code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[Any] = """big_bird""" def __init__( self , lowerCAmelCase=5_03_58 , lowerCAmelCase=7_68 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=30_72 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=40_96 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=66 , lowerCAmelCase="block_sparse" , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=64 , lowerCAmelCase=3 , lowerCAmelCase=None , **lowerCAmelCase , ): """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , sep_token_id=lowerCAmelCase , **lowerCAmelCase , ) snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = type_vocab_size snake_case = layer_norm_eps snake_case = use_cache snake_case = rescale_embeddings snake_case = attention_type snake_case = use_bias snake_case = block_size snake_case = num_random_blocks snake_case = classifier_dropout class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" @property def snake_case ( self ): """simple docstring""" if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
150
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient SCREAMING_SNAKE_CASE__ = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" snake_case = test_results.split(' ' ) snake_case = 0 snake_case = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. snake_case = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_UpperCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" snake_case = {} snake_case = None snake_case = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , _UpperCamelCase ): snake_case = True snake_case = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): snake_case = line snake_case = False return failures class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = title snake_case = doc_test_results['time_spent'].split(',' )[0] snake_case = doc_test_results['success'] snake_case = doc_test_results['failures'] snake_case = self.n_success + self.n_failures # Failures and success of the modeling tests snake_case = doc_test_results @property def snake_case ( self ): """simple docstring""" snake_case = [self._time_spent] snake_case = 0 for time in time_spent: snake_case = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase ) == 1: snake_case = [0, 0, time_parts[0]] snake_case ,snake_case ,snake_case = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds snake_case ,snake_case ,snake_case = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F"""{int(lowerCAmelCase )}h{int(lowerCAmelCase )}m{int(lowerCAmelCase )}s""" @property def snake_case ( self ): """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case ( self ): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def snake_case ( self ): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def snake_case ( self ): """simple docstring""" snake_case = 40 snake_case = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase , lowerCAmelCase )} snake_case = '' for category, failures in category_failures.items(): if len(lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def snake_case ( self ): """simple docstring""" snake_case = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCAmelCase ) @staticmethod def snake_case ( ): """simple docstring""" snake_case = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowerCAmelCase , ) def snake_case ( self ): """simple docstring""" print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) snake_case = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.' snake_case = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowerCAmelCase , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = '' for key, value in failures.items(): snake_case = value[:2_00] + ' [Truncated]' if len(lowerCAmelCase ) > 2_50 else value failures_text += F"""*{key}*\n_{value}_\n\n""" snake_case = job_name snake_case = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: snake_case = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case ( self ): """simple docstring""" if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) snake_case = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) snake_case = sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): snake_case = F"""*Num failures* :{len(job_result["failed"] )} \n""" snake_case = job_result['failures'] snake_case = self.get_reply_blocks(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text=lowerCAmelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F"""Results for {job}""" , blocks=lowerCAmelCase , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = os.environ['GITHUB_RUN_ID'] snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" snake_case = requests.get(_UpperCamelCase ).json() snake_case = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(_UpperCamelCase ): snake_case = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _UpperCamelCase ) return {} def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" snake_case = {} if os.path.exists(_UpperCamelCase ): snake_case = os.listdir(_UpperCamelCase ) for file in files: try: with open(os.path.join(_UpperCamelCase , _UpperCamelCase ) , encoding='utf-8' ) as f: snake_case = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(_UpperCamelCase , _UpperCamelCase )}.""" ) from e return _artifact def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = name snake_case = [] def __str__( self ): """simple docstring""" return self.name def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.paths.append({'name': self.name, 'path': path} ) snake_case = {} snake_case = filter(os.path.isdir , os.listdir() ) for directory in directories: snake_case = directory if artifact_name not in _available_artifacts: snake_case = Artifact(_UpperCamelCase ) _available_artifacts[artifact_name].add_path(_UpperCamelCase ) return _available_artifacts if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_job_links() SCREAMING_SNAKE_CASE__ = retrieve_available_artifacts() SCREAMING_SNAKE_CASE__ = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' SCREAMING_SNAKE_CASE__ = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job SCREAMING_SNAKE_CASE__ = github_actions_job_links.get("run_doctests") SCREAMING_SNAKE_CASE__ = available_artifacts["doc_tests_gpu_test_reports"].paths[0] SCREAMING_SNAKE_CASE__ = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = handle_test_results(artifact["stats"]) SCREAMING_SNAKE_CASE__ = failed SCREAMING_SNAKE_CASE__ = success SCREAMING_SNAKE_CASE__ = time_spent[1:-1] + ", " SCREAMING_SNAKE_CASE__ = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): SCREAMING_SNAKE_CASE__ = line.replace("FAILED ", "") SCREAMING_SNAKE_CASE__ = line.split()[0].replace("\n", "") if "::" in line: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line.split("::") else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): SCREAMING_SNAKE_CASE__ = docs[file_regex] doc_test_results[category]["failed"].append(test) SCREAMING_SNAKE_CASE__ = all_failures[test] if test in all_failures else "N/A" SCREAMING_SNAKE_CASE__ = failure break SCREAMING_SNAKE_CASE__ = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
150
1
"""simple docstring""" def _a ( _snake_case = 1000 ): """simple docstring""" UpperCAmelCase = -1 UpperCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCAmelCase = n - a - b if c * c == (a * a + b * b): UpperCAmelCase = a * b * c if candidate >= product: UpperCAmelCase = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
234
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _UpperCamelCase = logging.get_logger("""transformers.models.speecht5""") _UpperCamelCase = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } _UpperCamelCase = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } _UpperCamelCase = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } _UpperCamelCase = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } _UpperCamelCase = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } _UpperCamelCase = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } _UpperCamelCase = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } _UpperCamelCase = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCamelCase = [] _UpperCamelCase = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] _UpperCamelCase = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" for attribute in key.split(""".""" ): UpperCAmelCase = getattr(_snake_case , _snake_case ) if weight_type is not None: UpperCAmelCase = getattr(_snake_case , _snake_case ).shape else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "running_mean": UpperCAmelCase = value elif weight_type == "running_var": UpperCAmelCase = value elif weight_type == "num_batches_tracked": UpperCAmelCase = value else: UpperCAmelCase = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _a ( _snake_case , _snake_case ): """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _a ( _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = [] if task == "s2t": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2T UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase = None UpperCAmelCase = MAPPING_T2S UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase = MAPPING_S2S UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_snake_case , _snake_case ): logger.info(F'''{name} was ignored''' ) continue UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase , UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(_snake_case )[0].split(""".""" )[-2] UpperCAmelCase = mapped_key.replace("""*""" , _snake_case ) if "weight_g" in name: UpperCAmelCase = """weight_g""" elif "weight_v" in name: UpperCAmelCase = """weight_v""" elif "bias" in name: UpperCAmelCase = """bias""" elif "weight" in name: UpperCAmelCase = """weight""" elif "running_mean" in name: UpperCAmelCase = """running_mean""" elif "running_var" in name: UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: UpperCAmelCase = """num_batches_tracked""" else: UpperCAmelCase = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase = name.split(""".""" ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_snake_case ) @torch.no_grad() def _a ( _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" if config_path is not None: UpperCAmelCase = SpeechTaConfig.from_pretrained(_snake_case ) else: UpperCAmelCase = SpeechTaConfig() if task == "s2t": UpperCAmelCase = config.max_text_positions UpperCAmelCase = SpeechTaForSpeechToText(_snake_case ) elif task == "t2s": UpperCAmelCase = 1876 UpperCAmelCase = 600 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForTextToSpeech(_snake_case ) elif task == "s2s": UpperCAmelCase = 1876 UpperCAmelCase = config.max_speech_positions UpperCAmelCase = SpeechTaForSpeechToSpeech(_snake_case ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: UpperCAmelCase = SpeechTaTokenizer(_snake_case , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken("""<mask>""" , lstrip=_snake_case , rstrip=_snake_case ) UpperCAmelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = SpeechTaProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) processor.save_pretrained(_snake_case ) UpperCAmelCase = torch.load(_snake_case ) recursively_load_weights(fairseq_checkpoint["""model"""] , _snake_case , _snake_case ) model.save_pretrained(_snake_case ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
234
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case_: def __init__( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int]=1_3 , UpperCamelCase_ : int=3_0 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : str=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Union[str, Any]=3_7 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=1_0 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Dict=None , UpperCamelCase_ : str=2 , ): lowerCAmelCase : Any = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Any = image_size lowerCAmelCase : int = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Tuple = is_training lowerCAmelCase : Tuple = use_labels lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : int = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : int = type_sequence_label_size lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : List[str] = scope lowerCAmelCase : int = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 lowerCAmelCase : Optional[Any] = num_patches + 2 def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Any = None if self.use_labels: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Dict ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : List[str] = TFDeiTModel(config=UpperCamelCase_ ) lowerCAmelCase : str = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : int ): lowerCAmelCase : Tuple = TFDeiTForMaskedImageModeling(config=UpperCamelCase_ ) lowerCAmelCase : Any = model(UpperCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : int = 1 lowerCAmelCase : Union[str, Any] = TFDeiTForMaskedImageModeling(UpperCamelCase_ ) lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Union[str, Any] = self.type_sequence_label_size lowerCAmelCase : int = TFDeiTForImageClassification(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Union[str, Any] = TFDeiTForImageClassification(UpperCamelCase_ ) lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = TFDeiTModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def lowerCamelCase__ ( self : List[str] ): pass def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Dense ) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ ) lowerCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Any=False ): lowerCAmelCase : Tuple = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCamelCase__ ( self : Dict ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFDeiTModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( ): lowerCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Dict = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) lowerCAmelCase : str = self.default_image_processor lowerCAmelCase : str = prepare_img() lowerCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # forward pass lowerCAmelCase : Union[str, Any] = model(**UpperCamelCase_ ) # verify the logits lowerCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
314
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase__ : Optional[int] =imread(r'''digital_image_processing/image_data/lena_small.jpg''') lowerCAmelCase__ : Any =cvtColor(img, COLOR_BGR2GRAY) def __lowercase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = cn.convert_to_negative(a__ ) # assert negative_img array for at least one True assert negative_img.any() def __lowercase ( ) -> Union[str, Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(a__ , 1_10 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def __lowercase ( ) -> Dict: __SCREAMING_SNAKE_CASE = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowercase ( ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __SCREAMING_SNAKE_CASE = canny.canny(a__ ) # assert canny array for at least one True assert canny_array.any() def __lowercase ( ) -> List[Any]: assert gg.gaussian_filter(a__ , 5 , sigma=0.9 ).all() def __lowercase ( ) -> Optional[Any]: # laplace diagonals __SCREAMING_SNAKE_CASE = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __SCREAMING_SNAKE_CASE = conv.img_convolve(a__ , a__ ).astype(a__ ) assert res.any() def __lowercase ( ) -> Optional[int]: assert med.median_filter(a__ , 3 ).any() def __lowercase ( ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sob.sobel_filter(a__ ) assert grad.any() and theta.any() def __lowercase ( ) -> Dict: __SCREAMING_SNAKE_CASE = sp.make_sepia(a__ , 20 ) assert sepia.all() def __lowercase ( a__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[str]: __SCREAMING_SNAKE_CASE = bs.Burkes(imread(a__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def __lowercase ( a__ = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[Any]: __SCREAMING_SNAKE_CASE = rs.NearestNeighbour(imread(a__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def __lowercase ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __SCREAMING_SNAKE_CASE = imread(a__ , 0 ) # Test for get_neighbors_pixel function() return not None __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = image[x_coordinate][y_coordinate] __SCREAMING_SNAKE_CASE = lbp.get_neighbors_pixel( a__ , a__ , a__ , a__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __SCREAMING_SNAKE_CASE = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __SCREAMING_SNAKE_CASE = lbp.local_binary_value(a__ , a__ , a__ ) assert lbp_image.any()
257
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase__ : List[Any] =None lowerCAmelCase__ : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : int ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ : int ={ '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off lowerCAmelCase__ : Dict =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : List[str] = NllbTokenizer UpperCamelCase__ : List[int] = [] UpperCamelCase__ : List[int] = [] def __init__( self , _A=None , _A=None , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=None , _A=None , _A=None , _A=False , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __SCREAMING_SNAKE_CASE = legacy_behaviour super().__init__( vocab_file=_A , tokenizer_file=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , legacy_behaviour=_A , **_A , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True __SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else 'eng_Latn' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang ) __SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _A ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self , _A , _A , _A , _A , **_A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) __SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def _A ( self , _A , _A = "eng_Latn" , _A = None , _A = "fra_Latn" , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = src_lang __SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _A ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _A ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] else: __SCREAMING_SNAKE_CASE = [self.cur_lang_code] __SCREAMING_SNAKE_CASE = [self.eos_token_id] __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens ) __SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
257
1
from typing import Any class a : """simple docstring""" def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: _A = data _A = None class a : """simple docstring""" def __init__( self ) -> int: _A = None def UpperCAmelCase ( self ) -> str: _A = self.head while temp is not None: print(temp.data , end=""" """ ) _A = temp.next print() def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Any: _A = Node(lowerCAmelCase_ ) _A = self.head _A = new_node def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: if node_data_a == node_data_a: return else: _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next _A = self.head while node_a is not None and node_a.data != node_data_a: _A = node_a.next if node_a is None or node_a is None: return _A , _A = node_a.data, node_a.data if __name__ == "__main__": _SCREAMING_SNAKE_CASE = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
369
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :torch.FloatTensor lowerCamelCase :torch.FloatTensor class a ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 20_00 , lowerCAmelCase_ = 0.15 , lowerCAmelCase_ = 0.01 , lowerCAmelCase_ = 1348.0 , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = 1 , ) -> Tuple: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None self.set_sigmas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Tuple: _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps _A = torch.linspace(1 , lowerCAmelCase_ , lowerCAmelCase_ , device=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Any: _A = sigma_min if sigma_min is not None else self.config.sigma_min _A = sigma_max if sigma_max is not None else self.config.sigma_max _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ ) _A = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _A = torch.exp(torch.linspace(math.log(lowerCAmelCase_ ) , math.log(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) _A = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _A = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _A = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _A = timesteps.to(self.discrete_sigmas.device ) _A = self.discrete_sigmas[timesteps].to(sample.device ) _A = self.get_adjacent_sigma(lowerCAmelCase_ , lowerCAmelCase_ ).to(sample.device ) _A = torch.zeros_like(lowerCAmelCase_ ) _A = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _A = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _A = diffusion.unsqueeze(-1 ) _A = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _A = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase_ , device=sample.device , dtype=sample.dtype ) _A = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _A = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase_ , prev_sample_mean=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _A = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _A = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _A = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _A = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _A = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _A = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _A = step_size.unsqueeze(-1 ) _A = sample + step_size * model_output _A = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A = timesteps.to(original_samples.device ) _A = self.discrete_sigmas.to(original_samples.device )[timesteps] _A = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase_ ) * sigmas[:, None, None, None] ) _A = noise + original_samples return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
81
0
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( _UpperCamelCase : int ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =str(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =[n] for i in range(1 , len(_UpperCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _lowerCAmelCase ( _UpperCamelCase : int ) -> bool: """simple docstring""" if len(str(_UpperCamelCase ) ) > 3: if not is_prime(int(str(_UpperCamelCase )[-3:] ) ) or not is_prime(int(str(_UpperCamelCase )[:3] ) ): return False return True def _lowerCAmelCase ( _UpperCamelCase : int = 11 ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =13 while len(_UpperCamelCase ) != count: if validate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =list_truncated_nums(_UpperCamelCase ) if all(is_prime(_UpperCamelCase ) for i in list_nums ): list_truncated_primes.append(_UpperCamelCase ) num += 2 return list_truncated_primes def _lowerCAmelCase ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(1_1)) = }''')
47
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/dummy-config.json""") class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""fake-roberta""" ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(type(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" ,lowerCamelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""model""" ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register("""bert""" ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[str, Any] = "new-model" try: AutoConfig.register("""new-model""" ,lowerCamelCase__ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
296
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _snake_case ( unittest.TestCase ): _lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a) return generator, ["Something to write", "Something else"] def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any: SCREAMING_SNAKE_CASE = generator('Something there') self.assertEqual(a , [{'generated_text': ANY(a)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there')) SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) SCREAMING_SNAKE_CASE = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) with self.assertRaises(a): generator(4) @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}]) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = generator( 'Something there' , num_return_sequences=a , num_beams=a , ) SCREAMING_SNAKE_CASE = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(a , a) SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a) self.assertEqual( a , [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = generator( ['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}])
327
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer a_ : List[Any] = logging.get_logger(__name__) a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a_ : str = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } a_ : List[Any] = {'allegro/herbert-base-cased': 5_14} a_ : Dict = {} class _snake_case ( A__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = HerbertTokenizer def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict: super().__init__( a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , ) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is None: return [1] + ([0] * len(a)) + [1] return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a) return tuple(a)
327
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False ): _UpperCAmelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): for i in range(config.num_hidden_layers ): _UpperCAmelCase : Optional[int] = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : int = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : Optional[int] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Any = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : List[str] = in_proj_bias[-config.hidden_size :] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Any = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = dct.pop(__lowerCAmelCase ) _UpperCAmelCase : int = val @torch.no_grad() def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : Dict = False if "vqa" in checkpoint_url: _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Optional[Any] = 3_129 _UpperCAmelCase : int = "huggingface/label-files" _UpperCAmelCase : int = "vqa2-id2label.json" _UpperCAmelCase : Dict = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Tuple = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[Any] = idalabel _UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = ViltForQuestionAnswering(__lowerCAmelCase ) elif "nlvr" in checkpoint_url: _UpperCAmelCase : Any = True _UpperCAmelCase : int = 2 _UpperCAmelCase : Union[str, Any] = {0: "False", 1: "True"} _UpperCAmelCase : Union[str, Any] = {v: k for k, v in config.idalabel.items()} _UpperCAmelCase : int = 3 _UpperCAmelCase : Optional[int] = ViltForImagesAndTextClassification(__lowerCAmelCase ) elif "irtr" in checkpoint_url: _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Union[str, Any] = ViltForImageAndTextRetrieval(__lowerCAmelCase ) elif "mlm_itm" in checkpoint_url: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Optional[Any] = ViltForMaskedLM(__lowerCAmelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _UpperCAmelCase : str = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" )["state_dict"] _UpperCAmelCase : Dict = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) if mlm_model or irtr_model: _UpperCAmelCase : Optional[int] = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowerCAmelCase ) # Define processor _UpperCAmelCase : Union[str, Any] = ViltImageProcessor(size=384 ) _UpperCAmelCase : Tuple = BertTokenizer.from_pretrained("bert-base-uncased" ) _UpperCAmelCase : Optional[int] = ViltProcessor(__lowerCAmelCase , __lowerCAmelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _UpperCAmelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__lowerCAmelCase ).raw ) _UpperCAmelCase : Optional[Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=__lowerCAmelCase ).raw ) _UpperCAmelCase : List[str] = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _UpperCAmelCase : Optional[Any] = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors="pt" ) _UpperCAmelCase : Optional[Any] = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors="pt" ) _UpperCAmelCase : List[Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _UpperCAmelCase : int = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=__lowerCAmelCase ).raw ) if mlm_model: _UpperCAmelCase : Optional[Any] = "a bunch of [MASK] laying on a [MASK]." else: _UpperCAmelCase : Optional[int] = "How many cats are there?" _UpperCAmelCase : Any = processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors="pt" ) _UpperCAmelCase : List[Any] = model(**__lowerCAmelCase ) # Verify outputs if mlm_model: _UpperCAmelCase : Tuple = torch.Size([1, 11, 30_522] ) _UpperCAmelCase : Optional[Any] = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _UpperCAmelCase : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _UpperCAmelCase : Union[str, Any] = torch.Size([1, 3_129] ) _UpperCAmelCase : Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowerCAmelCase , atol=1e-4 ) # verify vqa prediction equals "2" _UpperCAmelCase : Any = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _UpperCAmelCase : List[str] = torch.Size([1, 2] ) _UpperCAmelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
234
