_ : str ) ->dict[str, int]: '''simple docstring''' __A : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __lowercase ( snake_case_ : tuple ) ->str: '''simple docstring''' return x[0] def __lowercase ( snake_case_ : str ) ->str: '''simple docstring''' __A : Union[str, Any] = get_letter_count(snake_case_ ) __A : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(snake_case_ ) __A : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=snake_case_ ) __A : Optional[int] = ''''''.join(freq_to_letter[freq] ) __A : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=snake_case_ ,reverse=snake_case_ ) __A : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(snake_case_ ) def __lowercase ( snake_case_ : str ) ->int: '''simple docstring''' __A : Any = get_frequency_order(snake_case_ ) __A : str = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
291
0
import argparse import os import re import packaging.version SCREAMING_SNAKE_CASE :int = 'examples/' SCREAMING_SNAKE_CASE :Dict = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } SCREAMING_SNAKE_CASE :Optional[Any] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } SCREAMING_SNAKE_CASE :Optional[Any] = 'README.md' def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" with open(a_ , "r" , encoding="utf-8" , newline="\n" ) as f: __A = f.read() __A , __A = REPLACE_PATTERNS[pattern] __A = replace.replace("VERSION" , a_ ) __A = re_pattern.sub(a_ , a_ ) with open(a_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" for folder, directories, fnames in os.walk(a_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(a_ , a_ ) , a_ , pattern="examples" ) def UpperCAmelCase ( a_ , a_=False ) -> Any: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a_ , a_ , a_ ) if not patch: update_version_in_examples(a_ ) def UpperCAmelCase ( ) -> List[Any]: """simple docstring""" __A = "🤗 Transformers currently provides the following architectures" __A = "1. Want to contribute a new model?" with open(a_ , "r" , encoding="utf-8" , newline="\n" ) as f: __A = f.readlines() # Find the start of the list. __A = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __A = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __A = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(a_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(a_ ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: __A = f.read() __A = REPLACE_PATTERNS["init"][0].search(a_ ).groups()[0] return packaging.version.parse(a_ ) def UpperCAmelCase ( a_=False ) -> Dict: """simple docstring""" __A = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __A = default_version.base_version elif patch: __A = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __A = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __A = input(F'''Which version are you releasing? [{default_version}]''' ) if len(a_ ) == 0: __A = default_version print(F'''Updating version to {version}.''' ) global_version_update(a_ , patch=a_ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def UpperCAmelCase ( ) -> List[Any]: """simple docstring""" __A = get_version() __A = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __A = current_version.base_version # Check with the user we got that right. __A = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(a_ ) == 0: __A = dev_version print(F'''Updating version to {version}.''' ) global_version_update(a_ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": SCREAMING_SNAKE_CASE :str = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') SCREAMING_SNAKE_CASE :Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
15
'''simple docstring''' from manim import * class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 ) target.move_to(lowerCamelCase_ ) model_arr.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase_ ) self.add(*lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 ) input.set_fill(lowerCamelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 ) self.play(Write(lowerCamelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase_ ) ) self.play(FadeOut(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE : Any = AnimationGroup( FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE : Optional[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = a_c SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) ) self.wait()
323
0
def snake_case_ (__A : str , __A : str ) -> bool: __lowerCAmelCase : List[str] = len(__A ) + 1 __lowerCAmelCase : List[str] = len(__A ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowerCAmelCase : int = [[0 for i in range(__A )] for j in range(__A )] # since string of zero length match pattern of zero length __lowerCAmelCase : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __A ): __lowerCAmelCase : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __A ): __lowerCAmelCase : str = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __A ): for j in range(1 , __A ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowerCAmelCase : Optional[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowerCAmelCase : Optional[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowerCAmelCase : List[Any] = dp[i - 1][j] else: __lowerCAmelCase : Any = 0 else: __lowerCAmelCase : str = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __UpperCAmelCase = """aab""" __UpperCAmelCase = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
352
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __UpperCAmelCase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __UpperCAmelCase = concatenate_datasets __UpperCAmelCase = DownloadConfig __UpperCAmelCase = DownloadManager __UpperCAmelCase = DownloadMode __UpperCAmelCase = DownloadConfig __UpperCAmelCase = DownloadMode __UpperCAmelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
139
0
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __UpperCamelCase = parse(importlib.metadata.version('''torch''')) def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Version] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> Dict: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) SCREAMING_SNAKE_CASE = STR_OPERATION_TO_FUNC[operation] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = parse(importlib.metadata.version(SCREAMING_SNAKE_CASE_ ) ) return operation(SCREAMING_SNAKE_CASE_ , parse(SCREAMING_SNAKE_CASE_ ) ) def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ) -> str: return compare_versions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
113
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def __A ( self ) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase__ ) class lowerCAmelCase ( datasets.BeamBasedBuilder ): '''simple docstring''' def __A ( self ) -> int: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase__ ) def lowercase () -> str: return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def lowercase () -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' @require_beam def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __A ( self ) -> int: import apache_beam as beam SCREAMING_SNAKE_CASE = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: SCREAMING_SNAKE_CASE = partial(lowerCAmelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __A ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = DummyBeamDataset(cache_dir=lowerCAmelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __A ( self ) -> int: SCREAMING_SNAKE_CASE = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE = NestedBeamDataset(cache_dir=lowerCAmelCase__ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) SCREAMING_SNAKE_CASE = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase__ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase__ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
113
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: """simple docstring""" lowerCAmelCase__ :Tuple = 1.5 lowerCAmelCase__ :Optional[int] = int(factor * num_class_images ) lowerCAmelCase__ :str = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: lowerCAmelCase__ :List[Any] = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: lowerCAmelCase__ :List[str] = int(factor * num_images ) lowerCAmelCase__ :int = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) lowerCAmelCase__ :Dict = 0 lowerCAmelCase__ :Any = 0 lowerCAmelCase__ :Union[str, Any] = tqdm(desc='downloading real regularization images' , total=_SCREAMING_SNAKE_CASE ) with open(F"{class_data_dir}/caption.txt" , 'w' ) as fa, open(F"{class_data_dir}/urls.txt" , 'w' ) as fa, open( F"{class_data_dir}/images.txt" , 'w' ) as fa: while total < num_class_images: lowerCAmelCase__ :Tuple = class_images[count] count += 1 try: lowerCAmelCase__ :List[str] = requests.get(images['url'] ) if img.status_code == 200: lowerCAmelCase__ :Any = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F"{class_data_dir}/images/{total}.jpg" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __A () ->Any: """simple docstring""" lowerCAmelCase__ :List[Any] = argparse.ArgumentParser('' , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('--class_data_dir' , help='path to save images' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": __A = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
254
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __A = random.Random() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]: """simple docstring""" if rng is None: lowerCAmelCase__ :int = global_rng lowerCAmelCase__ :str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=2_0_0_0 , __UpperCAmelCase=1_0 , __UpperCAmelCase=1_6_0 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=4_0_0_0 , __UpperCAmelCase=False , __UpperCAmelCase=True , ): '''simple docstring''' lowerCAmelCase__ :int = parent lowerCAmelCase__ :Optional[int] = batch_size lowerCAmelCase__ :Optional[Any] = min_seq_length lowerCAmelCase__ :Optional[int] = max_seq_length lowerCAmelCase__ :Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ :Union[str, Any] = padding_value lowerCAmelCase__ :Optional[int] = sampling_rate lowerCAmelCase__ :Optional[int] = return_attention_mask lowerCAmelCase__ :Union[str, Any] = do_normalize lowerCAmelCase__ :Any = feature_size lowerCAmelCase__ :Union[str, Any] = chunk_length lowerCAmelCase__ :List[Any] = hop_length def snake_case ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case ( self , __UpperCAmelCase=False , __UpperCAmelCase=False ): '''simple docstring''' def _flatten(__UpperCAmelCase ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: lowerCAmelCase__ :Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ :Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ :Optional[int] = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Union[str, Any] = WhisperFeatureExtractor if is_speech_available() else None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = WhisperFeatureExtractionTester(self ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[Any] = feat_extract_first.save_pretrained(__UpperCAmelCase )[0] check_json_file_has_correct_format(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.feature_extraction_class.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = feat_extract_first.to_dict() lowerCAmelCase__ :List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ :int = feat_extract_first.mel_filters lowerCAmelCase__ :Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[int] = os.path.join(__UpperCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(__UpperCAmelCase ) lowerCAmelCase__ :str = self.feature_extraction_class.from_json_file(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = feat_extract_first.to_dict() lowerCAmelCase__ :List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ :str = feat_extract_first.mel_filters lowerCAmelCase__ :Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ :List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase__ :int = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ :int = feature_extractor(__UpperCAmelCase , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ :Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCAmelCase__ :Dict = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test batched lowerCAmelCase__ :Optional[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :Dict = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ :List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase__ :Optional[Any] = np.asarray(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :List[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test truncation required lowerCAmelCase__ :Any = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] lowerCAmelCase__ :Any = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] lowerCAmelCase__ :str = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCAmelCase__ :Union[str, Any] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs_truncated] lowerCAmelCase__ :Any = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :int = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def snake_case ( self ): '''simple docstring''' import torch lowerCAmelCase__ :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ :Dict = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) lowerCAmelCase__ :Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ :List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ :List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase__ :str = ds.sort('id' ).select(range(__UpperCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on lowerCAmelCase__ :Tuple = self._load_datasamples(1 ) lowerCAmelCase__ :Any = WhisperFeatureExtractor() lowerCAmelCase__ :List[str] = feature_extractor(__UpperCAmelCase , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , __UpperCAmelCase , atol=1E-4 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ :int = self._load_datasamples(1 )[0] lowerCAmelCase__ :Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue lowerCAmelCase__ :Any = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCAmelCase )[0] self.assertTrue(np.all(np.mean(__UpperCAmelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase ) - 1 ) < 1E-3 ) )
254
1
from bisect import bisect from itertools import accumulate def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : int = sorted(zip(_lowerCamelCase , _lowerCamelCase ) , key=lambda lowercase__ : x[0] / x[1] , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = [i[0] for i in r], [i[1] for i in r] __SCREAMING_SNAKE_CASE : Union[str, Any] = list(accumulate(_lowerCamelCase ) ) __SCREAMING_SNAKE_CASE : Optional[int] = bisect(_lowerCamelCase , _lowerCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Any = [] lowercase__ : Optional[int] = [] lowercase__ : Tuple = [] for rt in rc.restypes: lowercase__ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names]) lowercase__ : str = {name: i for i, name in enumerate(_lowerCamelCase)} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types]) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names]) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14) restype_atomaa_to_atomaa_list.append([0] * 37) restype_atomaa_mask_list.append([0.0] * 14) lowercase__ : Union[str, Any] = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : str = torch.tensor( _lowerCamelCase , dtype=torch.intaa , device=protein["aatype"].device , ) lowercase__ : List[str] = torch.tensor( _lowerCamelCase , dtype=torch.floataa , device=protein["aatype"].device , ) lowercase__ : str = protein["aatype"].to(torch.long) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase__ : Dict = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = restype_atomaa_mask[protein_aatype] lowercase__ : List[Any] = residx_atomaa_mask lowercase__ : Optional[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase__ : str = restype_atomaa_to_atomaa[protein_aatype] lowercase__ : str = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase__ : Optional[Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device) for restype, restype_letter in enumerate(rc.restypes): lowercase__ : Tuple = rc.restype_atoa[restype_letter] lowercase__ : List[Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase__ : Optional[int] = rc.atom_order[atom_name] lowercase__ : Tuple = 1 lowercase__ : Dict = restype_atomaa_mask[protein_aatype] lowercase__ : Any = residx_atomaa_mask return protein def lowercase_ ( _lowerCamelCase : Dict[str, torch.Tensor]): lowercase__ : Tuple = tree_map(lambda _lowerCamelCase: torch.tensor(_lowerCamelCase , device=batch["aatype"].device) , _lowerCamelCase , np.ndarray) lowercase__ : List[str] = tensor_tree_map(lambda _lowerCamelCase: np.array(_lowerCamelCase) , make_atomaa_masks(_lowerCamelCase)) return out
87
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def lowerCAmelCase( __lowerCamelCase ): __a = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def lowerCAmelCase( __lowerCamelCase ): return (gray > 127) & (gray <= 255) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = np.zeros_like(lowerCamelCase_ ) __a = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __a = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __a = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __a = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCamelCase_ : Optional[int] = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' lowerCamelCase_ : int = np.array(Image.open(lena_path)) # kernel to be applied lowerCamelCase_ : Optional[int] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCamelCase_ : int = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCamelCase_ : int = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class snake_case : '''simple docstring''' A_ : Tuple = True A_ : Union[str, Any] = None # Automatically constructed A_ : List[Any] = "PIL.Image.Image" A_ : Any = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) A_ : Optional[int] = field(default="Image" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self : str ): '''simple docstring''' return self.pa_type def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Any ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(_a, _a ): __A = np.array(_a ) if isinstance(_a, _a ): return {"path": value, "bytes": None} elif isinstance(_a, _a ): return {"path": None, "bytes": value} elif isinstance(_a, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_a ) elif isinstance(_a, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_a ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : str, _lowerCamelCase : List[Any]=None ): '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: __A = {} __A , __A = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(_a ): __A = PIL.Image.open(_a ) else: __A = path.split('''::''' )[-1] try: __A = string_to_dict(_a, config.HUB_DATASETS_URL )['''repo_id'''] __A = token_per_repo_id.get(_a ) except ValueError: __A = None with xopen(_a, '''rb''', use_auth_token=_a ) as f: __A = BytesIO(f.read() ) __A = PIL.Image.open(bytes_ ) else: __A = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : str ): '''simple docstring''' if pa.types.is_string(storage.type ): __A = pa.array([None] * len(_a ), type=pa.binary() ) __A = pa.StructArray.from_arrays([bytes_array, storage], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __A = pa.array([None] * len(_a ), type=pa.string() ) __A = pa.StructArray.from_arrays([storage, path_array], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __A = storage.field('''bytes''' ) else: __A = pa.array([None] * len(_a ), type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __A = storage.field('''path''' ) else: __A = pa.array([None] * len(_a ), type=pa.string() ) __A = pa.StructArray.from_arrays([bytes_array, path_array], ['''bytes''', '''path'''], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __A = pa.array( [encode_np_array(np.array(_a ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) __A = pa.array([None] * len(_a ), type=pa.string() ) __A = pa.StructArray.from_arrays( [bytes_array, path_array], ['''bytes''', '''path'''], mask=bytes_array.is_null() ) return array_cast(_a, self.pa_type ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Optional[int] ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase : Union[str, Any] ): with xopen(_a, '''rb''' ) as f: __A = f.read() return bytes_ __A = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) __A = pa.array( [os.path.basename(_a ) if path is not None else None for path in storage.field('''path''' ).to_pylist()], type=pa.string(), ) __A = pa.StructArray.from_arrays([bytes_array, path_array], ['''bytes''', '''path'''], mask=bytes_array.is_null() ) return array_cast(_a, self.pa_type ) def lowerCAmelCase ( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __A = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = BytesIO() if image.format in list_image_compression_formats(): __A = image.format else: __A = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(snake_case__ , format=snake_case__ ) return buffer.getvalue() def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if hasattr(snake_case__ , '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(snake_case__ )} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) __A = array.dtype __A = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER __A = dtype.kind __A = dtype.itemsize __A = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __A = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __A = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __A = dtype_byteorder + dtype_kind + str(snake_case__ ) __A = np.dtype(snake_case__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) __A = PIL.Image.fromarray(array.astype(snake_case__ ) ) return {"path": None, "bytes": image_to_bytes(snake_case__ )} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: __A , __A = first_non_null_value(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(snake_case__ , np.ndarray ): __A = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] elif isinstance(snake_case__ , PIL.Image.Image ): __A = no_op_if_value_is_null(snake_case__ ) return [obj_to_image_dict_func(snake_case__ ) for obj in objs] else: return objs else: return objs
266
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = type_sequence_label_size lowerCamelCase = initializer_range lowerCamelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase = (image_size // patch_size) ** 2 lowerCamelCase = num_patches + 1 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = ViTMSNModel(config=_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = self.type_sequence_label_size lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ViTMSNModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): """simple docstring""" pass def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_a ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def _lowerCAmelCase ( self ): """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def a__ ( ) -> Any: lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(2 ) lowerCamelCase = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**_a ) # verify the logits lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) lowerCamelCase = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
291
0
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __SCREAMING_SNAKE_CASE : Any = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=None , ) ->Any: """simple docstring""" snake_case_ = size if size is not None else {"""height""": 20, """width""": 20} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = size snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = [512, 1_024, 2_048, 4_096] snake_case_ = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" snake_case_ = """https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg""" snake_case_ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert("""RGB""" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[int] = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Dict ) ->Union[str, Any]: """simple docstring""" snake_case_ = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_convert_rgb""" ) ) def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ = self.image_processor_tester.prepare_dummy_image() snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = 2_048 snake_case_ = image_processor(UpperCAmelCase_ , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1E-3 , rtol=1E-3 ) ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input snake_case_ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ = image_processor( UpperCAmelCase_ , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input snake_case_ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 snake_case_ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCAmelCase_ ): snake_case_ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches snake_case_ = """Hello""" snake_case_ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCAmelCase_ , header_text=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ = image_processor( UpperCAmelCase_ , return_tensors="""pt""" , max_patches=UpperCAmelCase_ , header_text=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : Tuple ) ->str: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) snake_case_ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ = image_processor( UpperCAmelCase_ , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input snake_case_ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ = image_processor( UpperCAmelCase_ , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Optional[Any] = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case_ = 3 @property def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_convert_rgb""" ) ) def lowerCAmelCase ( self : Dict ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input snake_case_ = ( (self.image_processor_tester.patch_size["""height"""] * self.image_processor_tester.patch_size["""width"""]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ = image_processor( image_inputs[0] , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ = image_processor( UpperCAmelCase_ , return_tensors="""pt""" , max_patches=UpperCAmelCase_ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
233
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> list: snake_case_ = length or len(_SCREAMING_SNAKE_CASE ) snake_case_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case_ , snake_case_ = list_data[i + 1], list_data[i] snake_case_ = True return list_data if not swapped else bubble_sort(_SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
233
1
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" __lowerCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase_ ( UpperCamelCase__ : int = 5000 ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCamelCase__ )] for i, pentagonal_i in enumerate(UpperCamelCase__ ): for j in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): __lowerCamelCase = pentagonal_nums[j] __lowerCamelCase = pentagonal_i + pentagonal_j __lowerCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(UpperCamelCase__ ) and is_pentagonal(UpperCamelCase__ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
90
'''simple docstring''' from __future__ import annotations A_ = list[list[int]] # assigning initial values to the grid A_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution A_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def A_ ( snake_case , snake_case , snake_case , snake_case ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def A_ ( snake_case ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def A_ ( snake_case ): if location := find_empty_location(snake_case ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(snake_case , snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:List[str] = digit if sudoku(snake_case ) is not None: return grid SCREAMING_SNAKE_CASE:List[Any] = 0 return None def A_ ( snake_case ): for row in grid: for cell in row: print(snake_case , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("\nExample grid:\n" + "=" * 20) print_solution(example_grid) print("\nExample grid solution:") A_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("Cannot find a solution.")
139
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __SCREAMING_SNAKE_CASE ( a__ ): '''simple docstring''' _a = ['vqvae'] def __init__( self : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], lowerCamelCase : Optional[Any], lowerCamelCase : Dict, )-> str: super().__init__() self.register_modules(unet=_lowerCamelCase, scheduler=_lowerCamelCase, mel=_lowerCamelCase, vqvae=_lowerCamelCase ) def snake_case ( self : Optional[int] )-> int: return 50 if isinstance(self.scheduler, _lowerCamelCase ) else 1000 @torch.no_grad() def __call__( self : Dict, lowerCamelCase : Optional[int] = 1, lowerCamelCase : int = None, lowerCamelCase : str = None, lowerCamelCase : int = 0, lowerCamelCase : Any = 0, lowerCamelCase : str = None, lowerCamelCase : Any = None, lowerCamelCase : int = 0, lowerCamelCase : Tuple = 0, lowerCamelCase : Any = None, lowerCamelCase : int = 0, lowerCamelCase : Union[str, Any] = None, lowerCamelCase : Dict = None, lowerCamelCase : Optional[int]=True, )-> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: lowerCamelCase__ : Union[str, Any] =steps or self.get_default_steps() self.scheduler.set_timesteps(_lowerCamelCase ) lowerCamelCase__ : List[Any] =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowerCamelCase__ : List[Any] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCamelCase__ : Dict =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ), generator=_lowerCamelCase, device=self.device, ) lowerCamelCase__ : List[Any] =noise lowerCamelCase__ : int =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_lowerCamelCase, _lowerCamelCase ) lowerCamelCase__ : Optional[int] =self.mel.audio_slice_to_image(_lowerCamelCase ) lowerCamelCase__ : Dict =np.frombuffer(input_image.tobytes(), dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) lowerCamelCase__ : Dict =(input_image / 255) * 2 - 1 lowerCamelCase__ : str =torch.tensor(input_image[np.newaxis, :, :], dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowerCamelCase__ : List[Any] =self.vqvae.encode(torch.unsqueeze(_lowerCamelCase, 0 ) ).latent_dist.sample( generator=_lowerCamelCase )[0] lowerCamelCase__ : List[str] =self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCamelCase__ : Dict =self.scheduler.add_noise(_lowerCamelCase, _lowerCamelCase, self.scheduler.timesteps[start_step - 1] ) lowerCamelCase__ : Dict =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCamelCase__ : Any =int(mask_start_secs * pixels_per_second ) lowerCamelCase__ : int =int(mask_end_secs * pixels_per_second ) lowerCamelCase__ : Dict =self.scheduler.add_noise(_lowerCamelCase, _lowerCamelCase, torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet, _lowerCamelCase ): lowerCamelCase__ : Optional[Any] =self.unet(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase )['''sample'''] else: lowerCamelCase__ : Optional[int] =self.unet(_lowerCamelCase, _lowerCamelCase )['''sample'''] if isinstance(self.scheduler, _lowerCamelCase ): lowerCamelCase__ : int =self.scheduler.step( model_output=_lowerCamelCase, timestep=_lowerCamelCase, sample=_lowerCamelCase, eta=_lowerCamelCase, generator=_lowerCamelCase, )['''prev_sample'''] else: lowerCamelCase__ : int =self.scheduler.step( model_output=_lowerCamelCase, timestep=_lowerCamelCase, sample=_lowerCamelCase, generator=_lowerCamelCase, )['''prev_sample'''] if mask is not None: if mask_start > 0: lowerCamelCase__ : Any =mask[:, step, :, :mask_start] if mask_end > 0: lowerCamelCase__ : Dict =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCamelCase__ : List[str] =1 / self.vqvae.config.scaling_factor * images lowerCamelCase__ : Dict =self.vqvae.decode(_lowerCamelCase )['''sample'''] lowerCamelCase__ : Union[str, Any] =(images / 2 + 0.5).clamp(0, 1 ) lowerCamelCase__ : int =images.cpu().permute(0, 2, 3, 1 ).numpy() lowerCamelCase__ : str =(images * 255).round().astype('''uint8''' ) lowerCamelCase__ : Union[str, Any] =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_lowerCamelCase, mode='''RGB''' ).convert('''L''' ) for _ in images) ) lowerCamelCase__ : Optional[int] =[self.mel.image_to_audio(_lowerCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_lowerCamelCase )[:, np.newaxis, :] ), **ImagePipelineOutput(_lowerCamelCase ) ) @torch.no_grad() def snake_case ( self : Optional[int], lowerCamelCase : List[str], lowerCamelCase : Dict = 50 )-> np.ndarray: assert isinstance(self.scheduler, _lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase ) lowerCamelCase__ : int =np.array( [np.frombuffer(image.tobytes(), dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) lowerCamelCase__ : Union[str, Any] =(sample / 255) * 2 - 1 lowerCamelCase__ : Any =torch.Tensor(_lowerCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps, (0,) ) ): lowerCamelCase__ : Tuple =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCamelCase__ : Optional[Any] =self.scheduler.alphas_cumprod[t] lowerCamelCase__ : Optional[int] =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCamelCase__ : Union[str, Any] =1 - alpha_prod_t lowerCamelCase__ : Union[str, Any] =self.unet(_lowerCamelCase, _lowerCamelCase )['''sample'''] lowerCamelCase__ : Dict =(1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCamelCase__ : Tuple =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCamelCase__ : str =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def snake_case ( lowerCamelCase : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Dict )-> torch.Tensor: lowerCamelCase__ : str =acos(torch.dot(torch.flatten(_lowerCamelCase ), torch.flatten(_lowerCamelCase ) ) / torch.norm(_lowerCamelCase ) / torch.norm(_lowerCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_lowerCamelCase ) + sin(alpha * theta ) * xa / sin(_lowerCamelCase )
369
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Union[str, Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : str )-> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] =controlnet_params lowerCamelCase__ : Dict ='''bird''' lowerCamelCase__ : List[str] =jax.device_count() lowerCamelCase__ : Optional[Any] =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase__ : Dict =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : Tuple =replicate(lowerCamelCase ) lowerCamelCase__ : Tuple =shard(lowerCamelCase ) lowerCamelCase__ : Optional[int] =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : Any =images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Dict =jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Dict =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[Any] =controlnet_params lowerCamelCase__ : int ='''Chef in the kitchen''' lowerCamelCase__ : Optional[Any] =jax.device_count() lowerCamelCase__ : Any =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : int =replicate(lowerCamelCase ) lowerCamelCase__ : List[Any] =shard(lowerCamelCase ) lowerCamelCase__ : int =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] =images[0, 253:256, 253:256, -1] lowerCamelCase__ : int =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Any =jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
272
0
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _UpperCamelCase = '''<<<<<<< This should probably be modified because it mentions: ''' _UpperCamelCase = '''======= >>>>>>> ''' _UpperCamelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] _UpperCamelCase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def lowercase_ ( lowerCAmelCase__ : Namespace ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _A ( __SCREAMING_SNAKE_CASE ): @staticmethod def __A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=__UpperCAmelCase , required=__UpperCAmelCase , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = get_logger("""datasets-cli/converting""" ) __UpperCAmelCase : Optional[Any] = tfds_path __UpperCAmelCase : Dict = datasets_directory def __A ( self ) -> int: '''simple docstring''' if os.path.isdir(self._tfds_path ): __UpperCAmelCase : Union[str, Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __UpperCAmelCase : str = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) __UpperCAmelCase : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : List[str] = {} if os.path.isdir(self._tfds_path ): __UpperCAmelCase : Tuple = os.listdir(__UpperCAmelCase ) else: __UpperCAmelCase : List[str] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __UpperCAmelCase : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if not os.path.isfile(__UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(__UpperCAmelCase , encoding="""utf-8""" ) as f: __UpperCAmelCase : Optional[Any] = f.readlines() __UpperCAmelCase : str = [] __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = [] for line in lines: __UpperCAmelCase : int = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __UpperCAmelCase : Tuple = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here __UpperCAmelCase : Any = """""" continue elif "from absl import logging" in out_line: __UpperCAmelCase : Any = """from datasets import logging\n""" elif "getLogger" in out_line: __UpperCAmelCase : List[str] = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __UpperCAmelCase : Tuple = True __UpperCAmelCase : Tuple = list(filter(lambda __UpperCAmelCase : e in out_line , __UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__UpperCAmelCase ) + """\n""" ) out_lines.append(__UpperCAmelCase ) out_lines.append(__UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __UpperCAmelCase : int = re.sub(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __UpperCAmelCase : Optional[Any] = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , __UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) __UpperCAmelCase : Dict = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __UpperCAmelCase : Union[str, Any] = True out_lines.append(__UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __UpperCAmelCase : List[str] = f_name.replace(""".py""" , """""" ) __UpperCAmelCase : Tuple = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__UpperCAmelCase ) if needs_manual_update: with_manual_update.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines(__UpperCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __UpperCAmelCase : Any = os.path.basename(__UpperCAmelCase ) __UpperCAmelCase : Any = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(__UpperCAmelCase , __UpperCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
254
'''simple docstring''' import qiskit def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __UpperCAmelCase : Any = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __UpperCAmelCase : int = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
254
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" if openai_config_file == "": UpperCamelCase_ = OpenAIGPTConfig() else: UpperCamelCase_ = OpenAIGPTConfig.from_json_file(a__ ) UpperCamelCase_ = OpenAIGPTModel(a__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(a__ , a__ , a__ ) # Save pytorch-model UpperCamelCase_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase_ = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , a__ ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--openai_checkpoint_folder_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--openai_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) SCREAMING_SNAKE_CASE :str = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
368
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer SCREAMING_SNAKE_CASE :List[str] = logging.getLogger(__name__) def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=SCREAMING_SNAKE_CASE_ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=SCREAMING_SNAKE_CASE_ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=SCREAMING_SNAKE_CASE_ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=SCREAMING_SNAKE_CASE_ , default=1_0_0_0 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=SCREAMING_SNAKE_CASE_ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=SCREAMING_SNAKE_CASE_ , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=SCREAMING_SNAKE_CASE_ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) UpperCamelCase_ = parser.parse_args() return args def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" def fn(SCREAMING_SNAKE_CASE_ ): return tokenizer(examples["text"] ) return fn def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = [] for i in range(len(tokenized_data["input_ids"] ) ): UpperCamelCase_ = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } UpperCamelCase_ = tf.train.Features(feature=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = tf.train.Example(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE_ ) return records def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCamelCase_ = min(len(SCREAMING_SNAKE_CASE_ ) , args.limit ) UpperCamelCase_ = dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) print(f"Limiting the dataset to {args.limit} entries." ) UpperCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCamelCase_ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCamelCase_ = tokenize_function(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE_ ): # Concatenate all texts. UpperCamelCase_ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCamelCase_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCamelCase_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCamelCase_ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE_ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCamelCase_ = dataset_tokenized.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , batch_size=1_0_0_0 , num_proc=4 ) UpperCamelCase_ = 0 UpperCamelCase_ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE_ ) , args.shard_size ): UpperCamelCase_ = grouped_dataset[shard : shard + args.shard_size] UpperCamelCase_ = len(dataset_snapshot["input_ids"] ) UpperCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , f"dataset-{shard_count}-{records_containing}.tfrecord" ) UpperCamelCase_ = get_serialized_examples(SCREAMING_SNAKE_CASE_ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE_ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase_ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE_ ) print("Wrote file {} containing {} records".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt" , "w" ) as f: print(f"Total {args.split} records: {total_records}" , file=SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = parse_args() main(args)
60
0
'''simple docstring''' def a_ ( lowerCamelCase : list ): lowerCAmelCase = len(lowerCamelCase ) for i in range(1 , lowerCamelCase ): lowerCAmelCase = collection[i] lowerCAmelCase = 0 lowerCAmelCase = i - 1 while low <= high: lowerCAmelCase = (low + high) // 2 if val < collection[mid]: lowerCAmelCase = mid - 1 else: lowerCAmelCase = mid + 1 for j in range(lowerCamelCase , lowerCamelCase , -1 ): lowerCAmelCase = collection[j - 1] lowerCAmelCase = val return collection if __name__ == "__main__": __snake_case =input("""Enter numbers separated by a comma:\n""").strip() __snake_case =[int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
4
"""simple docstring""" from __future__ import annotations import numpy as np def UpperCAmelCase__ ( lowerCAmelCase__ :list[float] ) -> Optional[Any]: '''simple docstring''' return np.maximum(0 , lowerCAmelCase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
197
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_: List[str] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Tuple ={ 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : Optional[Any] = """resnet""" a__ : Tuple = ["""basic""", """bottleneck"""] def __init__(self : List[Any] , __a : Any=3 , __a : Dict=64 , __a : Union[str, Any]=[256, 512, 1024, 2048] , __a : str=[3, 4, 6, 3] , __a : Optional[Any]="bottleneck" , __a : Tuple="relu" , __a : int=False , __a : Optional[int]=None , __a : str=None , **__a : Dict , ): super().__init__(**__a ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" ) UpperCAmelCase_ = num_channels UpperCAmelCase_ = embedding_size UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = layer_type UpperCAmelCase_ = hidden_act UpperCAmelCase_ = downsample_in_first_stage UpperCAmelCase_ = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(__a ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names ) class __A ( UpperCamelCase__ ): a__ : int = version.parse("""1.11""" ) @property def _lowercase (self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowercase (self : str ): return 1E-3
106
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: int ={ 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_: Union[str, Any] =['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =[ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_: List[str] =[ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure)
106
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json''', '''google/bigbird-roberta-large''': '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json''', '''google/bigbird-base-trivia-itc''': '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json''', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = '''big_bird''' def __init__( self : Optional[Any] , __a : Any=50358 , __a : str=768 , __a : List[str]=12 , __a : int=12 , __a : Optional[Any]=3072 , __a : Any="gelu_new" , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : List[Any]=4096 , __a : Dict=2 , __a : List[Any]=0.02 , __a : List[str]=1E-12 , __a : List[Any]=True , __a : Dict=0 , __a : str=1 , __a : List[Any]=2 , __a : Any=66 , __a : Optional[Any]="block_sparse" , __a : Any=True , __a : Any=False , __a : List[str]=64 , __a : Dict=3 , __a : Optional[int]=None , **__a : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) __lowercase : Tuple = vocab_size __lowercase : List[str] = max_position_embeddings __lowercase : str = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : Tuple = intermediate_size __lowercase : Dict = hidden_act __lowercase : int = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : str = type_vocab_size __lowercase : Any = layer_norm_eps __lowercase : Any = use_cache __lowercase : Tuple = rescale_embeddings __lowercase : str = attention_type __lowercase : List[Any] = use_bias __lowercase : int = block_size __lowercase : Tuple = num_random_blocks __lowercase : Union[str, Any] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' @property def lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
233
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] __lowercase : Any = [] def generate(lowerCAmelCase_ : int , lowerCAmelCase_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __lowercase , __lowercase : List[str] = arr[k - 1], arr[i] else: # k is odd __lowercase , __lowercase : Any = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": lowerCamelCase : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
233
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowerCAmelCase ( __a ): snake_case : List[str] = """speech_to_text""" snake_case : int = ["""past_key_values"""] snake_case : Optional[int] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self , lowerCAmelCase__=1_0_0_0_0 , lowerCAmelCase__=1_2 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_5_6 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=6_0_0_0 , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=2 , lowerCAmelCase__=(5, 5) , lowerCAmelCase__=1_0_2_4 , lowerCAmelCase__=8_0 , lowerCAmelCase__=1 , **lowerCAmelCase__ , ): _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Tuple = d_model _UpperCAmelCase : Optional[int] = encoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : Optional[int] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_ffn_dim _UpperCAmelCase : Optional[Any] = decoder_layers _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : List[Any] = dropout _UpperCAmelCase : Optional[Any] = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = activation_function _UpperCAmelCase : Union[str, Any] = init_std _UpperCAmelCase : str = encoder_layerdrop _UpperCAmelCase : List[str] = decoder_layerdrop _UpperCAmelCase : List[Any] = use_cache _UpperCAmelCase : List[str] = encoder_layers _UpperCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : int = max_source_positions _UpperCAmelCase : int = max_target_positions _UpperCAmelCase : Optional[Any] = num_conv_layers _UpperCAmelCase : Dict = list(lowerCAmelCase__ ) _UpperCAmelCase : str = conv_channels _UpperCAmelCase : int = input_feat_per_channel _UpperCAmelCase : Optional[Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
367
'''simple docstring''' def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = 0 while len(lowerCAmelCase_ ) > 1: _UpperCAmelCase : List[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _UpperCAmelCase : Optional[Any] = files.index(min(lowerCAmelCase_ ) ) temp += files[min_index] files.pop(lowerCAmelCase_ ) files.append(lowerCAmelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
170
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
272
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Dict =(EulerDiscreteScheduler,) lowerCamelCase : Dict =10 def SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = { """num_train_timesteps""": 11_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = self.scheduler_classes[0] __lowerCAmelCase : int = self.get_scheduler_config() __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : List[Any] = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Tuple = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = output.prev_sample __lowerCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowerCAmelCase : List[str] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCAmelCase : Any = torch.manual_seed(0 ) __lowerCAmelCase : int = self.dummy_model() __lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCAmelCase : List[Any] = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Any = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Dict = output.prev_sample __lowerCAmelCase : List[str] = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: """simple docstring""" __lowerCAmelCase : List[Any] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCAmelCase : Dict = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : Dict = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[str] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : Any = output.prev_sample __lowerCAmelCase : int = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.scheduler_classes[0] __lowerCAmelCase : Optional[int] = self.get_scheduler_config() __lowerCAmelCase : List[Any] = scheduler_class(**lowerCAmelCase , use_karras_sigmas=lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) __lowerCAmelCase : str = torch.manual_seed(0 ) __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowerCAmelCase : int = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: __lowerCAmelCase : int = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Tuple = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) __lowerCAmelCase : List[Any] = output.prev_sample __lowerCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase ) ) __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
139
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : int=False , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : Optional[int]=19 , lowerCAmelCase : Any=32 , lowerCAmelCase : int=5 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=5_12 , lowerCAmelCase : Dict=16 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = parent __lowerCAmelCase : Tuple = batch_size __lowerCAmelCase : Union[str, Any] = seq_length __lowerCAmelCase : int = is_training __lowerCAmelCase : Dict = use_input_mask __lowerCAmelCase : Dict = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Any = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : List[str] = initializer_range __lowerCAmelCase : int = num_labels __lowerCAmelCase : Tuple = num_choices __lowerCAmelCase : str = scope def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : int = None if self.use_input_mask: __lowerCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Any = None __lowerCAmelCase : Optional[Any] = None __lowerCAmelCase : Optional[int] = None if self.use_labels: __lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[Any] = EsmForProteinFolding(config=lowerCAmelCase ).float() model.to(lowerCAmelCase ) model.eval() __lowerCAmelCase : Any = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) __lowerCAmelCase : str = model(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = model(lowerCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) ,( __lowerCAmelCase ) , ) : Optional[int] = config_and_inputs __lowerCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a_ , a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple =False lowerCamelCase : int =(EsmForProteinFolding,) if is_torch_available() else () lowerCamelCase : int =() lowerCamelCase : Dict ={} if is_torch_available() else {} lowerCamelCase : str =False def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" __lowerCAmelCase : Union[str, Any] = EsmFoldModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @unittest.skip("""Does not support attention outputs""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: """simple docstring""" pass @unittest.skip def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: """simple docstring""" pass @unittest.skip("""ESMFold does not support head pruning.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip("""ESMFold only has one output format.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""ESMFold does not support input chunking.""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @require_torch class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() __lowerCAmelCase : Union[str, Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowerCAmelCase : str = model(lowerCAmelCase )["""positions"""] __lowerCAmelCase : str = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase , atol=1e-4 ) )
139
1
"""simple docstring""" import numpy as np def __a ( __lowerCamelCase ): return 1 / (1 + np.exp(-vector )) def __a ( __lowerCamelCase ): return vector * sigmoid(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
61
"""simple docstring""" def _snake_case ( _snake_case : list ): def merge(_snake_case : list , _snake_case : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_snake_case ) <= 1: return collection lowerCAmelCase : Union[str, Any] = len(_snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
60
0
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , _a , _a , _a = None , _a = 50_257 , _a = 1_024 , _a = 768 , _a = 12 , _a = 12 , _a = None , _a = "gelu_new" , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 1e-5 , _a = 0.02 , _a = True , _a = True , _a = False , _a = False , ): """simple docstring""" super().__init__() lowerCamelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) lowerCamelCase = prefix_inner_dim lowerCamelCase = prefix_hidden_dim lowerCamelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase = ( nn.Linear(self.prefix_hidden_dim , _a ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCamelCase = GPTaConfig( vocab_size=_a , n_positions=_a , n_embd=_a , n_layer=_a , n_head=_a , n_inner=_a , activation_function=_a , resid_pdrop=_a , embd_pdrop=_a , attn_pdrop=_a , layer_norm_epsilon=_a , initializer_range=_a , scale_attn_weights=_a , use_cache=_a , scale_attn_by_inverse_layer_idx=_a , reorder_and_upcast_attn=_a , ) lowerCamelCase = GPTaLMHeadModel(_a ) def _lowerCAmelCase ( self , _a , _a , _a = None , _a = None , ): """simple docstring""" lowerCamelCase = self.transformer.transformer.wte(_a ) lowerCamelCase = self.encode_prefix(_a ) lowerCamelCase = self.decode_prefix(_a ) lowerCamelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCamelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCamelCase = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCamelCase = self.transformer(inputs_embeds=_a , labels=_a , attention_mask=_a ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" return torch.zeros(_a , self.prefix_length , dtype=torch.intaa , device=_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" return self.encode_prefix(_a ) @torch.no_grad() def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = torch.split(_a , 1 , dim=0 ) lowerCamelCase = [] lowerCamelCase = [] for feature in features: lowerCamelCase = self.decode_prefix(feature.to(_a ) ) # back to the clip feature # Only support beam search for now lowerCamelCase , lowerCamelCase = self.generate_beam( input_embeds=_a , device=_a , eos_token_id=_a ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCamelCase = torch.stack(_a ) lowerCamelCase = torch.stack(_a ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _lowerCAmelCase ( self , _a=None , _a=None , _a=None , _a = 5 , _a = 67 , _a = 1.0 , _a = None , ): """simple docstring""" lowerCamelCase = eos_token_id lowerCamelCase = None lowerCamelCase = None lowerCamelCase = torch.ones(_a , device=_a , dtype=torch.int ) lowerCamelCase = torch.zeros(_a , device=_a , dtype=torch.bool ) if input_embeds is not None: lowerCamelCase = input_embeds else: lowerCamelCase = self.transformer.transformer.wte(_a ) for i in range(_a ): lowerCamelCase = self.transformer(inputs_embeds=_a ) lowerCamelCase = outputs.logits lowerCamelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCamelCase = logits.softmax(-1 ).log() if scores is None: lowerCamelCase , lowerCamelCase = logits.topk(_a , -1 ) lowerCamelCase = generated.expand(_a , *generated.shape[1:] ) lowerCamelCase , lowerCamelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCamelCase = next_tokens else: lowerCamelCase = tokens.expand(_a , *tokens.shape[1:] ) lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCamelCase = -float(np.inf ) lowerCamelCase = 0 lowerCamelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCamelCase = scores_sum / seq_lengths[:, None] lowerCamelCase , lowerCamelCase = scores_sum_average.view(-1 ).topk(_a , -1 ) lowerCamelCase = next_tokens // scores_sum.shape[1] lowerCamelCase = seq_lengths[next_tokens_source] lowerCamelCase = next_tokens % scores_sum.shape[1] lowerCamelCase = next_tokens.unsqueeze(1 ) lowerCamelCase = tokens[next_tokens_source] lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) lowerCamelCase = generated[next_tokens_source] lowerCamelCase = scores_sum_average * seq_lengths lowerCamelCase = is_stopped[next_tokens_source] lowerCamelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCamelCase = torch.cat((generated, next_token_embed) , dim=1 ) lowerCamelCase = is_stopped + next_tokens.eq(_a ).squeeze() if is_stopped.all(): break lowerCamelCase = scores / seq_lengths lowerCamelCase = scores.argsort(descending=_a ) # tokens tensors are already padded to max_seq_length lowerCamelCase = [tokens[i] for i in order] lowerCamelCase = torch.stack(_a , dim=0 ) lowerCamelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