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
234
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _A ( _lowerCAmelCase ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : nn.Module , _lowerCAmelCase : int): '''simple docstring''' super().__init__() __lowercase =module __lowercase =nn.Sequential( nn.Linear(module.in_features , _lowerCAmelCase , bias=_lowerCAmelCase) , nn.Linear(_lowerCAmelCase , module.out_features , bias=_lowerCAmelCase) , ) __lowercase =(2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_lowerCAmelCase) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : str , *_lowerCAmelCase : Any , **_lowerCAmelCase : Optional[int]): '''simple docstring''' return self.module(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase) + self.adapter(_lowerCAmelCase) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 10 def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained(self.model_name) class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' super().setUp() # Models and tokenizer __lowercase =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto') __lowercase =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCAmelCase , device_map='auto') def __lowerCamelCase ( self : Tuple): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.model_abit.config self.assertTrue(hasattr(_lowerCAmelCase , 'quantization_config')) __lowercase =config.to_dict() __lowercase =config.to_diff_dict() __lowercase =config.to_json_string() def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowercase =self.model_fpaa.get_memory_footprint() __lowercase =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) __lowercase =get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def __lowerCamelCase ( self : Dict): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_lowerCAmelCase , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =self.tokenizer(self.input_text , return_tensors='pt') __lowercase =self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_lowerCAmelCase) , self.EXPECTED_OUTPUTS) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =BitsAndBytesConfig() __lowercase =True __lowercase =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_lowerCAmelCase , device_map='auto') __lowercase =self.tokenizer(self.input_text , return_tensors='pt') __lowercase =model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_lowerCAmelCase) , self.EXPECTED_OUTPUTS) def __lowerCamelCase ( self : Dict): '''simple docstring''' with self.assertRaises(_lowerCAmelCase), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_lowerCAmelCase) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =BitsAndBytesConfig() with self.assertRaises(_lowerCAmelCase): __lowercase =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_lowerCAmelCase , load_in_abit=_lowerCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' with self.assertRaises(_lowerCAmelCase): # Tries with `str` self.model_abit.to('cpu') with self.assertRaises(_lowerCAmelCase): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(_lowerCAmelCase): # Tries with a `device` self.model_abit.to(torch.device('cuda:0')) with self.assertRaises(_lowerCAmelCase): # Tries with a `device` self.model_abit.float() with self.assertRaises(_lowerCAmelCase): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase =self.tokenizer(self.input_text , return_tensors='pt') __lowercase =self.model_fpaa.to(torch.floataa) __lowercase =self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) # Check this does not throw an error __lowercase =self.model_fpaa.to('cpu') # Check this does not throw an error __lowercase =self.model_fpaa.half() # Check this does not throw an error __lowercase =self.model_fpaa.float() def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_lowerCAmelCase , device_map='auto') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __lowerCamelCase ( cls : Any): '''simple docstring''' __lowercase ='t5-small' __lowercase ='google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase =AutoTokenizer.from_pretrained(cls.model_name) __lowercase ='Translate in German: Hello, my dog is cute' def __lowerCamelCase ( self : List[Any]): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : str): '''simple docstring''' from transformers import TaForConditionalGeneration __lowercase =TaForConditionalGeneration._keep_in_fpaa_modules __lowercase =None # test with `t5-small` __lowercase =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_lowerCAmelCase , device_map='auto') __lowercase =self.tokenizer(self.input_text , return_tensors='pt').to(0) __lowercase =model.generate(**_lowerCAmelCase) # test with `flan-t5-small` __lowercase =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_lowerCAmelCase , device_map='auto') __lowercase =self.tokenizer(self.input_text , return_tensors='pt').to(0) __lowercase =model.generate(**_lowerCAmelCase) __lowercase =modules def __lowerCamelCase ( self : int): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_lowerCAmelCase , device_map='auto') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) __lowercase =self.tokenizer(self.input_text , return_tensors='pt').to(0) __lowercase =model.generate(**_lowerCAmelCase) # test with `flan-t5-small` __lowercase =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_lowerCAmelCase , device_map='auto') __lowercase =self.tokenizer(self.input_text , return_tensors='pt').to(0) __lowercase =model.generate(**_lowerCAmelCase) class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : Tuple): '''simple docstring''' super().setUp() # model_name __lowercase ='bigscience/bloom-560m' __lowercase ='t5-small' # Different types of model __lowercase =AutoModel.from_pretrained(self.model_name , load_in_abit=_lowerCAmelCase , device_map='auto') # Sequence classification model __lowercase =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_lowerCAmelCase , device_map='auto') # CausalLM model __lowercase =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCAmelCase , device_map='auto') # Seq2seq model __lowercase =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_lowerCAmelCase , device_map='auto') def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : List[Any]): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' super().setUp() def __lowerCamelCase ( self : Any): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase =pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase =self.pipe(self.input_text) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : List[str]): '''simple docstring''' super().setUp() def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_lowerCAmelCase , device_map='balanced') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model __lowercase =self.tokenizer(self.input_text , return_tensors='pt') # Second real batch __lowercase =model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=1_0) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_lowerCAmelCase) , self.EXPECTED_OUTPUTS) class _UpperCamelCase ( A ): '''simple docstring''' def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase ='facebook/opt-350m' super().setUp() def __lowerCamelCase ( self : int): '''simple docstring''' if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'): return # Step 1: freeze all parameters __lowercase =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_lowerCAmelCase) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): __lowercase =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase =param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_lowerCAmelCase)): __lowercase =LoRALayer(module.q_proj , rank=1_6) __lowercase =LoRALayer(module.k_proj , rank=1_6) __lowercase =LoRALayer(module.v_proj , rank=1_6) # Step 3: dummy batch __lowercase =self.tokenizer('Test batch ' , return_tensors='pt').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase =model.forward(**_lowerCAmelCase) out.logits.norm().backward() for module in model.modules(): if isinstance(_lowerCAmelCase , _lowerCAmelCase): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(_lowerCAmelCase , nn.Embedding): self.assertTrue(module.weight.grad is None) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
48
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """BridgeTowerImageProcessor""" lowerCAmelCase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' __lowercase =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel_values + pixel_mask __lowercase =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , **_lowerCAmelCase) encoding.update(_lowerCAmelCase) return encoding def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.tokenizer.model_input_names __lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
48
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for data in source_data: for i, el in enumerate(_A ): if len(_A ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_A ) ) return data_lists def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for dlist, weight in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = min(_A ) SCREAMING_SNAKE_CASE__ = max(_A ) SCREAMING_SNAKE_CASE__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: SCREAMING_SNAKE_CASE__ = F'''Invalid weight of {weight:f} provided''' raise ValueError(_A ) score_lists.append(_A ) return score_lists def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_A ): SCREAMING_SNAKE_CASE__ = final_scores[j] + ele return final_scores def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_data(_A ) SCREAMING_SNAKE_CASE__ = calculate_each_score(_A , _A ) SCREAMING_SNAKE_CASE__ = generate_final_scores(_A ) # append scores to source data for i, ele in enumerate(_A ): source_data[i].append(_A ) return source_data
314
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 ): _UpperCAmelCase : int = [], [] _UpperCAmelCase : Union[str, Any] = list(zip(__lowerCAmelCase , __lowerCAmelCase ) ) _UpperCAmelCase : List[Any] = sorted_examples[0] def is_too_big(__lowerCAmelCase ): return tok(__lowerCAmelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _UpperCAmelCase : Optional[Any] = new_src + " " + src _UpperCAmelCase : Optional[int] = new_tgt + " " + tgt if is_too_big(__lowerCAmelCase ) or is_too_big(__lowerCAmelCase ): # cant fit, finalize example finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) _UpperCAmelCase : str = src, tgt else: # can fit, keep adding _UpperCAmelCase : Any = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowerCAmelCase ) finished_tgt.append(__lowerCAmelCase ) return finished_src, finished_tgt def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[int] = Path(__lowerCAmelCase ) save_path.mkdir(exist_ok=__lowerCAmelCase ) for split in ["train"]: _UpperCAmelCase : Optional[Any] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" _UpperCAmelCase : List[Any] = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] _UpperCAmelCase : Optional[int] = [x.rstrip() for x in Path(__lowerCAmelCase ).open().readlines()] _UpperCAmelCase : Union[str, Any] = pack_examples(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) print(F"""packed {split} split from {len(__lowerCAmelCase )} examples -> {len(__lowerCAmelCase )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(__lowerCAmelCase ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(__lowerCAmelCase ) ) for split in ["val", "test"]: _UpperCAmelCase : Dict = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(__lowerCAmelCase , save_path / F"""{split}.source""" ) shutil.copyfile(__lowerCAmelCase , save_path / F"""{split}.target""" ) def __lowerCAmelCase (): _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__lowerCAmelCase , default=128 ) parser.add_argument("--data_dir" , type=__lowerCAmelCase ) parser.add_argument("--save_path" , type=__lowerCAmelCase ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : int = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowerCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->str: '''simple docstring''' if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) ->str: '''simple docstring''' if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase__ ) ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = [sequences] _UpperCAmelCase : int = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any]=ZeroShotClassificationArgumentHandler() , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = args_parser super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def lowerCAmelCase__ ( self : Any ) ->Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int=True , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : str=TruncationStrategy.ONLY_FIRST , **lowerCamelCase__ : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) _UpperCAmelCase : Optional[Any] = self.tokenizer.eos_token try: _UpperCAmelCase : List[str] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , ) except Exception as e: if "too short" in str(lowerCamelCase__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. _UpperCAmelCase : List[Any] = self.tokenizer( lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Tuple: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase__ ) is not None: _UpperCAmelCase : int = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) _UpperCAmelCase : Dict = {} if "candidate_labels" in kwargs: _UpperCAmelCase : List[Any] = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs["hypothesis_template"] _UpperCAmelCase : List[str] = {} if "multi_label" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , lowerCamelCase__ : Union[str, List[str]] , *lowerCamelCase__ : str , **lowerCamelCase__ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' if len(lowerCamelCase__ ) == 0: pass elif len(lowerCamelCase__ ) == 1 and "candidate_labels" not in kwargs: _UpperCAmelCase : int = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : str="This example is {}." ) ->Tuple: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._args_parser(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): _UpperCAmelCase : Optional[int] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase__ ) - 1, **model_input, } def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = inputs["candidate_label"] _UpperCAmelCase : Optional[int] = inputs["sequence"] _UpperCAmelCase : Dict = {k: inputs[k] for k in self.tokenizer.model_input_names} _UpperCAmelCase : List[Any] = self.model(**lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Tuple=False ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = [outputs["candidate_label"] for outputs in model_outputs] _UpperCAmelCase : Any = [outputs["sequence"] for outputs in model_outputs] _UpperCAmelCase : Optional[int] = np.concatenate([output["logits"].numpy() for output in model_outputs] ) _UpperCAmelCase : Optional[Any] = logits.shape[0] _UpperCAmelCase : Any = len(lowerCamelCase__ ) _UpperCAmelCase : str = N // n _UpperCAmelCase : str = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently _UpperCAmelCase : int = self.entailment_id _UpperCAmelCase : List[Any] = -1 if entailment_id == 0 else 0 _UpperCAmelCase : str = reshaped_outputs[..., [contradiction_id, entailment_id]] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : str = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels _UpperCAmelCase : int = reshaped_outputs[..., self.entailment_id] _UpperCAmelCase : Union[str, Any] = np.exp(lowerCamelCase__ ) / np.exp(lowerCamelCase__ ).sum(-1 , keepdims=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
322
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( """The RoBERTa Model transformer with early exiting (DeeRoBERTa). """ , _SCREAMING_SNAKE_CASE , ) class __snake_case ( _SCREAMING_SNAKE_CASE ): __lowerCamelCase : Optional[int] = RobertaConfig __lowerCamelCase : Union[str, Any] = """roberta""" def __init__( self , snake_case__ ) -> List[Any]: '''simple docstring''' super().__init__(__A ) UpperCAmelCase : Dict =RobertaEmbeddings(__A ) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. """ , _SCREAMING_SNAKE_CASE , ) class __snake_case ( _SCREAMING_SNAKE_CASE ): __lowerCamelCase : Optional[Any] = RobertaConfig __lowerCamelCase : str = """roberta""" def __init__( self , snake_case__ ) -> Dict: '''simple docstring''' super().__init__(__A ) UpperCAmelCase : List[str] =config.num_labels UpperCAmelCase : Union[str, Any] =config.num_hidden_layers UpperCAmelCase : Dict =DeeRobertaModel(__A ) UpperCAmelCase : Optional[int] =nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : Dict =nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__A ) def UpperCAmelCase__ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=-1 , snake_case__=False , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =self.num_layers try: UpperCAmelCase : Dict =self.roberta( __A , attention_mask=__A , token_type_ids=__A , position_ids=__A , head_mask=__A , inputs_embeds=__A , ) UpperCAmelCase : List[str] =outputs[1] UpperCAmelCase : List[Any] =self.dropout(__A ) UpperCAmelCase : Any =self.classifier(__A ) UpperCAmelCase : Optional[int] =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase : Tuple =e.message UpperCAmelCase : Tuple =e.exit_layer UpperCAmelCase : Dict =outputs[0] if not self.training: UpperCAmelCase : Dict =entropy(__A ) UpperCAmelCase : Dict =[] UpperCAmelCase : int =[] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase : str =MSELoss() UpperCAmelCase : List[str] =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : Optional[int] =CrossEntropyLoss() UpperCAmelCase : List[str] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase : List[str] =[] for highway_exit in outputs[-1]: UpperCAmelCase : int =highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase : str =MSELoss() UpperCAmelCase : List[str] =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : str =CrossEntropyLoss() UpperCAmelCase : int =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: UpperCAmelCase : int =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase : Any =(loss,) + outputs if not self.training: UpperCAmelCase : Tuple =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase : Any =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
348
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A ( unittest.TestCase ): def lowercase__ ( self : str ): lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : str = BlipImageProcessor() lowerCAmelCase : int = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCAmelCase : Dict = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowerCAmelCase : int = InstructBlipProcessor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).tokenizer def lowercase__ ( self : Optional[int] , **UpperCAmelCase_ : List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).image_processor def lowercase__ ( self : List[str] , **UpperCAmelCase_ : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ).qformer_tokenizer def lowercase__ ( self : Optional[Any] ): shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Dict = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) lowerCAmelCase : List[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : int = self.get_tokenizer() lowerCAmelCase : Tuple = self.get_qformer_tokenizer() lowerCAmelCase : Optional[int] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : int = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = image_processor(UpperCAmelCase_ , return_tensors='np' ) lowerCAmelCase : Dict = processor(images=UpperCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Dict = self.get_tokenizer() lowerCAmelCase : Any = self.get_qformer_tokenizer() lowerCAmelCase : int = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : List[str] = 'lower newer' lowerCAmelCase : int = processor(text=UpperCAmelCase_ ) lowerCAmelCase : Dict = tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = qformer_tokenizer(UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def lowercase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = self.get_qformer_tokenizer() lowerCAmelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Dict = 'lower newer' lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowercase__ ( self : Any ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : List[Any] = self.get_qformer_tokenizer() lowerCAmelCase : List[Any] = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : str = processor.batch_decode(UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = self.get_image_processor() lowerCAmelCase : List[Any] = self.get_tokenizer() lowerCAmelCase : Any = self.get_qformer_tokenizer() lowerCAmelCase : Tuple = InstructBlipProcessor( tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ , qformer_tokenizer=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = 'lower newer' lowerCAmelCase : Dict = self.prepare_image_inputs() lowerCAmelCase : Optional[int] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Union[str, Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __magic_name__: int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCAmelCase_ ( self : List[str] , _A : Any , _A : List[str] , _A : Dict ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = TextaTextGenerationPipeline(model=_A , tokenizer=_A ) return generator, ["Something to write", "Something else"] def UpperCAmelCase_ ( self : Any , _A : Any , _A : Dict ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = generator('Something there' ) self.assertEqual(_A , [{'generated_text': ANY(_A )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) snake_case_ : int = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], ] , ) snake_case_ : Optional[Any] = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], ] , ) with self.assertRaises(_A ): generator(4 ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : str = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility snake_case_ : List[Any] = generator('Something there' , do_sample=_A ) self.assertEqual(_A , [{'generated_text': ''}] ) snake_case_ : Optional[Any] = 3 snake_case_ : Any = generator( 'Something there' , num_return_sequences=_A , num_beams=_A , ) snake_case_ : int = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(_A , _A ) snake_case_ : Dict = generator('This is a test' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) snake_case_ : Union[str, Any] = generator.model.config.eos_token_id snake_case_ : Union[str, Any] = '<pad>' snake_case_ : str = generator( ['This is a test', 'This is a second test'] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self : int ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility snake_case_ : Optional[Any] = generator('Something there' , do_sample=_A ) self.assertEqual(_A , [{'generated_text': ''}] )
327
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : Optional[Any] ,A : Tuple=13 ,A : Any=32 ,A : Tuple=2 ,A : List[Any]=3 ,A : Any=16 ,A : Dict=[1, 2, 1] ,A : str=[2, 2, 4] ,A : List[str]=2 ,A : Union[str, Any]=2.0 ,A : Union[str, Any]=True ,A : int=0.0 ,A : List[Any]=0.0 ,A : int=0.1 ,A : Any="gelu" ,A : Optional[int]=False ,A : Optional[Any]=True ,A : Tuple=0.02 ,A : Tuple=1E-5 ,A : int=True ,A : Any=None ,A : str=True ,A : Tuple=10 ,A : str=8 ,A : List[str]=["stage1", "stage2", "stage3"] ,A : List[str]=[1, 2, 3] ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = embed_dim __A = depths __A = num_heads __A = window_size __A = mlp_ratio __A = qkv_bias __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = drop_path_rate __A = hidden_act __A = use_absolute_embeddings __A = patch_norm __A = layer_norm_eps __A = initializer_range __A = is_training __A = scope __A = use_labels __A = type_sequence_label_size __A = encoder_stride __A = out_features __A = out_indices def UpperCamelCase_ ( self : Any ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[Any] ): return MaskFormerSwinConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : Tuple ): __A = MaskFormerSwinModel(config=_A ) model.to(_A ) model.eval() __A = model(_A ) __A = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __A = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[str] ,A : int ,A : Any ): __A = MaskFormerSwinBackbone(config=_A ) model.to(_A ) model.eval() __A = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,[16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_A ): __A = ['stem'] __A = MaskFormerSwinBackbone(config=_A ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A = config_and_inputs __A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) snake_case_ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Union[str, Any] ): __A = MaskFormerSwinModelTester(self ) __A = ConfigTester(self ,config_class=_A ,embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with" " `nn.DataParallel`" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : List[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Dict ): return def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) @unittest.skip("Swin does not use inputs_embeds" ) def UpperCamelCase_ ( self : str ): pass @unittest.skip("Swin does not support feedforward chunking" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A ,nn.Linear ) ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_A ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn\'t support output_attentions" ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ,A : int ,A : Tuple ,A : List[str] ): __A = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(_A ,_A ) ) __A = outputs.hidden_states __A = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_A ) ,_A ) # Swin has a different seq_length __A = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs_for_common() __A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __A = True self.check_hidden_states_output(_A ,_A ,_A ,_A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True self.check_hidden_states_output(_A ,_A ,_A ,_A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs_for_common() __A = 3 __A = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __A = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __A = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __A = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __A = True self.check_hidden_states_output(_A ,_A ,_A ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True self.check_hidden_states_output(_A ,_A ,_A ,(padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn\'t have pretrained checkpoints" ) def UpperCamelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCamelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(A : Tuple ): __A = 0 return t def check_equivalence(A : Tuple ,A : int ,A : Tuple ,A : List[str]={} ): with torch.no_grad(): __A = model(**_A ,return_dict=_A ,**_A ) __A = model(**_A ,return_dict=_A ,**_A ).to_tuple() def recursive_check(A : Optional[Any] ,A : str ): if isinstance(_A ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A ,_A ): recursive_check(_A ,_A ) elif isinstance(_A ,_A ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() ,dict_object.values() ): recursive_check(_A ,_A ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_A ) ,set_nan_tensor_to_zero(_A ) ,atol=1E-5 ) ,msg=( "Tuple and dict output are not equal. Difference:" f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}. Dict has''' f''' `nan`: {torch.isnan(_A ).any()} and `inf`: {torch.isinf(_A )}.''' ) ,) recursive_check(_A ,_A ) for model_class in self.all_model_classes: __A = model_class(_A ) model.to(_A ) model.eval() __A = self._prepare_for_class(_A ,_A ) __A = self._prepare_for_class(_A ,_A ) check_equivalence(_A ,_A ,_A ) __A = self._prepare_for_class(_A ,_A ,return_labels=_A ) __A = self._prepare_for_class(_A ,_A ,return_labels=_A ) check_equivalence(_A ,_A ,_A ) __A = self._prepare_for_class(_A ,_A ) __A = self._prepare_for_class(_A ,_A ) check_equivalence(_A ,_A ,_A ,{"output_hidden_states": True} ) __A = self._prepare_for_class(_A ,_A ,return_labels=_A ) __A = self._prepare_for_class(_A ,_A ,return_labels=_A ) check_equivalence(_A ,_A ,_A ,{"output_hidden_states": True} ) @require_torch class UpperCAmelCase ( unittest.TestCase , snake_case_ ): '''simple docstring''' snake_case_ = (MaskFormerSwinBackbone,) if is_torch_available() else () snake_case_ = MaskFormerSwinConfig def UpperCamelCase_ ( self : int ): __A = MaskFormerSwinModelTester(self ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs_for_common() __A = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __A = backbone_class(_A ) backbone.to(_A ) backbone.eval() __A = backbone(**_A ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps ,_A ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps ,backbone.channels ): self.assertTrue(feature_map.shape[:2] ,(batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __A = backbone(**_A ,output_hidden_states=_A ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) ,len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] ,backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __A = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) ,(batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __A = backbone(**_A ,output_attentions=_A ) self.assertIsNotNone(outputs.attentions )
350