357
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ) -> Tuple: if attention_mask is None: lowerCamelCase = tf.cast(tf.math.not_equal(snake_case__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __magic_name__ : '''simple docstring''' __UpperCamelCase = OPTConfig __UpperCamelCase = {} __UpperCamelCase = "gelu" def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=16 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=16 , _a=16 , ): """simple docstring""" lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = seq_length lowerCamelCase = is_training lowerCamelCase = use_labels lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = eos_token_id lowerCamelCase = pad_token_id lowerCamelCase = bos_token_id lowerCamelCase = embed_dim lowerCamelCase = word_embed_proj_dim lowerCamelCase = False def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_a , **self.config_updates , ) lowerCamelCase = prepare_opt_inputs_dict(_a , _a ) return config, inputs_dict def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = TFOPTModel(config=_a ) lowerCamelCase = inputs_dict["""input_ids"""] lowerCamelCase = input_ids[:1, :] lowerCamelCase = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase = 1 # first forward pass lowerCamelCase = model(_a , attention_mask=_a , use_cache=_a ) lowerCamelCase , lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase = model(_a , attention_mask=_a )[0] lowerCamelCase = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) @require_tf class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __UpperCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __UpperCamelCase = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 10 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_a , _a ): if hasattr(_a , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_a , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase = model_class(config=_a ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_input_embeddings() ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_a ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_input_embeddings() ) lowerCamelCase = _get_word_embedding_weight(_a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _a ) # check that weights remain the same after resizing lowerCamelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase = False self.assertTrue(_a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _a ) lowerCamelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase = False self.assertTrue(_a ) def a__ ( snake_case__ ) -> List[Any]: return tf.constant(snake_case__ , dtype=tf.intaa ) @require_tf class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = 99 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase = input_ids.shape[0] lowerCamelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowerCamelCase = tf.not_equal(_a , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase = model(input_ids=_a , attention_mask=_a ).last_hidden_state lowerCamelCase = (1, 11, 512) self.assertEqual(output.shape , _a ) lowerCamelCase = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-3 ) ) lowerCamelCase = tf.function(_a , jit_compile=_a ) lowerCamelCase = xla_generate(_a , _a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=4e-2 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" super().setUp() lowerCamelCase = """facebook/opt-350m""" def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase = tokenizer(_a , return_tensors="""tf""" , padding=_a , add_special_tokens=_a ) lowerCamelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) ) lowerCamelCase = tf.function(_a , jit_compile=_a ) lowerCamelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_a , _a , atol=1e-4 ) ) @require_tf @slow class __magic_name__ ( unittest.TestCase ): '''simple docstring''' @property def _lowerCAmelCase ( self ): """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-125m""" lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase = [] lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) for prompt in self.prompts: lowerCamelCase = tokenizer(_a , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(_a , max_length=10 ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) predicted_outputs += generated_string self.assertListEqual(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-350m""" lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) lowerCamelCase = """left""" # use different length sentences to test batching lowerCamelCase = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase = tokenizer(_a , return_tensors="""tf""" , padding=_a ) lowerCamelCase = inputs["""input_ids"""] lowerCamelCase = model.generate(input_ids=_a , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(input_ids=_a ) lowerCamelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) lowerCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) lowerCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) lowerCamelCase = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = """facebook/opt-350m""" lowerCamelCase = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase = [] lowerCamelCase = GPTaTokenizer.from_pretrained(_a ) lowerCamelCase = TFOPTForCausalLM.from_pretrained(_a ) for prompt in self.prompts: lowerCamelCase = tokenizer(_a , return_tensors="""tf""" ).input_ids lowerCamelCase = model.generate(_a , max_length=10 ) lowerCamelCase = tokenizer.batch_decode(_a , skip_special_tokens=_a ) predicted_outputs += generated_string self.assertListEqual(_a , _a )
168
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __UpperCamelCase : List[Any] = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __UpperCamelCase : Optional[Any] = { '''abeja/gpt-neox-japanese-2.7b''': 2_0_4_8, } def __SCREAMING_SNAKE_CASE ( A_ , A_ ): with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : Dict = json.loads(f.read() ) lowerCAmelCase__ : Union[str, Any] = collections.OrderedDict() lowerCAmelCase__ : Optional[int] = collections.OrderedDict() lowerCAmelCase__ : Optional[Any] = collections.OrderedDict() with open(A_ , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase__ : str = f.readlines() lowerCAmelCase__ : Optional[int] = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(A_ ): lowerCAmelCase__ : int = b lowerCAmelCase__ : Dict = idx for wd in b: lowerCAmelCase__ : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] ,lowercase_ : Dict ,lowercase_ : Dict ,lowercase_ : int="<|endoftext|>" ,lowercase_ : Dict="<|endoftext|>" ,lowercase_ : str="<|startoftext|>" ,lowercase_ : str="<|endoftext|>" ,lowercase_ : List[Any]=False ,**lowercase_ : Optional[Any] ,): super().__init__( unk_token=lowercase_ ,pad_token=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,do_clean_text=lowercase_ ,**lowercase_ ,) if not os.path.isfile(lowercase_ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(lowercase_ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) lowerCAmelCase__ : Tuple = do_clean_text lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = load_vocab_and_emoji(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def __lowerCAmelCase ( self : int ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __lowerCAmelCase ( self : Union[str, Any] ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def __lowerCAmelCase ( self : Any ,lowercase_ : List[Any] ): return self.subword_tokenizer.tokenize(lowercase_ ,clean=self.do_clean_text ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[str] ): return self.vocab.get(lowercase_ ,self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self : int ,lowercase_ : str ): return self.subword_tokenizer.convert_id_to_token(lowercase_ ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ): lowerCAmelCase__ : Union[str, Any] = ''''''.join(lowercase_ ).strip() return out_string def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : "Conversation" ): lowerCAmelCase__ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ ,add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: lowerCAmelCase__ : Dict = input_ids[-self.model_max_length :] return input_ids def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ,lowercase_ : Optional[str] = None ): lowerCAmelCase__ : Tuple = 0 if os.path.isdir(lowercase_ ): lowerCAmelCase__ : Union[str, Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : List[Any] = os.path.join( lowercase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: lowerCAmelCase__ : str = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Any = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) lowerCAmelCase__ : Dict = token_index writer.write(''','''.join(lowercase_ ) + '''\n''' ) index += 1 with open(lowercase_ ,'''w''' ,encoding='''utf-8''' ) as writer: json.dump(self.emoji ,lowercase_ ) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : str ,lowercase_ : Optional[Any] ,lowercase_ : Dict ,lowercase_ : Any ): lowerCAmelCase__ : Optional[int] = vocab # same as swe lowerCAmelCase__ : Optional[int] = ids_to_tokens # same as bpe lowerCAmelCase__ : Optional[Any] = emoji lowerCAmelCase__ : Any = np.max([len(lowercase_ ) for w in self.vocab.keys()] ) lowerCAmelCase__ : int = re.compile(R'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) lowerCAmelCase__ : str = re.compile(R'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) lowerCAmelCase__ : List[str] = re.compile(R'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) lowerCAmelCase__ : Union[str, Any] = re.compile( R'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowerCAmelCase__ : List[Any] = re.compile( R'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) lowerCAmelCase__ : Optional[int] = re.compile( R'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) lowerCAmelCase__ : List[Any] = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' lowerCAmelCase__ : List[Any] = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' lowerCAmelCase__ : List[str] = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : int ): return len(self.ids_to_tokens ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Dict ): lowerCAmelCase__ : Tuple = self.content_repattera.sub('''<URL>''' ,lowercase_ ) lowerCAmelCase__ : List[str] = self.content_repattera.sub('''<EMAIL>''' ,lowercase_ ) lowerCAmelCase__ : str = self.content_repattera.sub('''<TEL>''' ,lowercase_ ) lowerCAmelCase__ : Dict = self.content_repattera.sub('''<DATE>''' ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.content_repattera.sub('''<DATE>''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.content_repattera.sub('''<PRICE>''' ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase__ : str = content.replace('''<BLOCK><BLOCK>''' ,'''<BLOCK>''' ) return content def __lowerCAmelCase ( self : List[str] ,lowercase_ : Union[str, Any] ,lowercase_ : List[str]=False ): lowerCAmelCase__ : str = text.replace(''' ''' ,'''<SP>''' ) lowerCAmelCase__ : Tuple = text.replace(''' ''' ,'''<SP>''' ) lowerCAmelCase__ : Optional[int] = text.replace('''\r\n''' ,'''<BR>''' ) lowerCAmelCase__ : str = text.replace('''\n''' ,'''<BR>''' ) lowerCAmelCase__ : Tuple = text.replace('''\r''' ,'''<BR>''' ) lowerCAmelCase__ : Union[str, Any] = text.replace('''\t''' ,'''<TAB>''' ) lowerCAmelCase__ : str = text.replace('''—''' ,'''ー''' ) lowerCAmelCase__ : Union[str, Any] = text.replace('''−''' ,'''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase__ : Tuple = text.replace(lowercase_ ,lowercase_ ) if clean: lowerCAmelCase__ : str = self.clean_text(lowercase_ ) def check_simbol(lowercase_ : Optional[int] ): lowerCAmelCase__ : List[Any] = x.encode() if len(lowercase_ ) == 1 and len(lowercase_ ) == 2: lowerCAmelCase__ : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2_A1 and c <= 0xC2_BF) or (c >= 0xC7_80 and c <= 0xC7_83) or (c >= 0xCA_B9 and c <= 0xCB_BF) or (c >= 0xCC_80 and c <= 0xCD_A2) ): return True return False def checkuae(lowercase_ : Union[str, Any] ): lowerCAmelCase__ : List[str] = x.encode() if len(lowercase_ ) == 1 and len(lowercase_ ) == 3: lowerCAmelCase__ : int = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_80_80 and c <= 0xE2_B0_7F: return True return False lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[Any] = [] while pos < len(lowercase_ ): lowerCAmelCase__ : Optional[int] = min(len(lowercase_ ) ,pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 lowerCAmelCase__ : int = [] # (token_id, token, pos) for e in range(lowercase_ ,lowercase_ ,-1 ): lowerCAmelCase__ : int = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowercase_ ) > 2: lowerCAmelCase__ : List[str] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowercase_ ) > 0: # the smallest token_id is adopted lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = sorted(lowercase_ ,key=lambda lowercase_ : x[0] )[0] result.append(lowercase_ ) lowerCAmelCase__ : Tuple = e else: lowerCAmelCase__ : Any = pos + 1 lowerCAmelCase__ : Any = text[pos:end] if check_simbol(lowercase_ ): result.append('''<KIGOU>''' ) elif checkuae(lowercase_ ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) lowerCAmelCase__ : Dict = end return result def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Union[str, Any] ,lowercase_ : Dict="\n" ): lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : str = [] lowerCAmelCase__ : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowercase_ ) > 0: words.append(bytearray(lowercase_ ).decode('''utf-8''' ,errors='''replace''' ) ) lowerCAmelCase__ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(lowercase_ ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(lowercase_ ) if len(lowercase_ ) > 0: words.append(bytearray(lowercase_ ).decode('''utf-8''' ,errors='''replace''' ) ) lowerCAmelCase__ : Any = ''''''.join(lowercase_ ) return text
106
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCamelCase : Tuple = TypeVar('''T''') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : str = deque() lowerCAmelCase__ : Any = set() if not n: lowerCAmelCase__ : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase__ : int = n def __lowerCAmelCase ( self : str ,lowercase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __lowerCAmelCase ( self : int ): for k in self.dq_store: print(lowercase_ ) def __repr__( self : Tuple ): return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
106
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 1_2_8, "min_length": 1_2, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 1_4_2, "min_length": 5_6, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 6_2, "min_length": 1_1, "num_beams": 6}, } } __lowerCAmelCase = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 1_2_8, "task_specific_params.summarization.min_length": 1_2, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 1_4_2, "task_specific_params.summarization_cnn.min_length": 5_6, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 6_2, "task_specific_params.summarization_xsum.min_length": 1_1, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) __lowerCAmelCase = np.random.randn(3 , 4 , 5 ) __lowerCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (1_2, 5) ) ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(1 , 3 , 4 ) __lowerCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase = np.random.randn(1 , 4 , 1 , 5 ) __lowerCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = np.random.randn(3 , 4 ) __lowerCAmelCase = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
368
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTModel(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTForMaskedImageModeling(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForMaskedImageModeling(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _a : Optional[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _a : str = False _a : str = False _a : List[str] = False _a : Optional[int] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Dense ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFDeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="tf" ) # forward pass __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
102
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowercase ( A__ ): """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = params SCREAMING_SNAKE_CASE_: Optional[Any] = np.array(__lowercase) SCREAMING_SNAKE_CASE_: Dict = np.array([len(__lowercase) for t in data]) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return (self.token_ids[index], self.lengths[index]) def __len__( self : str): return len(self.lengths) def _SCREAMING_SNAKE_CASE ( self : List[str]): assert len(self.token_ids) == len(self.lengths) assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Dict = self.params.max_model_input_size SCREAMING_SNAKE_CASE_: int = self.lengths > max_len logger.info(F"Splitting {sum(__lowercase)} too long sequences.") def divide_chunks(lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]): return [l[i : i + n] for i in range(0 , len(__lowercase) , __lowercase)] SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: Union[str, Any] = [] if self.params.mlm: SCREAMING_SNAKE_CASE_: Union[str, Any] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: SCREAMING_SNAKE_CASE_: Dict = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_) new_lengths.append(len_) else: SCREAMING_SNAKE_CASE_: Any = [] for sub_s in divide_chunks(seq_ , max_len - 2): if sub_s[0] != cls_id: SCREAMING_SNAKE_CASE_: int = np.insert(__lowercase , 0 , __lowercase) if sub_s[-1] != sep_id: SCREAMING_SNAKE_CASE_: List[str] = np.insert(__lowercase , len(__lowercase) , __lowercase) assert len(__lowercase) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowercase) new_tok_ids.extend(__lowercase) new_lengths.extend([len(__lowercase) for l in sub_seqs]) SCREAMING_SNAKE_CASE_: Dict = np.array(__lowercase) SCREAMING_SNAKE_CASE_: Optional[Any] = np.array(__lowercase) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Any = len(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.lengths > 11 SCREAMING_SNAKE_CASE_: str = self.token_ids[indices] SCREAMING_SNAKE_CASE_: Optional[int] = self.lengths[indices] SCREAMING_SNAKE_CASE_: List[Any] = len(self) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences.") def _SCREAMING_SNAKE_CASE ( self : str): if "unk_token" not in self.params.special_tok_ids: return else: SCREAMING_SNAKE_CASE_: Union[str, Any] = self.params.special_tok_ids["""unk_token"""] SCREAMING_SNAKE_CASE_: List[Any] = len(self) SCREAMING_SNAKE_CASE_: List[Any] = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids]) SCREAMING_SNAKE_CASE_: str = (unk_occs / self.lengths) < 0.5 SCREAMING_SNAKE_CASE_: Tuple = self.token_ids[indices] SCREAMING_SNAKE_CASE_: List[Any] = self.lengths[indices] SCREAMING_SNAKE_CASE_: List[Any] = len(self) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).") def _SCREAMING_SNAKE_CASE ( self : int): if not self.params.is_master: return logger.info(F"{len(self)} sequences") # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[Any] = [t[0] for t in batch] SCREAMING_SNAKE_CASE_: List[Any] = [t[1] for t in batch] assert len(__lowercase) == len(__lowercase) # Max for paddings SCREAMING_SNAKE_CASE_: Tuple = max(__lowercase) # Pad token ids if self.params.mlm: SCREAMING_SNAKE_CASE_: Optional[int] = self.params.special_tok_ids["""pad_token"""] else: SCREAMING_SNAKE_CASE_: Optional[Any] = self.params.special_tok_ids["""unk_token"""] SCREAMING_SNAKE_CASE_: List[str] = [list(t.astype(__lowercase)) + [pad_idx] * (max_seq_len_ - len(__lowercase)) for t in token_ids] assert len(tk_) == len(__lowercase) assert all(len(__lowercase) == max_seq_len_ for t in tk_) SCREAMING_SNAKE_CASE_: Optional[int] = torch.tensor(tk_) # (bs, max_seq_len_) SCREAMING_SNAKE_CASE_: Tuple = torch.tensor(__lowercase) # (bs) return tk_t, lg_t
13
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _lowercase : Any =logging.get_logger(__name__) @add_end_docstrings(A__ ) class snake_case__ (A__ ): """simple docstring""" def __init__( self , *__lowercase , **__lowercase ) -> int: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) requires_backends(self , """vision""" ) self.check_model_type(__lowercase ) def __call__( self , __lowercase , **__lowercase ) -> Union[str, Any]: """simple docstring""" return super().__call__(__lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> Optional[Any]: """simple docstring""" return {}, {}, {} def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = load_image(__lowercase ) a__ : Optional[int] = image.size a__ : int = self.image_processor(images=__lowercase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : str = self.model(**__lowercase ) return model_outputs def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Optional[int] = model_outputs.predicted_depth a__ : Any = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=__lowercase ) a__ : Union[str, Any] = prediction.squeeze().cpu().numpy() a__ : List[str] = (output * 2_5_5 / np.max(__lowercase )).astype("""uint8""" ) a__ : Any = Image.fromarray(__lowercase ) a__ : List[str] = {} a__ : Tuple = predicted_depth a__ : Any = depth return output_dict
170
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : int = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Optional[Any] = '''lilt''' def __init__( self , _UpperCamelCase=3_05_22 , _UpperCamelCase=7_68 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=30_72 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_12 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=None , _UpperCamelCase=4 , _UpperCamelCase=10_24 , **_UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = classifier_dropout lowerCAmelCase__ = channel_shrink_ratio lowerCAmelCase__ = max_ad_position_embeddings
364
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase): _SCREAMING_SNAKE_CASE : int = KandinskyVaaInpaintPipeline _SCREAMING_SNAKE_CASE : int = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _SCREAMING_SNAKE_CASE : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _SCREAMING_SNAKE_CASE : Optional[Any] = False @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim @property def UpperCamelCase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 1_00 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ = UNetaDConditionModel(**_UpperCamelCase ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=_UpperCamelCase , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=_UpperCamelCase , ) lowerCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask lowerCAmelCase__ = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase__ = 0 if str(_UpperCamelCase ).startswith('mps' ): lowerCAmelCase__ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase__ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase__ = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = 'cpu' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**_UpperCamelCase ) lowerCAmelCase__ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCamelCase__ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) lowerCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ = np.ones((7_68, 7_68) , dtype=np.floataa ) lowerCAmelCase__ = 0 lowerCAmelCase__ = 'a hat' lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) lowerCAmelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( _UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ = pipeline( image=_UpperCamelCase , mask_image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
122
0
'''simple docstring''' def A_ ( snake_case ): if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case ) if number < 1: SCREAMING_SNAKE_CASE:str = F'''Input value of [number={number}] must be > 0''' raise ValueError(snake_case ) SCREAMING_SNAKE_CASE:List[str] = 1 for i in range(1 , snake_case ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
139
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( _a ): _A : int = ComputeEnvironment.AMAZON_SAGEMAKER _A : List[Any] = True _A : Dict = '''ml.p3.2xlarge''' _A : Any = '''accelerate_sagemaker_execution_role''' _A : Union[str, Any] = '''hf-sm''' _A : Dict = '''us-east-1''' _A : List[Any] = 1 _A : Union[str, Any] = '''accelerate-sagemaker-1''' _A : List[Any] = '''1.6''' _A : Optional[Any] = '''4.4''' _A : Any = '''train.py''' _A : int = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] _A : Optional[Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE:str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["do_train"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["epochs"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["learning_rate"] ,SCREAMING_SNAKE_CASE__ ) assert isinstance(converted_args["max_steps"] ,SCREAMING_SNAKE_CASE__ ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
139
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowercase__ ( __UpperCamelCase = 3 )-> qiskit.result.counts.Counts: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(UpperCAmelCase__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) UpperCamelCase = QuantumRegister(UpperCAmelCase__ , """qr""" ) UpperCamelCase = ClassicalRegister(UpperCAmelCase__ , """cr""" ) UpperCamelCase = QuantumCircuit(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase = number_of_qubits for i in range(UpperCAmelCase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(UpperCAmelCase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , UpperCAmelCase__ , UpperCAmelCase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(UpperCAmelCase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(UpperCAmelCase__ , UpperCAmelCase__ ) # simulate with 10000 shots UpperCamelCase = Aer.get_backend("""qasm_simulator""" ) UpperCamelCase = execute(UpperCAmelCase__ , UpperCAmelCase__ , shots=10000 ) return job.result().get_counts(UpperCAmelCase__ ) if __name__ == "__main__": print( f'Total count for quantum fourier transform state is: \\n {quantum_fourier_transform(3)}' )
363
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowercase__ ( __UpperCamelCase )-> Dict: # picklable for multiprocessing return x.sum() def lowercase__ ( __UpperCamelCase )-> Tuple: # picklable for multiprocessing return i + 1 @dataclass class a_ : lowercase = 42 lowercase = 42 class a_ ( lowerCamelCase ): def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": [1, 2], """b""": [3, 4]} UpperCamelCase = {"""a""": {"""1""": 1}, """b""": 2} UpperCamelCase = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {"""a""": 2, """b""": 3} UpperCamelCase = {"""a""": [2, 3], """b""": [4, 5]} UpperCamelCase = {"""a""": {"""1""": 2}, """b""": 3} UpperCamelCase = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = 2 self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} UpperCamelCase = {"""a""": 2, """b""": 0, """c""": 2} UpperCamelCase = { """a""": np.eye(2 ).astype(_SCREAMING_SNAKE_CASE ), """b""": np.zeros(3 ).astype(_SCREAMING_SNAKE_CASE ), """c""": np.ones(2 ).astype(_SCREAMING_SNAKE_CASE ), } self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , map_numpy=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # can't pickle a local lambda map_nested(lambda _SCREAMING_SNAKE_CASE : x + 1 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = {"""a""": 1, """b""": 2} UpperCamelCase = {"""a""": 3, """b""": 4} UpperCamelCase = {"""a""": 5, """b""": 6} UpperCamelCase = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: """simple docstring""" class a_ : lowercase = """bar""" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(_SCREAMING_SNAKE_CASE , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: UpperCamelCase = {F"{i}": i for i in range(__UpperCamelCase )} UpperCamelCase = map_nested(lambda __UpperCamelCase : x + 10 , __UpperCamelCase , num_proc=__UpperCamelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a_ ( lowerCamelCase ): @require_tf def A__ ( self ) -> Any: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(_SCREAMING_SNAKE_CASE ).numpy() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def A__ ( self ) -> int: """simple docstring""" import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(_SCREAMING_SNAKE_CASE ).detach().numpy() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=_SCREAMING_SNAKE_CASE ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def A__ ( self ) -> Dict: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: UpperCamelCase = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def lowercase__ ( )-> Union[str, Any]: UpperCamelCase = A(x=1 , y="""foobar""" ) UpperCamelCase = {"""x""": 1, """y""": """foobar"""} assert asdict(__UpperCamelCase ) == expected_output UpperCamelCase = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} UpperCamelCase = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 , y="""foo""" )] ) def lowercase__ ( __UpperCamelCase )-> List[Any]: return text.split() def lowercase__ ( __UpperCamelCase )-> List[str]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowercase__ ( )-> int: with Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(__UpperCamelCase ) == 4
183
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : int , snake_case__ : Dict=False , snake_case__ : Optional[Any]=False , snake_case__ : List[str]=False ) -> str: UpperCamelCase : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def UpperCamelCase ( snake_case__ : List[str] , snake_case__ : str ) -> Optional[Any]: for i in range(config.num_hidden_layers ): UpperCamelCase : Dict = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase : List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) UpperCamelCase : Dict = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase : Tuple = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase : Tuple = in_proj_bias[: config.hidden_size] UpperCamelCase : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase : Tuple = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( snake_case__ : str ) -> Tuple: UpperCamelCase : Optional[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Dict , snake_case__ : str ) -> Optional[int]: UpperCamelCase : Optional[int] = dct.pop(lowerCAmelCase__ ) UpperCamelCase : Any = val @torch.no_grad() def UpperCamelCase ( snake_case__ : int , snake_case__ : List[str] ) -> str: UpperCamelCase : Optional[int] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase__ ) UpperCamelCase : List[str] = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : Tuple = False UpperCamelCase : Union[str, Any] = False if "vqa" in checkpoint_url: UpperCamelCase : Dict = True UpperCamelCase : List[Any] = 3129 UpperCamelCase : Tuple = 'huggingface/label-files' UpperCamelCase : int = 'vqa2-id2label.json' UpperCamelCase : int = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : List[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCamelCase : Optional[int] = idalabel UpperCamelCase : int = {v: k for k, v in idalabel.items()} UpperCamelCase : List[str] = ViltForQuestionAnswering(lowerCAmelCase__ ) elif "nlvr" in checkpoint_url: UpperCamelCase : str = True UpperCamelCase : Any = 2 UpperCamelCase : List[str] = {0: 'False', 1: 'True'} UpperCamelCase : Tuple = {v: k for k, v in config.idalabel.items()} UpperCamelCase : List[Any] = 3 UpperCamelCase : List[Any] = ViltForImagesAndTextClassification(lowerCAmelCase__ ) elif "irtr" in checkpoint_url: UpperCamelCase : List[Any] = True UpperCamelCase : List[Any] = ViltForImageAndTextRetrieval(lowerCAmelCase__ ) elif "mlm_itm" in checkpoint_url: UpperCamelCase : Tuple = True UpperCamelCase : Optional[int] = ViltForMaskedLM(lowerCAmelCase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys UpperCamelCase : int = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu' )['state_dict'] UpperCamelCase : Tuple = create_rename_keys(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) if mlm_model or irtr_model: UpperCamelCase : int = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCamelCase , UpperCamelCase : Any = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCAmelCase__ ) # Define processor UpperCamelCase : Union[str, Any] = ViltImageProcessor(size=384 ) UpperCamelCase : Union[str, Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase : Dict = ViltProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCamelCase : Optional[int] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) UpperCamelCase : List[str] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowerCAmelCase__ ).raw ) UpperCamelCase : Optional[Any] = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) UpperCamelCase : List[str] = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) UpperCamelCase : Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) UpperCamelCase : Optional[Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCamelCase : Union[str, Any] = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowerCAmelCase__ ).raw ) if mlm_model: UpperCamelCase : Dict = 'a bunch of [MASK] laying on a [MASK].' else: UpperCamelCase : Union[str, Any] = 'How many cats are there?' UpperCamelCase : str = processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='pt' ) UpperCamelCase : Optional[Any] = model(**lowerCAmelCase__ ) # Verify outputs if mlm_model: UpperCamelCase : Optional[Any] = torch.Size([1, 11, 30522] ) UpperCamelCase : Optional[int] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) # verify masked token prediction equals "cats" UpperCamelCase : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCamelCase : str = torch.Size([1, 3129] ) UpperCamelCase : List[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) # verify vqa prediction equals "2" UpperCamelCase : Optional[int] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCamelCase : Dict = torch.Size([1, 2] ) UpperCamelCase : Union[str, Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCAmelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
119
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = (KDPMaDiscreteScheduler,) _lowerCAmelCase = 1_0 def __UpperCAmelCase ( self , **__magic_name__ ) -> int: _a = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__magic_name__ ) return config def __UpperCAmelCase ( self ) -> Union[str, Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def __UpperCAmelCase ( self ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type='v_prediction' ) _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def __UpperCAmelCase ( self ) -> Tuple: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def __UpperCAmelCase ( self ) -> List[Any]: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(__magic_name__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if str(__magic_name__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
168
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
__A = 6_5521 def __a ( lowerCAmelCase_ : str ) -> int: '''simple docstring''' UpperCAmelCase_= 1 UpperCAmelCase_= 0 for plain_chr in plain_text: UpperCAmelCase_= (a + ord(lowerCAmelCase_ )) % MOD_ADLER UpperCAmelCase_= (b + a) % MOD_ADLER return (b << 16) | a
277
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = " " ) -> list: lowercase__ : Optional[int] = [] lowercase__ : Union[str, Any] = 0 for index, char in enumerate(__lowerCamelCase ): if char == separator: split_words.append(string[last_index:index] ) lowercase__ : Union[str, Any] = index + 1 elif index + 1 == len(__lowerCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
16
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE : List[Any] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[int] ) ->Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict ) ->Any: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.getbasetemp() / '''cache''' __snake_case : int = test_hf_cache_home / '''datasets''' __snake_case : Tuple = test_hf_cache_home / '''metrics''' __snake_case : List[str] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_snake_case ) ) __snake_case : Optional[int] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_snake_case ) ) __snake_case : Tuple = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_snake_case ) ) @pytest.fixture(autouse=_snake_case , scope='''session''' ) def lowercase ( ) ->Any: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _snake_case ) @pytest.fixture def lowercase ( _snake_case : Any ) ->Optional[Any]: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _snake_case )
102
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
365
"""simple docstring""" import argparse import os import re __A : Any = '''src/transformers''' # Pattern that looks at the indentation in a line. __A : Tuple = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __A : List[Any] = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A : Dict = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __A : List[str] = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A : List[Any] = re.compile(R'''\[([^\]]+)\]''') def A_ ( snake_case_ : List[str] ): '''simple docstring''' UpperCamelCase : Any = _re_indent.search(snake_case_ ) return "" if search is None else search.groups()[0] def A_ ( snake_case_ : str ,snake_case_ : str="" ,snake_case_ : Any=None ,snake_case_ : Union[str, Any]=None ): '''simple docstring''' UpperCamelCase : List[Any] = 0 UpperCamelCase : Optional[int] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(snake_case_ ): index += 1 UpperCamelCase : Tuple = ["""\n""".join(lines[:index] )] else: UpperCamelCase : Tuple = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase : Dict = [lines[index]] index += 1 while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(snake_case_ ) ) if index < len(snake_case_ ) - 1: UpperCamelCase : Optional[Any] = [lines[index + 1]] index += 1 else: UpperCamelCase : str = [] else: blocks.append("""\n""".join(snake_case_ ) ) UpperCamelCase : int = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case_ ) > 0: blocks.append("""\n""".join(snake_case_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def A_ ( snake_case_ : List[Any] ): '''simple docstring''' def _inner(snake_case_ : List[str] ): return key(snake_case_ ).lower().replace("""_""" ,"""""" ) return _inner def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Tuple=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(snake_case_ : Optional[int] ): return x if key is None: UpperCamelCase : List[str] = noop # Constants are all uppercase, they go first. UpperCamelCase : List[str] = [obj for obj in objects if key(snake_case_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase : Tuple = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase : int = [obj for obj in objects if not key(snake_case_ )[0].isupper()] UpperCamelCase : Union[str, Any] = ignore_underscore(snake_case_ ) return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(snake_case_ : Any ): UpperCamelCase : Union[str, Any] = match.groups()[0] if "," not in imports: return f'[{imports}]' UpperCamelCase : int = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase : str = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]" UpperCamelCase : Optional[int] = import_statement.split("""\n""" ) if len(snake_case_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase : int = 2 if lines[1].strip() == """[""" else 1 UpperCamelCase : Tuple = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase : List[Any] = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] ) UpperCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,lines[1] ) else: UpperCamelCase : List[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase : Optional[int] = keys[:-1] UpperCamelCase : Union[str, Any] = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] ) return "\n".join(snake_case_ ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase : Any = _re_bracket_content.sub(_replace ,snake_case_ ) return import_statement def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : int=True ): '''simple docstring''' with open(snake_case_ ,encoding="""utf-8""" ) as f: UpperCamelCase : List[str] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase : int = split_code_in_indented_blocks( snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(snake_case_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase : Dict = main_blocks[block_idx] UpperCamelCase : Dict = block.split("""\n""" ) # Get to the start of the imports. UpperCamelCase : List[str] = 0 while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase : Optional[Any] = len(snake_case_ ) else: line_idx += 1 if line_idx >= len(snake_case_ ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase : Optional[Any] = """\n""".join(block_lines[line_idx:-1] ) UpperCamelCase : Any = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase : List[Any] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase : Optional[Any] = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase : Optional[Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase : Any = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None] UpperCamelCase : Union[str, Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase : str = 0 UpperCamelCase : List[str] = [] for i in range(len(snake_case_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: UpperCamelCase : Optional[int] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case_ ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case_ ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(snake_case_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write("""\n""".join(snake_case_ ) ) def A_ ( snake_case_ : int=True ): '''simple docstring''' UpperCamelCase : Union[str, Any] = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: UpperCamelCase : Optional[int] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ ) if result: UpperCamelCase : List[Any] = [os.path.join(snake_case_ ,"""__init__.py""" )] if len(snake_case_ ) > 0: raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __A : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
27
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' print("Loading config file..." ) def flatten_yaml_as_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="" , SCREAMING_SNAKE_CASE_="." ): lowerCamelCase : Optional[int] = [] for k, v in d.items(): lowerCamelCase : List[Any] = parent_key + sep + k if parent_key else k if isinstance(a__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(a__ , a__ , sep=a__ ).items() ) else: items.append((new_key, v) ) return dict(a__ ) lowerCamelCase : List[str] = argparse.Namespace() with open(a__ , "r" ) as yaml_file: try: lowerCamelCase : List[Any] = yaml.load(a__ , Loader=yaml.FullLoader ) lowerCamelCase : Any = flatten_yaml_as_dict(a__ ) for k, v in flat_cfg.items(): setattr(a__ , a__ , a__ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(a__ , str(a__ ) ) ) return config def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = MobileViTVaConfig() lowerCamelCase : str = False # dataset if task_name.startswith("imagenet1k_" ): lowerCamelCase : Optional[Any] = 1000 if int(task_name.strip().split("_" )[-1] ) == 384: lowerCamelCase : Tuple = 384 else: lowerCamelCase : Optional[int] = 256 lowerCamelCase : Dict = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): lowerCamelCase : int = 21000 if int(task_name.strip().split("_" )[-1] ) == 384: lowerCamelCase : Tuple = 384 else: lowerCamelCase : List[str] = 256 lowerCamelCase : Optional[Any] = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): lowerCamelCase : str = 151 lowerCamelCase : Any = 512 lowerCamelCase : Optional[Any] = "ade20k-id2label.json" lowerCamelCase : Optional[int] = True elif task_name.startswith("voc_" ): lowerCamelCase : Optional[int] = 21 lowerCamelCase : int = 512 lowerCamelCase : Optional[int] = "pascal-voc-id2label.json" lowerCamelCase : Tuple = True # orig_config lowerCamelCase : Tuple = load_orig_config_file(a__ ) assert getattr(a__ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" lowerCamelCase : Dict = getattr(a__ , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(a__ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCamelCase : List[Any] = getattr(a__ , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCamelCase : int = getattr(a__ , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: lowerCamelCase : Optional[Any] = getattr(a__ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) lowerCamelCase : Union[str, Any] = getattr(a__ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) lowerCamelCase : Optional[Any] = getattr(a__ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label lowerCamelCase : Optional[Any] = "huggingface/label-files" lowerCamelCase : Tuple = json.load(open(hf_hub_download(a__ , a__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase : Dict = {int(a__ ): v for k, v in idalabel.items()} lowerCamelCase : List[Any] = idalabel lowerCamelCase : int = {v: k for k, v in idalabel.items()} return config def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = dct.pop(a__ ) lowerCamelCase : Tuple = val def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' if base_model: lowerCamelCase : Optional[int] = "" else: lowerCamelCase : List[str] = "mobilevitv2." lowerCamelCase : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCamelCase : Any = k[8:] else: lowerCamelCase : List[str] = k if ".block." in k: lowerCamelCase : int = k_new.replace(".block." , "." ) if ".conv." in k: lowerCamelCase : str = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: lowerCamelCase : List[Any] = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: lowerCamelCase : int = k_new.replace("conv_1." , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: lowerCamelCase : Optional[int] = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: lowerCamelCase : Union[str, Any] = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: lowerCamelCase : Union[str, Any] = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: lowerCamelCase : Optional[int] = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: lowerCamelCase : Optional[int] = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: lowerCamelCase : Any = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: lowerCamelCase : List[str] = [0, 1] elif i == 4: lowerCamelCase : List[Any] = [0, 1, 2, 3] elif i == 5: lowerCamelCase : Dict = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: lowerCamelCase : Optional[int] = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: lowerCamelCase : Tuple = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: lowerCamelCase : Optional[Any] = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: lowerCamelCase : List[Any] = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: lowerCamelCase : Tuple = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: lowerCamelCase : Optional[int] = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: lowerCamelCase : Optional[int] = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: lowerCamelCase : Union[str, Any] = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: lowerCamelCase : str = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: lowerCamelCase : Any = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: lowerCamelCase : str = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: lowerCamelCase : List[str] = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(a__ ) for k in keys_to_ignore: state_dict.pop(a__ , a__ ) def lowercase_( ): '''simple docstring''' lowerCamelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCamelCase : Optional[int] = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = get_mobilevitva_config(a__ , a__ ) # load original state_dict lowerCamelCase : Union[str, Any] = torch.load(a__ , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): lowerCamelCase : str = MobileViTVaForSemanticSegmentation(a__ ).eval() lowerCamelCase : Any = False else: lowerCamelCase : Dict = MobileViTVaForImageClassification(a__ ).eval() lowerCamelCase : Optional[Any] = False # remove and rename some keys of load the original model lowerCamelCase : Tuple = checkpoint remove_unused_keys(a__ ) lowerCamelCase : str = create_rename_keys(a__ , base_model=a__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(a__ , a__ , a__ ) # load modified state_dict model.load_state_dict(a__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase : List[Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase : str = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase : Optional[int] = model(**a__ ) # verify classification model if task_name.startswith("imagenet" ): lowerCamelCase : Any = outputs.logits lowerCamelCase : Optional[int] = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCamelCase : Optional[int] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ) assert torch.allclose(logits[0, :3] , a__ , atol=1E-4 ) Path(a__ ).mkdir(exist_ok=a__ ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
283
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ : Any = DanceDiffusionPipeline A__ : Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A__ : List[Any] = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A__ : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A__ : str = False A__ : Any = False def lowerCamelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) UpperCamelCase_ = IPNDMScheduler() UpperCamelCase_ = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase=0 ): """simple docstring""" if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = DanceDiffusionPipeline(**__UpperCamelCase ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ = pipe(**__UpperCamelCase ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase_ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCamelCase_ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def lowerCamelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = torch_device UpperCamelCase_ = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(generator=__UpperCamelCase , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase_ = output.audios UpperCamelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase_ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
122
0
"""simple docstring""" import re from filelock import FileLock try: import nltk __A : str = True except (ImportError, ModuleNotFoundError): __A : Optional[int] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" re.sub("<n>" , "" , lowercase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase__ ) )
57
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __A : Any = imread(R'digital_image_processing/image_data/lena_small.jpg') __A : Tuple = cvtColor(img, COLOR_BGR2GRAY) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() A = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" # laplace diagonals A = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert med.median_filter(lowercase__ , 3 ).any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A , A = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def __SCREAMING_SNAKE_CASE ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" A = bs.Burkes(imread(lowercase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __SCREAMING_SNAKE_CASE ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" A = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. A = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None A = 0 A = 0 A = image[x_coordinate][y_coordinate] A = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): A = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
57
1
'''simple docstring''' def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Optional[int] = [] UpperCamelCase__ :int = 1 while len(__a ) < 1e6: constant.append(str(__a ) ) i += 1 UpperCamelCase__ :Union[str, Any] = ''''''.join(__a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
97
"""simple docstring""" import argparse import json import subprocess def lowerCamelCase__ ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> List[Any]: lowerCamelCase_ = [] lowerCamelCase_ = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCamelCase_ = subprocess.run(_lowerCamelCase , shell=_lowerCamelCase , stdout=subprocess.PIPE ) lowerCamelCase_ = output.stdout.decode('utf-8' ) lowerCamelCase_ = json.loads(_lowerCamelCase ) lowerCamelCase_ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: lowerCamelCase_ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> Tuple: return values.split(',' ) _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() get_runner_status(args.target_runners, args.token)
183
0
'''simple docstring''' import torch from transformers import AutoModel class a ( torch.nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , snake_case : Tuple="sayef/fsner-bert-base-uncased" ) -> List[str]: super(snake_case , self ).__init__() __UpperCAmelCase : List[Any] = AutoModel.from_pretrained(snake_case , return_dict=snake_case ) __UpperCAmelCase : int = torch.nn.CosineSimilarity(3 , 1E-08 ) __UpperCAmelCase : Tuple = torch.nn.Softmax(dim=1 ) def lowerCamelCase__ ( self : Optional[Any] , **snake_case : Tuple ) -> Dict: return self.bert(**snake_case ).last_hidden_state def lowerCamelCase__ ( self : Optional[Any] , snake_case : int ) -> Dict: return token_embeddings.sum(2 , keepdim=snake_case ) def lowerCamelCase__ ( self : str , snake_case : int , snake_case : Union[str, Any] , snake_case : int=1 ) -> Any: return self.softmax(T * self.cos(snake_case , snake_case ) ) def lowerCamelCase__ ( self : Union[str, Any] , snake_case : int , snake_case : List[Any] ) -> Optional[Any]: __UpperCAmelCase : Union[str, Any] = W_supports['''sizes'''].tolist() __UpperCAmelCase : Tuple = W_supports['''start_token_id'''].item() __UpperCAmelCase : Tuple = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCAmelCase : Optional[int] = self.BERT(**snake_case ) __UpperCAmelCase : Optional[Any] = self.BERT(**snake_case ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = None __UpperCAmelCase : Optional[int] = W_supports['''input_ids'''] == start_token_id __UpperCAmelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(snake_case ): if i == 0: __UpperCAmelCase : Dict = 0 else: __UpperCAmelCase : Optional[int] = support_sizes[i - 1] __UpperCAmelCase : List[str] = S[s : s + size][start_token_masks[s : s + size]] __UpperCAmelCase : List[Any] = S[s : s + size][end_token_masks[s : s + size]] __UpperCAmelCase : str = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __UpperCAmelCase : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCAmelCase : Optional[Any] = torch.vstack((p_starts, p_start) ) __UpperCAmelCase : Any = torch.vstack((p_ends, p_end) ) else: __UpperCAmelCase : List[Any] = p_start __UpperCAmelCase : Tuple = p_end return p_starts, p_ends
361
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : torch.FloatTensor class a ( _a , _a ): """simple docstring""" @register_to_config def __init__( self : str , snake_case : int = 32 , snake_case : int = 64 , snake_case : int = 20 , snake_case : int = 768 , snake_case : Tuple=77 , snake_case : List[Any]=4 , snake_case : float = 0.0 , snake_case : str = "silu" , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional[str] = "linear" , snake_case : Optional[str] = "prd" , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , ) -> List[str]: super().__init__() __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[str] = attention_head_dim __UpperCAmelCase : int = num_attention_heads * attention_head_dim __UpperCAmelCase : List[Any] = additional_embeddings __UpperCAmelCase : Any = time_embed_dim or inner_dim __UpperCAmelCase : Any = embedding_proj_dim or embedding_dim __UpperCAmelCase : Union[str, Any] = clip_embed_dim or embedding_dim __UpperCAmelCase : List[Any] = Timesteps(snake_case , snake_case , 0 ) __UpperCAmelCase : Optional[Any] = TimestepEmbedding(snake_case , snake_case , out_dim=snake_case , act_fn=snake_case ) __UpperCAmelCase : str = nn.Linear(snake_case , snake_case ) if embedding_proj_norm_type is None: __UpperCAmelCase : str = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : str = nn.LayerNorm(snake_case ) else: raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) __UpperCAmelCase : List[Any] = nn.Linear(snake_case , snake_case ) if encoder_hid_proj_type is None: __UpperCAmelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) else: raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) __UpperCAmelCase : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case ) ) if added_emb_type == "prd": __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , 1 , snake_case ) ) elif added_emb_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError( f'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) __UpperCAmelCase : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( snake_case , snake_case , snake_case , dropout=snake_case , activation_fn='''gelu''' , attention_bias=snake_case , ) for d in range(snake_case ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Tuple = nn.LayerNorm(snake_case ) elif norm_in_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.' ) __UpperCAmelCase : Dict = nn.LayerNorm(snake_case ) __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) __UpperCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : str = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , snake_case , persistent=snake_case ) __UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , snake_case ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self : int ) -> Dict[str, AttentionProcessor]: __UpperCAmelCase : Optional[Any] = {} def fn_recursive_add_processors(snake_case : str , snake_case : torch.nn.Module , snake_case : Dict[str, AttentionProcessor] ): if hasattr(snake_case , '''set_processor''' ): __UpperCAmelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , snake_case , snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case , snake_case , snake_case ) return processors def lowerCamelCase__ ( self : Optional[Any] , snake_case : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(snake_case , snake_case ) and len(snake_case ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(snake_case )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(snake_case : str , snake_case : torch.nn.Module , snake_case : int ): if hasattr(snake_case , '''set_processor''' ): if not isinstance(snake_case , snake_case ): module.set_processor(snake_case ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , snake_case , snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case , snake_case , snake_case ) def lowerCamelCase__ ( self : str ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Union[torch.Tensor, float, int] , snake_case : torch.FloatTensor , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[torch.BoolTensor] = None , snake_case : bool = True , ) -> List[Any]: __UpperCAmelCase : Any = hidden_states.shape[0] __UpperCAmelCase : Optional[int] = timestep if not torch.is_tensor(snake_case ): __UpperCAmelCase : str = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: __UpperCAmelCase : Any = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps * torch.ones(snake_case , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Tuple = self.time_proj(snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : int = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : Optional[int] = self.time_embedding(snake_case ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Optional[Any] = self.embedding_proj_norm(snake_case ) __UpperCAmelCase : str = self.embedding_proj(snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Dict = self.encoder_hidden_states_proj(snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCAmelCase : Optional[int] = self.proj_in(snake_case ) __UpperCAmelCase : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Union[str, Any] = hidden_states[:, None, :] __UpperCAmelCase : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case , -1 , -1 ) additional_embeds.append(snake_case ) __UpperCAmelCase : Dict = torch.cat( snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : Union[str, Any] = F.pad( snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : Optional[int] = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCAmelCase : str = F.pad(snake_case , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : str = self.norm_in(snake_case ) for block in self.transformer_blocks: __UpperCAmelCase : Optional[int] = block(snake_case , attention_mask=snake_case ) __UpperCAmelCase : int = self.norm_out(snake_case ) if self.prd_embedding is not None: __UpperCAmelCase : Optional[int] = hidden_states[:, -1] else: __UpperCAmelCase : List[Any] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : Dict = self.proj_to_clip_embeddings(snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : List[str] ) -> str: __UpperCAmelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
240