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :Tuple = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :int = 'adapter_config.json' SCREAMING_SNAKE_CASE :List[str] = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Any = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :int = 'tf_model.h5' SCREAMING_SNAKE_CASE :Tuple = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :List[Any] = 'model.ckpt' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors' SCREAMING_SNAKE_CASE :Any = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :int = 'config.json' SCREAMING_SNAKE_CASE :List[str] = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[int] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[Any] = 'generation_config.json' SCREAMING_SNAKE_CASE :Dict = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[Any] = '▁' SCREAMING_SNAKE_CASE :Any = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :Tuple = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :Tuple = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
124
0
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowerCamelCase : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase : Optional[int] = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. lowerCamelCase : List[str] = min(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
48
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase : str = (boundary[1] - boundary[0]) / steps lowerCamelCase : List[str] = boundary[0] lowerCamelCase : Union[str, Any] = boundary[1] lowerCamelCase : int = make_points(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : int = a + h while x < (b - h): yield x lowerCamelCase : List[str] = x + h def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # enter your function here lowerCamelCase : str = (x - 0) * (x - 0) return y def A ( ) -> int: lowerCamelCase : int = 0.0 # Lower bound of integration lowerCamelCase : int = 1.0 # Upper bound of integration lowerCamelCase : Dict = 10.0 # define number of steps or resolution lowerCamelCase : int = [a, b] # define boundary of integration lowerCamelCase : str = method_a(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
48
1
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _SCREAMING_SNAKE_CASE : str = True except ImportError: _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( UpperCAmelCase : Namespace ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __a ( snake_case__ ): """simple docstring""" @staticmethod def _lowerCAmelCase ( lowercase_ : ArgumentParser ): UpperCamelCase__ : Optional[Any] =parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=lowercase_ , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=lowercase_ , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=lowercase_ ) def __init__( self : List[Any] , lowercase_ : bool , lowercase_ : str , lowercase_ : Any=None , *lowercase_ : str ): UpperCamelCase__ : List[Any] =testing UpperCamelCase__ : Tuple =testing_file UpperCamelCase__ : Tuple =path def _lowerCAmelCase ( self : Any ): warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase__ : Tuple =[directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(lowercase_ ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase__ : Any =( Path(lowercase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase__ : Optional[Any] =path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(lowercase_ ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase__ : int =json.load(lowercase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowercase_ , extra_context=lowercase_ , ) UpperCamelCase__ : str =[directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase__ : int =json.load(lowercase_ ) UpperCamelCase__ : int =configuration['''lowercase_modelname'''] UpperCamelCase__ : int =configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f'''{directory}/configuration.json''' ) UpperCamelCase__ : Dict ='''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ : Dict ='''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ : Dict ='''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase__ : Union[str, Any] =f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(lowercase_ , exist_ok=lowercase_ ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=lowercase_ ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , '''w''' ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(lowercase_ : Optional[int] ): with open(lowercase_ , '''r''' ) as f: UpperCamelCase__ : Union[str, Any] =f.readlines() with open(lowercase_ , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowercase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase_ : str , lowercase_ : str , lowercase_ : List[str] ): # Create temp file UpperCamelCase__ : Any =mkstemp() UpperCamelCase__ : Dict =False with fdopen(lowercase_ , '''w''' ) as new_file: with open(lowercase_ ) as old_file: for line in old_file: new_file.write(lowercase_ ) if line_to_copy_below in line: UpperCamelCase__ : Union[str, Any] =True for line_to_copy in lines_to_copy: new_file.write(lowercase_ ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(lowercase_ , lowercase_ ) # Remove original file remove(lowercase_ ) # Move new file move(lowercase_ , lowercase_ ) def skip_units(lowercase_ : Optional[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase_ : Any ): with open(lowercase_ ) as datafile: UpperCamelCase__ : Optional[Any] =[] UpperCamelCase__ : int =False UpperCamelCase__ : Union[str, Any] =False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase__ : Optional[int] =line.split('''"''' )[1] UpperCamelCase__ : Union[str, Any] =skip_units(lowercase_ ) elif "# Below: " in line and "##" not in line: UpperCamelCase__ : List[Any] =line.split('''"''' )[1] UpperCamelCase__ : Optional[Any] =skip_units(lowercase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase__ : Dict =[] elif "# Replace with" in line and "##" not in line: UpperCamelCase__ : int =[] elif "##" not in line: lines_to_copy.append(lowercase_ ) remove(lowercase_ ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(lowercase_ )
355
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort _SCREAMING_SNAKE_CASE : List[Any] = """1""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """0""" _SCREAMING_SNAKE_CASE : List[str] = """1""" _SCREAMING_SNAKE_CASE : Optional[int] = ort.SessionOptions() _SCREAMING_SNAKE_CASE : Tuple = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") _SCREAMING_SNAKE_CASE : int = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] _SCREAMING_SNAKE_CASE : Dict = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) _SCREAMING_SNAKE_CASE : Optional[int] = ort.RunOptions() _SCREAMING_SNAKE_CASE : Tuple = 1_2_8 _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) _SCREAMING_SNAKE_CASE : str = np.ones((batch, sequence), dtype=np.intaa) _SCREAMING_SNAKE_CASE : int = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") _SCREAMING_SNAKE_CASE : Any = time.time() _SCREAMING_SNAKE_CASE : str = 2_0_0_0 _SCREAMING_SNAKE_CASE : List[Any] = {} for iter in range(max_iters): _SCREAMING_SNAKE_CASE : Any = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1_0_0_0 / max_iters))
157
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def A__ ( __lowerCamelCase ): if isinstance(__lowerCamelCase, collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase__ : """simple docstring""" def _UpperCamelCase ( self , _A , _A ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> str: pass def _UpperCamelCase ( self ) -> Tuple: pass def _UpperCamelCase ( self , _A , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = np.abs((a - b) ).max() self.assertLessEqual(_A , _A , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> Dict: SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) SCREAMING_SNAKE_CASE_ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = model(input_ids=_A , pixel_values=_A , attention_mask=_A ) SCREAMING_SNAKE_CASE_ = after_output[0] SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-3 ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A=None , **_A ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_vision_text_model(_A , _A ) SCREAMING_SNAKE_CASE_ = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_A ) SCREAMING_SNAKE_CASE_ = model( input_ids=_A , pixel_values=_A , attention_mask=_A , output_attentions=_A ) SCREAMING_SNAKE_CASE_ = output.vision_model_output.attentions self.assertEqual(len(_A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE_ = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE_ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE_ = output.text_model_output.attentions self.assertEqual(len(_A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _UpperCamelCase ( self , _A , _A , _A ) -> Dict: pt_model.to(_A ) pt_model.eval() # prepare inputs SCREAMING_SNAKE_CASE_ = inputs_dict SCREAMING_SNAKE_CASE_ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model(**_A ).to_tuple() SCREAMING_SNAKE_CASE_ = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_A , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A , from_pt=_A ) SCREAMING_SNAKE_CASE_ = fx_model_loaded(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_A , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel.from_pretrained(_A , from_flax=_A ) pt_model_loaded.to(_A ) pt_model_loaded.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = pt_model_loaded(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_A , pt_output_loaded.numpy() , 4E-2 ) def _UpperCamelCase ( self , _A , _A , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _A ) SCREAMING_SNAKE_CASE_ = fx_state self.check_pt_flax_equivalence(_A , _A , _A ) def _UpperCamelCase ( self , _A , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderConfig.from_vision_text_configs(_A , _A ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel(_A ) SCREAMING_SNAKE_CASE_ = load_flax_weights_in_pytorch_model(_A , fx_model.params ) self.check_pt_flax_equivalence(_A , _A , _A ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_save_load(**_A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_A ) @is_pt_flax_cross_test def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('''vision_config''' ) SCREAMING_SNAKE_CASE_ = config_inputs_dict.pop('''text_config''' ) SCREAMING_SNAKE_CASE_ = config_inputs_dict self.check_equivalence_pt_to_flax(_A , _A , _A ) self.check_equivalence_flax_to_pt(_A , _A , _A ) @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE_ = model_a(**_A ) SCREAMING_SNAKE_CASE_ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = model_a(**_A ) SCREAMING_SNAKE_CASE_ = after_outputs[0] SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) @require_flax class UpperCamelCase__ ( snake_case__ , unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_A , text_from_pt=_A , ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _UpperCamelCase ( self , _A , _A ) -> Tuple: SCREAMING_SNAKE_CASE_ = FlaxViTModel(_A ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(_A ) return vision_model, text_model def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = vision_config_and_inputs SCREAMING_SNAKE_CASE_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase__ ( snake_case__ , unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=_A , text_from_pt=_A , ) SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) SCREAMING_SNAKE_CASE_ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _UpperCamelCase ( self , _A , _A ) -> Any: SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModel(_A ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(_A ) return vision_model, text_model def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = FlaxCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self ) SCREAMING_SNAKE_CASE_ = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = vision_config_and_inputs SCREAMING_SNAKE_CASE_ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) SCREAMING_SNAKE_CASE_ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE_ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=_A , padding=_A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE_ = model(**_A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE_ = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _A , atol=1E-3 ) )
299
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class A_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Tuple , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ) -> Union[str, Any]: super().__init__() __lowerCAmelCase: Optional[Any] = initial_learning_rate __lowerCAmelCase: str = warmup_steps __lowerCAmelCase: Optional[int] = power __lowerCAmelCase: str = decay_schedule_fn __lowerCAmelCase: Tuple = name def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[int]: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCAmelCase: List[str] = tf.cast(UpperCAmelCase , tf.floataa ) __lowerCAmelCase: Tuple = tf.cast(self.warmup_steps , tf.floataa ) __lowerCAmelCase: List[str] = global_step_float / warmup_steps_float __lowerCAmelCase: List[str] = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def UpperCAmelCase ( self : Tuple ) -> int: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def _a ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 0.9 , SCREAMING_SNAKE_CASE : float = 0.9_9_9 , SCREAMING_SNAKE_CASE : float = 1E-8 , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=SCREAMING_SNAKE_CASE , ) if num_warmup_steps: __lowerCAmelCase: Optional[int] = WarmUp( initial_learning_rate=SCREAMING_SNAKE_CASE , decay_schedule_fn=SCREAMING_SNAKE_CASE , warmup_steps=SCREAMING_SNAKE_CASE , ) if weight_decay_rate > 0.0: __lowerCAmelCase: List[Any] = AdamWeightDecay( learning_rate=SCREAMING_SNAKE_CASE , weight_decay_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase: Dict = tf.keras.optimizers.Adam( learning_rate=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , beta_a=SCREAMING_SNAKE_CASE , epsilon=SCREAMING_SNAKE_CASE , clipnorm=SCREAMING_SNAKE_CASE , global_clipnorm=SCREAMING_SNAKE_CASE , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class A_ ( snake_case__ ): def __init__( self : Tuple , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1E-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : str , ) -> int: super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) __lowerCAmelCase: List[Any] = weight_decay_rate __lowerCAmelCase: List[str] = include_in_weight_decay __lowerCAmelCase: Optional[Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls : str , UpperCAmelCase : Tuple ) -> Optional[int]: __lowerCAmelCase: Union[str, Any] = {'WarmUp': WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: __lowerCAmelCase: Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase: Tuple = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCAmelCase: Dict = apply_state or {} __lowerCAmelCase: Union[str, Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCAmelCase: str = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) __lowerCAmelCase: Tuple = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase: Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: Optional[int] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase: Any = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) __lowerCAmelCase: str = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase: List[str] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class A_ ( snake_case__ ): def __init__( self : int ) -> List[Any]: __lowerCAmelCase: Tuple = [] __lowerCAmelCase: int = None @property def UpperCAmelCase ( self : Dict ) -> List[Any]: if self._accum_steps is None: __lowerCAmelCase: List[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[Any] , UpperCAmelCase : Any ) -> Any: if not self._gradients: __lowerCAmelCase: Any = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}''' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self : int ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
322
0
"""simple docstring""" import functools def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(UpperCAmelCase_ ) >= 366: raise ValueError("All days elements should be less than 366" ) _lowerCamelCase : Optional[Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(_lowerCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : List[Any] = get_logger(__name__) class A_ : lowerCAmelCase__ = 'dummy_data' lowerCAmelCase__ = 'datasets' lowerCAmelCase__ = False def __init__( self: List[str] ,__lowerCAmelCase: str ,__lowerCAmelCase: str ,__lowerCAmelCase: Union[Version, str] ,__lowerCAmelCase: Optional[str] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[List[Callable]] = None ,): '''simple docstring''' _lowerCamelCase : str = 0 _lowerCamelCase : List[str] = dataset_name _lowerCamelCase : Optional[int] = cache_dir _lowerCamelCase : Optional[int] = use_local_dummy_data _lowerCamelCase : int = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : Tuple = str(__lowerCAmelCase ) # to be downloaded _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = None @property def _lowercase ( self: str ): '''simple docstring''' if self._dummy_file is None: _lowerCamelCase : List[str] = self.download_dummy_data() return self._dummy_file @property def _lowercase ( self: str ): '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" ,self.config.name ,self.version_name ) # structure is dummy / version_name return os.path.join("dummy" ,self.version_name ) @property def _lowercase ( self: Optional[Any] ): '''simple docstring''' return os.path.join(self.dummy_data_folder ,"dummy_data.zip" ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : Optional[int] = cached_path( __lowerCAmelCase ,cache_dir=self.cache_dir ,extract_compressed_file=__lowerCAmelCase ,force_extract=__lowerCAmelCase ) return os.path.join(__lowerCAmelCase ,self.dummy_file_name ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return os.path.join(self.datasets_scripts_dir ,self.dataset_name ,self.dummy_zip_file ) @property def _lowercase ( self: List[str] ): '''simple docstring''' if self._bucket_url is None: _lowerCamelCase : List[str] = hf_github_url(self.dataset_name ,self.dummy_zip_file.replace(os.sep ,"/" ) ) return self._bucket_url @property def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep ,"/" ).split("/" )[:-1] ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ,*__lowerCAmelCase: List[Any] ): '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Tuple = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): return self.create_dummy_data_dict(__lowerCAmelCase ,__lowerCAmelCase ) elif isinstance(__lowerCAmelCase ,(list, tuple) ): return self.create_dummy_data_list(__lowerCAmelCase ,__lowerCAmelCase ) else: return self.create_dummy_data_single(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: Optional[int] ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: int ): '''simple docstring''' return self.download_and_extract(__lowerCAmelCase ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[int] ,*__lowerCAmelCase: List[str] ,**__lowerCAmelCase: Optional[int] ): '''simple docstring''' return path def _lowercase ( self: Optional[int] ): '''simple docstring''' return {} def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): for single_url in single_urls: download_callback(__lowerCAmelCase ) else: _lowerCamelCase : Union[str, Any] = single_urls download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Dict = [os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) for x in single_urls] else: _lowerCamelCase : Union[str, Any] = single_urls _lowerCamelCase : List[str] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(Path(__lowerCAmelCase ).name ) ) _lowerCamelCase : List[Any] = value # make sure that values are unique if all(isinstance(__lowerCAmelCase ,__lowerCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowercase ( self: int ,__lowerCAmelCase: List[str] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" ,__lowerCAmelCase ) ) for url in data_url ) _lowerCamelCase : Optional[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : Tuple = [data_url[0]] * len(__lowerCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : List[Any] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(__lowerCAmelCase ) return dummy_data_list def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: List[Any] ): '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__lowerCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Optional[int] = os.path.join(__lowerCAmelCase ,urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(__lowerCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass def _lowercase ( self: Optional[int] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' def _iter_archive_members(__lowerCAmelCase: Any ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : Tuple = Path(self.dummy_file ).parent _lowerCamelCase : str = path.relative_to(__lowerCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = Path(__lowerCAmelCase ) _lowerCamelCase : int = _iter_archive_members(__lowerCAmelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(__lowerCAmelCase ).as_posix(), file_path.open("rb" ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [paths] for path in paths: if os.path.isfile(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(__lowerCAmelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(__lowerCAmelCase ,__lowerCAmelCase )
340
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCamelCase__ ( lowercase_ , lowercase_): SCREAMING_SNAKE_CASE__ = '''nat''' SCREAMING_SNAKE_CASE__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=6_4 , UpperCAmelCase=[3, 4, 6, 5] , UpperCAmelCase=[2, 4, 8, 1_6] , UpperCAmelCase=7 , UpperCAmelCase=3.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> List[Any]: super().__init__(**lowerCamelCase_ ) _lowercase =patch_size _lowercase =num_channels _lowercase =embed_dim _lowercase =depths _lowercase =len(lowerCamelCase_ ) _lowercase =num_heads _lowercase =kernel_size _lowercase =mlp_ratio _lowercase =qkv_bias _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =drop_path_rate _lowercase =hidden_act _lowercase =layer_norm_eps _lowercase =initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowercase =int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) _lowercase =layer_scale_init_value _lowercase =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] _lowercase =get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
5
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Optional[int] = Text( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
323
0
from collections.abc import Sequence def UpperCamelCase (lowercase_: Sequence[float] , lowercase_: float ) -> float: return sum(c * (x**i) for i, c in enumerate(lowercase_ ) ) def UpperCamelCase (lowercase_: Sequence[float] , lowercase_: float ) -> float: A__ : Tuple = 0.0 for coeff in reversed(lowercase_ ): A__ : Optional[Any] = result * x + coeff return result if __name__ == "__main__": A_ : Tuple = (0.0, 0.0, 5.0, 9.3, 7.0) A_ : Any = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
141
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 16 A_ : Optional[int] = 32 def UpperCamelCase (lowercase_: Accelerator , lowercase_: int = 16 , lowercase_: str = "bert-base-cased" ) -> List[str]: A__ : int = AutoTokenizer.from_pretrained(lowercase_ ) A__ : Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_: Tuple ): # max_length=None => use the model max length (it's actually the default) A__ : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A__ : int = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_: Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. A__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader def UpperCamelCase (lowercase_: Dict , lowercase_: Dict , lowercase_: Tuple , lowercase_: Optional[int] ) -> int: model.eval() A__ : str = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Any = model(**lowercase_ ) A__ : List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A__ , A__ : str = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase_ ) - 1: A__ : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : Dict = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ : int = metric.compute() return eval_metric["accuracy"] def UpperCamelCase (lowercase_: List[Any] , lowercase_: str ) -> List[str]: # Initialize accelerator A__ : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : List[Any] = config["""lr"""] A__ : Union[str, Any] = int(config["""num_epochs"""] ) A__ : List[Any] = int(config["""seed"""] ) A__ : Optional[Any] = int(config["""batch_size"""] ) A__ : Tuple = args.model_name_or_path set_seed(lowercase_ ) A__ , A__ : Optional[Any] = get_dataloaders(lowercase_ , lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Tuple = AutoModelForSequenceClassification.from_pretrained(lowercase_ , return_dict=lowercase_ ) # Instantiate optimizer A__ : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A__ : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: A__ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: A__ : Optional[int] = 1 A__ : Optional[int] = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=0 , num_training_steps=lowercase_ , ) else: A__ : int = DummyScheduler(lowercase_ , total_num_steps=lowercase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : str = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over A__ : Dict = 0 # We also need to keep track of the stating epoch so files are named properly A__ : Any = 0 A__ : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) A__ : Optional[Any] = num_epochs if args.partial_train_epoch is not None: A__ : Tuple = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A__ : Dict = args.resume_from_checkpoint.split("""epoch_""" )[1] A__ : int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A__ : Any = int(lowercase_ ) + 1 A__ : Any = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) accelerator.print("""resumed checkpoint performance:""" , lowercase_ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: A__ : int = json.load(lowercase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A__ : Optional[Any] = {} for epoch in range(lowercase_ , lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): A__ : int = model(**lowercase_ ) A__ : int = outputs.loss A__ : int = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A__ : Any = f"""epoch_{epoch}""" A__ : int = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) A__ : List[Any] = evaluation_loop(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ : Tuple = accuracy A__ : Optional[Any] = lr_scheduler.get_lr()[0] A__ : Tuple = optimizer.param_groups[0]["""lr"""] A__ : int = epoch A__ : int = overall_step accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) def UpperCamelCase () -> int: A__ : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase_ , ) parser.add_argument( """--output_dir""" , type=lowercase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowercase_ , default=lowercase_ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowercase_ , default=lowercase_ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase_ , default=2 , help="""Number of train epochs.""" , ) A__ : List[str] = parser.parse_args() A__ : List[str] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
141
1
'''simple docstring''' def UpperCamelCase_( snake_case : list[list[int | float]] ): '''simple docstring''' snake_case_ = len(snake_case ) snake_case_ = len(matrix[0] ) snake_case_ = min(snake_case , snake_case ) for row in range(snake_case ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case ): snake_case_ = matrix[col][row] / matrix[row][row] for i in range(snake_case , snake_case ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows snake_case_ = True for i in range(row + 1 , snake_case ): if matrix[i][row] != 0: snake_case_ , snake_case_ = matrix[i], matrix[row] snake_case_ = False break if reduce: rank -= 1 for i in range(snake_case ): snake_case_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
85
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""image_processor""", """tokenizer"""] _snake_case = """FlavaImageProcessor""" _snake_case = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , A=None , A=None , **A ) -> Tuple: snake_case : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) snake_case : Dict = self.image_processor def __call__( self , A = None , A = None , A = True , A = False , A = False , A = None , A = 0 , A = None , A = None , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> Tuple: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: snake_case : str = self.tokenizer( text=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) if images is not None: snake_case : Tuple = self.image_processor( A , return_image_mask=A , return_codebook_pixels=A , return_tensors=A , **A , ) if text is not None and images is not None: encoding.update(A ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) , tensor_type=A ) def UpperCAmelCase ( self , *A , **A ) -> List[str]: return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> int: return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase ( self ) -> str: snake_case : Any = self.tokenizer.model_input_names snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> Dict: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
124
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a ={ """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
113