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase : Tuple = 16 __lowerCamelCase : Optional[int] = 32 def A_ ( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> List[str]: UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase : Tuple = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase : Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase : Union[str, Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase : Any = 16 elif accelerator.mixed_precision != "no": UpperCamelCase : Union[str, Any] = 8 else: UpperCamelCase : List[str] = None return tokenizer.pad( _lowerCAmelCase , padding="longest" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) UpperCamelCase : int = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase : Any = mocked_dataloaders # noqa: F811 def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCAmelCase ) == "1": UpperCamelCase : str = 2 # New Code # UpperCamelCase : Any = int(args.gradient_accumulation_steps ) UpperCamelCase : int = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase : Union[str, Any] = config["lr"] UpperCamelCase : str = int(config["num_epochs"] ) UpperCamelCase : List[str] = int(config["seed"] ) UpperCamelCase : Any = int(config["batch_size"] ) UpperCamelCase : Optional[int] = evaluate.load("glue" , "mrpc" ) set_seed(_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : Any = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase : List[str] = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler UpperCamelCase : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() with LocalSGD( accelerator=_lowerCAmelCase , model=_lowerCAmelCase , local_sgd_steps=_lowerCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCAmelCase ): UpperCamelCase : Union[str, Any] = model(**_lowerCAmelCase ) UpperCamelCase : List[Any] = output.loss accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(**_lowerCAmelCase ) UpperCamelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) UpperCamelCase : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _lowerCAmelCase ) def A_ ( ) -> int: UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=_lowerCAmelCase , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) UpperCamelCase : Union[str, Any] = parser.parse_args() UpperCamelCase : Union[str, Any] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
52
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Tuple, _snake_case : Any, _snake_case : int=1_3, _snake_case : Optional[int]=3_2, _snake_case : Tuple=2, _snake_case : Any=3, _snake_case : Tuple=1_6, _snake_case : Tuple=[1, 2, 1], _snake_case : Dict=[2, 2, 4], _snake_case : str=2, _snake_case : Union[str, Any]=2.0, _snake_case : Dict=True, _snake_case : Dict=0.0, _snake_case : str=0.0, _snake_case : str=0.1, _snake_case : List[str]="gelu", _snake_case : int=False, _snake_case : Optional[Any]=True, _snake_case : List[Any]=0.0_2, _snake_case : Union[str, Any]=1e-5, _snake_case : Union[str, Any]=True, _snake_case : List[Any]=None, _snake_case : Any=True, _snake_case : List[Any]=1_0, _snake_case : str=8, ) ->Union[str, Any]: snake_case__ : Any = parent snake_case__ : Tuple = batch_size snake_case__ : Tuple = image_size snake_case__ : Any = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : Tuple = embed_dim snake_case__ : Any = depths snake_case__ : Any = num_heads snake_case__ : List[str] = window_size snake_case__ : Dict = mlp_ratio snake_case__ : Optional[int] = qkv_bias snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : str = hidden_act snake_case__ : Union[str, Any] = use_absolute_embeddings snake_case__ : Union[str, Any] = patch_norm snake_case__ : Any = layer_norm_eps snake_case__ : Tuple = initializer_range snake_case__ : Dict = is_training snake_case__ : Any = scope snake_case__ : Optional[Any] = use_labels snake_case__ : str = type_sequence_label_size snake_case__ : List[Any] = encoder_stride def lowercase_ ( self : Tuple ) ->str: snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : Any = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Optional[int] ) ->Optional[int]: return SwinvaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def lowercase_ ( self : Optional[int], _snake_case : str, _snake_case : List[str], _snake_case : int ) ->Dict: snake_case__ : List[Any] = SwinvaModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[int] = model(_snake_case ) snake_case__ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case__ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self : Optional[Any], _snake_case : Any, _snake_case : List[str], _snake_case : Dict ) ->List[Any]: snake_case__ : List[str] = SwinvaForMaskedImageModeling(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ : Optional[Any] = 1 snake_case__ : Optional[int] = SwinvaForMaskedImageModeling(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Any = model(_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self : List[str], _snake_case : int, _snake_case : List[Any], _snake_case : Optional[int] ) ->Any: snake_case__ : Tuple = self.type_sequence_label_size snake_case__ : int = SwinvaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self : Any ) ->Dict: snake_case__ : str = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : List[str] = config_and_inputs snake_case__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : Union[str, Any] ) ->Dict: snake_case__ : Optional[int] = SwinvaModelTester(self ) snake_case__ : int = ConfigTester(self, config_class=_snake_case, embed_dim=3_7 ) def lowercase_ ( self : Tuple ) ->int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Any ) ->str: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def lowercase_ ( self : Any ) ->Union[str, Any]: pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def lowercase_ ( self : str ) ->Union[str, Any]: pass def lowercase_ ( self : Optional[Any] ) ->Union[str, Any]: snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) snake_case__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case, nn.Linear ) ) def lowercase_ ( self : List[str] ) ->Optional[int]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(_snake_case ) snake_case__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Optional[Any] = [*signature.parameters.keys()] snake_case__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], _snake_case ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True for model_class in self.all_model_classes: snake_case__ : str = True snake_case__ : Union[str, Any] = False snake_case__ : Tuple = True snake_case__ : int = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : Optional[int] = model(**self._prepare_for_class(_snake_case, _snake_case ) ) snake_case__ : List[str] = outputs.attentions snake_case__ : List[Any] = len(self.model_tester.depths ) self.assertEqual(len(_snake_case ), _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case__ : str = True snake_case__ : Tuple = config.window_size**2 snake_case__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : str = model(**self._prepare_for_class(_snake_case, _snake_case ) ) snake_case__ : Tuple = outputs.attentions self.assertEqual(len(_snake_case ), _snake_case ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) snake_case__ : Optional[Any] = len(_snake_case ) # Check attention is always last and order is fine snake_case__ : Optional[int] = True snake_case__ : Dict = True snake_case__ : List[Any] = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : Optional[int] = model(**self._prepare_for_class(_snake_case, _snake_case ) ) if hasattr(self.model_tester, 'num_hidden_states_types' ): snake_case__ : str = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case__ : Dict = 2 self.assertEqual(out_len + added_hidden_states, len(_snake_case ) ) snake_case__ : Any = outputs.attentions self.assertEqual(len(_snake_case ), _snake_case ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def lowercase_ ( self : Dict, _snake_case : Tuple, _snake_case : Any, _snake_case : int, _snake_case : Optional[int] ) ->str: snake_case__ : Dict = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): snake_case__ : List[Any] = model(**self._prepare_for_class(_snake_case, _snake_case ) ) snake_case__ : Dict = outputs.hidden_states snake_case__ : int = getattr( self.model_tester, 'expected_num_hidden_layers', len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ), _snake_case ) # Swinv2 has a different seq_length snake_case__ : int = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) snake_case__ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(_snake_case ), _snake_case ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = reshaped_hidden_states[0].shape snake_case__ : Any = ( reshaped_hidden_states[0].view(_snake_case, _snake_case, height * width ).permute(0, 2, 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def lowercase_ ( self : str ) ->List[Any]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Dict = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, _snake_case ) def lowercase_ ( self : List[str] ) ->str: snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = 3 snake_case__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case__ : str = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case__ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case__ : int = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[str] = True self.check_hidden_states_output(_snake_case, _snake_case, _snake_case, (padded_height, padded_width) ) def lowercase_ ( self : List[str] ) ->Optional[int]: snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_snake_case ) def lowercase_ ( self : List[Any] ) ->str: snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def lowercase_ ( self : str ) ->Union[str, Any]: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = SwinvaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowercase_ ( self : Optional[int] ) ->List[str]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = _config_zero_init(_snake_case ) for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : Union[str, Any] ) ->List[str]: return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def lowercase_ ( self : int ) ->List[Any]: snake_case__ : Any = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( _snake_case ) snake_case__ : int = self.default_image_processor snake_case__ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) snake_case__ : Optional[Any] = image_processor(images=_snake_case, return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): snake_case__ : List[str] = model(**_snake_case ) # verify the logits snake_case__ : int = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, _snake_case ) snake_case__ : Optional[int] = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3], _snake_case, atol=1e-4 ) )
277
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = RobertaTokenizer __UpperCamelCase = RobertaTokenizerFast __UpperCamelCase = True __UpperCamelCase = {'cls_token': '<s>'} def lowerCamelCase__ ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCAmelCase : int = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowerCAmelCase : Dict = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCAmelCase : Dict = {'''unk_token''': '''<unk>'''} lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def lowerCamelCase__ ( self : Dict , **UpperCamelCase_ : Tuple ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCamelCase__ ( self : str , **UpperCamelCase_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[int] = '''lower newer''' lowerCAmelCase : Optional[int] = '''lower newer''' return input_text, output_text def lowerCamelCase__ ( self : int ): lowerCAmelCase : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : int = '''lower newer''' lowerCAmelCase : Any = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowerCAmelCase : int = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase : int = tokens + [tokenizer.unk_token] lowerCAmelCase : Any = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Union[str, Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__lowerCAmelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained('''roberta-base''' ) lowerCAmelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__lowerCAmelCase ) lowerCAmelCase : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__lowerCAmelCase ) lowerCAmelCase : Any = tokenizer.encode( '''sequence builders''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) lowerCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCamelCase__ ( self : int ): lowerCAmelCase : Any = self.get_tokenizer() lowerCAmelCase : Optional[Any] = '''Encode this sequence.''' lowerCAmelCase : Optional[int] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments lowerCAmelCase : str = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase : List[str] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowerCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) lowerCAmelCase : Dict = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens lowerCAmelCase : Dict = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) lowerCAmelCase : str = '''Encode <mask> sequence''' lowerCAmelCase : Optional[Any] = '''Encode <mask>sequence''' lowerCAmelCase : Dict = tokenizer.encode(__lowerCAmelCase ) lowerCAmelCase : List[str] = encoded.index(__lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCAmelCase ) lowerCAmelCase : Optional[Any] = encoded.index(__lowerCAmelCase ) lowerCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase__ ( self : Any ): pass def lowerCamelCase__ ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCAmelCase : str = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowerCAmelCase : List[Any] = '''A, <mask> AllenNLP sentence.''' lowerCAmelCase : Optional[Any] = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) lowerCAmelCase : Dict = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCAmelCase : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCamelCase__ ( self : List[str] ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCAmelCase : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __lowerCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __lowerCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __lowerCAmelCase ) def lowerCamelCase__ ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase : Any = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase : Union[str, Any] = F'''{text_of_1_token} {text_of_1_token}''' lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : int = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Union[str, Any] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : Optional[int] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowerCAmelCase : Any = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
360
"""simple docstring""" def _snake_case ( _snake_case : int = 50000000 ): lowerCAmelCase : List[str] = set() lowerCAmelCase : List[Any] = int((limit - 24) ** (1 / 2) ) lowerCAmelCase : Optional[int] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _snake_case ) ) ) for primea in primes: lowerCAmelCase : Optional[Any] = primea * primea for primea in primes: lowerCAmelCase : List[Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowerCAmelCase : Tuple = primea * primea * primea * primea lowerCAmelCase : Tuple = square + cube + tetr if total >= limit: break ret.add(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
314
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCamelCase ( UpperCAmelCase__ : int ) -> Tuple: lowercase_ : int = int(number**0.5 ) return number == sq * sq def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Any: lowercase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase_ : int = x_den * y_den * z_den lowercase_ : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowerCamelCase ( UpperCAmelCase__ : int = 35 ) -> List[str]: lowercase_ : set = set() lowercase_ : int lowercase_ : Fraction = Fraction(0 ) lowercase_ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase_ : Union[str, Any] = x_num * y_den + x_den * y_num lowercase_ : Optional[Any] = x_den * y_den lowercase_ : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 lowercase_ : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase_ : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowercase_ : Any = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[int] = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ : List[Any] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 lowercase_ : int = x_num * y_num lowercase_ : Optional[Any] = x_den * y_num + x_num * y_den lowercase_ : Tuple = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ : Any = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 lowercase_ : List[Any] = x_num * x_num * y_num * y_num lowercase_ : List[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowercase_ : Union[str, Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowercase_ : int = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ : List[str] = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
239
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __lowercase : Dict = logging.get_logger(__name__) __lowercase : Optional[Any] = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "umt5" A_ = ["past_key_values"] def __init__( self , __a=25_0112 , __a=512 , __a=64 , __a=1024 , __a=8 , __a=None , __a=6 , __a=32 , __a=128 , __a=0.1 , __a=1E-6 , __a=1.0 , __a="gated-gelu" , __a=True , __a=True , __a="T5Tokenizer" , __a=True , __a=0 , __a=1 , __a=0 , **__a , ): '''simple docstring''' super().__init__( is_encoder_decoder=__a , tokenizer_class=__a , tie_word_embeddings=__a , pad_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , ) __a : Any = vocab_size __a : Any = d_model __a : str = d_kv __a : Dict = d_ff __a : Union[str, Any] = num_layers __a : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __a : Optional[int] = num_heads __a : Tuple = relative_attention_num_buckets __a : Optional[Any] = relative_attention_max_distance __a : Optional[int] = dropout_rate __a : List[Any] = layer_norm_epsilon __a : int = initializer_factor __a : Union[str, Any] = feed_forward_proj __a : Any = use_cache __a : List[Any] = self.feed_forward_proj.split('-' ) __a : Dict = act_info[-1] __a : Dict = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __a : Optional[int] = 'gelu_new' @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.d_model @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.num_heads @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.num_layers class __UpperCamelCase ( lowerCAmelCase_ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __a : Dict = 'past_encoder_sequence + sequence' __a : Tuple = {0: 'batch'} __a : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __a : List[Any] = {0: 'batch', 1: 'decoder_sequence'} __a : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCAmelCase ( self ): '''simple docstring''' return 13 @property def __UpperCAmelCase ( self ): '''simple docstring''' return 5E-4
27
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A = get_tests_dir('''fixtures/test_sentencepiece.model''') A = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} A = '''>>zh<<''' A = '''Helsinki-NLP/''' if is_torch_available(): A = '''pt''' elif is_tf_available(): A = '''tf''' else: A = '''jax''' @require_sentencepiece class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MarianTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : int = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __a : Optional[Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __a : Optional[int] = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) __a : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self , **_UpperCAmelCase ): return MarianTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return ( "This is a test", "This is a test", ) def _lowerCamelCase ( self ): __a : Tuple = '''</s>''' __a : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_UpperCAmelCase ) , 9 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _lowerCamelCase ( self ): __a : Tuple = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) __a : Dict = en_de_tokenizer(['''I am a small frog'''] , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __a : str = [38, 121, 14, 697, 38848, 0] self.assertListEqual(_UpperCAmelCase , batch.input_ids[0] ) __a : Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_UpperCAmelCase ) __a : Dict = [x.name for x in Path(_UpperCAmelCase ).glob('''*''' )] self.assertIn('''source.spm''' , _UpperCAmelCase ) MarianTokenizer.from_pretrained(_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Any = self.get_tokenizer() __a : Optional[int] = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.get_tokenizer() __a : Union[str, Any] = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def _lowerCamelCase ( self ): # fmt: off __a : Optional[Any] = {'''input_ids''': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def _lowerCamelCase ( self ): __a : str = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) __a : List[str] = '''Tämä on testi''' __a : str = '''This is a test''' __a : Tuple = [76, 7, 2047, 2] __a : Union[str, Any] = [69, 12, 11, 940, 2] __a : Union[str, Any] = tokenizer(_UpperCAmelCase ).input_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : List[str] = tokenizer(text_target=_UpperCAmelCase ).input_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __a : int = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
188
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets A = datasets.logging.get_logger(__name__) A = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' A = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' A = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.config_name == "default": __a : List[str] = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: __a : List[str] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False ): if gpus is None: __a : str = 1 if torch.cuda.is_available() else 0 __a : Optional[Any] = {'''src''': sources, '''mt''': predictions, '''ref''': references} __a : Dict = [dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) for t in zip(*data.values() )] __a , __a : int = self.scorer.predict(_UpperCAmelCase , gpus=_UpperCAmelCase , progress_bar=_UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
188
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets A : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" A : Optional[int] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" A : Any = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def snake_case ( self ): if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def snake_case ( self , __a , __a , __a = False , __a = False , __a = False , __a = False , ): __lowerCAmelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__a )] __lowerCAmelCase = TER( normalized=__a , no_punct=__a , asian_support=__a , case_sensitive=__a , ) __lowerCAmelCase = sb_ter.corpus_score(__a , __a ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
57
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __lowerCAmelCase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
57
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : int = ["""input_values""", """padding_mask"""] def __init__(self : Tuple , __a : int = 1 , __a : int = 24000 , __a : float = 0.0 , __a : float = None , __a : float = None , **__a : str , ): super().__init__(feature_size=__a , sampling_rate=__a , padding_value=__a , **__a ) UpperCAmelCase_ = chunk_length_s UpperCAmelCase_ = overlap @property def _lowercase (self : Any ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase (self : List[Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__(self : int , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : Optional[Union[bool, str, PaddingStrategy]] = None , __a : Optional[bool] = False , __a : Optional[int] = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[int] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs UpperCAmelCase_ = True UpperCAmelCase_ = bool( isinstance(__a , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ = [np.asarray(__a , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__a , np.ndarray ): UpperCAmelCase_ = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase_ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ = [np.asarray(__a ).T] # verify inputs are valid for idx, example in enumerate(__a ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) UpperCAmelCase_ = None UpperCAmelCase_ = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase_ = min(array.shape[0] for array in raw_audio ) UpperCAmelCase_ = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase_ = max(array.shape[0] for array in raw_audio ) UpperCAmelCase_ = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase_ = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase_ = "max_length" else: UpperCAmelCase_ = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase_ = self.pad( __a , max_length=__a , truncation=__a , padding=__a , return_attention_mask=__a , ) if padding: UpperCAmelCase_ = padded_inputs.pop("attention_mask" ) UpperCAmelCase_ = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: UpperCAmelCase_ = example[..., None] input_values.append(example.T ) UpperCAmelCase_ = input_values if return_tensors is not None: UpperCAmelCase_ = padded_inputs.convert_to_tensors(__a ) return padded_inputs
106
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: int ={ 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_: Union[str, Any] =['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =[ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_: List[str] =[ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure)
106
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowercase : List[Any] = logging.getLogger(__name__) _lowercase : Optional[int] = 5_0 # max width of layer names _lowercase : Any = 7_0 # max width of quantizer names def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : Dict = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=__lowerCAmelCase , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=__lowerCAmelCase , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=__lowerCAmelCase , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=__lowerCAmelCase , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=__lowerCAmelCase , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=__lowerCAmelCase , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" if args.calibrator == "max": lowercase_ : str = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) lowercase_ : List[str] = '''histogram''' elif args.calibrator == "mse": lowercase_ : Optional[Any] = '''histogram''' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) lowercase_ : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCAmelCase ) lowercase_ : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCAmelCase ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCAmelCase , ['''embeddings'''] , which='''weight''' , _disabled=__lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCAmelCase , [''''''] , _disabled=__lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCAmelCase , args.quant_disable_keyword , _disabled=__lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=__lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=__lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(__lowerCAmelCase , __lowerCAmelCase ) if args.clip_gelu: clip_gelu(__lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCAmelCase ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCAmelCase ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" def fusea(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] ): for mod in [qq, qk, qv]: if not hasattr(__lowerCAmelCase , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return lowercase_ : Union[str, Any] = qq._amax.detach().item() lowercase_ : str = qk._amax.detach().item() lowercase_ : List[Any] = qv._amax.detach().item() lowercase_ : Tuple = max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) qq._amax.fill_(__lowerCAmelCase ) qk._amax.fill_(__lowerCAmelCase ) qv._amax.fill_(__lowerCAmelCase ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): lowercase_ : List[str] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCAmelCase ) lowercase_ : Optional[Any] = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: lowercase_ : Dict = mod.weight.shape[0] lowercase_ : Union[str, Any] = mod._weight_quantizer._amax.detach() lowercase_ : Tuple = torch.ones(__lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowercase_ : str = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowercase_ : Tuple = set(range(len(mod.weight.size() ) ) ) - axis_set lowercase_ : Tuple = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCAmelCase , keepdims=__lowerCAmelCase ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) lowercase_ : List[Any] = amax def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=25 , __SCREAMING_SNAKE_CASE : List[Any]=180 , __SCREAMING_SNAKE_CASE : Tuple=None ): """simple docstring""" if ignore is None: lowercase_ : Optional[Any] = [] elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ : Optional[Any] = [ignore] lowercase_ : List[str] = 0 for name, mod in model.named_modules(): if not hasattr(__lowerCAmelCase , '''weight''' ): continue lowercase_ : List[Any] = max(__lowerCAmelCase , len(__lowerCAmelCase ) ) for name, mod in model.named_modules(): lowercase_ : Dict = getattr(__lowerCAmelCase , '''_input_quantizer''' , __lowerCAmelCase ) lowercase_ : Dict = getattr(__lowerCAmelCase , '''_weight_quantizer''' , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , '''weight''' ): continue if type(__lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(__lowerCAmelCase ) is str and s in name]: continue lowercase_ : Dict = F'''Act:{input_q.extra_repr()}''' lowercase_ : Union[str, Any] = F'''Wgt:{weight_q.extra_repr()}''' lowercase_ : Tuple = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowerCAmelCase ) <= line_width: logger.info(__lowerCAmelCase ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(__lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" lowercase_ : List[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(__lowerCAmelCase , __lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: logger.warning(F'''{name} has no {quantizer}''' ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int]="both" , **__SCREAMING_SNAKE_CASE : str ): """simple docstring""" lowercase_ : Union[str, Any] = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '''_input_quantizer''' , __lowerCAmelCase , __lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '''_weight_quantizer''' , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '''_input_quantizer''' ) or hasattr(__lowerCAmelCase , '''_weight_quantizer''' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): set_quantizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ : List[Any] = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase )
93
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int ): # Construct model if gpta_config_file == "": a__ = GPTaConfig() else: a__ = GPTaConfig.from_json_file(__lowerCAmelCase ) a__ = GPTaModel(__lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model a__ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) snake_case : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
240
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase__ = random.Random() def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_=1.0 , UpperCAmelCase_=None , UpperCAmelCase_=None ): if rng is None: UpperCAmelCase : Union[str, Any] = global_rng UpperCAmelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , lowercase_ : Dict , lowercase_ : List[Any]=7 , lowercase_ : Union[str, Any]=400 , lowercase_ : List[Any]=2_000 , lowercase_ : int=1 , lowercase_ : Optional[Any]=0.0 , lowercase_ : List[Any]=16_000 , lowercase_ : int=True , lowercase_ : List[Any]=80 , lowercase_ : Tuple=16 , lowercase_ : Optional[Any]=64 , lowercase_ : int="hann_window" , lowercase_ : str=80 , lowercase_ : List[Any]=7_600 , lowercase_ : Optional[Any]=1E-10 , lowercase_ : Optional[Any]=True , ) -> Tuple: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : str = min_seq_length UpperCAmelCase : Dict = max_seq_length UpperCAmelCase : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : Any = feature_size UpperCAmelCase : List[Any] = padding_value UpperCAmelCase : str = sampling_rate UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Dict = num_mel_bins UpperCAmelCase : List[str] = hop_length UpperCAmelCase : List[Any] = win_length UpperCAmelCase : Union[str, Any] = win_function UpperCAmelCase : Tuple = fmin UpperCAmelCase : Union[str, Any] = fmax UpperCAmelCase : Union[str, Any] = mel_floor UpperCAmelCase : Tuple = return_attention_mask def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : int=False , lowercase_ : Dict=False ) -> int: def _flatten(lowercase_ : Optional[Any] ): return list(itertools.chain(*lowercase_ ) ) if equal_length: UpperCAmelCase : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase : int = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : Union[str, Any] = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs def UpperCAmelCase_ ( self : str , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=False ) -> Optional[int]: if equal_length: UpperCAmelCase : List[str] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase : List[Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : List[Any] = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = SpeechTaFeatureExtractor def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: UpperCAmelCase : List[str] = SpeechTaFeatureExtractionTester(self ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Union[str, Any] ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCAmelCase_ ( self : str ) -> Dict: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase : Optional[int] = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase : Optional[int] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values UpperCAmelCase : Any = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test batched UpperCAmelCase : List[str] = feat_extract(lowercase_ , return_tensors='np' ).input_values UpperCAmelCase : Optional[Any] = feat_extract(lowercase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : str ) -> List[Any]: UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase : Any = ['longest', 'max_length', 'do_not_pad'] UpperCAmelCase : Dict = [None, 1_600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): UpperCAmelCase : Union[str, Any] = feat_extract(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors='np' ) UpperCAmelCase : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def UpperCAmelCase_ ( self : str ) -> Tuple: UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Dict = range(800 , 1_400 , 200 ) UpperCAmelCase : str = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase : int = ['longest', 'max_length', 'do_not_pad'] UpperCAmelCase : Any = [None, 1_600, None] for max_length, padding in zip(lowercase_ , lowercase_ ): UpperCAmelCase : Tuple = feat_extract(lowercase_ , max_length=lowercase_ , padding=lowercase_ ) UpperCAmelCase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase : Any = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1_000 , padding='max_length' , return_tensors='np' ) UpperCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCAmelCase_ ( self : List[str] ) -> Any: UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase : Tuple = feat_extract( lowercase_ , truncation=lowercase_ , max_length=1_000 , padding='longest' , return_tensors='np' ) UpperCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase : Union[str, Any] = feat_extract( lowercase_ , truncation=lowercase_ , max_length=2_000 , padding='longest' , return_tensors='np' ) UpperCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Union[str, Any] = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : Dict = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase : List[str] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase : List[str] = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase : Optional[int] = feature_extractor(audio_target=lowercase_ , padding=lowercase_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase : Any = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values UpperCAmelCase : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test batched UpperCAmelCase : Tuple = feature_extractor(lowercase_ , return_tensors='np' ).input_values UpperCAmelCase : str = feature_extractor(lowercase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Tuple = np.asarray(lowercase_ ) UpperCAmelCase : List[Any] = feature_extractor(lowercase_ , return_tensors='np' ).input_values UpperCAmelCase : str = feature_extractor(lowercase_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Optional[int] = feat_extract.model_input_names[0] UpperCAmelCase : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowercase_ ) == len(lowercase_ ) for x, y in zip(lowercase_ , processed_features[input_name] ) ) ) UpperCAmelCase : List[str] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase_ ) UpperCAmelCase : Tuple = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) UpperCAmelCase : Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowercase_ ) UpperCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : str = feat_extract.model_input_names[0] UpperCAmelCase : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) UpperCAmelCase : Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def UpperCAmelCase_ ( self : str ) -> List[str]: UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase : Dict = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase : Any = feat_extract.model_input_names[0] UpperCAmelCase : str = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : Tuple = feat_extract.num_mel_bins # hack! UpperCAmelCase : Tuple = feat_extract.pad(lowercase_ , padding='longest' , return_tensors='np' )[input_name] UpperCAmelCase : List[Any] = feat_extract.pad(lowercase_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: UpperCAmelCase : str = self.feat_extract_dict UpperCAmelCase : int = True UpperCAmelCase : str = self.feature_extraction_class(**lowercase_ ) UpperCAmelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase : Any = [len(lowercase_ ) for x in speech_inputs] UpperCAmelCase : Optional[Any] = feat_extract.model_input_names[0] UpperCAmelCase : Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : int = feat_extract.num_mel_bins # hack! UpperCAmelCase : Any = feat_extract.pad(lowercase_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , lowercase_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowercase_ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = self.feat_extract_dict UpperCAmelCase : Dict = True UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**lowercase_ ) UpperCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase : Union[str, Any] = [len(lowercase_ ) for x in speech_inputs] UpperCAmelCase : List[Any] = feat_extract.model_input_names[0] UpperCAmelCase : Tuple = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase : int = min(lowercase_ ) UpperCAmelCase : Optional[Any] = feat_extract.num_mel_bins # hack! UpperCAmelCase : List[Any] = feat_extract.pad( lowercase_ , padding='max_length' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='np' ) self.assertIn('attention_mask' , lowercase_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[str] ) -> int: from datasets import load_dataset UpperCAmelCase : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCAmelCase : Tuple = ds.sort('id' ).select(range(lowercase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: # fmt: off UpperCAmelCase : Optional[Any] = torch.tensor( [2.3804E-03, 2.0752E-03, 1.9836E-03, 2.1057E-03, 1.6174E-03, 3.0518E-04, 9.1553E-05, 3.3569E-04, 9.7656E-04, 1.8311E-03, 2.0142E-03, 2.1057E-03, 1.7395E-03, 4.5776E-04, -3.9673E-04, 4.5776E-04, 1.0071E-03, 9.1553E-05, 4.8828E-04, 1.1597E-03, 7.3242E-04, 9.4604E-04, 1.8005E-03, 1.8311E-03, 8.8501E-04, 4.2725E-04, 4.8828E-04, 7.3242E-04, 1.0986E-03, 2.1057E-03] ) # fmt: on UpperCAmelCase : Tuple = self._load_datasamples(1 ) UpperCAmelCase : int = SpeechTaFeatureExtractor() UpperCAmelCase : List[str] = feature_extractor(lowercase_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowercase_ , atol=1E-6 ) ) def UpperCAmelCase_ ( self : int ) -> Any: # fmt: off UpperCAmelCase : List[str] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on UpperCAmelCase : List[Any] = self._load_datasamples(1 ) UpperCAmelCase : int = SpeechTaFeatureExtractor() UpperCAmelCase : List[Any] = feature_extractor(audio_target=lowercase_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowercase_ , atol=1E-4 ) )
368
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , lowercase_ : str , lowercase_ : Union[str, Any]=7 , lowercase_ : Union[str, Any]=3 , lowercase_ : int=30 , lowercase_ : Tuple=400 , lowercase_ : Tuple=True , lowercase_ : Optional[int]=None , lowercase_ : List[str]=0.9 , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=True , lowercase_ : int=[0.5, 0.5, 0.5] , lowercase_ : List[str]=[0.5, 0.5, 0.5] , ) -> Tuple: UpperCAmelCase : Optional[int] = size if size is not None else {'shortest_edge': 30} UpperCAmelCase : int = crop_size if crop_size is not None else {'height': 30, 'width': 30} UpperCAmelCase : Tuple = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = num_channels UpperCAmelCase : int = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize_and_center_crop UpperCAmelCase : int = size UpperCAmelCase : Dict = crop_pct UpperCAmelCase : Union[str, Any] = crop_size UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Optional[Any] = image_mean UpperCAmelCase : Optional[Any] = image_std def UpperCAmelCase_ ( self : str ) -> int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A_ ( _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase : Any = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> str: UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowercase_ , 'size' ) ) self.assertTrue(hasattr(lowercase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase_ , 'image_std' ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) UpperCAmelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: pass def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : str = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: # Initialize image_processing UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCAmelCase_ ( self : str ) -> Dict: # Initialize image_processing UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(lowercase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
280
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[Any] = 'pegasus' A_ : Union[str, Any] = ['past_key_values'] A_ : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self : Any , a__ : Optional[int]=5_0265 , a__ : int=1024 , a__ : List[str]=12 , a__ : List[Any]=4096 , a__ : List[str]=16 , a__ : Any=12 , a__ : Union[str, Any]=4096 , a__ : Tuple=16 , a__ : Optional[Any]=0.0 , a__ : Any=0.0 , a__ : List[str]=True , a__ : Optional[int]=True , a__ : Union[str, Any]="gelu" , a__ : List[str]=1024 , a__ : int=0.1 , a__ : List[str]=0.0 , a__ : int=0.0 , a__ : Optional[Any]=0.0_2 , a__ : Optional[int]=0 , a__ : Tuple=False , a__ : List[Any]=0 , a__ : Any=1 , a__ : List[Any]=1 , **a__ : List[Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) @property def a (self : Any ): """simple docstring""" return self.encoder_attention_heads @property def a (self : Tuple ): """simple docstring""" return self.d_model
24
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase_ = 1_6 lowerCamelCase_ = 3_2 def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ = 16 ) -> Optional[int]: lowerCAmelCase_ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase_ = DatasetDict( { 'train': dataset['train'].select(a_ ), 'validation': dataset['train'].select(a_ ), 'test': dataset['validation'], } ) def tokenize_function(a_ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( a_ , batched=a_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( a_ , padding='longest' , max_length=a_ , pad_to_multiple_of=a_ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['train'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) lowerCAmelCase_ = DataLoader( tokenized_datasets['validation'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) lowerCAmelCase_ = DataLoader( tokenized_datasets['test'] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase ( a_ , a_ ) -> Optional[int]: # New Code # lowerCAmelCase_ = [] # Download the dataset lowerCAmelCase_ = load_dataset('glue' , 'mrpc' ) # Create our splits lowerCAmelCase_ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['lr'] lowerCAmelCase_ = int(config['num_epochs'] ) lowerCAmelCase_ = int(config['seed'] ) lowerCAmelCase_ = int(config['batch_size'] ) lowerCAmelCase_ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase_ = MAX_GPU_BATCH_SIZE set_seed(a_ ) # New Code # # Create our folds: lowerCAmelCase_ = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowerCAmelCase_ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(a_ ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = get_fold_dataloaders( a_ , a_ , a_ , a_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=a_ ) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=100 , num_training_steps=(len(a_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # Now we train the model for epoch in range(a_ ): model.train() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.loss lowerCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a_ , references=a_ , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , a_ ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase_ = [] for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ = model(**a_ ) lowerCAmelCase_ = outputs.logits lowerCAmelCase_ , lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(a_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase_ = torch.cat(a_ , dim=0 ) lowerCAmelCase_ = torch.stack(a_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase_ = metric.compute(predictions=a_ , references=a_ ) accelerator.print('Average test metrics from all folds:' , a_ ) def lowerCamelCase ( ) -> Optional[Any]: lowerCAmelCase_ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a_ , default=a_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=a_ , default=3 , help='The number of splits to perform across the dataset' ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(a_ , a_ ) if __name__ == "__main__": main()
14
from __future__ import annotations import queue class a_ : '''simple docstring''' def __init__( self , lowercase_ ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = data lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) lowerCAmelCase_ = input('Enter the value of the root node: ' ).strip().lower() lowerCAmelCase_ = queue.Queue() lowerCAmelCase_ = TreeNode(int(a_ ) ) q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() lowerCAmelCase_ = F'''Enter the left node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = left_node q.put(a_ ) lowerCAmelCase_ = F'''Enter the right node of {node_found.data}: ''' lowerCAmelCase_ = input(a_ ).strip().lower() or 'n' if check == "n": return tree_node lowerCAmelCase_ = TreeNode(int(a_ ) ) lowerCAmelCase_ = right_node q.put(a_ ) raise def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = queue.Queue() q.put(a_ ) while not q.empty(): lowerCAmelCase_ = [] while not q.empty(): lowerCAmelCase_ = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(a_ ) def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(a_ ) lowerCAmelCase_ = n.left # end of while means current node doesn't have left child lowerCAmelCase_ = stack.pop() # start to traverse its right child lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ = [] lowerCAmelCase_ = node while n or stack: while n: stack.append(a_ ) lowerCAmelCase_ = n.left lowerCAmelCase_ = stack.pop() print(n.data , end=',' ) lowerCAmelCase_ = n.right def lowerCamelCase ( a_ ) -> None: if not isinstance(a_ , a_ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ = [], [] lowerCAmelCase_ = node stacka.append(a_ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(a_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def lowerCamelCase ( a_ = "" , a_=50 , a_="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ = divmod(width - len(a_ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase_ = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
14
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = CTRLTokenizer lowerCamelCase__ : Any = False lowerCamelCase__ : List[Any] = False def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ =['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] a__ =dict(zip(lowercase_, range(len(lowercase_ ) ) ) ) a__ =['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] a__ ={'''unk_token''': '''<unk>'''} a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) a__ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def _UpperCAmelCase ( self, **lowercase_ ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowercase_ ) def _UpperCAmelCase ( self, lowercase_ ) -> Optional[int]: """simple docstring""" a__ ='''adapt react readapt apt''' a__ ='''adapt react readapt apt''' return input_text, output_text def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" a__ =CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) a__ ='''adapt react readapt apt''' a__ ='''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() a__ =tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_, lowercase_ ) a__ =tokens + [tokenizer.unk_token] a__ =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ), lowercase_ )
188
from __future__ import annotations def UpperCAmelCase__ ( _A : float , _A : float , _A : float , ): '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
188
1
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: # Base Case if curr_ind == len(UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCAmelCase ) ): if valid_connection(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # Insert current vertex into path as next transition snake_case_ = next_ver # Validate created path if util_hamilton_cycle(UpperCAmelCase , UpperCAmelCase , curr_ind + 1 ): return True # Backtrack snake_case_ = -1 return False def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 0 ) -> list[int]: snake_case_ = [-1] * (len(UpperCAmelCase ) + 1) # initialize start and end of path with starting index snake_case_ = snake_case_ = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCAmelCase , UpperCAmelCase , 1 ) else []
312
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {} __UpperCamelCase = {} __UpperCamelCase = {} def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , ) -> Optional[Any]: snake_case_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) snake_case_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) snake_case_ = format_type def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: snake_case_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): snake_case_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase ( UpperCAmelCase , **UpperCAmelCase ) -> Formatter: snake_case_ = get_format_type_from_alias(UpperCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
312
1
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def __SCREAMING_SNAKE_CASE ( A_ = 1_00_00_00 , A_ = 10 ): lowerCAmelCase__ : defaultdict = defaultdict(A_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase__ : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase__ : Tuple = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
106
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCamelCase : Tuple = TypeVar('''T''') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : str = deque() lowerCAmelCase__ : Any = set() if not n: lowerCAmelCase__ : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase__ : int = n def __lowerCAmelCase ( self : str ,lowercase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __lowerCAmelCase ( self : int ): for k in self.dq_store: print(lowercase_ ) def __repr__( self : Tuple ): return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
106
1
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowercase ( snake_case_ : List[str] ,snake_case_ : Dict ,snake_case_ : Optional[int] ,snake_case_ : Dict ,snake_case_ : str ) ->Optional[int]: '''simple docstring''' for attribute in key.split('''.''' ): __A : List[str] = getattr(snake_case_ ,snake_case_ ) if weight_type is not None: __A : Union[str, Any] = getattr(snake_case_ ,snake_case_ ).shape else: __A : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __A : Union[str, Any] = value elif weight_type == "weight_g": __A : Optional[int] = value elif weight_type == "weight_v": __A : str = value elif weight_type == "bias": __A : Any = value else: __A : List[str] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowercase ( snake_case_ : List[Any] ,snake_case_ : int ) ->List[str]: '''simple docstring''' __A : Any = [] __A : Optional[int] = fairseq_model.state_dict() __A : Optional[int] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __A : Union[str, Any] = None for name, value in fairseq_dict.items(): __A : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,hf_model.config.feat_extract_norm == '''group''' ,) __A : Any = True elif name.split('''.''' )[0] == "proj": __A : List[str] = fairseq_model.proj __A : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A : Any = True if "*" in mapped_key: __A : Union[str, Any] = name.split(snake_case_ )[0].split('''.''' )[-2] __A : int = mapped_key.replace('''*''' ,snake_case_ ) if "weight_g" in name: __A : Any = '''weight_g''' elif "weight_v" in name: __A : str = '''weight_v''' elif "bias" in name: __A : List[Any] = '''bias''' elif "weight" in name: __A : Tuple = '''weight''' else: __A : int = None set_recursively(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __lowercase ( snake_case_ : Optional[Any] ,snake_case_ : List[Any] ,snake_case_ : str ,snake_case_ : Optional[Any] ,snake_case_ : List[str] ) ->Dict: '''simple docstring''' __A : Dict = full_name.split('''conv_layers.''' )[-1] __A : List[str] = name.split('''.''' ) __A : Dict = int(items[0] ) __A : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __A : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __A : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __A : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __A : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) def __lowercase ( snake_case_ : List[str] ) ->int: '''simple docstring''' __A , __A : Union[str, Any] = emb.weight.shape __A : Union[str, Any] = nn.Linear(snake_case_ ,snake_case_ ,bias=snake_case_ ) __A : Optional[Any] = emb.weight.data return lin_layer def __lowercase ( snake_case_ : Optional[Any] ) ->List[Any]: '''simple docstring''' with open(snake_case_ ,'''r''' ,encoding='''utf-8''' ) as f: __A : Tuple = f.readlines() __A : Optional[int] = [line.split(''' ''' )[0] for line in lines] __A : Optional[Any] = len(snake_case_ ) __A : Optional[Any] = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(snake_case_ ,range(4 ,num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __lowercase ( snake_case_ : List[Any] ,snake_case_ : int ,snake_case_ : str ,snake_case_ : Tuple ,snake_case_ : Tuple ,snake_case_ : Dict ,snake_case_ : Any ,) ->List[str]: '''simple docstring''' __A : List[Any] = WavaVecaConfig.from_pretrained(snake_case_ ) __A : Any = SpeechaTextaConfig.from_pretrained( snake_case_ ,vocab_size=snake_case_ ,decoder_layers=snake_case_ ,do_stable_layer_norm=snake_case_ ) __A : Tuple = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=snake_case_ ,return_attention_mask=snake_case_ ,) __A , __A , __A : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A : int = model[0].eval() # set weights for wav2vec2 encoder __A : Optional[Any] = WavaVecaModel(snake_case_ ) __A : Dict = recursively_load_weights_wavaveca(model.encoder ,snake_case_ ) __A : Optional[int] = SpeechaTextaForCausalLM(snake_case_ ) __A , __A : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=snake_case_ ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __A : Dict = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __A : Tuple = SpeechEncoderDecoderModel(encoder=snake_case_ ,decoder=snake_case_ ) __A : Optional[Any] = False # add projection layer __A : List[Any] = nn.Parameter(projection_layer.weight ) __A : Optional[Any] = nn.Parameter(projection_layer.bias ) __A : Tuple = create_vocab_dict(snake_case_ ) with open(os.path.join(snake_case_ ,'''vocab.json''' ) ,'''w''' ) as fp: json.dump(snake_case_ ,snake_case_ ) __A : List[Any] = SpeechaTextaTokenizer(os.path.join(snake_case_ ,'''vocab.json''' ) ) tokenizer.save_pretrained(snake_case_ ) __A : Dict = hf_wavavec.config.to_dict() __A : List[str] = tokenizer.pad_token_id __A : Any = tokenizer.bos_token_id __A : int = tokenizer.eos_token_id __A : Tuple = '''speech_to_text_2''' __A : Tuple = '''wav2vec2''' __A : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) feature_extractor.save_pretrained(snake_case_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=10224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") a_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
291
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a_ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
291
1
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowercase__ = '''.''' if __name__ == "__main__": lowercase__ = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') lowercase__ = [] lowercase__ = [] with open(doctest_file_path) as fp: for line in fp: lowercase__ = line.strip() lowercase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowercase__ = '''\n'''.join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
290
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[Any] = tempfile.mkdtemp() # fmt: off __A : List[str] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __A : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : int = {'unk_token': '<unk>'} __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __A : List[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __A : Optional[int] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Optional[int] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): __A : List[Any] = self.get_tokenizer() __A : str = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __A : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __A : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __A : Optional[int] = self.get_image_processor(do_normalize=_A ) __A : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Union[str, Any] = self.prepare_image_inputs() __A : int = image_processor(_A , return_tensors='np' ) __A : str = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): __A : str = self.get_image_processor() __A : str = self.get_tokenizer() __A : Tuple = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : str = 'lower newer' __A : str = processor(text=_A , return_tensors='np' ) __A : List[str] = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self ): __A : int = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : List[str] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Any = 'lower newer' __A : Optional[Any] = self.prepare_image_inputs() __A : List[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Any = 'google/owlvit-base-patch32' __A : int = OwlViTProcessor.from_pretrained(_A ) __A : Dict = ['cat', 'nasa badge'] __A : Optional[Any] = processor(text=_A ) __A : Optional[int] = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Tuple = 'google/owlvit-base-patch32' __A : Any = OwlViTProcessor.from_pretrained(_A ) __A : Dict = [['cat', 'nasa badge'], ['person']] __A : Dict = processor(text=_A ) __A : Optional[int] = 16 __A : Any = len(_A ) __A : Union[str, Any] = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : List[Any] = 'google/owlvit-base-patch32' __A : str = OwlViTProcessor.from_pretrained(_A ) __A : Union[str, Any] = ['cat', 'nasa badge'] __A : Tuple = processor(text=_A ) __A : str = 16 __A : int = inputs['input_ids'] __A : List[Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : str = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Any = processor.batch_decode(_A ) __A : Tuple = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
280
0