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[Any]): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : List[Any] = mock.Mock() __lowerCamelCase : Tuple = 5_0_0 __lowerCamelCase : Dict = {} __lowerCamelCase : List[Any] = HTTPError __lowerCamelCase : int = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=SCREAMING_SNAKE_CASE__) as mock_head: __lowerCamelCase : Tuple = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase ( self : Any): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : int = mock.Mock() __lowerCamelCase : List[str] = 5_0_0 __lowerCamelCase : Tuple = {} __lowerCamelCase : List[str] = HTTPError __lowerCamelCase : int = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Dict = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=SCREAMING_SNAKE_CASE__) as mock_head: __lowerCamelCase : Optional[int] = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : str): # This test is for deprecated behavior and can be removed in v5 try: __lowerCamelCase : Tuple = tempfile.mktemp() with open(SCREAMING_SNAKE_CASE__ ,'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = AlbertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__) finally: os.remove(SCREAMING_SNAKE_CASE__) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_0_0_0) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def lowerCAmelCase ( self : Optional[Any]): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase : str = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class A_ ( unittest.TestCase ): _UpperCAmelCase : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCAmelCase ( cls : Optional[int]): __lowerCamelCase : Optional[int] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE__) @classmethod def lowerCAmelCase ( cls : str): try: delete_repo(token=cls._token ,repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer') except HTTPError: pass def lowerCAmelCase ( self : List[str]): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Union[str, Any] = BertTokenizer(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : List[str] = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ,repo_id='test-tokenizer' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : str = BertTokenizer.from_pretrained(F"{USER}/test-tokenizer") self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) def lowerCAmelCase ( self : Any): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Optional[Any] = BertTokenizer(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token) __lowerCamelCase : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( SCREAMING_SNAKE_CASE__ ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=SCREAMING_SNAKE_CASE__ ,use_auth_token=self._token) __lowerCamelCase : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab) @require_tokenizers def lowerCAmelCase ( self : int): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Any = CustomTokenizer(SCREAMING_SNAKE_CASE__) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ ,'vocab.txt') with open(SCREAMING_SNAKE_CASE__ ,'w' ,encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __lowerCamelCase : Dict = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token) __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(F"{USER}/test-dynamic-tokenizer" ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast') __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained( F"{USER}/test-dynamic-tokenizer" ,use_fast=SCREAMING_SNAKE_CASE__ ,trust_remote_code=SCREAMING_SNAKE_CASE__) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer') class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = Trie() trie.add('Hello 友達') self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : str = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') ,['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') ,['[CLS]', ' This is a ', 'extra_id_100']) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Dict = Trie() trie.add('A') self.assertEqual(trie.split('ABC') ,['A', 'BC']) self.assertEqual(trie.split('BCA') ,['BC', 'A']) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Any = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') ,['This is something ', '[SPECIAL_TOKEN]']) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') ,['This is something ', '[SPECIAL_TOKEN]']) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Any = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') ,['AB', 'C']) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Dict = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') ,['ABC', 'D']) def lowerCAmelCase ( self : List[Any]): # Even if the offsets are wrong, we necessarily output correct string # parts. __lowerCamelCase : List[Any] = Trie() __lowerCamelCase : Any = trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3]) self.assertEqual(SCREAMING_SNAKE_CASE__ ,['AB', 'C'])
113
1
"""simple docstring""" def a__ ( snake_case__ ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(snake_case__ , snake_case__ ): raise TypeError("""Input value must be a 'int' type""" ) return bin(snake_case__ ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
291
import math import random from typing import Any from .hill_climbing import SearchProblem def _UpperCamelCase ( snake_case__, snake_case__ = True, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = math.inf, snake_case__ = -math.inf, snake_case__ = False, snake_case__ = 100, snake_case__ = 0.01, snake_case__ = 1, ) -> Any: __UpperCAmelCase : Dict = False __UpperCAmelCase : Dict = search_prob __UpperCAmelCase : Tuple = start_temperate __UpperCAmelCase : Dict = [] __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : int = None while not search_end: __UpperCAmelCase : str = current_state.score() if best_state is None or current_score > best_state.score(): __UpperCAmelCase : Union[str, Any] = current_state scores.append(snake_case__ ) iterations += 1 __UpperCAmelCase : List[str] = None __UpperCAmelCase : int = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __UpperCAmelCase : str = random.randint(0, len(snake_case__ ) - 1 ) # picking a random neighbor __UpperCAmelCase : Tuple = neighbors.pop(snake_case__ ) __UpperCAmelCase : List[str] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __UpperCAmelCase : Dict = change * -1 # in case we are finding minimum if change > 0: # improves the solution __UpperCAmelCase : int = picked_neighbor else: __UpperCAmelCase : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __UpperCAmelCase : Union[str, Any] = picked_neighbor __UpperCAmelCase : int = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __UpperCAmelCase : Optional[Any] = True else: __UpperCAmelCase : int = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case__ ), snake_case__ ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) # starting the problem with initial coordinates (12, 47) _snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'and 50 > y > - 5 found via hill climbing: {local_min.score()}' ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple: return (3 * x**2) - (6 * y) _snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' ) _snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _snake_case = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'{local_min.score()}' )
157
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__(self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=3 , lowerCamelCase=224 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , ): '''simple docstring''' _lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std def A__ (self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCamelCase ( __lowercase , unittest.TestCase ): __UpperCamelCase = ViTImageProcessor if is_vision_available() else None def A__ (self ): '''simple docstring''' _lowerCAmelCase = EfficientFormerImageProcessorTester(self ) @property def A__ (self ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCAmelCase , """size""" ) ) def A__ (self ): '''simple docstring''' pass def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
354
"""simple docstring""" def __UpperCAmelCase ( snake_case_ : int = 600851475143 ) -> int: """simple docstring""" try: _lowerCAmelCase = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 while i * i <= n: while n % i == 0: _lowerCAmelCase = i n //= i i += 1 if n > 1: _lowerCAmelCase = n return int(snake_case_ ) if __name__ == "__main__": print(F'{solution() = }')
317
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase="None" , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Optional[int]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = relative_attention _snake_case = position_biased_input _snake_case = pos_att_type _snake_case = scope def lowercase (self ) -> Optional[Any]: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _snake_case = TFDebertaVaModel(config=UpperCAmelCase ) _snake_case = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case = [input_ids, input_mask] _snake_case = model(UpperCAmelCase ) _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _snake_case = TFDebertaVaForMaskedLM(config=UpperCAmelCase ) _snake_case = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: _snake_case = self.num_labels _snake_case = TFDebertaVaForSequenceClassification(config=UpperCAmelCase ) _snake_case = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: _snake_case = self.num_labels _snake_case = TFDebertaVaForTokenClassification(config=UpperCAmelCase ) _snake_case = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _snake_case = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase ) _snake_case = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _snake_case = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase (self ) -> Optional[Any]: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> str: _snake_case = TFDebertaVaModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase (self ) -> Optional[int]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowercase (self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def lowercase (self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def lowercase (self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def lowercase (self ) -> List[Any]: _snake_case = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowercase (self ) -> Any: pass @slow def lowercase (self ) -> Union[str, Any]: _snake_case = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _snake_case = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _snake_case = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] _snake_case = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1e-4 )
341
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowercase (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int: _snake_case = len(references[0] ) if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) _snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )] _snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
341
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''BlipImageProcessor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : List[str], lowerCAmelCase__ : Optional[int], lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase : Any = False super().__init__(lowerCAmelCase__, lowerCAmelCase__ ) _UpperCamelCase : Tuple = self.image_processor def __call__( self : str, lowerCAmelCase__ : ImageInput = None, lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False, lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : int = 0, lowerCAmelCase__ : Optional[int] = None, lowerCAmelCase__ : Optional[bool] = None, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = False, lowerCAmelCase__ : bool = True, lowerCAmelCase__ : Optional[Union[str, TensorType]] = None, **lowerCAmelCase__ : Optional[Any], ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase : int = self.tokenizer _UpperCamelCase : List[str] = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) return text_encoding # add pixel_values _UpperCamelCase : List[str] = self.image_processor(lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCamelCase : Any = self.tokenizer( text=lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, padding=lowerCAmelCase__, truncation=lowerCAmelCase__, max_length=lowerCAmelCase__, stride=lowerCAmelCase__, pad_to_multiple_of=lowerCAmelCase__, return_attention_mask=lowerCAmelCase__, return_overflowing_tokens=lowerCAmelCase__, return_special_tokens_mask=lowerCAmelCase__, return_offsets_mapping=lowerCAmelCase__, return_token_type_ids=lowerCAmelCase__, return_length=lowerCAmelCase__, verbose=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__, ) else: _UpperCamelCase : List[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def snake_case ( self : List[Any], *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__, **lowerCAmelCase__ ) def snake_case ( self : List[Any], *lowerCAmelCase__ : Dict, **lowerCAmelCase__ : Any ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__, **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase : List[str] = self.tokenizer.model_input_names _UpperCamelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
128
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase_ =logging.getLogger(__name__) class _a ( _lowerCAmelCase ): UpperCamelCase = '''masked_bert''' def __init__( self : Optional[Any], lowerCAmelCase__ : Dict=3_0_5_2_2, lowerCAmelCase__ : int=7_6_8, lowerCAmelCase__ : Tuple=1_2, lowerCAmelCase__ : Optional[Any]=1_2, lowerCAmelCase__ : Tuple=3_0_7_2, lowerCAmelCase__ : Optional[int]="gelu", lowerCAmelCase__ : Tuple=0.1, lowerCAmelCase__ : Tuple=0.1, lowerCAmelCase__ : Any=5_1_2, lowerCAmelCase__ : Optional[int]=2, lowerCAmelCase__ : Optional[int]=0.02, lowerCAmelCase__ : Union[str, Any]=1e-1_2, lowerCAmelCase__ : Union[str, Any]=0, lowerCAmelCase__ : Dict="topK", lowerCAmelCase__ : Union[str, Any]="constant", lowerCAmelCase__ : Union[str, Any]=0.0, **lowerCAmelCase__ : Any, ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__, **lowerCAmelCase__ ) _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Any = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : int = pruning_method _UpperCamelCase : Union[str, Any] = mask_init _UpperCamelCase : Any = mask_scale
128
1
'''simple docstring''' from timeit import timeit def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) __lowercase =0 while number: number &= number - 1 result += 1 return result def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' if number < 0: raise ValueError('the value of input must not be negative' ) __lowercase =0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCamelCase ( ): '''simple docstring''' def do_benchmark(lowercase__ : int ) -> None: __lowercase ='import __main__ as z' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(lowercase__ ) = }''' ) __lowercase =timeit('z.get_set_bits_count_using_modulo_operator(25)', setup=lowercase__ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(lowercase__ ) = }''' ) __lowercase =timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)', setup=lowercase__, ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
141
'''simple docstring''' from collections.abc import Sequence def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : Sequence[float], lowercase__ : float ): '''simple docstring''' __lowercase =0.0 for coeff in reversed(lowercase__ ): __lowercase =result * x + coeff return result if __name__ == "__main__": UpperCAmelCase = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
141
1
import numpy # List of input, output pairs _lowerCamelCase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _lowerCamelCase = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _lowerCamelCase = [2, 4, 1, 5] _lowerCamelCase = len(train_data) _lowerCamelCase = 0.009 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Dict="train" ) -> int: return calculate_hypothesis_value(__UpperCamelCase , __UpperCamelCase ) - output( __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: UpperCAmelCase_ = 0 for i in range(len(__UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> Dict: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Any ) -> Any: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any=m ) -> Optional[Any]: UpperCAmelCase_ = 0 for i in range(__UpperCamelCase ): if index == -1: summation_value += _error(__UpperCamelCase ) else: summation_value += _error(__UpperCamelCase ) * train_data[i][0][index] return summation_value def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> str: UpperCAmelCase_ = summation_of_cost_derivative(__UpperCamelCase , __UpperCamelCase ) / m return cost_derivative_value def SCREAMING_SNAKE_CASE ( ) -> Any: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase_ = 0.000_002 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 while True: j += 1 UpperCAmelCase_ = [0, 0, 0, 0] for i in range(0 , len(__UpperCamelCase ) ): UpperCAmelCase_ = get_cost_derivative(i - 1 ) UpperCAmelCase_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCamelCase , __UpperCamelCase , atol=__UpperCamelCase , rtol=__UpperCamelCase , ): break UpperCAmelCase_ = temp_parameter_vector print(('''Number of iterations:''', j) ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: for i in range(len(__UpperCamelCase ) ): print(('''Actual output value:''', output(__UpperCamelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(__UpperCamelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
366
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: UpperCAmelCase_ = [] if isinstance(__UpperCamelCase , __UpperCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Tuple[int, ...] ) -> Tuple[int, ...]: UpperCAmelCase_ = [] for d in reversed(__UpperCamelCase ): idx.append(flat_idx % d ) UpperCAmelCase_ = flat_idx // d return tuple(reversed(__UpperCamelCase ) ) @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Sequence[int] , __UpperCamelCase : Sequence[int] , __UpperCamelCase : Sequence[int] , __UpperCamelCase : Optional[Sequence[bool]] = None , __UpperCamelCase : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__UpperCamelCase : List[bool] ) -> None: UpperCAmelCase_ = True for i in range(len(__UpperCamelCase ) ): UpperCAmelCase_ = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ = l[reversed_idx] if start_edges is None: UpperCAmelCase_ = [s == 0 for s in start] reduce_edge_list(__UpperCamelCase ) if end_edges is None: UpperCAmelCase_ = [e == (d - 1) for e, d in zip(__UpperCamelCase , __UpperCamelCase )] reduce_edge_list(__UpperCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCamelCase ) == 0: return [()] elif len(__UpperCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCamelCase , __UpperCamelCase ): if s == e: path_list.append(slice(__UpperCamelCase , s + 1 ) ) else: break UpperCAmelCase_ = tuple(__UpperCamelCase ) UpperCAmelCase_ = len(__UpperCamelCase ) # start == end, and we're done if divergence_idx == len(__UpperCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = start[divergence_idx] return tuple( path + (slice(__UpperCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = end[divergence_idx] return tuple( path + (slice(__UpperCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : torch.Tensor , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> torch.Tensor: UpperCAmelCase_ = t.shape[:no_batch_dims] UpperCAmelCase_ = list(_flat_idx_to_idx(__UpperCamelCase , __UpperCamelCase ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ = list(_flat_idx_to_idx(flat_end - 1 , __UpperCamelCase ) ) # Get an ordered list of slices to perform UpperCAmelCase_ = _get_minimal_slice_set( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) UpperCAmelCase_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Callable , __UpperCamelCase : Dict[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : bool = False , __UpperCamelCase : Any = None , __UpperCamelCase : bool = False , ) -> Any: if not (len(__UpperCamelCase ) > 0): raise ValueError('''Must provide at least one input''' ) UpperCAmelCase_ = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCamelCase )] UpperCAmelCase_ = tuple([max(__UpperCamelCase ) for s in zip(*__UpperCamelCase )] ) def _prep_inputs(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ = tensor_tree_map(_prep_inputs , __UpperCamelCase ) UpperCAmelCase_ = None if _out is not None: UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase_ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ = 0 UpperCAmelCase_ = prepped_outputs for _ in range(__UpperCamelCase ): # Chunk the input if not low_mem: UpperCAmelCase_ = _select_chunk else: UpperCAmelCase_ = partial( _chunk_slice , flat_start=__UpperCamelCase , flat_end=min(__UpperCamelCase , i + chunk_size ) , no_batch_dims=len(__UpperCamelCase ) , ) UpperCAmelCase_ = tensor_tree_map(__UpperCamelCase , __UpperCamelCase ) # Run the layer on the chunk UpperCAmelCase_ = layer(**__UpperCamelCase ) # Allocate space for the output if out is None: UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCamelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCamelCase , __UpperCamelCase ): def assign(__UpperCamelCase : dict , __UpperCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): assign(__UpperCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ = da[k] assign(__UpperCamelCase , __UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): for xa, xa in zip(__UpperCamelCase , __UpperCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ = xa elif isinstance(__UpperCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCamelCase ) return out class a : '''simple docstring''' def __init__( self : List[Any] , __snake_case : int = 5_12 , ): UpperCAmelCase_ = max_chunk_size UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCamelCase_ ( self : List[Any] , __snake_case : Callable , __snake_case : tuple , __snake_case : int ): logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__snake_case : int ) -> bool: try: with torch.no_grad(): fn(*__snake_case , chunk_size=__snake_case ) return True except RuntimeError: return False UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__snake_case ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ = i UpperCAmelCase_ = (i + len(__snake_case ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCamelCase_ ( self : int , __snake_case : Iterable , __snake_case : Iterable ): UpperCAmelCase_ = True for aa, aa in zip(__snake_case , __snake_case ): assert type(__snake_case ) == type(__snake_case ) if isinstance(__snake_case , (list, tuple) ): consistent &= self._compare_arg_caches(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __snake_case : x[0] )] UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __snake_case : x[0] )] consistent &= self._compare_arg_caches(__snake_case , __snake_case ) else: consistent &= aa == aa return consistent def lowerCamelCase_ ( self : str , __snake_case : Callable , __snake_case : tuple , __snake_case : int , ): UpperCAmelCase_ = True UpperCAmelCase_ = tree_map(lambda __snake_case : a.shape if isinstance(__snake_case , torch.Tensor ) else a , __snake_case , __snake_case ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__snake_case ) UpperCAmelCase_ = self._compare_arg_caches(self.cached_arg_data , __snake_case ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ = False if not consistent: UpperCAmelCase_ = self._determine_favorable_chunk_size( __snake_case , __snake_case , __snake_case , ) UpperCAmelCase_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
177
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowercase (SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE_ , id=SCREAMING_SNAKE_CASE_ )
113
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> int: SCREAMING_SNAKE_CASE = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize def __A ( self ) -> Optional[Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = ImageGPTImageProcessingTester(self ) @property def __A ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'clusters' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , 'image_processor.json' ) image_processor_first.to_json_file(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_json_file(lowerCAmelCase__ ).to_dict() SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_pretrained(lowerCAmelCase__ ).to_dict() SCREAMING_SNAKE_CASE = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCAmelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCAmelCase__ ) @unittest.skip('ImageGPT requires clusters at initialization' ) def __A ( self ) -> Optional[Any]: pass def lowercase () -> Union[str, Any]: SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) SCREAMING_SNAKE_CASE = Image.open(dataset[4]['file'] ) SCREAMING_SNAKE_CASE = Image.open(dataset[5]['file'] ) SCREAMING_SNAKE_CASE = [imagea, imagea] return images @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) SCREAMING_SNAKE_CASE = prepare_images() # test non-batched SCREAMING_SNAKE_CASE = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) SCREAMING_SNAKE_CASE = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCAmelCase__ ) # test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) SCREAMING_SNAKE_CASE = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCAmelCase__ )
113
1
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home A: int = HUGGINGFACE_HUB_CACHE A: Optional[Any] = "config.json" A: Union[str, Any] = "diffusion_pytorch_model.bin" A: List[str] = "diffusion_flax_model.msgpack" A: List[Any] = "model.onnx" A: int = "diffusion_pytorch_model.safetensors" A: List[str] = "weights.pb" A: List[str] = "https://huggingface.co" A: str = default_cache_path A: List[str] = "diffusers_modules" A: Any = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) A: Dict = ["fp16", "non-ema"] A: Any = ".self_attn"
368
"""simple docstring""" import baseaa def _snake_case ( UpperCamelCase : str ): return baseaa.aaaencode(string.encode("""utf-8""" ) ) def _snake_case ( UpperCamelCase : bytes ): return baseaa.aaadecode(UpperCamelCase ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
76
0
from __future__ import annotations import requests __lowerCamelCase : int = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : int = 1 , lowerCAmelCase : str = "new" , lowerCAmelCase : list | None = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase ) - valid_terms ) ): SCREAMING_SNAKE_CASE_ : List[Any] = f'Invalid search term: {invalid_search_terms}' raise ValueError(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 4_2_9: raise requests.HTTPError SCREAMING_SNAKE_CASE_ : Union[str, Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase )} SCREAMING_SNAKE_CASE_ : List[str] = {} for id_ in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
18
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
0
import argparse import os import re __A = '''src/transformers''' # Pattern that looks at the indentation in a line. __A = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __A = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __A = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A = re.compile(r'''\[([^\]]+)\]''') def __a ( lowerCAmelCase_ : Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_= _re_indent.search(lowerCAmelCase_ ) return "" if search is None else search.groups()[0] def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Optional[Any]="" ,lowerCAmelCase_ : Union[str, Any]=None ,lowerCAmelCase_ : Optional[int]=None ) -> Dict: '''simple docstring''' UpperCAmelCase_= 0 UpperCAmelCase_= code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase_ ): index += 1 UpperCAmelCase_= ["""\n""".join(lines[:index] )] else: UpperCAmelCase_= [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase_= [lines[index]] index += 1 while index < len(lowerCAmelCase_ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(lowerCAmelCase_ ) ) if index < len(lowerCAmelCase_ ) - 1: UpperCAmelCase_= [lines[index + 1]] index += 1 else: UpperCAmelCase_= [] else: blocks.append("""\n""".join(lowerCAmelCase_ ) ) UpperCAmelCase_= [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase_ ) > 0: blocks.append("""\n""".join(lowerCAmelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __a ( lowerCAmelCase_ : Optional[int] ) -> Dict: '''simple docstring''' def _inner(lowerCAmelCase_ : Optional[Any] ): return key(lowerCAmelCase_ ).lower().replace("""_""" ,"""""" ) return _inner def __a ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Any=None ) -> str: '''simple docstring''' def noop(lowerCAmelCase_ : Union[str, Any] ): return x if key is None: UpperCAmelCase_= noop # Constants are all uppercase, they go first. UpperCAmelCase_= [obj for obj in objects if key(lowerCAmelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase_= [obj for obj in objects if key(lowerCAmelCase_ )[0].isupper() and not key(lowerCAmelCase_ ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase_= [obj for obj in objects if not key(lowerCAmelCase_ )[0].isupper()] UpperCAmelCase_= ignore_underscore(lowerCAmelCase_ ) return sorted(lowerCAmelCase_ ,key=lowerCAmelCase_ ) + sorted(lowerCAmelCase_ ,key=lowerCAmelCase_ ) + sorted(lowerCAmelCase_ ,key=lowerCAmelCase_ ) def __a ( lowerCAmelCase_ : Tuple ) -> str: '''simple docstring''' def _replace(lowerCAmelCase_ : Any ): UpperCAmelCase_= match.groups()[0] if "," not in imports: return F"""[{imports}]""" UpperCAmelCase_= [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase_= keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCAmelCase_ )] ) + "]" UpperCAmelCase_= import_statement.split("""\n""" ) if len(lowerCAmelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase_= 2 if lines[1].strip() == """[""" else 1 UpperCAmelCase_= [(i, _re_strip_line.search(lowerCAmelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase_= sort_objects(lowerCAmelCase_ ,key=lambda lowerCAmelCase_ : x[1] ) UpperCAmelCase_= [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase_= _re_bracket_content.sub(_replace ,lines[1] ) else: UpperCAmelCase_= [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase_= keys[:-1] UpperCAmelCase_= get_indent(lines[1] ) + """, """.join([F"""\"{k}\"""" for k in sort_objects(lowerCAmelCase_ )] ) return "\n".join(lowerCAmelCase_ ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase_= _re_bracket_content.sub(_replace ,lowerCAmelCase_ ) return import_statement def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Optional[int]=True ) -> Optional[Any]: '''simple docstring''' with open(lowerCAmelCase_ ,encoding="""utf-8""" ) as f: UpperCAmelCase_= f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase_= split_code_in_indented_blocks( lowerCAmelCase_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(lowerCAmelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase_= main_blocks[block_idx] UpperCAmelCase_= block.split("""\n""" ) # Get to the start of the imports. UpperCAmelCase_= 0 while line_idx < len(lowerCAmelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase_= len(lowerCAmelCase_ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase_ ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase_= """\n""".join(block_lines[line_idx:-1] ) UpperCAmelCase_= get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase_= split_code_in_indented_blocks(lowerCAmelCase_ ,indent_level=lowerCAmelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase_= _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase_= [(pattern.search(lowerCAmelCase_ ).groups()[0] if pattern.search(lowerCAmelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase_= [(i, key) for i, key in enumerate(lowerCAmelCase_ ) if key is not None] UpperCAmelCase_= [x[0] for x in sorted(lowerCAmelCase_ ,key=lambda lowerCAmelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase_= 0 UpperCAmelCase_= [] for i in range(len(lowerCAmelCase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: UpperCAmelCase_= sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowerCAmelCase_ ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase_= """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase_ ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(lowerCAmelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write("""\n""".join(lowerCAmelCase_ ) ) def __a ( lowerCAmelCase_ : str=True ) -> Tuple: '''simple docstring''' UpperCAmelCase_= [] for root, _, files in os.walk(lowerCAmelCase_ ): if "__init__.py" in files: UpperCAmelCase_= sort_imports(os.path.join(lowerCAmelCase_ ,"""__init__.py""" ) ,check_only=lowerCAmelCase_ ) if result: UpperCAmelCase_= [os.path.join(lowerCAmelCase_ ,"""__init__.py""" )] if len(lowerCAmelCase_ ) > 0: raise ValueError(F"""Would overwrite {len(lowerCAmelCase_ )} files, run `make style`.""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __A = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
277
def __a ( lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __a ( lowerCAmelCase_ : dict[int, list[int]] ) -> list[tuple[int, int]]: '''simple docstring''' UpperCAmelCase_= 0 UpperCAmelCase_= len(lowerCAmelCase_ ) # No of vertices in graph UpperCAmelCase_= [0] * n UpperCAmelCase_= [False] * n def dfs(lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Any ,lowerCAmelCase_ : int ): UpperCAmelCase_= True UpperCAmelCase_= id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,id_ ) UpperCAmelCase_= min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase_= min(low[at] ,low[to] ) UpperCAmelCase_= [] for i in range(lowerCAmelCase_ ): if not visited[i]: dfs(lowerCAmelCase_ ,-1 ,lowerCAmelCase_ ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
277
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase : str =logging.get_logger(__name__) @add_end_docstrings(a_ ) class _lowercase (a_ ): '''simple docstring''' def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _lowerCamelCase ( self , snake_case__=None , snake_case__=None , snake_case__=None ): '''simple docstring''' UpperCamelCase_ = {} UpperCamelCase_ = {} if prompt is not None: UpperCamelCase_ = prompt if generate_kwargs is not None: UpperCamelCase_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCamelCase_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) UpperCamelCase_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , snake_case__ , **snake_case__ ): '''simple docstring''' return super().__call__(snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__=None ): '''simple docstring''' UpperCamelCase_ = load_image(snake_case__ ) if prompt is not None: if not isinstance(snake_case__ , snake_case__ ): raise ValueError( F"""Received an invalid text input, got - {type(snake_case__ )} - but expected a single string. """ "Note also that one single text can be provided for conditional image to text generation." ) UpperCamelCase_ = self.model.config.model_type if model_type == "git": UpperCamelCase_ = self.image_processor(images=snake_case__ , return_tensors=self.framework ) UpperCamelCase_ = self.tokenizer(text=snake_case__ , add_special_tokens=snake_case__ ).input_ids UpperCamelCase_ = [self.tokenizer.cls_token_id] + input_ids UpperCamelCase_ = torch.tensor(snake_case__ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": UpperCamelCase_ = self.image_processor(images=snake_case__ , header_text=snake_case__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCamelCase_ = self.image_processor(images=snake_case__ , return_tensors=self.framework ) UpperCamelCase_ = self.tokenizer(snake_case__ , return_tensors=self.framework ) model_inputs.update(snake_case__ ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: UpperCamelCase_ = self.image_processor(images=snake_case__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCamelCase_ = None return model_inputs def _lowerCamelCase ( self , snake_case__ , snake_case__=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , snake_case__ ) and all(x is None for x in model_inputs["input_ids"] ) ): UpperCamelCase_ = None if generate_kwargs is None: UpperCamelCase_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCamelCase_ = model_inputs.pop(self.model.main_input_name ) UpperCamelCase_ = self.model.generate(snake_case__ , **snake_case__ , **snake_case__ ) return model_outputs def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = [] for output_ids in model_outputs: UpperCamelCase_ = { "generated_text": self.tokenizer.decode( snake_case__ , skip_special_tokens=snake_case__ , ) } records.append(snake_case__ ) return records
128
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Union[str, Any] =logging.get_logger(__name__) UpperCAmelCase : Optional[Any] ={ """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowercase (a_ ): '''simple docstring''' lowercase__ = """vit_msn""" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-06 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = qkv_bias
128
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __UpperCAmelCase = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : str =DebertaTokenizer lowerCamelCase : Dict =True lowerCamelCase : List[str] =DebertaTokenizerFast def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase : Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] __lowerCAmelCase : Optional[int] = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) __lowerCAmelCase : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCAmelCase : Any = {"""unk_token""": """[UNK]"""} __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = """lower newer""" __lowerCAmelCase : Union[str, Any] = """lower newer""" return input_text, output_text def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.get_tokenizer() __lowerCAmelCase : int = """lower newer""" __lowerCAmelCase : Any = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = tokens + [tokenizer.unk_token] __lowerCAmelCase : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Any = tokenizer("""Hello""" , """World""" ) __lowerCAmelCase : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowerCAmelCase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase ) __lowerCAmelCase : Dict = tokenizer.encode( """sequence builders""" , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) __lowerCAmelCase : Dict = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) __lowerCAmelCase : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCAmelCase : int = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowerCAmelCase : Optional[Any] = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] __lowerCAmelCase : List[str] = tokenizer(lowerCAmelCase , padding=lowerCAmelCase ) __lowerCAmelCase : List[str] = [tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) for seq in encoding["""input_ids"""]] # fmt: off __lowerCAmelCase : Any = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCAmelCase : int = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , lowerCAmelCase ) for expected, decoded in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(lowerCAmelCase , lowerCAmelCase )
139
0
'''simple docstring''' import numpy # List of input, output pairs lowerCAmelCase_ : str = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase_ : Dict = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) lowerCAmelCase_ : List[str] = [2, 4, 1, 5] lowerCAmelCase_ : List[Any] = len(train_data) lowerCAmelCase_ : Any = 0.009 def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Optional[Any]="train" ) -> str: return calculate_hypothesis_value(__UpperCAmelCase , __UpperCAmelCase ) - output( __UpperCAmelCase , __UpperCAmelCase ) def _lowerCamelCase ( lowercase : List[Any] ) -> List[str]: _a = 0 for i in range(len(__UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCamelCase ( lowercase : int , lowercase : Tuple ) -> Tuple: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCamelCase ( lowercase : Any , lowercase : Optional[Any] ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCamelCase ( lowercase : Any , lowercase : Optional[int]=m ) -> Union[str, Any]: _a = 0 for i in range(__UpperCAmelCase ): if index == -1: summation_value += _error(__UpperCAmelCase ) else: summation_value += _error(__UpperCAmelCase ) * train_data[i][0][index] return summation_value def _lowerCamelCase ( lowercase : str ) -> str: _a = summation_of_cost_derivative(__UpperCAmelCase , __UpperCAmelCase ) / m return cost_derivative_value def _lowerCamelCase ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output _a = 0.00_00_02 _a = 0 _a = 0 while True: j += 1 _a = [0, 0, 0, 0] for i in range(0 , len(__UpperCAmelCase ) ): _a = get_cost_derivative(i - 1 ) _a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCAmelCase , __UpperCAmelCase , atol=__UpperCAmelCase , rtol=__UpperCAmelCase , ): break _a = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCamelCase ( ) -> List[Any]: for i in range(len(__UpperCAmelCase ) ): print(("Actual output value:", output(__UpperCAmelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__UpperCAmelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
63
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__: str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowercase__: Optional[Any] = parent lowercase__: List[Any] = batch_size lowercase__: Tuple = num_channels lowercase__: Optional[Any] = min_resolution lowercase__: Dict = max_resolution lowercase__: Optional[int] = do_resize lowercase__: Any = size lowercase__: Optional[Any] = do_normalize lowercase__: Union[str, Any] = image_mean lowercase__: Tuple = image_std lowercase__: str = do_rescale lowercase__: Any = rescale_factor lowercase__: List[Any] = do_pad def _snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False ): if not batched: lowercase__: Optional[Any] = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): lowercase__, lowercase__: Dict = image.size else: lowercase__, lowercase__: Optional[Any] = image.shape[1], image.shape[2] if w < h: lowercase__: List[str] = int(self.size['''shortest_edge'''] * h / w ) lowercase__: Union[str, Any] = self.size['''shortest_edge'''] elif w > h: lowercase__: int = self.size['''shortest_edge'''] lowercase__: int = int(self.size['''shortest_edge'''] * w / h ) else: lowercase__: Union[str, Any] = self.size['''shortest_edge'''] lowercase__: Union[str, Any] = self.size['''shortest_edge'''] else: lowercase__: Optional[int] = [] for image in image_inputs: lowercase__, lowercase__: int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__: Union[str, Any] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0] lowercase__: Dict = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = YolosImageProcessor if is_vision_available() else None def _snake_case ( self ): lowercase__: int = YolosImageProcessingTester(self ) @property def _snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ): lowercase__: List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''size''' ) ) def _snake_case ( self ): lowercase__: Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) lowercase__: Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def _snake_case ( self ): pass def _snake_case ( self ): # Initialize image_processing lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input lowercase__: int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: Optional[int] = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__, lowercase__: Any = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) lowercase__: int = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input lowercase__: List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: str = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: Dict = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: str = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processing lowercase__: Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase__: Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: int = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__: List[str] = image_processing(_UpperCAmelCase , return_tensors='''pt''' ).pixel_values lowercase__, lowercase__: List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case ( self ): # Initialize image_processings lowercase__: Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) lowercase__: Optional[Any] = self.image_processing_class(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_rescale=_UpperCAmelCase ) # create random PyTorch tensors lowercase__: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase__: List[str] = image_processing_a.pad(_UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Tuple = image_processing_a(_UpperCAmelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def _snake_case ( self ): # prepare image and target lowercase__: Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase__: Any = json.loads(f.read() ) lowercase__: Dict = {'''image_id''': 39769, '''annotations''': target} # encode them lowercase__: Dict = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase__: Any = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__: Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowercase__: Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase__: Tuple = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowercase__: str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase__: Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowercase__: Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowercase__: Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify orig_size lowercase__: List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowercase__: List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) ) @slow def _snake_case ( self ): # prepare image, target and masks_path lowercase__: str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase__: str = json.loads(f.read() ) lowercase__: List[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} lowercase__: Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase__: Union[str, Any] = YolosImageProcessor(format='''coco_panoptic''' ) lowercase__: Optional[Any] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values lowercase__: Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _UpperCAmelCase ) lowercase__: Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase__: str = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _UpperCAmelCase ) ) # verify boxes lowercase__: List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _UpperCAmelCase ) lowercase__: List[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase__: int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _UpperCAmelCase ) ) # verify is_crowd lowercase__: int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _UpperCAmelCase ) ) # verify class_labels lowercase__: Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _UpperCAmelCase ) ) # verify masks lowercase__: Union[str, Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _UpperCAmelCase ) # verify orig_size lowercase__: List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _UpperCAmelCase ) ) # verify size lowercase__: Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _UpperCAmelCase ) )
177
0
from abc import ABC, abstractmethod from typing import List, Optional class __snake_case ( snake_case__ ): def __init__( self ) -> List[Any]: '''simple docstring''' self.test() def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Dict =0 UpperCAmelCase : str =False while not completed: if counter == 1: self.reset() UpperCAmelCase : Optional[int] =self.advance() if not self.does_advance(_A ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =self.update(_A ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase__ ( self , snake_case__=False ) -> int: '''simple docstring''' raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __snake_case ( snake_case__ ): def __init__( self , snake_case__ ) -> List[str]: '''simple docstring''' super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase : Optional[Any] =token_ids UpperCAmelCase : Optional[Any] =len(self.token_ids ) UpperCAmelCase : Union[str, Any] =-1 # the index of the currently fulfilled step UpperCAmelCase : List[Any] =False def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' if not isinstance(_A , _A ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_A )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' if not isinstance(_A , _A ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_A )}''' ) UpperCAmelCase : Dict =False UpperCAmelCase : Tuple =False UpperCAmelCase : Optional[Any] =False if self.does_advance(_A ): self.fulfilled_idx += 1 UpperCAmelCase : Dict =True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase : List[str] =True UpperCAmelCase : Any =completed else: # failed to make progress. UpperCAmelCase : Tuple =True self.reset() return stepped, completed, reset def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =False UpperCAmelCase : Optional[Any] =0 def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCAmelCase__ ( self , snake_case__=False ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Dict =PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase : List[str] =self.seqlen UpperCAmelCase : Dict =self.fulfilled_idx UpperCAmelCase : Optional[Any] =self.completed return new_constraint class __snake_case : def __init__( self , snake_case__ , snake_case__=True ) -> Any: '''simple docstring''' UpperCAmelCase : int =max([len(_A ) for one in nested_token_ids] ) UpperCAmelCase : List[Any] ={} for token_ids in nested_token_ids: UpperCAmelCase : Optional[int] =root for tidx, token_id in enumerate(_A ): if token_id not in level: UpperCAmelCase : Any ={} UpperCAmelCase : Optional[Any] =level[token_id] if no_subsets and self.has_subsets(_A , _A ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) UpperCAmelCase : Optional[int] =root def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any =self.trie for current_token in current_seq: UpperCAmelCase : Any =start[current_token] UpperCAmelCase : Union[str, Any] =list(start.keys() ) return next_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =self.next_tokens(_A ) return len(_A ) == 0 def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =list(root.values() ) if len(_A ) == 0: return 1 else: return sum([self.count_leaves(_A ) for nn in next_nodes] ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple =self.count_leaves(_A ) return len(_A ) != leaf_count class __snake_case ( snake_case__ ): def __init__( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' super(_A , self ).__init__() if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_A , _A ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_A , _A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase : Optional[int] =DisjunctiveTrie(_A ) UpperCAmelCase : str =nested_token_ids UpperCAmelCase : List[str] =self.trie.max_height UpperCAmelCase : int =[] UpperCAmelCase : Optional[int] =False def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple =self.trie.next_tokens(self.current_seq ) if len(_A ) == 0: return None else: return token_list def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' if not isinstance(_A , _A ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}''' ) UpperCAmelCase : List[Any] =self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' if not isinstance(_A , _A ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_A )}''' ) UpperCAmelCase : Optional[Any] =False UpperCAmelCase : Optional[Any] =False UpperCAmelCase : Optional[Any] =False if self.does_advance(_A ): self.current_seq.append(_A ) UpperCAmelCase : int =True else: UpperCAmelCase : Any =True self.reset() UpperCAmelCase : Union[str, Any] =self.trie.reached_leaf(self.current_seq ) UpperCAmelCase : Optional[int] =completed return stepped, completed, reset def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =False UpperCAmelCase : Optional[Any] =[] def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCAmelCase__ ( self , snake_case__=False ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase : Dict =self.seqlen UpperCAmelCase : List[str] =self.current_seq UpperCAmelCase : Dict =self.completed return new_constraint class __snake_case : def __init__( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =constraints # max # of steps required to fulfill a given constraint UpperCAmelCase : Optional[Any] =max([c.seqlen for c in constraints] ) UpperCAmelCase : List[Any] =len(_A ) UpperCAmelCase : Any =False self.init_state() def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] =[] UpperCAmelCase : Tuple =None UpperCAmelCase : Tuple =[constraint.copy(stateful=_A ) for constraint in self.constraints] def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase : Dict =constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) else: UpperCAmelCase : str =self.inprogress_constraint.advance() if isinstance(_A , _A ): token_list.append(_A ) elif isinstance(_A , _A ): token_list.extend(_A ) if len(_A ) == 0: return None else: return token_list def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase , UpperCAmelCase : Optional[int] =self.add(_A ) # the entire list of constraints are fulfilled if self.completed: break def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' if not isinstance(_A , _A ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase , UpperCAmelCase : Any =False, False if self.completed: UpperCAmelCase : str =True UpperCAmelCase : Tuple =False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =self.inprogress_constraint.update(_A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_A ) ) UpperCAmelCase : Union[str, Any] =None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase : int =None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase : str =True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_A ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pending_constraint.update(_A ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_A ) UpperCAmelCase : List[Any] =None if not complete and stepped: UpperCAmelCase : Dict =pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase : List[str] =( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase : Optional[int] =True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCAmelCase__ ( self , snake_case__=True ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase : Optional[int] =[ constraint.copy(stateful=_A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase : str =self.inprogress_constraint.copy(stateful=_A ) UpperCAmelCase : List[Any] =[constraint.copy() for constraint in self.pending_constraints] return new_state
363
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase : Dict = False @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase : List[Any] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =self.dummy_unet UpperCAmelCase : Tuple =self.dummy_movq UpperCAmelCase : Union[str, Any] =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) UpperCAmelCase : Tuple ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Any: '''simple docstring''' UpperCAmelCase : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create hint UpperCAmelCase : Tuple =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : int =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : List[str] ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] ='''cpu''' UpperCAmelCase : List[Any] =self.get_dummy_components() UpperCAmelCase : Tuple =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Tuple =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Optional[int] =pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase : str =output.images UpperCAmelCase : List[str] =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] =np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase : int =torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 UpperCAmelCase : List[str] =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Dict =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase : int =KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : int ='''A robot, 4k photo''' UpperCAmelCase : int =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : List[str] =pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase : List[str] =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase : Dict =pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , output_type='''np''' , ) UpperCAmelCase : List[Any] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
78
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple ) -> List[Any]: _validate_point(_a ) _validate_point(_a ) if len(_a ) != len(_a ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(a - b ) for a, b in zip(_a , _a ) ) ) def lowercase ( lowerCAmelCase__ : Tuple ) -> str: if point: if isinstance(_a , _a ): for item in point: if not isinstance(_a , (int, float) ): __a = ( "Expected a list of numbers as input, found " f'''{type(_a ).__name__}''' ) raise TypeError(_a ) else: __a = f'''Expected a list of numbers as input, found {type(_a ).__name__}''' raise TypeError(_a ) else: raise ValueError('''Missing an input''' ) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: _validate_point(_a ) _validate_point(_a ) if len(_a ) != len(_a ): raise ValueError('''Both points must be in the same n-dimensional space''' ) return float(sum(abs(x - y ) for x, y in zip(_a , _a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
45
from datetime import datetime as dt import os from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = Github(os.environ["GITHUB_TOKEN"]) SCREAMING_SNAKE_CASE : List[str] = g.get_repo("huggingface/transformers") SCREAMING_SNAKE_CASE : Optional[int] = repo.get_issues(state="open") for issue in open_issues: SCREAMING_SNAKE_CASE : List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _a: i.created_at , reverse=_a) SCREAMING_SNAKE_CASE : str = comments[0] if len(_a) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
76
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = BarthezTokenizer SCREAMING_SNAKE_CASE_ = BarthezTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().setUp() a = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ,legacy_format=__lowerCamelCase ) a = tokenizer def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = '''<pad>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''<mask>''' ) self.assertEqual(len(__lowerCamelCase ) ,10_11_22 ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,10_11_22 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a = [0, 57, 30_18, 7_03_07, 91, 2] a = self.tokenizer( __lowerCamelCase ,max_length=len(__lowerCamelCase ) ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual((2, 6) ,batch.input_ids.shape ) self.assertEqual((2, 6) ,batch.attention_mask.shape ) a = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = '''I was born in 92000, and this is falsé.''' a = tokenizer.tokenize(__lowerCamelCase ) a = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) a = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) a = self.get_rust_tokenizer() a = tokenizer.encode(__lowerCamelCase ) a = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = {'''input_ids''': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. a = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''moussaKam/mbarthez''' ,revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' ,sequences=__lowerCamelCase ,)