'''simple docstring''' from manim import * class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Dict = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _UpperCAmelCase : Dict = [mem.copy() for i in range(6 )] _UpperCAmelCase : int = [mem.copy() for i in range(6 )] _UpperCAmelCase : List[Any] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : List[str] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : str = Text("CPU" , font_size=24 ) _UpperCAmelCase : Optional[int] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : str = [mem.copy() for i in range(4 )] _UpperCAmelCase : Optional[int] = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Dict = Text("GPU" , font_size=24 ) _UpperCAmelCase : List[Any] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Model" , font_size=24 ) _UpperCAmelCase : int = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = [] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCAmelCase : Optional[int] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) cpu_targs.append(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Tuple = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase : Optional[int] = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , aligned_edge=lowerCamelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _UpperCAmelCase : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _UpperCAmelCase : Union[str, Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.play(Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : Any = [] _UpperCAmelCase : str = [] for i, rect in enumerate(lowerCamelCase__ ): _UpperCAmelCase : Dict = fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) first_animations.append(GrowFromCenter(lowerCamelCase__ , run_time=1 ) ) _UpperCAmelCase : Dict = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
352
'''simple docstring''' import pytest lowerCamelCase__ = '__dummy_dataset1__' lowerCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __lowerCAmelCase (): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = dataset_loading_script_name _UpperCAmelCase : Any = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = script_dir / F"""{script_name}.py""" with open(__lowerCAmelCase , "w" ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
322
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : List[str] = 16 _lowerCamelCase : int = 32 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 16 ) -> List[str]: """simple docstring""" A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = DatasetDict( { '''train''': dataset['''train'''].select(lowercase_ ), '''validation''': dataset['''train'''].select(lowercase_ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ = DataLoader( tokenized_datasets['''test'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader, test_dataloader def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = [] # Download the dataset A__ = load_dataset('''glue''' , '''mrpc''' ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase_ ): A__ , A__ , A__ = get_fold_dataloaders( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**lowercase_ ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = outputs.logits A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(lowercase_ , dim=0 ) A__ = torch.stack(lowercase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=lowercase_ , references=lowercase_ ) accelerator.print('''Average test metrics from all folds:''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowercase_ , default=3 , help='''The number of splits to perform across the dataset''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
14
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger() # the current default level is logging.WARNING SCREAMING_SNAKE_CASE : Any = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = logging.get_verbosity() SCREAMING_SNAKE_CASE : Any = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : List[Any] = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_lowerCamelCase ) as cl: logger.warning(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(_lowerCamelCase ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def __lowerCAmelCase ( self ) ->int: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var SCREAMING_SNAKE_CASE : List[str] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : List[str] = os.getenv('''TRANSFORMERS_VERBOSITY''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = logging.log_levels[env_level_str] SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_verbosity() self.assertEqual( _lowerCamelCase , _lowerCamelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level SCREAMING_SNAKE_CASE : Optional[int] = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def __lowerCAmelCase ( self ) ->Optional[int]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : str = logging.logging.getLogger() with CaptureLogger(_lowerCamelCase ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def __lowerCAmelCase ( self ) ->List[Any]: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() SCREAMING_SNAKE_CASE : Dict = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) SCREAMING_SNAKE_CASE : Dict = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(_lowerCamelCase ) as cl: logger.warning_advice(_lowerCamelCase ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_lowerCamelCase ) as cl: logger.warning_advice(_lowerCamelCase ) self.assertEqual(cl.out , msg + '''\n''' ) def UpperCAmelCase_( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __a :Dict = logging.get_logger(__name__) __a :str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __a :List[str] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } __a :List[Any] = { 'yjernite/retribert-base-uncased': 512, } __a :Dict = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = VOCAB_FILES_NAMES _lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : str = RetriBertTokenizer _lowerCamelCase : int = ['input_ids', 'attention_mask'] def __init__( self : Tuple , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any="[UNK]" , UpperCAmelCase : Union[str, Any]="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : str=None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
312
def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if (len(__UpperCamelCase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
312
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
358
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> str: UpperCAmelCase_ = AutoConfig.from_pretrained(__UpperCamelCase ) UpperCAmelCase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=__UpperCamelCase ) UpperCAmelCase_ = checkpoints.load_tax_checkpoint(__UpperCamelCase ) UpperCAmelCase_ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": UpperCAmelCase_ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCAmelCase_ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): UpperCAmelCase_ = f'layers_{str(__UpperCamelCase )}' # Self-Attention UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCAmelCase_ = flax_model.params['''encoder''']['''block'''][str(__UpperCamelCase )]['''layer'''] UpperCAmelCase_ = tax_attention_key UpperCAmelCase_ = tax_attention_out UpperCAmelCase_ = tax_attention_query UpperCAmelCase_ = tax_attention_value UpperCAmelCase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_global_layer_norm if split_mlp_wi: UpperCAmelCase_ = tax_mlp_wi_a UpperCAmelCase_ = tax_mlp_wi_a else: UpperCAmelCase_ = tax_mlp_wi UpperCAmelCase_ = tax_mlp_wo UpperCAmelCase_ = tax_mlp_layer_norm UpperCAmelCase_ = flax_model_encoder_layer_block # Only for layer 0: UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_encoder_global_rel_embedding # Assigning UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] UpperCAmelCase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCAmelCase_ = f'layers_{str(__UpperCamelCase )}' # Self-Attention UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''key''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''out''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''query''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCAmelCase_ = flax_model.params['''decoder''']['''block'''][str(__UpperCamelCase )]['''layer'''] UpperCAmelCase_ = tax_attention_key UpperCAmelCase_ = tax_attention_out UpperCAmelCase_ = tax_attention_query UpperCAmelCase_ = tax_attention_value UpperCAmelCase_ = tax_pre_attention_layer_norm UpperCAmelCase_ = tax_enc_dec_attention_key UpperCAmelCase_ = tax_enc_dec_attention_out UpperCAmelCase_ = tax_enc_dec_attention_query UpperCAmelCase_ = tax_enc_dec_attention_value UpperCAmelCase_ = tax_cross_layer_norm if split_mlp_wi: UpperCAmelCase_ = tax_mlp_wi_a UpperCAmelCase_ = tax_mlp_wi_a else: UpperCAmelCase_ = tax_mlp_wi UpperCAmelCase_ = tax_mlp_wo UpperCAmelCase_ = txa_mlp_layer_norm UpperCAmelCase_ = flax_model_decoder_layer_block # Decoder Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] UpperCAmelCase_ = txa_decoder_norm # Only for layer 0: UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_decoder_rel_embedding # Token Embeddings UpperCAmelCase_ = tax_model['''target''']['''token_embedder''']['''embedding'''] UpperCAmelCase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(__UpperCamelCase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
177
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCAmelCase : Union[str, Any] = 10 def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: for i in range(snake_case__ , snake_case__ ): if array[i] == target: return i return -1 def a__ ( snake_case__ , snake_case__ ) -> int: lowerCamelCase = 0 lowerCamelCase = len(snake_case__ ) while left <= right: if right - left < precision: return lin_search(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase = (left + right) // 3 + 1 lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCamelCase = one_third - 1 elif array[two_third] < target: lowerCamelCase = two_third + 1 else: lowerCamelCase = one_third + 1 lowerCamelCase = two_third - 1 else: return -1 def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: if left < right: if right - left < precision: return lin_search(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase = (left + right) // 3 + 1 lowerCamelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(snake_case__ , one_third - 1 , snake_case__ , snake_case__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , snake_case__ , snake_case__ , snake_case__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , snake_case__ , snake_case__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : List[Any] = input("""Enter numbers separated by comma:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." lowerCAmelCase : List[str] = int(input("""Enter the number to be found in the list:\n""").strip()) lowerCAmelCase : Tuple = ite_ternary_search(collection, target) lowerCAmelCase : str = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F"""Iterative search: {target} found at positions: {resulta}""") print(F"""Recursive search: {target} found at positions: {resulta}""") else: print("""Not found""")
291
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __magic_name__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowerCamelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) lowerCamelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) lowerCamelCase = 3 lowerCamelCase = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) lowerCamelCase = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) lowerCamelCase = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowerCamelCase = generator.model.config.eos_token_id lowerCamelCase = """<pad>""" lowerCamelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
291
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase : Dict =logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = ["""pixel_values"""] def __init__( self :int , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :bool = True , lowercase_ :Dict[str, int] = None , lowercase_ :bool = True , lowercase_ :Union[int, float] = 1 / 2_55 , lowercase_ :bool = True , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :bool = True , **lowercase_ :List[Any] , )-> None: super().__init__(**lowercase_ ) A__ = size if size is not None else {"shortest_edge": 2_24} A__ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) A__ = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} A__ = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def UpperCAmelCase_ ( self :str , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :PILImageResampling = PILImageResampling.BICUBIC , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Optional[Any] , )-> np.ndarray: A__ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) A__ = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :np.ndarray , lowercase_ :Dict[str, int] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :List[Any] , )-> np.ndarray: A__ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :np.ndarray , lowercase_ :Union[int, float] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :Any , )-> Union[str, Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :np.ndarray , lowercase_ :Union[float, List[float]] , lowercase_ :Union[float, List[float]] , lowercase_ :Optional[Union[str, ChannelDimension]] = None , **lowercase_ :str , )-> np.ndarray: return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :ImageInput , lowercase_ :bool = None , lowercase_ :Dict[str, int] = None , lowercase_ :PILImageResampling = None , lowercase_ :bool = None , lowercase_ :int = None , lowercase_ :bool = None , lowercase_ :float = None , lowercase_ :bool = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :Optional[Union[float, List[float]]] = None , lowercase_ :bool = None , lowercase_ :Optional[Union[str, TensorType]] = None , lowercase_ :Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ :str , )-> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: A__ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: A__ = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: A__ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] A__ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
123
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int = 1_00_00_00 ): A__ = set(range(3 , _lowerCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _lowerCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _lowerCamelCase , _lowerCamelCase ) ) ) A__ = [float(_lowerCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowerCamelCase , limit + 1 , _lowerCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
123
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A =logging.get_logger(__name__) __A ={ '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ ): lowerCAmelCase__ = 'nat' lowerCAmelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , lowercase=4 , lowercase=3 , lowercase=64 , lowercase=[3, 4, 6, 5] , lowercase=[2, 4, 8, 16] , lowercase=7 , lowercase=3.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=0.0_2 , lowercase=1e-5 , lowercase=0.0 , lowercase=None , lowercase=None , **lowercase , ) -> Any: super().__init__(**lowercase ) lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = embed_dim lowerCamelCase_ = depths lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = num_heads lowerCamelCase_ = kernel_size lowerCamelCase_ = mlp_ratio lowerCamelCase_ = qkv_bias lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase_ = int(embed_dim * 2 ** (len(lowercase ) - 1) ) lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = ['stem'] + [f'stage{idx}' for idx in range(1 , len(lowercase ) + 1 )] lowerCamelCase_ = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
19
import os from datetime import datetime as dt from github import Github _a = [ '''good first issue''', '''feature request''', '''wip''', ] def _a ( ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Dict = Github(os.environ['GITHUB_TOKEN'] ) __lowerCAmelCase: Tuple = g.get_repo('huggingface/accelerate' ) __lowerCAmelCase: str = repo.get_issues(state='open' ) for issue in open_issues: __lowerCAmelCase: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None __lowerCAmelCase: Tuple = dt.utcnow() __lowerCAmelCase: Optional[int] = (current_time - issue.updated_at).days __lowerCAmelCase: str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
322
0
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters a_ = False a_ = False def __lowercase ( lowerCamelCase : Namespace ): return TrainCommand(lowerCamelCase ) class _lowercase ( snake_case_ ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case : ArgumentParser ) -> Dict: """simple docstring""" UpperCamelCase_ : List[Any] = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=snake_case , required=snake_case , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=snake_case , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=snake_case , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=snake_case , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=snake_case , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=snake_case , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=snake_case , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=snake_case , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=snake_case , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=snake_case , default=3_2 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=snake_case , default=6_4 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=snake_case , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=snake_case , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=snake_case ) def __init__( self : int , snake_case : Namespace ) -> int: """simple docstring""" UpperCamelCase_ : List[str] = logging.get_logger('transformers-cli/training' ) UpperCamelCase_ : Dict = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=snake_case ) UpperCamelCase_ : Tuple = args.output UpperCamelCase_ : List[str] = args.column_label UpperCamelCase_ : Union[str, Any] = args.column_text UpperCamelCase_ : List[str] = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": UpperCamelCase_ : Optional[Any] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) UpperCamelCase_ : Optional[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCamelCase_ : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) UpperCamelCase_ : Union[str, Any] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCamelCase_ : Optional[int] = args.validation_split UpperCamelCase_ : int = args.train_batch_size UpperCamelCase_ : str = args.valid_batch_size UpperCamelCase_ : List[Any] = args.learning_rate UpperCamelCase_ : List[str] = args.adam_epsilon def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" raise NotImplementedError def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
50
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowercase : def __init__( self : List[Any] , snake_case : int , snake_case : Any=9_9 , snake_case : Tuple=1_3 , snake_case : str=7 , snake_case : List[str]=9 , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : Optional[Any]=False , snake_case : List[str]=3_2 , snake_case : str=5 , snake_case : Any=4 , snake_case : List[str]=3_7 , snake_case : Optional[Any]=8 , snake_case : Optional[Any]=0.1 , snake_case : Dict=0.002 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : List[str]=0 , snake_case : List[str]=None , snake_case : List[str]=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : List[Any] = batch_size UpperCamelCase_ : int = encoder_seq_length UpperCamelCase_ : int = decoder_seq_length # For common tests UpperCamelCase_ : List[Any] = self.decoder_seq_length UpperCamelCase_ : Optional[Any] = is_training UpperCamelCase_ : Tuple = use_attention_mask UpperCamelCase_ : int = use_labels UpperCamelCase_ : List[str] = vocab_size UpperCamelCase_ : Dict = hidden_size UpperCamelCase_ : Any = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Dict = d_ff UpperCamelCase_ : List[Any] = relative_attention_num_buckets UpperCamelCase_ : List[Any] = dropout_rate UpperCamelCase_ : Dict = initializer_factor UpperCamelCase_ : Union[str, Any] = eos_token_id UpperCamelCase_ : Optional[int] = pad_token_id UpperCamelCase_ : List[str] = decoder_start_token_id UpperCamelCase_ : str = None UpperCamelCase_ : int = decoder_layers def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int]=None , snake_case : List[Any]=None , snake_case : int=None , snake_case : Optional[int]=None , snake_case : Tuple=None , ) -> List[str]: """simple docstring""" if attention_mask is None: UpperCamelCase_ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case ) if decoder_head_mask is None: UpperCamelCase_ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case ) if cross_attn_head_mask is None: UpperCamelCase_ : Optional[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ : Union[str, Any] = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Dict = self.get_config() UpperCamelCase_ : Dict = config.num_attention_heads UpperCamelCase_ : Optional[int] = self.prepare_inputs_dict(snake_case , snake_case , snake_case ) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Any = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Any = model( input_ids=snake_case , decoder_input_ids=snake_case , attention_mask=snake_case , decoder_attention_mask=snake_case , ) UpperCamelCase_ : List[str] = model(input_ids=snake_case , decoder_input_ids=snake_case ) UpperCamelCase_ : Optional[Any] = result.last_hidden_state UpperCamelCase_ : Optional[Any] = result.past_key_values UpperCamelCase_ : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : str , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ).get_decoder().to(snake_case ).eval() # first forward pass UpperCamelCase_ : str = model(snake_case , use_cache=snake_case ) UpperCamelCase_ : List[Any] = model(snake_case ) UpperCamelCase_ : Dict = model(snake_case , use_cache=snake_case ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) + 1 ) UpperCamelCase_, UpperCamelCase_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : List[Any] = model(snake_case )['last_hidden_state'] UpperCamelCase_ : List[str] = model(snake_case , past_key_values=snake_case )['last_hidden_state'] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : int , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = UMTaModel(config=snake_case ).to(snake_case ).half().eval() UpperCamelCase_ : Union[str, Any] = model(**snake_case )['last_hidden_state'] self.parent.assertFalse(torch.isnan(snake_case ).any().item() ) @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = True lowercase = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase = [0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : List[str] = UMTaModel(config_and_inputs[0] ).to(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : Union[str, Any] = config_and_inputs[0] UpperCamelCase_ : Tuple = UMTaForConditionalGeneration(snake_case ).eval() model.to(snake_case ) UpperCamelCase_ : str = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), } for attn_name, (name, mask) in zip(snake_case , head_masking.items() ): UpperCamelCase_ : Optional[int] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase_ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=snake_case ) UpperCamelCase_ : Any = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case , return_dict_in_generate=snake_case , **snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase_ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : str = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case ).to(snake_case ) UpperCamelCase_ : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case , legacy=snake_case ) UpperCamelCase_ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] UpperCamelCase_ : Dict = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ).input_ids # fmt: off UpperCamelCase_ : List[str] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(snake_case , snake_case ) UpperCamelCase_ : int = model.generate(input_ids.to(snake_case ) ) UpperCamelCase_ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] UpperCamelCase_ : Dict = tokenizer.batch_decode(snake_case ) self.assertEqual(snake_case , snake_case )
50
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase: Tuple = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: List[Any] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: str = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: List[Any] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Union[str, Any] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _UpperCamelCase: Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
255
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase_ : str = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case__ : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case__ : bool = field(default=lowercase__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) snake_case__ : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ : bool = field( default=lowercase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" a_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) a_ : str = import_module('tasks' ) try: a_ : Dict = getattr(__A , model_args.task_type ) a_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , __A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a_ : List[Any] = token_classification_task.get_labels(data_args.labels ) a_ : Dict[int, str] = dict(enumerate(__A ) ) a_ : List[Any] = len(__A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , idalabel=__A , labelaid={label: i for i, label in enumerate(__A )} , cache_dir=model_args.cache_dir , ) a_ : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a_ : Tuple = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , ) # Get datasets a_ : Any = ( TokenClassificationDataset( token_classification_task=__A , data_dir=data_args.data_dir , tokenizer=__A , labels=__A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a_ : Optional[Any] = ( TokenClassificationDataset( token_classification_task=__A , data_dir=data_args.data_dir , tokenizer=__A , labels=__A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__A : np.ndarray , __A : np.ndarray ) -> Tuple[List[int], List[int]]: a_ : Union[str, Any] = np.argmax(__A , axis=2 ) a_ , a_ : Dict = preds.shape a_ : Optional[int] = [[] for _ in range(__A )] a_ : int = [[] for _ in range(__A )] for i in range(__A ): for j in range(__A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__A : EvalPrediction ) -> Dict: a_ , a_ : Tuple = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__A , __A ), "precision": precision_score(__A , __A ), "recall": recall_score(__A , __A ), "f1": fa_score(__A , __A ), } # Data collator a_ : Union[str, Any] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a_ : Optional[Any] = Trainer( model=__A , args=__A , train_dataset=__A , eval_dataset=__A , compute_metrics=__A , data_collator=__A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a_ : List[str] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a_ : str = trainer.evaluate() a_ : str = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , __A , __A ) writer.write('%s = %s\n' % (key, value) ) results.update(__A ) # Predict if training_args.do_predict: a_ : Tuple = TokenClassificationDataset( token_classification_task=__A , data_dir=data_args.data_dir , tokenizer=__A , labels=__A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a_ , a_ , a_ : Any = trainer.predict(__A ) a_ , a_ : Optional[Any] = align_predictions(__A , __A ) a_ : Dict = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , __A , __A ) writer.write('%s = %s\n' % (key, value) ) # Save predictions a_ : List[Any] = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(__A , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(__A , __A , __A ) return results def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
120
import json import sys def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : List[str] ) -> Tuple: """simple docstring""" with open(__A , encoding='utf-8' ) as f: a_ : Union[str, Any] = json.load(__A ) a_ : Any = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(__A ): a_ : List[str] = results[benchmark_name] a_ : int = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) a_ : Any = '| metric |' a_ : Optional[Any] = '|--------|' a_ : int = '| new / old (diff) |' for metric_name in sorted(__A ): a_ : List[Any] = benchmark_res[metric_name] a_ : int = metric_vals['new'] a_ : Union[str, Any] = metric_vals.get('old' , __A ) a_ : Optional[int] = metric_vals.get('diff' , __A ) a_ : str = F""" {new_val:f}""" if isinstance(__A , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(__A , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(__A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(__A , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(__A ) ) if __name__ == "__main__": UpperCAmelCase_ : int = sys.argv[1] UpperCAmelCase_ : Any = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
120
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> bool: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) UpperCAmelCase__ : str = str(__UpperCAmelCase ) UpperCAmelCase__ : Tuple = ''''''.join(sorted(__UpperCAmelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def a__ ( lowerCAmelCase__ = 99 ) -> int: if not 0 < percent < 1_00: raise ValueError('''solution() only accepts values from 0 to 100''' ) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Tuple = 1 while True: if check_bouncy(__UpperCAmelCase ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(9_9)}""")
181
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase=2_8_1_2_3 ) -> Any: lowercase__: Optional[Any] = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowercase__: Union[str, Any] = set() lowercase__: Optional[Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__UpperCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
177