330
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoCBertTokenizer _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = filter_non_english def lowercase_ ( self : Tuple ) ->int: super().setUp() snake_case__ : Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] snake_case__ : Union[str, Any] = {} snake_case__ : Tuple = {} for i, value in enumerate(_snake_case ): snake_case__ : Optional[Any] = i snake_case__ : int = i snake_case__ : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['word_shape_file'] ) snake_case__ : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file, 'w', encoding='utf-8' ) as word_shape_writer: json.dump(_snake_case, _snake_case, ensure_ascii=_snake_case ) with open(self.word_pronunciation_file, 'w', encoding='utf-8' ) as word_pronunciation_writer: json.dump(_snake_case, _snake_case, ensure_ascii=_snake_case ) def lowercase_ ( self : int ) ->Union[str, Any]: snake_case__ : Union[str, Any] = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) snake_case__ : int = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(_snake_case, ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_snake_case ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_snake_case ), [5, 6, 2, 5, 7, 8] ) def lowercase_ ( self : int ) ->int: snake_case__ : Any = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ), ['ah', '\u535A', '\u63A8', 'zz'] ) def lowercase_ ( self : Optional[Any] ) ->Any: snake_case__ : int = RoCBertBasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def lowercase_ ( self : Any ) ->Union[str, Any]: snake_case__ : Tuple = RoCBertBasicTokenizer(do_lower_case=_snake_case, strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['h\u00E9llo'] ) def lowercase_ ( self : Optional[int] ) ->str: snake_case__ : str = RoCBertBasicTokenizer(do_lower_case=_snake_case, strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def lowercase_ ( self : Tuple ) ->Optional[int]: snake_case__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : Optional[int] ) ->Union[str, Any]: snake_case__ : Optional[int] = RoCBertBasicTokenizer(do_lower_case=_snake_case, strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : List[str] ) ->int: snake_case__ : str = RoCBertBasicTokenizer(do_lower_case=_snake_case, strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase_ ( self : Any ) ->Tuple: snake_case__ : Tuple = RoCBertBasicTokenizer(do_lower_case=_snake_case, never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowercase_ ( self : Any ) ->Tuple: snake_case__ : Any = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] snake_case__ : List[Any] = {} for i, token in enumerate(_snake_case ): snake_case__ : List[str] = i snake_case__ : List[Any] = RoCBertWordpieceTokenizer(vocab=_snake_case, unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ), [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ), ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ), ['[UNK]', 'runn', '##ing'] ) def lowercase_ ( self : str ) ->Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowercase_ ( self : Tuple ) ->Any: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowercase_ ( self : Union[str, Any] ) ->Dict: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowercase_ ( self : Union[str, Any] ) ->List[Any]: snake_case__ : Tuple = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_snake_case ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: snake_case__ : Any = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_snake_case ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) def lowercase_ ( self : Any ) ->int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_snake_case, **_snake_case ) snake_case__ : int = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' snake_case__ : str = tokenizer_r.encode_plus( _snake_case, return_attention_mask=_snake_case, return_token_type_ids=_snake_case, return_offsets_mapping=_snake_case, add_special_tokens=_snake_case, ) snake_case__ : Any = tokenizer_r.do_lower_case if hasattr(_snake_case, 'do_lower_case' ) else False snake_case__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results], tokens['offset_mapping'] ) def lowercase_ ( self : str ) ->List[Any]: snake_case__ : Union[str, Any] = ['的', '人', '有'] snake_case__ : Dict = ''.join(_snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case__ : Dict = True snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained(_snake_case, **_snake_case ) snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained(_snake_case, **_snake_case ) snake_case__ : int = tokenizer_p.encode(_snake_case, add_special_tokens=_snake_case ) snake_case__ : Tuple = tokenizer_r.encode(_snake_case, add_special_tokens=_snake_case ) snake_case__ : List[str] = tokenizer_r.convert_ids_to_tokens(_snake_case ) snake_case__ : str = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_snake_case, _snake_case ) self.assertListEqual(_snake_case, _snake_case ) snake_case__ : int = False snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained(_snake_case, **_snake_case ) snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained(_snake_case, **_snake_case ) snake_case__ : Dict = tokenizer_r.encode(_snake_case, add_special_tokens=_snake_case ) snake_case__ : List[Any] = tokenizer_p.encode(_snake_case, add_special_tokens=_snake_case ) snake_case__ : Tuple = tokenizer_r.convert_ids_to_tokens(_snake_case ) snake_case__ : List[Any] = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that only the first Chinese character is not preceded by "##". snake_case__ : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_snake_case ) ] self.assertListEqual(_snake_case, _snake_case ) self.assertListEqual(_snake_case, _snake_case ) @slow def lowercase_ ( self : Dict ) ->str: snake_case__ : Dict = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) snake_case__ : Union[str, Any] = tokenizer.encode('你好', add_special_tokens=_snake_case ) snake_case__ : List[str] = tokenizer.encode('你是谁', add_special_tokens=_snake_case ) snake_case__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_snake_case ) snake_case__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_snake_case, _snake_case ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase_ ( self : Optional[int] ) ->Optional[Any]: snake_case__ : List[Any] = self.get_tokenizers(do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case__ : Any = '你好,你是谁' snake_case__ : Dict = tokenizer.tokenize(_snake_case ) snake_case__ : Any = tokenizer.convert_tokens_to_ids(_snake_case ) snake_case__ : List[Any] = tokenizer.convert_tokens_to_shape_ids(_snake_case ) snake_case__ : Union[str, Any] = tokenizer.convert_tokens_to_pronunciation_ids(_snake_case ) snake_case__ : Tuple = tokenizer.prepare_for_model( _snake_case, _snake_case, _snake_case, add_special_tokens=_snake_case ) snake_case__ : List[str] = tokenizer.encode_plus(_snake_case, add_special_tokens=_snake_case ) self.assertEqual(_snake_case, _snake_case )
277
from collections import deque from .hash_table import HashTable class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any], *_snake_case : Optional[Any], **_snake_case : List[Any] ) ->Optional[int]: super().__init__(*_snake_case, **_snake_case ) def lowercase_ ( self : Optional[Any], _snake_case : Tuple, _snake_case : Dict ) ->Dict: snake_case__ : int = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_snake_case ) snake_case__ : Dict = self.values[key] def lowercase_ ( self : Any ) ->Optional[Any]: return ( sum(self.charge_factor - len(_snake_case ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowercase_ ( self : Union[str, Any], _snake_case : str, _snake_case : Optional[int]=None ) ->Optional[Any]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_snake_case ) == 0 ): return key return super()._collision_resolution(_snake_case, _snake_case )
277
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'luke' def __init__( self : int ,lowercase__ : Tuple=5_0_2_6_7 ,lowercase__ : str=5_0_0_0_0_0 ,lowercase__ : Union[str, Any]=7_6_8 ,lowercase__ : Any=2_5_6 ,lowercase__ : int=1_2 ,lowercase__ : Dict=1_2 ,lowercase__ : List[Any]=3_0_7_2 ,lowercase__ : Dict="gelu" ,lowercase__ : List[Any]=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[Any]=5_1_2 ,lowercase__ : Tuple=2 ,lowercase__ : Any=0.0_2 ,lowercase__ : Tuple=1e-1_2 ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[int]=None ,lowercase__ : Tuple=1 ,lowercase__ : int=0 ,lowercase__ : Tuple=2 ,**lowercase__ : Dict ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = entity_vocab_size __lowercase = hidden_size __lowercase = entity_emb_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_entity_aware_attention __lowercase = classifier_dropout
52
'''simple docstring''' lowerCAmelCase__ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355_818, } def _A ( A__ , A__ , A__ ): """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowercase = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
52
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup UpperCAmelCase : Optional[Any] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def _A ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") UpperCAmelCase : Optional[Any] = parser.parse_args() if args.check_lib: UpperCAmelCase : Optional[Any] = importlib.import_module("""transformers""") UpperCAmelCase : Dict = Path(transformers_module.__file__).parent else: UpperCAmelCase : str = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
95
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ = logging.get_logger(__name__) class _snake_case ( _a ): _A : Optional[int] = ['''pixel_values'''] def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : int = 0.9 ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = size if size is not None else {"shortest_edge": 224} SCREAMING_SNAKE_CASE:Dict = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE:List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ) SCREAMING_SNAKE_CASE:Optional[Any] = do_resize SCREAMING_SNAKE_CASE:List[Any] = size SCREAMING_SNAKE_CASE:Tuple = crop_pct SCREAMING_SNAKE_CASE:Tuple = resample SCREAMING_SNAKE_CASE:List[str] = do_center_crop SCREAMING_SNAKE_CASE:Union[str, Any] = crop_size SCREAMING_SNAKE_CASE:Dict = do_rescale SCREAMING_SNAKE_CASE:int = rescale_factor SCREAMING_SNAKE_CASE:Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE:Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE:Tuple = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[float] = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,): SCREAMING_SNAKE_CASE:Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: SCREAMING_SNAKE_CASE:Any = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: SCREAMING_SNAKE_CASE:List[str] = int(size["height"] / crop_pct ) else: SCREAMING_SNAKE_CASE:int = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:Tuple = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) else: if "shortest_edge" in size: SCREAMING_SNAKE_CASE:Optional[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=size["shortest_edge"] ,default_to_square=SCREAMING_SNAKE_CASE__ ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE:str = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(SCREAMING_SNAKE_CASE__ ) ) return resize(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): SCREAMING_SNAKE_CASE:Any = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE__ ,size=(size["height"], size["width"]) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : int = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): SCREAMING_SNAKE_CASE:Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE:List[Any] = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE:Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE:Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE:str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE:List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE:int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE:Dict = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE:Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE:Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE:Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Dict = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE:Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,param_name="crop_size" ) SCREAMING_SNAKE_CASE:List[str] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE:Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE:Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,crop_pct=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE:Any = [self.center_crop(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE:List[str] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE:List[str] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:int = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:Union[str, Any] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__ )
139
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( snake_case ): UpperCamelCase__ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE ( self , **_a ): __magic_name__ : List[Any] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE ( self ): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def SCREAMING_SNAKE_CASE ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def SCREAMING_SNAKE_CASE ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def SCREAMING_SNAKE_CASE ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def SCREAMING_SNAKE_CASE ( self ): self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def SCREAMING_SNAKE_CASE ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def SCREAMING_SNAKE_CASE ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.scheduler_classes[0] __magic_name__ : Optional[int] = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.scheduler_classes[0] __magic_name__ : Optional[int] = self.get_scheduler_config() __magic_name__ : int = scheduler_class(**_a ) __magic_name__ : int = len(_a ) __magic_name__ : List[str] = self.dummy_model() __magic_name__ : Optional[Any] = self.dummy_sample_deter __magic_name__ : str = self.dummy_sample_deter + 0.1 __magic_name__ : Union[str, Any] = self.dummy_sample_deter - 0.1 __magic_name__ : Tuple = samplea.shape[0] __magic_name__ : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) __magic_name__ : Union[str, Any] = torch.arange(_a )[0:3, None].repeat(1 , _a ) __magic_name__ : str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __magic_name__ : Tuple = scheduler.batch_step_no_noise(_a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __magic_name__ : Optional[Any] = torch.sum(torch.abs(_a ) ) __magic_name__ : Union[str, Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 11_53.18_33 ) < 1e-2 assert abs(result_mean.item() - 0.50_05 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = self.scheduler_classes[0] __magic_name__ : Dict = self.get_scheduler_config() __magic_name__ : Tuple = scheduler_class(**_a ) __magic_name__ : Any = len(_a ) __magic_name__ : List[Any] = self.dummy_model() __magic_name__ : List[str] = self.dummy_sample_deter __magic_name__ : Dict = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual __magic_name__ : List[Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Any = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __magic_name__ : List[str] = pred_prev_sample __magic_name__ : int = torch.sum(torch.abs(_a ) ) __magic_name__ : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1e-2 assert abs(result_mean.item() - 0.33_72 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" ) __magic_name__ : int = scheduler_class(**_a ) __magic_name__ : Tuple = len(_a ) __magic_name__ : Optional[int] = self.dummy_model() __magic_name__ : int = self.dummy_sample_deter __magic_name__ : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual __magic_name__ : Any = model(_a , _a ) # 2. predict previous mean of sample x_t-1 __magic_name__ : Any = scheduler.step(_a , _a , _a , generator=_a ).prev_sample __magic_name__ : str = pred_prev_sample __magic_name__ : List[str] = torch.sum(torch.abs(_a ) ) __magic_name__ : str = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1e-2 assert abs(result_mean.item() - 0.26_31 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : List[Any] = self.get_scheduler_config() __magic_name__ : List[Any] = scheduler_class(**_a ) __magic_name__ : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_a ) __magic_name__ : str = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: __magic_name__ : List[str] = -1 else: __magic_name__ : Any = timesteps[i + 1] __magic_name__ : List[str] = scheduler.previous_timestep(_a ) __magic_name__ : List[Any] = prev_t.item() self.assertEqual(_a , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : List[str] = self.get_scheduler_config() __magic_name__ : List[str] = scheduler_class(**_a ) __magic_name__ : int = [100, 87, 50, 51, 0] with self.assertRaises(_a , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.scheduler_classes[0] __magic_name__ : Tuple = self.get_scheduler_config() __magic_name__ : Optional[int] = scheduler_class(**_a ) __magic_name__ : Tuple = [100, 87, 50, 1, 0] __magic_name__ : List[Any] = len(_a ) with self.assertRaises(_a , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = self.scheduler_classes[0] __magic_name__ : Any = self.get_scheduler_config() __magic_name__ : Tuple = scheduler_class(**_a ) __magic_name__ : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_a )
41
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers snake_case : Any = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
41
1
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 400_0000 ): __SCREAMING_SNAKE_CASE = [0, 1] __SCREAMING_SNAKE_CASE = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __SCREAMING_SNAKE_CASE = 0 for j in range(len(UpperCamelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
100
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :str = "▁" , lowercase_ :bool = True , lowercase_ :Union[str, AddedToken] = "<unk>" , lowercase_ :Union[str, AddedToken] = "</s>" , lowercase_ :Union[str, AddedToken] = "<pad>" , ) -> str: UpperCAmelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict['token'] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) UpperCAmelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Union[str, List[str]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Union[str, Any]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :str , lowercase_ :Union[Iterator[str], Iterator[Iterator[str]]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Tuple: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens['unk']['id'] UpperCAmelCase = Tokenizer.from_str(json.dumps(lowercase_ ) )
78
0
"""simple docstring""" import math def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if initial_intensity < 0: raise ValueError("The value of intensity cannot be negative" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("In Malus Law, the angle is in the range 0-360 degrees" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCAmelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''YolosFeatureExtractor'''] __a = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
337
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __a = logging.get_logger(__name__) __a = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'perceiver' def __init__( self , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=1280 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=26 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="kv" , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=262 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=56 , SCREAMING_SNAKE_CASE__=[368, 496] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=1920 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[1, 16, 224, 224] , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : Any = num_latents lowercase : Union[str, Any] = d_latents lowercase : str = d_model lowercase : int = num_blocks lowercase : str = num_self_attends_per_block lowercase : List[str] = num_self_attention_heads lowercase : List[str] = num_cross_attention_heads lowercase : int = qk_channels lowercase : List[Any] = v_channels lowercase : int = cross_attention_shape_for_attention lowercase : Tuple = self_attention_widening_factor lowercase : Dict = cross_attention_widening_factor lowercase : Any = hidden_act lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : Any = layer_norm_eps lowercase : Any = use_query_residual # masked language modeling attributes lowercase : List[str] = vocab_size lowercase : Dict = max_position_embeddings # image classification attributes lowercase : int = image_size # flow attributes lowercase : List[Any] = train_size # multimodal autoencoding attributes lowercase : List[Any] = num_frames lowercase : Union[str, Any] = audio_samples_per_frame lowercase : int = samples_per_patch lowercase : Optional[int] = output_shape class __SCREAMING_SNAKE_CASE ( A__ ): @property def __lowerCamelCase ( self ): if self.task == "multiple-choice": lowercase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __lowerCamelCase ( self ): return 1E-4 def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : str = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase : Union[str, Any] = preprocessor.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence lowercase : Optional[Any] = [''' '''.join(['''a'''] ) * seq_length] * batch_size lowercase : Any = dict(preprocessor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''input_ids''' ) return inputs elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase : List[str] = compute_effective_axis_dimension(SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase : List[str] = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = dict(preprocessor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) lowercase : Union[str, Any] = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
337
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = CTRLTokenizer lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : List[str] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] snake_case : int = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : str = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] snake_case : Optional[Any] = {'''unk_token''': '''<unk>'''} snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def lowerCAmelCase ( self : Dict , **UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" snake_case : int = '''adapt react readapt apt''' snake_case : str = '''adapt react readapt apt''' return input_text, output_text def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" snake_case : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : Tuple = '''adapt react readapt apt''' snake_case : Tuple = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() snake_case : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = tokens + [tokenizer.unk_token] snake_case : Tuple = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
83
'''simple docstring''' from functools import lru_cache @lru_cache def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> int: '''simple docstring''' if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
83
1
from cva import destroyAllWindows, imread, imshow, waitKey def A_ ( _lowerCAmelCase ) -> int: # getting number of pixels in the image UpperCamelCase , UpperCamelCase : List[str] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): UpperCamelCase : Tuple = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __lowerCamelCase : Any = imread("""image_data/lena.jpg""", 1) # convert to its negative __lowerCamelCase : Optional[int] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
52
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Optional[int] = int(_lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : Dict = divmod(_lowerCAmelCase , 2 ) return binary_recursive(_lowerCAmelCase ) + str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = str(_lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) UpperCamelCase : Optional[int] = "-" if number.startswith("-" ) else "" UpperCamelCase : Any = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F"""{negative}0b{binary_recursive(int(_lowerCAmelCase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
52
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class _SCREAMING_SNAKE_CASE ( a_ ): __SCREAMING_SNAKE_CASE :Any = """dpr""" def __init__( self : List[Any] , a__ : List[str]=3_0522 , a__ : Optional[Any]=768 , a__ : int=12 , a__ : Optional[Any]=12 , a__ : List[str]=3072 , a__ : Dict="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : int=512 , a__ : Dict=2 , a__ : Optional[Any]=0.02 , a__ : List[Any]=1E-12 , a__ : Dict=0 , a__ : Optional[Any]="absolute" , a__ : int = 0 , **a__ : Dict , ): super().__init__(pad_token_id=lowercase_ , **lowercase_ ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = projection_dim __magic_name__ = position_embedding_type
358
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __magic_name__ = MaskFormerConfig(backbone_config=a ) __magic_name__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __magic_name__ = 847 __magic_name__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __magic_name__ = 150 __magic_name__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __magic_name__ = 171 __magic_name__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __magic_name__ = 133 __magic_name__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __magic_name__ = 19 __magic_name__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __magic_name__ = 65 __magic_name__ = '''mapillary-vistas-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(a ): v for k, v in idalabel.items()} return config def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' __magic_name__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def UpperCamelCase ( a , a , a ) -> str: '''simple docstring''' __magic_name__ = dct.pop(a ) __magic_name__ = val def UpperCamelCase ( a , a ) -> List[str]: '''simple docstring''' __magic_name__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __magic_name__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __magic_name__ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[:dim, :] __magic_name__ = in_proj_bias[: dim] __magic_name__ = in_proj_weight[ dim : dim * 2, : ] __magic_name__ = in_proj_bias[ dim : dim * 2 ] __magic_name__ = in_proj_weight[ -dim :, : ] __magic_name__ = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( a , a ) -> int: '''simple docstring''' # fmt: off __magic_name__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: hidden_size, :] __magic_name__ = in_proj_bias[:config.hidden_size] __magic_name__ = in_proj_weight[hidden_size : hidden_size * 2, :] __magic_name__ = in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ = in_proj_weight[-hidden_size :, :] __magic_name__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: hidden_size, :] __magic_name__ = in_proj_bias[:config.hidden_size] __magic_name__ = in_proj_weight[hidden_size : hidden_size * 2, :] __magic_name__ = in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ = in_proj_weight[-hidden_size :, :] __magic_name__ = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase ( ) -> torch.Tensor: '''simple docstring''' __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def UpperCamelCase ( a , a , a , a = False ) -> Dict: '''simple docstring''' __magic_name__ = get_maskformer_config(a ) # load original state_dict with open(a , '''rb''' ) as f: __magic_name__ = pickle.load(a ) __magic_name__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __magic_name__ = create_rename_keys(a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_swin_q_k_v(a , config.backbone_config ) read_in_decoder_q_k_v(a , a ) # update to torch tensors for key, value in state_dict.items(): __magic_name__ = torch.from_numpy(a ) # load 🤗 model __magic_name__ = MaskFormerForInstanceSegmentation(a ) model.eval() for name, param in model.named_parameters(): print(a , param.shape ) __magic_name__ , __magic_name__ = model.load_state_dict(a , strict=a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(a ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __magic_name__ = prepare_img() if "vistas" in model_name: __magic_name__ = 65 elif "cityscapes" in model_name: __magic_name__ = 6_5535 else: __magic_name__ = 255 __magic_name__ = True if '''ade''' in model_name else False __magic_name__ = MaskFormerImageProcessor(ignore_index=a , reduce_labels=a ) __magic_name__ = image_processor(a , return_tensors='''pt''' ) __magic_name__ = model(**a ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __magic_name__ = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
98
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: lowerCamelCase__ : Dict = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[Any]: lowerCamelCase__ : Tuple = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase__ : Tuple = s_dict.pop(UpperCamelCase ) elif "subsample" in key: lowerCamelCase__ : List[Any] = s_dict.pop(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: lowerCamelCase__ , lowerCamelCase__ : Tuple = emb.weight.shape lowerCamelCase__ : int = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCamelCase__ : int = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : List[Any] = mam_aaa["""args"""] lowerCamelCase__ : Union[str, Any] = mam_aaa["""model"""] lowerCamelCase__ : List[str] = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(UpperCamelCase ) rename_keys(UpperCamelCase ) lowerCamelCase__ : List[Any] = state_dict["""decoder.embed_tokens.weight"""].shape[0] lowerCamelCase__ : int = args.share_decoder_input_output_embed lowerCamelCase__ : Optional[int] = [int(UpperCamelCase ) for i in args.conv_kernel_sizes.split(""",""" )] lowerCamelCase__ : List[Any] = SpeechaTextConfig( vocab_size=UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase , num_beams=5 , max_length=200 , use_cache=UpperCamelCase , decoder_start_token_id=2 , early_stopping=UpperCamelCase , ) lowerCamelCase__ : List[Any] = SpeechaTextForConditionalGeneration(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0 and not set(UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f''' but all the following weights are missing {missing}''' ) if tie_embeds: lowerCamelCase__ : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : Optional[Any] = lm_head_weights model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str =parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
41
'''simple docstring''' from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> tuple[float | int, list[tuple[int, int]]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = grid.shape lowerCamelCase__ : List[str] = [-1, 1, 0, 0] lowerCamelCase__ : Dict = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase__ , lowerCamelCase__ : Any = [(0, source)], set() lowerCamelCase__ : Tuple = np.full((rows, cols) , np.inf ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Optional[int] = np.empty((rows, cols) , dtype=UpperCamelCase ) lowerCamelCase__ : str = None while queue: ((lowerCamelCase__) , (lowerCamelCase__)) : List[str] = heappop(UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase__ : Optional[int] = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = predecessors[x, y] path.append(UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase__ : Any = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase , (dist + 1, (nx, ny)) ) lowerCamelCase__ : Union[str, Any] = dist + 1 lowerCamelCase__ : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
41
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_ ( )-> Union[str, Any]: _snake_case : int = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowerCAmelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowerCAmelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowerCAmelCase ) return parser.parse_args() def lowerCamelCase_ ( )-> Optional[int]: _snake_case : Dict = parse_args() # Import training_script as a module. _snake_case : Union[str, Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _snake_case : Dict = script_fpath.stem _snake_case : Tuple = importlib.import_module(lowerCAmelCase ) # Patch sys.argv _snake_case : Optional[Any] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
260
def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> int: while a != 0: _snake_case , _snake_case : Optional[Any] = b % a, a return b def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> int: if gcd(lowerCAmelCase , lowerCAmelCase ) != 1: _snake_case : Any = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowerCAmelCase ) _snake_case , _snake_case , _snake_case : Optional[Any] = 1, 0, a _snake_case , _snake_case , _snake_case : Optional[int] = 0, 1, m while va != 0: _snake_case : Dict = ua // va _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
260
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __magic_name__ = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __magic_name__ = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) __magic_name__ = "|".join(sys.argv[1:]) __magic_name__ = re.compile(RF"""^({joined_dirs}).*?\.py$""") __magic_name__ = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
100
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , _A : TransformeraDModel , _A : AutoencoderKL , _A : KarrasDiffusionSchedulers , _A : Optional[Dict[int, str]] = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A ) # create a imagenet -> id dictionary for easier use __SCREAMING_SNAKE_CASE : Optional[int] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = int(_A ) __SCREAMING_SNAKE_CASE : List[str] = dict(sorted(self.labels.items() ) ) def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, List[str]] ): """simple docstring""" if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Union[str, Any] = list(_A ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , _A : List[int] , _A : float = 4.0 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : int = 50 , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.config.sample_size __SCREAMING_SNAKE_CASE : List[Any] = self.transformer.config.in_channels __SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(_A , device=self.device ).reshape(-1 ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([1000] * batch_size , device=self.device ) __SCREAMING_SNAKE_CASE : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input[: len(_A ) // 2] __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half, half] , dim=0 ) __SCREAMING_SNAKE_CASE : int = self.scheduler.scale_model_input(_A , _A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = t if not torch.is_tensor(_A ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __SCREAMING_SNAKE_CASE : Any = latent_model_input.device.type == '''mps''' if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = torch.floataa if is_mps else torch.floataa else: __SCREAMING_SNAKE_CASE : int = torch.intaa if is_mps else torch.intaa __SCREAMING_SNAKE_CASE : int = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __SCREAMING_SNAKE_CASE : Optional[int] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer( _A , timestep=_A , class_labels=_A ).sample # perform guidance if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_A , len(_A ) // 2 , dim=0 ) __SCREAMING_SNAKE_CASE : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __SCREAMING_SNAKE_CASE : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = torch.split(_A , _A , dim=1 ) else: __SCREAMING_SNAKE_CASE : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __SCREAMING_SNAKE_CASE : str = self.scheduler.step(_A , _A , _A ).prev_sample if guidance_scale > 1: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = latent_model_input.chunk(2 , dim=0 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = latent_model_input __SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vae.config.scaling_factor * latents __SCREAMING_SNAKE_CASE : List[str] = self.vae.decode(_A ).sample __SCREAMING_SNAKE_CASE : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_A ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A )
303
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowercase = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase = 14) -> None: if group not in primes: raise ValueError('''Unsupported Group''') __UpperCamelCase :List[Any] = primes[group]['''prime'''] __UpperCamelCase :Optional[Any] = primes[group]['''generator'''] __UpperCamelCase :Any = int(hexlify(urandom(32)) , base=16) def UpperCamelCase__ ( self) -> str: return hex(self.__private_key)[2:] def UpperCamelCase__ ( self) -> str: __UpperCamelCase :str = pow(self.generator , self.__private_key , self.prime) return hex(__lowercase)[2:] def UpperCamelCase__ ( self , __lowercase) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__lowercase , (self.prime - 1) // 2 , self.prime) == 1 ) def UpperCamelCase__ ( self , __lowercase) -> str: __UpperCamelCase :Dict = int(__lowercase , base=16) if not self.is_valid_public_key(__lowercase): raise ValueError('''Invalid public key''') __UpperCamelCase :str = pow(__lowercase , self.__private_key , self.prime) return shaaaa(str(__lowercase).encode()).hexdigest() @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__lowercase , (prime - 1) // 2 , __lowercase) == 1 ) @staticmethod def UpperCamelCase__ ( __lowercase , __lowercase , __lowercase = 14) -> str: __UpperCamelCase :str = int(__lowercase , base=16) __UpperCamelCase :Dict = int(__lowercase , base=16) __UpperCamelCase :int = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(__lowercase , __lowercase): raise ValueError('''Invalid public key''') __UpperCamelCase :Any = pow(__lowercase , __lowercase , __lowercase) return shaaaa(str(__lowercase).encode()).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
105
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = """gptj""" a__ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=50_400 , __lowercase=2_048 , __lowercase=4_096 , __lowercase=28 , __lowercase=16 , __lowercase=64 , __lowercase=None , __lowercase="gelu_new" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=1E-5 , __lowercase=0.02 , __lowercase=True , __lowercase=50_256 , __lowercase=50_256 , __lowercase=False , **__lowercase , ) -> Tuple: __UpperCamelCase :Any = vocab_size __UpperCamelCase :Optional[int] = n_positions __UpperCamelCase :Tuple = n_embd __UpperCamelCase :int = n_layer __UpperCamelCase :Any = n_head __UpperCamelCase :Any = n_inner __UpperCamelCase :Dict = rotary_dim __UpperCamelCase :Tuple = activation_function __UpperCamelCase :Optional[Any] = resid_pdrop __UpperCamelCase :Any = embd_pdrop __UpperCamelCase :List[str] = attn_pdrop __UpperCamelCase :str = layer_norm_epsilon __UpperCamelCase :List[Any] = initializer_range __UpperCamelCase :Dict = use_cache __UpperCamelCase :List[Any] = bos_token_id __UpperCamelCase :Tuple = eos_token_id super().__init__( bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = "default" , __lowercase = None , __lowercase = False , ) -> Any: super().__init__(__lowercase , task=__lowercase , patching_specs=__lowercase , use_past=__lowercase) if not getattr(self._config , '''pad_token_id''' , __lowercase): # TODO: how to do that better? __UpperCamelCase :Tuple = 0 @property def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase :Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''') __UpperCamelCase :str = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCamelCase :Any = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase__ ( self) -> int: return self._config.n_layer @property def UpperCamelCase__ ( self) -> int: return self._config.n_head def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase :Optional[int] = super(__lowercase , self).generate_dummy_inputs( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase) # We need to order the input in the way they appears in the forward() __UpperCamelCase :int = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCamelCase , __UpperCamelCase :str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCamelCase :List[str] = seqlen + 2 __UpperCamelCase :Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase :Tuple = [ (torch.zeros(__lowercase), torch.zeros(__lowercase)) for _ in range(self.num_layers) ] __UpperCamelCase :Tuple = common_inputs['''attention_mask'''] if self.use_past: __UpperCamelCase :Tuple = ordered_inputs['''attention_mask'''].dtype __UpperCamelCase :Optional[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase)] , dim=1) return ordered_inputs @property def UpperCamelCase__ ( self) -> int: return 13
105
1
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase ) class lowercase__ ( lowercase ): def __init__( self : List[Any] ,*lowerCamelCase__ : List[str] ,**lowerCamelCase__ : Tuple ): '''simple docstring''' super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ ) self.check_model_type(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : int=None ,lowerCamelCase__ : int=None ,lowerCamelCase__ : int=None ,**lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : str = {}, {} if padding is not None: _UpperCamelCase : List[str] = padding if truncation is not None: _UpperCamelCase : Optional[int] = truncation if top_k is not None: _UpperCamelCase : List[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : int ,lowerCamelCase__ : Union["Image.Image", str] ,lowerCamelCase__ : str = None ,**lowerCamelCase__ : List[Any] ): '''simple docstring''' if isinstance(lowerCamelCase__ ,(Image.Image, str) ) and isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = {'image': image, 'question': question} else: _UpperCamelCase : List[Any] = image _UpperCamelCase : Union[str, Any] = super().__call__(lowerCamelCase__ ,**lowerCamelCase__ ) return results def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Any=False ,lowerCamelCase__ : int=False ): '''simple docstring''' _UpperCamelCase : str = load_image(inputs['image'] ) _UpperCamelCase : Optional[int] = self.tokenizer( inputs['question'] ,return_tensors=self.framework ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ) _UpperCamelCase : Any = self.image_processor(images=lowerCamelCase__ ,return_tensors=self.framework ) model_inputs.update(lowerCamelCase__ ) return model_inputs def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = self.model(**lowerCamelCase__ ) return model_outputs def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: _UpperCamelCase : List[str] = self.model.config.num_labels if self.framework == "pt": _UpperCamelCase : List[str] = model_outputs.logits.sigmoid()[0] _UpperCamelCase , _UpperCamelCase : Union[str, Any] = probs.topk(lowerCamelCase__ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) _UpperCamelCase : Optional[int] = scores.tolist() _UpperCamelCase : int = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase__ ,lowerCamelCase__ )]
83
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
83
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ) -> Dict: '''simple docstring''' A: Optional[Any] = inspect.getfile(accelerate.test_utils ) A: int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) A: Dict = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _snake_case ( self : str ) -> Dict: '''simple docstring''' A: List[Any] = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() A: Any = [sys.executable] + distributed_args execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
334
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
1
"""simple docstring""" lowerCAmelCase__ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
72
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = (PNDMScheduler,) snake_case__ = (("num_inference_steps", 50),) def __lowerCAmelCase ( self : List[str] ,**lowerCamelCase__ : str ): UpperCAmelCase__ = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**lowerCamelCase__ ) return config def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Optional[Any]=0 ,**lowerCamelCase__ : List[str] ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Tuple ): pass def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[str]=0 ,**lowerCamelCase__ : Tuple ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : List[Any] ,**lowerCamelCase__ : int ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**lowerCamelCase__ ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ = model(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample return sample def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop('num_inference_steps' ,lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ ,'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ ,'set_timesteps' ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,0 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,1 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,0 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample UpperCAmelCase__ = scheduler.step_plms(lowerCamelCase__ ,1 ,lowerCamelCase__ ,**lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCAmelCase ( self : List[Any] ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def __lowerCAmelCase ( self : Dict ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] ,[0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCamelCase__ ,beta_end=lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ = scheduler.step_prk(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).prev_sample def __lowerCAmelCase ( self : int ): with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**lowerCamelCase__ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.full_loop(prediction_type='v_prediction' ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def __lowerCAmelCase ( self : Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ = self.full_loop(set_alpha_to_one=lowerCamelCase__ ,beta_start=0.0_1 ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def __lowerCAmelCase ( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ = self.full_loop(set_alpha_to_one=lowerCamelCase__ ,beta_start=0.0_1 ) UpperCAmelCase__ = torch.sum(torch.abs(lowerCamelCase__ ) ) UpperCAmelCase__ = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
98
0
"""simple docstring""" from maths.prime_factors import prime_factors def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" if not isinstance(_a, _a ): _UpperCamelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(_a ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_a ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _a = get_logger(__name__) class _UpperCAmelCase: def __init__( self , __a = None) -> List[str]: '''simple docstring''' _UpperCamelCase = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(__a) return os.path.join(self.extract_dir , hash_url_to_filename(__a)) def UpperCAmelCase ( self , __a , __a) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(__a) and not (os.path.isdir(__a) and os.listdir(__a)) ) def UpperCAmelCase ( self , __a , __a = False) -> str: '''simple docstring''' _UpperCamelCase = self.extractor.infer_extractor_format(__a) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(__a) if self._do_extract(__a , __a): self.extractor.extract(__a , __a , __a) return output_path class _UpperCAmelCase( lowerCamelCase ): @classmethod @abstractmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' ... class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): lowercase__ = [] @staticmethod def UpperCAmelCase ( __a , __a) -> Any: '''simple docstring''' with open(__a , '''rb''') as f: return f.read(__a) @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if not magic_number: _UpperCamelCase = max(len(__a) for cls_magic_number in cls.magic_numbers) try: _UpperCamelCase = cls.read_magic_number(__a , __a) except OSError: return False return any(magic_number.startswith(__a) for cls_magic_number in cls.magic_numbers) class _UpperCAmelCase( lowerCamelCase ): @classmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' return tarfile.is_tarfile(__a) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' def resolved(__a) -> str: return os.path.realpath(os.path.abspath(__a)) def badpath(__a , __a) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a)).startswith(__a) def badlink(__a , __a) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(__a , os.path.dirname(info.name))) return badpath(info.linkname , base=__a) _UpperCamelCase = resolved(__a) for finfo in members: if badpath(finfo.name , __a): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) _UpperCamelCase = tarfile.open(__a) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a)) tar_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x1F\x8B'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with gzip.open(__a , '''rb''') as gzip_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if super().is_extractable(__a , magic_number=__a): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , '''rb''') as fp: _UpperCamelCase = _EndRecData(__a) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(__a) # CD is where we expect it to be if len(__a) == sizeCentralDir: _UpperCamelCase = struct.unpack(__a , __a) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) with zipfile.ZipFile(__a , '''r''') as zip_file: zip_file.extractall(__a) zip_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with lzma.open(__a) as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''') import rarfile os.makedirs(__a , exist_ok=__a) _UpperCamelCase = rarfile.RarFile(__a) rf.extractall(__a) rf.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x28\xb5\x2F\xFD'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''') import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(__a , '''rb''') as ifh, open(__a , '''wb''') as ofh: dctx.copy_stream(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x42\x5A\x68'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with bza.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''') import pyazr os.makedirs(__a , exist_ok=__a) with pyazr.SevenZipFile(__a , '''r''') as archive: archive.extractall(__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x04\x22\x4D\x18'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''') import lza.frame with lza.frame.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowercase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase ( cls) -> Any: '''simple docstring''' return max( len(__a) for extractor in cls.extractors.values() if issubclass(__a , __a) for extractor_magic_number in extractor.magic_numbers) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a) except OSError: return b"" @classmethod def UpperCAmelCase ( cls , __a , __a = False) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = cls.infer_extractor_format(__a) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase ( cls , __a) -> str: # <Added version="2.4.0"/> '''simple docstring''' _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(__a , __a) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a): return extractor_format @classmethod def UpperCAmelCase ( cls , __a , __a , __a = None , __a = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(__a) , exist_ok=__a) # Prevent parallel extractions _UpperCamelCase = str(Path(__a).with_suffix('''.lock''')) with FileLock(__a): shutil.rmtree(__a , ignore_errors=__a) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(__a , __a) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a): return extractor.extract(__a , __a)
100
0
"""simple docstring""" __A : Any = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __A : str = ["a", "b", "c", "d", "e"] def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = start # add current to visited visited.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _UpperCAmelCase = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # if all neighbors visited add current to sort sort.append(_SCREAMING_SNAKE_CASE ) # if all vertices haven't been visited select a new one to visit if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): for vertice in vertices: if vertice not in visited: _UpperCAmelCase = topological_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # return sort return sort if __name__ == "__main__": __A : Union[str, Any] = topological_sort("a", [], []) print(sort)
260
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_SCREAMING_SNAKE_CASE ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": __A : Dict = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
260
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->str: '''simple docstring''' if "cls_token" in name: a : Optional[Any] = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: a : Tuple = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: a : List[Any] = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: a : Optional[int] = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: a : Union[str, Any] = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a : Dict = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: a : Optional[int] = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: a : int = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: a : Optional[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a : Optional[Any] = name.replace("attn" , "attention.self" ) if "norm1" in name: a : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a : Union[str, Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a : List[Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a : Optional[Any] = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: a : Tuple = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: a : List[Any] = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: a : str = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: a : Optional[int] = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: a : List[str] = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : Any ) ->Tuple: '''simple docstring''' for key in orig_state_dict.copy().keys(): a : Tuple = orig_state_dict.pop(_lowercase ) if "qkv" in key: a : List[str] = key.split("." ) a : List[str] = int(key_split[1] ) if "decoder_blocks" in key: a : Optional[int] = config.decoder_hidden_size a : Optional[Any] = "decoder.decoder_layers." if "weight" in key: a : Optional[Any] = val[:dim, :] a : Dict = val[dim : dim * 2, :] a : int = val[-dim:, :] elif "bias" in key: a : List[Any] = val[:dim] a : Tuple = val[dim : dim * 2] a : Tuple = val[-dim:] else: a : Tuple = config.hidden_size a : Tuple = "vit.encoder.layer." if "weight" in key: a : List[str] = val[:dim, :] a : Optional[int] = val[dim : dim * 2, :] a : Union[str, Any] = val[-dim:, :] elif "bias" in key: a : str = val[:dim] a : Any = val[dim : dim * 2] a : Union[str, Any] = val[-dim:] else: a : Optional[int] = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple , _lowercase : List[str] ) ->Any: '''simple docstring''' a : Any = ViTMAEConfig() if "large" in checkpoint_url: a : Optional[Any] = 1024 a : Optional[Any] = 4096 a : Any = 24 a : Union[str, Any] = 16 elif "huge" in checkpoint_url: a : Optional[int] = 14 a : Union[str, Any] = 1280 a : str = 5120 a : Tuple = 32 a : Union[str, Any] = 16 a : Optional[Any] = ViTMAEForPreTraining(_lowercase ) a : Tuple = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" )["model"] a : Dict = ViTMAEImageProcessor(size=config.image_size ) a : Optional[int] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) model.eval() a : Dict = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" a : Any = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) a : int = ViTMAEImageProcessor(size=config.image_size ) a : List[str] = image_processor(images=_lowercase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) a : List[Any] = model(**_lowercase ) a : Optional[int] = outputs.logits if "large" in checkpoint_url: a : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: a : int = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: a : Optional[int] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _lowercase , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
105
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->str: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) a : Tuple = precision a : str = ceil(precision / 14 ) a : List[Any] = 42_6880 * Decimal(1_0005 ).sqrt() a : Union[str, Any] = 1 a : Dict = 1359_1409 a : Optional[int] = Decimal(_lowercase ) for k in range(1 , _lowercase ): a : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a : Optional[Any] = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
105
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @property def _UpperCamelCase ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') ,up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') ,) return model def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.dummy_uncond_unet __SCREAMING_SNAKE_CASE :int = PNDMScheduler() __SCREAMING_SNAKE_CASE :int = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :Any = pndm(generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=20 ,output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE :Any = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :str = pndm(generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=20 ,output_type='''numpy''' ,return_dict=SCREAMING_SNAKE_CASE__ )[0] __SCREAMING_SNAKE_CASE :Any = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE :Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :Union[str, Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = '''google/ddpm-cifar10-32''' __SCREAMING_SNAKE_CASE :Tuple = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = PNDMScheduler() __SCREAMING_SNAKE_CASE :List[Any] = PNDMPipeline(unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ) pndm.to(SCREAMING_SNAKE_CASE__ ) pndm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE :Any = pndm(generator=SCREAMING_SNAKE_CASE__ ,output_type='''numpy''' ).images __SCREAMING_SNAKE_CASE :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE :Optional[Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
239