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def A_ ( A__ ) -> int: # vision encoder if "img_encoder.pos_embed" in name: a__ : List[str] = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: a__ : int = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: a__ : Tuple = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: a__ : Tuple = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: a__ : List[Any] = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: a__ : Tuple = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: a__ : int = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: a__ : List[str] = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: a__ : int = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: a__ : List[str] = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: a__ : Tuple = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: a__ : Tuple = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: a__ : Tuple = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: a__ : List[str] = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: a__ : Any = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: a__ : Dict = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: a__ : Dict = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: a__ : str = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: a__ : Tuple = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: a__ : Tuple = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: a__ : List[Any] = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: a__ : Optional[int] = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: a__ : Dict = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: a__ : Tuple = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def A_ ( A__ , A__ ) -> str: for key in orig_state_dict.copy().keys(): a__ : int = orig_state_dict.pop(A__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors a__ : int = key.split('.' ) a__ , a__ : List[str] = int(key_split[2] ), int(key_split[4] ) a__ : Optional[int] = config.vision_config.hidden_size if "weight" in key: a__ : Any = val[:dim, :] a__ : Union[str, Any] = val[dim : dim * 2, :] a__ : Optional[int] = val[-dim:, :] else: a__ : Union[str, Any] = val[:dim] a__ : List[str] = val[dim : dim * 2] a__ : Optional[Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors a__ : Optional[int] = key.split('.' ) a__ : str = int(key_split[3] ) a__ : Union[str, Any] = config.text_config.hidden_size if "weight" in key: a__ : int = val[:dim, :] a__ : List[Any] = val[ dim : dim * 2, : ] a__ : Optional[int] = val[-dim:, :] else: a__ : List[Any] = val[:dim] a__ : Dict = val[dim : dim * 2] a__ : str = val[-dim:] else: a__ : Any = rename_key(A__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): a__ : List[str] = val.squeeze_() else: a__ : Any = val return orig_state_dict def A_ ( ) -> List[Any]: a__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def A_ ( A__ , A__ , A__="groupvit-gcc-yfcc" , A__=False ) -> List[Any]: a__ : Optional[int] = GroupViTConfig() a__ : List[str] = GroupViTModel(A__ ).eval() a__ : Any = torch.load(A__ , map_location='cpu' )['model'] a__ : Union[str, Any] = convert_state_dict(A__ , A__ ) a__ , a__ : Optional[Any] = model.load_state_dict(A__ , strict=A__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(A__ ) == 0) # verify result a__ : Any = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) a__ : List[Any] = prepare_img() a__ : Any = processor(text=['a photo of a cat', 'a photo of a dog'] , images=A__ , padding=A__ , return_tensors='pt' ) with torch.no_grad(): a__ : int = model(**A__ ) if model_name == "groupvit-gcc-yfcc": a__ : List[str] = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": a__ : Optional[Any] = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , A__ , atol=1E-3 ) processor.save_pretrained(A__ ) model.save_pretrained(A__ ) print('Successfully saved processor and model to' , A__ ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(A__ , organization='nielsr' ) model.push_to_hub(A__ , organization='nielsr' ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) lowercase : Optional[int] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
225
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ) -> List[Any]: '''simple docstring''' a__ : Any = parent a__ : int = batch_size a__ : Dict = seq_length a__ : Tuple = is_training a__ : Any = use_input_mask a__ : Optional[Any] = use_token_type_ids a__ : Dict = use_labels a__ : Optional[int] = vocab_size a__ : List[Any] = hidden_size a__ : int = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : str = intermediate_size a__ : Optional[int] = hidden_act a__ : Dict = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : Tuple = max_position_embeddings a__ : Dict = type_vocab_size a__ : Any = type_sequence_label_size a__ : List[str] = initializer_range a__ : List[str] = num_labels a__ : Optional[Any] = num_choices a__ : str = scope def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__ : Tuple = None if self.use_input_mask: a__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) a__ : Any = None if self.use_token_type_ids: a__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__ : str = None a__ : List[Any] = None a__ : List[str] = None if self.use_labels: a__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a__ : str = ids_tensor([self.batch_size] , self.num_choices) a__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self) -> Optional[int]: '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = NystromformerModel(config=lowercase) model.to(lowercase) model.eval() a__ : List[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase) a__ : int = model(lowercase , token_type_ids=lowercase) a__ : Optional[Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : List[str] = NystromformerForMaskedLM(config=lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Any = NystromformerForQuestionAnswering(config=lowercase) model.to(lowercase) model.eval() a__ : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : int = self.num_labels a__ : Optional[Any] = NystromformerForSequenceClassification(lowercase) model.to(lowercase) model.eval() a__ : Tuple = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : Tuple = self.num_labels a__ : int = NystromformerForTokenClassification(config=lowercase) model.to(lowercase) model.eval() a__ : str = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : Optional[int] = self.num_choices a__ : Tuple = NystromformerForMultipleChoice(config=lowercase) model.to(lowercase) model.eval() a__ : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a__ : Tuple = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a__ : str = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a__ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : str = config_and_inputs a__ : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __A : str = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __A : Optional[Any] = False __A : Tuple = False def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : int = NystromformerModelTester(self) a__ : Any = ConfigTester(self , config_class=lowercase , hidden_size=37) def __lowercase ( self) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self) -> int: '''simple docstring''' a__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ : Optional[Any] = type self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase) @slow def __lowercase ( self) -> Optional[int]: '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : int = NystromformerModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : List[str] = NystromformerModel.from_pretrained('uw-madison/nystromformer-512') a__ : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): a__ : List[Any] = model(lowercase)[0] a__ : str = torch.Size((1, 6, 768)) self.assertEqual(output.shape , lowercase) a__ : str = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4)) @slow def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Any = 'the [MASK] of Belgium is Brussels' a__ : List[str] = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512') a__ : Optional[int] = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512') a__ : List[Any] = tokenizer(lowercase , return_tensors='pt') with torch.no_grad(): a__ : Union[str, Any] = model(encoding.input_ids).logits a__ : str = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(lowercase) , 'capital')
225
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _snake_case : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): def run_func(__lowerCamelCase ): @wraps(__lowerCamelCase ) def run_in_eager_mode(*__lowerCamelCase , **__lowerCamelCase ): return func(*__lowerCamelCase , **__lowerCamelCase ) @wraps(__lowerCamelCase ) @tf.function(experimental_compile=__lowerCamelCase ) def run_in_graph_mode(*__lowerCamelCase , **__lowerCamelCase ): return func(*__lowerCamelCase , **__lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Dict = random.Random() __snake_case : List[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : TensorFlowBenchmarkArguments __UpperCAmelCase : PretrainedConfig __UpperCAmelCase : str = "TensorFlow" @property def __snake_case ( self : Optional[int] ) -> Tuple: return tf.__version__ def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ) -> float: # initialize GPU on separate process __snake_case : Optional[int] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __snake_case : List[Any] = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_inference ) def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ) -> float: __snake_case : Optional[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __snake_case : str = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_speed(_train ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) __snake_case : int = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __snake_case : str = self._prepare_inference_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_inference ) def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCamelCase ) __snake_case : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __snake_case : Optional[Any] = self._prepare_train_func(lowerCamelCase , lowerCamelCase , lowerCamelCase ) return self._measure_memory(_train ) def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ) -> Callable[[], None]: __snake_case : List[str] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __snake_case : Tuple = ( hasattr(lowerCamelCase , "architectures" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : Optional[Any] = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : str = __import__("transformers" , fromlist=[model_class] ) __snake_case : Dict = getattr(lowerCamelCase , lowerCamelCase ) __snake_case : str = model_cls(lowerCamelCase ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __snake_case : Dict = TF_MODEL_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently __snake_case : List[Any] = config.vocab_size if hasattr(lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __snake_case : str = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCamelCase , decoder_input_ids=lowerCamelCase , training=lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCamelCase , training=lowerCamelCase ) __snake_case : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : int ) -> Callable[[], None]: __snake_case : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __snake_case : int = ( hasattr(lowerCamelCase , "architectures" ) and isinstance(config.architectures , lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : List[Any] = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : int = __import__("transformers" , fromlist=[model_class] ) __snake_case : List[Any] = getattr(lowerCamelCase , lowerCamelCase ) __snake_case : List[str] = model_cls(lowerCamelCase ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __snake_case : List[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCamelCase ) # encoder-decoder has vocab size saved differently __snake_case : Optional[Any] = config.vocab_size if hasattr(lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __snake_case : int = random_input_ids(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __snake_case : Optional[Any] = model(lowerCamelCase , decoder_input_ids=lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] __snake_case : Tuple = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __snake_case : Union[str, Any] = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase )[0] __snake_case : Optional[int] = tf.gradients(lowerCamelCase , model.trainable_variables ) return gradients __snake_case : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __snake_case ( self : Optional[int] , lowerCamelCase : int ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __snake_case : Dict = timeit.repeat( lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def __snake_case ( self : Optional[int] , lowerCamelCase : Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) __snake_case : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) __snake_case : str = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() __snake_case : Tuple = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __snake_case : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(lowerCamelCase ) __snake_case : Dict = meminfo.used __snake_case : Union[str, Any] = Memory(lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) __snake_case : Any = None else: __snake_case : Optional[int] = measure_peak_memory_cpu(lowerCamelCase ) __snake_case : int = Memory(lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: __snake_case : Optional[int] = stop_memory_tracing(lowerCamelCase ) if memory is None: __snake_case : Dict = summary.total else: __snake_case : str = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
123
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _snake_case : Dict = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _snake_case : List[str] = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} _snake_case : List[str] = "zero2" _snake_case : Any = "zero3" _snake_case : Dict = [ZEROa, ZEROa] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __snake_case : Optional[Any] = parameterized.to_safe_name("_".join(str(__lowerCamelCase ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test _snake_case : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class a (_lowerCAmelCase ): """simple docstring""" @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict ) -> Union[str, Any]: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] ) -> int: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> Dict: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase , name_func=lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Any ) -> str: self.run_and_check( stage=lowerCamelCase , model=lowerCamelCase , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) def __snake_case ( self : str , lowerCamelCase : List[Any] ) -> Union[str, Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Any = models[model] __snake_case : Tuple = self.run_trainer( stage=lowerCamelCase , model_name=lowerCamelCase , eval_steps=lowerCamelCase , num_train_epochs=1 , distributed=lowerCamelCase , fpaa=lowerCamelCase , ) self.do_checks(lowerCamelCase ) return output_dir def __snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : int = 10 , lowerCamelCase : int = 1 , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ) -> Tuple: __snake_case : Optional[int] = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase ) __snake_case : Optional[int] = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __snake_case : Optional[int] = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() __snake_case : Dict = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] __snake_case : Any = self.get_launcher(lowerCamelCase ) __snake_case : Optional[Any] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase , env=self.get_env() ) return output_dir def __snake_case ( self : str , lowerCamelCase : str=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __snake_case : Dict = min(2 , get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
123
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case ) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "rag" A_ = True def __init__( self: Optional[int] , __A: Optional[int]=None , __A: Dict=True , __A: Any=None , __A: Dict=None , __A: Optional[int]=None , __A: Optional[Any]=None , __A: Optional[Any]=None , __A: Optional[Any]=" / " , __A: int=" // " , __A: List[Any]=5 , __A: Dict=3_00 , __A: int=7_68 , __A: Tuple=8 , __A: List[Any]="wiki_dpr" , __A: List[str]="train" , __A: Optional[Any]="compressed" , __A: Optional[int]=None , __A: Union[str, Any]=None , __A: Dict=False , __A: Tuple=False , __A: Optional[int]=0.0 , __A: Optional[int]=True , __A: int=False , __A: int=False , __A: Optional[Any]=False , __A: Optional[int]=True , __A: Optional[int]=None , **__A: Optional[Any] , ) -> Union[str, Any]: super().__init__( bos_token_id=__A , pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , is_encoder_decoder=__A , prefix=__A , vocab_size=__A , **__A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _A = kwargs.pop('''question_encoder''' ) _A = question_encoder_config.pop('''model_type''' ) _A = kwargs.pop('''generator''' ) _A = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _A = AutoConfig.for_model(__A , **__A ) _A = AutoConfig.for_model(__A , **__A ) _A = reduce_loss _A = label_smoothing _A = exclude_bos_score _A = do_marginalize _A = title_sep _A = doc_sep _A = n_docs _A = max_combined_length _A = dataset _A = dataset_split _A = index_name _A = retrieval_vector_size _A = retrieval_batch_size _A = passages_path _A = index_path _A = use_dummy_dataset _A = output_retrieved _A = do_deduplication _A = use_cache if self.forced_eos_token_id is None: _A = getattr(self.generator , '''forced_eos_token_id''' , __A ) @classmethod def __A ( cls: List[Any] , __A: PretrainedConfig , __A: PretrainedConfig , **__A: Optional[int] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__A ) def __A ( self: Optional[Any] ) -> Dict: _A = copy.deepcopy(self.__dict__ ) _A = self.question_encoder.to_dict() _A = self.generator.to_dict() _A = self.__class__.model_type return output
75
1
import csv import tweepy # Twitter API credentials _UpperCAmelCase : Tuple = """""" _UpperCAmelCase : Union[str, Any] = """""" _UpperCAmelCase : int = """""" _UpperCAmelCase : Optional[Any] = """""" def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: # authorize twitter, initialize tweepy lowerCamelCase__ : List[Any] = tweepy.OAuthHandler(_UpperCAmelCase , _UpperCAmelCase ) auth.set_access_token(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : List[Any] = tweepy.API(_UpperCAmelCase ) # initialize a list to hold all the tweepy Tweets lowerCamelCase__ : Dict = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCamelCase__ : Tuple = api.user_timeline(screen_name=_UpperCAmelCase , count=200 ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # save the id of the oldest tweet less one lowerCamelCase__ : int = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates lowerCamelCase__ : Optional[Any] = api.user_timeline( screen_name=_UpperCAmelCase , count=200 , max_id=_UpperCAmelCase ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # update the id of the oldest tweet less one lowerCamelCase__ : List[Any] = alltweets[-1].id - 1 print(F"""...{len(_UpperCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCamelCase__ : Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: lowerCamelCase__ : Dict = csv.writer(_UpperCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_UpperCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
50
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = SwinvaConfig() UpperCAmelCase_ = swinva_name.split('''_''' ) UpperCAmelCase_ = name_split[1] if "to" in name_split[3]: UpperCAmelCase_ = int(name_split[3][-3:] ) else: UpperCAmelCase_ = int(name_split[3] ) if "to" in name_split[2]: UpperCAmelCase_ = int(name_split[2][-2:] ) else: UpperCAmelCase_ = int(name_split[2][6:] ) if model_size == "tiny": UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 6, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif model_size == "small": UpperCAmelCase_ = 96 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (3, 6, 12, 24) elif model_size == "base": UpperCAmelCase_ = 128 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (4, 8, 16, 32) else: UpperCAmelCase_ = 192 UpperCAmelCase_ = (2, 2, 18, 2) UpperCAmelCase_ = (6, 12, 24, 48) if "to" in swinva_name: UpperCAmelCase_ = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): UpperCAmelCase_ = 2_1841 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''imagenet-22k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} else: UpperCAmelCase_ = 1000 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} UpperCAmelCase_ = img_size UpperCAmelCase_ = num_classes UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size return config def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if "patch_embed.proj" in name: UpperCAmelCase_ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase_ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCAmelCase_ = '''encoder.''' + name if "attn.proj" in name: UpperCAmelCase_ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase_ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase_ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase_ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase_ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase_ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: UpperCAmelCase_ = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: UpperCAmelCase_ = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: UpperCAmelCase_ = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: UpperCAmelCase_ = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": UpperCAmelCase_ = '''layernorm.weight''' if name == "norm.bias": UpperCAmelCase_ = '''layernorm.bias''' if "head" in name: UpperCAmelCase_ = name.replace('''head''' , '''classifier''' ) else: UpperCAmelCase_ = '''swinv2.''' + name return name def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_ = orig_state_dict.pop(__UpperCAmelCase ) if "mask" in key: continue elif "qkv" in key: UpperCAmelCase_ = key.split('''.''' ) UpperCAmelCase_ = int(key_split[1] ) UpperCAmelCase_ = int(key_split[3] ) UpperCAmelCase_ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase_ = val[:dim, :] UpperCAmelCase_ = val[dim : dim * 2, :] UpperCAmelCase_ = val[-dim:, :] else: UpperCAmelCase_ = val[:dim] UpperCAmelCase_ = val[ dim : dim * 2 ] UpperCAmelCase_ = val[-dim:] else: UpperCAmelCase_ = val return orig_state_dict def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = timm.create_model(__UpperCAmelCase , pretrained=__UpperCAmelCase ) timm_model.eval() UpperCAmelCase_ = get_swinva_config(__UpperCAmelCase ) UpperCAmelCase_ = SwinvaForImageClassification(__UpperCAmelCase ) model.eval() UpperCAmelCase_ = convert_state_dict(timm_model.state_dict() , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) UpperCAmelCase_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) UpperCAmelCase_ = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase_ = timm_model(inputs['''pixel_values'''] ) UpperCAmelCase_ = model(**__UpperCAmelCase ).logits assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) print(f"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) model.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase , __UpperCAmelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase_ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
344
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __A : str = get_tests_dir("fixtures/dummy-config.json") class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase_ : Optional[int] = 0 def __lowercase ( self : Union[str, Any] ) -> int: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def __lowercase ( self : List[Any] ) -> Optional[int]: lowerCAmelCase_ : str = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : int ) -> Union[str, Any]: lowerCAmelCase_ : List[Any] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : List[Any] ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase_ : Dict = os.path.join(lowerCamelCase , """fake-roberta""" ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) with open(os.path.join(lowerCamelCase , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) lowerCAmelCase_ : Any = AutoConfig.from_pretrained(lowerCamelCase ) self.assertEqual(type(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : Any ) -> Optional[int]: try: AutoConfig.register("""custom""" , lowerCamelCase ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase ): AutoConfig.register("""model""" , lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase ): AutoConfig.register("""bert""" , lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ : int = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __lowercase ( self : Any ) -> int: with self.assertRaisesRegex( lowerCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained("""bert-base""" ) def __lowercase ( self : Union[str, Any] ) -> str: with self.assertRaisesRegex( lowerCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase_ : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase , revision="""aaaaaa""" ) def __lowercase ( self : Union[str, Any] ) -> Tuple: with self.assertRaisesRegex( lowerCamelCase , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def __lowercase ( self : str ) -> Union[str, Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase ): lowerCAmelCase_ : Optional[int] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase ): lowerCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase ) lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCamelCase , trust_remote_code=lowerCamelCase ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def __lowercase ( self : Any ) -> List[str]: class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'new-model' try: AutoConfig.register("""new-model""" , lowerCamelCase ) # If remote code is not set, the default is to use local lowerCAmelCase_ : int = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. lowerCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub lowerCAmelCase_ : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCamelCase ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
120
'''simple docstring''' def UpperCamelCase_ ( A__ : list[list[float]] ): '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(A__ ): if len(A__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A__ ) ) return data_lists def UpperCamelCase_ ( A__ : list[list[float]] , A__ : list[int] ): '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for dlist, weight in zip(A__ , A__ ): lowerCAmelCase_ : Tuple = min(A__ ) lowerCAmelCase_ : str = max(A__ ) lowerCAmelCase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase_ : List[Any] = f'Invalid weight of {weight:f} provided' raise ValueError(A__ ) score_lists.append(A__ ) return score_lists def UpperCamelCase_ ( A__ : list[list[float]] ): '''simple docstring''' lowerCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A__ ): lowerCAmelCase_ : List[Any] = final_scores[j] + ele return final_scores def UpperCamelCase_ ( A__ : list[list[float]] , A__ : list[int] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_data(A__ ) lowerCAmelCase_ : Tuple = calculate_each_score(A__ , A__ ) lowerCAmelCase_ : Optional[int] = generate_final_scores(A__ ) # append scores to source data for i, ele in enumerate(A__ ): source_data[i].append(A__ ) return source_data
120
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = BlenderbotSmallTokenizer _snake_case : Tuple = False def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() _UpperCamelCase = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _UpperCamelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCamelCase = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _UpperCamelCase = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def snake_case__ ( self : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case__ ( self : int , lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = '''adapt act apte''' _UpperCamelCase = '''adapt act apte''' return input_text, output_text def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase = '''adapt act apte''' _UpperCamelCase = ['''adapt''', '''act''', '''ap@@''', '''te'''] _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _UpperCamelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] _UpperCamelCase = '''I am a small frog.''' _UpperCamelCase = tok([src_text] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )['''input_ids'''] _UpperCamelCase = tok.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _UpperCamelCase = '''I am a small frog .''' _UpperCamelCase = '''.''' _UpperCamelCase = tok(lowerCAmelCase__ )['''input_ids'''] _UpperCamelCase = tok(lowerCAmelCase__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
287
'''simple docstring''' import math def a__ ( lowercase : float, lowercase : float ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowercase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
287
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCamelCase__ : Union[str, Any] = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ['CLIPFeatureExtractor'] lowerCamelCase__ : int = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[Any] = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCamelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
225
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "speech_to_text" lowercase_ = ["past_key_values"] lowercase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , _lowerCAmelCase : List[Any]=10_000 , _lowerCAmelCase : List[Any]=12 , _lowerCAmelCase : Union[str, Any]=2_048 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : Optional[int]=2_048 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : int="relu" , _lowerCAmelCase : Union[str, Any]=256 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : str=0 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Union[str, Any]=6_000 , _lowerCAmelCase : List[str]=1_024 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Optional[Any]=(5, 5) , _lowerCAmelCase : str=1_024 , _lowerCAmelCase : str=80 , _lowerCAmelCase : Tuple=1 , **_lowerCAmelCase : Any , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ = max_source_positions SCREAMING_SNAKE_CASE_ = max_target_positions SCREAMING_SNAKE_CASE_ = num_conv_layers SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = conv_channels SCREAMING_SNAKE_CASE_ = input_feat_per_channel SCREAMING_SNAKE_CASE_ = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
225
1
def A ( lowercase = 50 ) -> int: '''simple docstring''' UpperCamelCase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
110
_UpperCAmelCase : str = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _UpperCAmelCase : Any = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _UpperCAmelCase : List[Any] = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _UpperCAmelCase : Tuple = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _UpperCAmelCase : Union[str, Any] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _UpperCAmelCase : List[str] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _UpperCAmelCase : Tuple = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _UpperCAmelCase : Dict = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
110
1