"""simple docstring""" import math import random def __lowerCamelCase ( a_ : float , a_ : bool = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCamelCase_ = 0.02 def __lowerCamelCase ( a_ : int , a_ : int ) -> float: __SCREAMING_SNAKE_CASE :Any = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(a_ ): # Forward propagation __SCREAMING_SNAKE_CASE :Any = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE :Tuple = (expected / 1_00) - layer_a # Error delta __SCREAMING_SNAKE_CASE :Union[str, Any] = layer_1_error * sigmoid_function(a_ , a_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = int(input("Expected value: ")) lowerCamelCase_ = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
239
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) SCREAMING_SNAKE_CASE =os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =f'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() SCREAMING_SNAKE_CASE =[sys.executable] + distributed_args execute_subprocess_async(snake_case ,env=os.environ.copy() )
334
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
1
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __lowercase = len(lowerCamelCase_ ) __lowercase = max(lowerCamelCase_ ) __lowercase = min(lowerCamelCase_ ) # create the counting array __lowercase = coll_max + 1 - coll_min __lowercase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowerCamelCase_ ): __lowercase = counting_arr[i] + counting_arr[i - 1] # create the output collection __lowercase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowerCamelCase_ ) ): __lowercase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _lowerCAmelCase ( lowerCamelCase_ : Dict ): return "".join([chr(lowerCamelCase_ ) for i in counting_sort([ord(lowerCamelCase_ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" _SCREAMING_SNAKE_CASE = input('''Enter numbers separated by a comma:\n''').strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
217
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
217
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : int = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : int ='roc_bert' def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=12, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=True, lowerCAmelCase=0, lowerCAmelCase="absolute", lowerCAmelCase=None, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=768, lowerCAmelCase=910, lowerCAmelCase=512, lowerCAmelCase=24_858, lowerCAmelCase=True, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =hidden_size lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_act lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =initializer_range lowerCamelCase_ =type_vocab_size lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =use_cache lowerCamelCase_ =enable_pronunciation lowerCamelCase_ =enable_shape lowerCamelCase_ =pronunciation_embed_dim lowerCamelCase_ =pronunciation_vocab_size lowerCamelCase_ =shape_embed_dim lowerCamelCase_ =shape_vocab_size lowerCamelCase_ =concat_input lowerCamelCase_ =position_embedding_type lowerCamelCase_ =classifier_dropout super().__init__(pad_token_id=lowerCAmelCase, **lowerCAmelCase )
75
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __magic_name__ = logging.get_logger(__name__) @add_end_docstrings( __a , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__) else: raise ValueError("""Unsupported framework""") return masked_index def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.get_masked_index(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = np.prod(masked_index.shape) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ ( self , lowerCAmelCase__): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__): if return_tensors is None: __SCREAMING_SNAKE_CASE = self.framework __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) self.ensure_exactly_one_mask_token(lowerCAmelCase__) return model_inputs def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.model(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""] return model_outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 , lowerCAmelCase__=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __SCREAMING_SNAKE_CASE = target_ids.shape[0] __SCREAMING_SNAKE_CASE = model_outputs["""input_ids"""][0] __SCREAMING_SNAKE_CASE = model_outputs["""logits"""] if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] __SCREAMING_SNAKE_CASE = outputs.numpy() __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = stable_softmax(lowerCAmelCase__ , axis=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0) , target_ids.reshape(-1 , 1)) __SCREAMING_SNAKE_CASE = tf.expand_dims(lowerCAmelCase__ , 0) __SCREAMING_SNAKE_CASE = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = topk.values.numpy(), topk.indices.numpy() else: __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = probs[..., target_ids] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = probs.topk(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): __SCREAMING_SNAKE_CASE = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place __SCREAMING_SNAKE_CASE = input_ids.numpy().copy() if target_ids is not None: __SCREAMING_SNAKE_CASE = target_ids[p].tolist() __SCREAMING_SNAKE_CASE = p # Filter padding out: __SCREAMING_SNAKE_CASE = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p]), """sequence""": sequence} row.append(lowerCAmelCase__) result.append(lowerCAmelCase__) if single_mask: return result[0] return result def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [targets] try: __SCREAMING_SNAKE_CASE = self.tokenizer.get_vocab() except Exception: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = [] for target in targets: __SCREAMING_SNAKE_CASE = vocab.get(lowerCAmelCase__ , lowerCAmelCase__) if id_ is None: __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )["""input_ids"""] if len(lowerCAmelCase__) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""") continue __SCREAMING_SNAKE_CASE = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.") target_ids.append(id_) __SCREAMING_SNAKE_CASE = list(set(lowerCAmelCase__)) if len(lowerCAmelCase__) == 0: raise ValueError("""At least one target must be provided when passed.""") __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase__) return target_ids def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = {} if targets is not None: __SCREAMING_SNAKE_CASE = self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = target_ids if top_k is not None: __SCREAMING_SNAKE_CASE = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""") return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1: return outputs[0] return outputs
100
0
"""simple docstring""" from PIL import Image def _SCREAMING_SNAKE_CASE ( _lowercase : Image , _lowercase : int ) ->Image: '''simple docstring''' a : Dict = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_lowercase : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(_lowercase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change contrast to 170 a : List[Any] = change_contrast(img, 170) cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
79
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Any = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __SCREAMING_SNAKE_CASE :List[str] = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Tuple ) -> int: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) return (preds == labels).mean() def UpperCAmelCase_ ( __lowercase : int , __lowercase : str ) -> Optional[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = simple_accuracy(__lowercase , __lowercase ) _UpperCAmelCase = fa_score(y_true=__lowercase , y_pred=__lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : List[str] ) -> List[Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) _UpperCAmelCase = pearsonr(__lowercase , __lowercase )[0] _UpperCAmelCase = spearmanr(__lowercase , __lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : str ) -> Tuple: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) assert len(__lowercase ) == len(__lowercase ), f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' if task_name == "cola": return {"mcc": matthews_corrcoef(__lowercase , __lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mrpc": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "sts-b": return pearson_and_spearman(__lowercase , __lowercase ) elif task_name == "qqp": return acc_and_fa(__lowercase , __lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' warnings.warn(__lowercase , __lowercase ) requires_backends(__lowercase , "sklearn" ) if len(__lowercase ) != len(__lowercase ): raise ValueError(f'Predictions and labels have mismatched lengths {len(__lowercase )} and {len(__lowercase )}' ) if task_name == "xnli": return {"acc": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError(__lowercase )
22
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __SCREAMING_SNAKE_CASE :Optional[int] = '''▁''' class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = AlbertTokenizer def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : Tuple=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : str="<unk>" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : List[Any]="<pad>" , snake_case_ : List[str]="[CLS]" , snake_case_ : int="[MASK]" , **snake_case_ : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
22
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=32 , a_=3 , a_=4 , a_=[10, 20, 30, 40] , a_=[2, 2, 3, 2] , a_=True , a_=True , a_=37 , a_="gelu" , a_=10 , a_=0.02 , a_=["stage2", "stage3", "stage4"] , a_=3 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : Tuple = batch_size __snake_case : Any = image_size __snake_case : List[Any] = num_channels __snake_case : Union[str, Any] = num_stages __snake_case : Any = hidden_sizes __snake_case : Dict = depths __snake_case : Optional[Any] = is_training __snake_case : Dict = use_labels __snake_case : Tuple = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : List[str] = type_sequence_label_size __snake_case : Tuple = initializer_range __snake_case : int = out_features __snake_case : Tuple = num_labels __snake_case : Optional[Any] = scope __snake_case : Optional[Any] = num_stages def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=a_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=a_ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = UperNetForSemanticSegmentation(config=a_ ) model.to(a_ ) model.eval() __snake_case : List[Any] = model(a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = config_and_inputs __snake_case : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase__ ={'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = UperNetModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(a_ ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Tuple = [*signature.parameters.keys()] __snake_case : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' def check_hidden_states_output(a_ , a_ , a_ ): __snake_case : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Any = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[Any] = True check_hidden_states_output(a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = _config_zero_init(a_ ) __snake_case : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __snake_case : Tuple = model_class(config=a_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase ( ) ->Any: """simple docstring""" __snake_case : Dict = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __snake_case : Union[str, Any] = Image.open(_snake_case ).convert('''RGB''' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) __snake_case : int = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(a_ ) __snake_case : str = prepare_img() __snake_case : Union[str, Any] = processor(images=a_ , return_tensors='''pt''' ).to(a_ ) with torch.no_grad(): __snake_case : Any = model(**a_ ) __snake_case : int = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case : List[str] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) __snake_case : Any = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(a_ ) __snake_case : Dict = prepare_img() __snake_case : Optional[Any] = processor(images=a_ , return_tensors='''pt''' ).to(a_ ) with torch.no_grad(): __snake_case : Optional[int] = model(**a_ ) __snake_case : List[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 ) )
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : int = {"vocab_file": "vocab.txt"} _lowercase : List[Any] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowercase : int = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def lowerCamelCase ( UpperCAmelCase__ : int ) -> Optional[Any]: with open(UpperCAmelCase__ , """r""" ) as f: lowercase_ : Optional[Any] = f.read().splitlines() return [l.strip() for l in lines] class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , lowercase_ : List[str] , lowercase_ : Any="<unk>" , lowercase_ : str="<cls>" , lowercase_ : Dict="<pad>" , lowercase_ : int="<mask>" , lowercase_ : Optional[Any]="<eos>" , **lowercase_ : Any , ): super().__init__(**lowercase_ ) lowercase_ : List[Any] = load_vocab_file(lowercase_ ) lowercase_ : Union[str, Any] = dict(enumerate(self.all_tokens ) ) lowercase_ : Tuple = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ : Optional[int] = unk_token lowercase_ : List[str] = cls_token lowercase_ : Dict = pad_token lowercase_ : Optional[Any] = mask_token lowercase_ : List[str] = eos_token lowercase_ : List[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int ): return self._id_to_token.get(lowercase_ , self.unk_token ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str ): return self._token_to_id.get(lowercase_ , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple , **lowercase_ : List[str] ): return text.split() def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Any=False ): return len(self._id_to_token ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return {token: i for i, token in enumerate(self.all_tokens )} def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str ): return self._token_to_id.get(lowercase_ , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : int ): return self._id_to_token.get(lowercase_ , self.unk_token ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : Any = [self.cls_token_id] lowercase_ : List[Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ : Optional[Any] = [1] + ([0] * len(lowercase_ )) + [1] if token_ids_a is not None: mask += [0] * len(lowercase_ ) + [1] return mask def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] ): lowercase_ : Dict = os.path.join(lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(lowercase_ , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return self.get_vocab_size(with_added_tokens=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[List[str], List[AddedToken]] , lowercase_ : bool = False ): return super()._add_tokens(lowercase_ , special_tokens=lowercase_ )
239
'''simple docstring''' import math import unittest def lowerCamelCase ( UpperCAmelCase__ : int ) -> bool: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): with self.assertRaises(lowercase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
239
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class A ( _a ): lowercase_ = 'microsoft/speecht5_tts' lowercase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) lowercase_ = 'text_reader' lowercase_ = SpeechTaProcessor lowercase_ = SpeechTaForTextToSpeech lowercase_ = SpeechTaHifiGan lowercase_ = ['text'] lowercase_ = ['audio'] def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" if self.post_processor is None: _a = '''microsoft/speecht5_hifigan''' super().setup() def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple=None ) -> List[Any]: """simple docstring""" _a = self.pre_processor(text=lowerCAmelCase_ , return_tensors='''pt''' , truncation=lowerCAmelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) _a = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) _a = torch.tensor(embeddings_dataset[73_05]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Tuple ) -> int: """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" with torch.no_grad(): return self.post_processor(lowerCAmelCase_ ).cpu().detach()
179
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _snake_case : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( _a ): def __init__( self : Dict , lowerCAmelCase_ : CLIPSegForImageSegmentation , lowerCAmelCase_ : CLIPSegProcessor , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ) -> int: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: _a = ( F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _a = dict(scheduler.config ) _a = 1 _a = FrozenDict(lowerCAmelCase_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: _a = ( F'The configuration file of this scheduler: {scheduler} has not set the configuration' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _a = dict(scheduler.config ) _a = True _a = FrozenDict(lowerCAmelCase_ ) if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=lowerCAmelCase_ , segmentation_processor=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ) -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase_ , lowerCAmelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : str , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Any , ) -> Tuple: """simple docstring""" _a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) _a = self.segmentation_model(**lowerCAmelCase_ ) _a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _a = self.numpy_to_pil(lowerCAmelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , )
179
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE=2_8_1_2_3 ) -> Optional[Any]: __lowerCAmelCase: str = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowerCAmelCase: Union[str, Any] = set() __lowerCAmelCase: Optional[Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__SCREAMING_SNAKE_CASE ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
217
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = ["""pixel_values"""] def __init__( self : List[Any] , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , )-> None: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: int = size if size is not None else {"shortest_edge": 2_5_6} __lowerCAmelCase: str = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: Any = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Optional[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: str = do_resize __lowerCAmelCase: Any = size __lowerCAmelCase: Dict = resample __lowerCAmelCase: Tuple = do_center_crop __lowerCAmelCase: str = crop_size __lowerCAmelCase: List[Any] = do_rescale __lowerCAmelCase: int = rescale_factor __lowerCAmelCase: List[Any] = do_normalize __lowerCAmelCase: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self : Tuple , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") __lowerCAmelCase: Optional[Any] = get_resize_output_image_size(UpperCamelCase__ , size=size["shortest_edge"] , default_to_square=UpperCamelCase__) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Tuple , )-> np.ndarray: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = get_size_dict(UpperCamelCase__) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}") return center_crop(UpperCamelCase__ , size=(size["height"], size["width"]) , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : str , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[int])-> np.ndarray: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , )-> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[Any] , )-> Dict: '''simple docstring''' __lowerCAmelCase: Any = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase: str = size if size is not None else self.size __lowerCAmelCase: Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__) __lowerCAmelCase: List[str] = resample if resample is not None else self.resample __lowerCAmelCase: str = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase: Tuple = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase: List[Any] = get_size_dict(UpperCamelCase__ , param_name="crop_size") __lowerCAmelCase: List[Any] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase: Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase: Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase: Union[str, Any] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase: Tuple = image_std if image_std is not None else self.image_std __lowerCAmelCase: Union[str, Any] = make_list_of_images(UpperCamelCase__) if not valid_images(UpperCamelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. __lowerCAmelCase: Tuple = [to_numpy_array(UpperCamelCase__) for image in images] if do_resize: __lowerCAmelCase: Union[str, Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__) for image in images] if do_center_crop: __lowerCAmelCase: Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__) for image in images] if do_rescale: __lowerCAmelCase: Optional[Any] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__) for image in images] if do_normalize: __lowerCAmelCase: List[str] = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__) for image in images] __lowerCAmelCase: Optional[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__) for image in images] __lowerCAmelCase: List[str] = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__) def lowercase_ ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Tuple] = None)-> Dict: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__) != len(UpperCamelCase__): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits") if is_torch_tensor(UpperCamelCase__): __lowerCAmelCase: Optional[int] = target_sizes.numpy() __lowerCAmelCase: List[Any] = [] for idx in range(len(UpperCamelCase__)): __lowerCAmelCase: List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = resized_logits[0].argmax(dim=0) semantic_segmentation.append(UpperCamelCase__) else: __lowerCAmelCase: Tuple = logits.argmax(dim=1) __lowerCAmelCase: Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
217
1
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class a ( nn.Module ): _snake_case : int _snake_case : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Any , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_states.shape _UpperCAmelCase = jax.image.resize( __lowerCAmelCase , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) _UpperCAmelCase = self.conv(__lowerCAmelCase ) return hidden_states class a ( nn.Module ): _snake_case : int _snake_case : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , __lowerCAmelCase : List[Any] ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _UpperCAmelCase = self.conv(__lowerCAmelCase ) return hidden_states class a ( nn.Module ): _snake_case : int _snake_case : int = None _snake_case : float = 0.0 _snake_case : bool = None _snake_case : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCAmelCase = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = nn.Dense(__lowerCAmelCase , dtype=self.dtype ) _UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCAmelCase = nn.Dropout(self.dropout_prob ) _UpperCAmelCase = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCAmelCase = None if use_nin_shortcut: _UpperCAmelCase = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=True ): _UpperCAmelCase = hidden_states _UpperCAmelCase = self.norma(__lowerCAmelCase ) _UpperCAmelCase = nn.swish(__lowerCAmelCase ) _UpperCAmelCase = self.conva(__lowerCAmelCase ) _UpperCAmelCase = self.time_emb_proj(nn.swish(__lowerCAmelCase ) ) _UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(__lowerCAmelCase , 1 ) , 1 ) _UpperCAmelCase = hidden_states + temb _UpperCAmelCase = self.norma(__lowerCAmelCase ) _UpperCAmelCase = nn.swish(__lowerCAmelCase ) _UpperCAmelCase = self.dropout(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = self.conva(__lowerCAmelCase ) if self.conv_shortcut is not None: _UpperCAmelCase = self.conv_shortcut(__lowerCAmelCase ) return hidden_states + residual
30
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = tokenizer(example["""content"""] ,truncation=lowercase )["""input_ids"""] _UpperCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output UpperCAmelCase__ = HfArgumentParser(PretokenizationArguments) UpperCAmelCase__ = parser.parse_args() if args.num_workers is None: UpperCAmelCase__ = multiprocessing.cpu_count() UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase__ = time.time() UpperCAmelCase__ = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() UpperCAmelCase__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
30
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __lowercase ( __lowercase ) -> List[int]: '''simple docstring''' if isinstance(__lowercase , np.ndarray ): return list(tensor.shape ) _A = tf.shape(__lowercase ) if tensor.shape == tf.TensorShape(__lowercase ): return dynamic _A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowercase )] def __lowercase ( __lowercase , __lowercase = None , __lowercase = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=__lowercase , name=__lowercase ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase=1e-5 , __lowercase=-1 ) -> List[Any]: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowercase , __lowercase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized _A , _A = tf.nn.moments(__lowercase , axes=[axis] , keepdims=__lowercase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis _A = [1] * inputs.shape.rank _A = shape_list(__lowercase )[axis] _A = tf.reshape(__lowercase , __lowercase ) _A = tf.reshape(__lowercase , __lowercase ) # Compute layer normalization using the batch_normalization # function. _A = tf.nn.batch_normalization( __lowercase , __lowercase , __lowercase , offset=__lowercase , scale=__lowercase , variance_epsilon=__lowercase , ) return outputs def __lowercase ( __lowercase , __lowercase=0 , __lowercase=-1 ) -> Optional[Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input _A = tf.shape(__lowercase ) _A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) _A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowercase , __lowercase ) def __lowercase ( __lowercase ) -> tf.Tensor: '''simple docstring''' if not isinstance(__lowercase , tf.Tensor ): _A = tf.convert_to_tensor(__lowercase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: _A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: _A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) _A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowercase ( __lowercase , __lowercase , __lowercase = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( __lowercase , tf.cast(__lowercase , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowercase )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def __lowercase ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' _A = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. _A = [x for x in data if len(__lowercase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) _A = np.asarray(__lowercase ) _A = 1 _A = np.array_split(__lowercase , __lowercase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 _A = np.array_split(__lowercase , __lowercase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowercase ): _A = chunk_data else: _A = data def __lowercase ( __lowercase , __lowercase ) -> Tuple: '''simple docstring''' if name in group.attrs: _A = [n.decode("utf8" ) if hasattr(__lowercase , "decode" ) else n for n in group.attrs[name]] else: _A = [] _A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(__lowercase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def __lowercase ( __lowercase ) -> Optional[int]: '''simple docstring''' def _expand_single_ad_tensor(__lowercase ): if isinstance(__lowercase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowercase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowercase )
79
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''canine''' def __init__( self : Dict , __UpperCAmelCase : List[str]=768 , __UpperCAmelCase : str=12 , __UpperCAmelCase : Union[str, Any]=12 , __UpperCAmelCase : int=3072 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[Any]=16384 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : Dict=1E-12 , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : int=0xE000 , __UpperCAmelCase : List[Any]=0xE001 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : int=16384 , __UpperCAmelCase : Union[str, Any]=128 , **__UpperCAmelCase : Dict , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = type_vocab_size _A = layer_norm_eps # Character config: _A = downsampling_rate _A = upsampling_kernel_size _A = num_hash_functions _A = num_hash_buckets _A = local_transformer_stride
79
1
def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(__snake_case ,__snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__snake_case ) == 1: return True snake_case = series[1] - series[0] for index in range(len(__snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(__snake_case ,__snake_case ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__snake_case ) == 0: raise ValueError('''Input list must be a non empty list''' ) snake_case = 0 for val in series: answer += val return answer / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
362
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'efficientnet' def __init__( self , __snake_case = 3 , __snake_case = 6_0_0 , __snake_case = 2.0 , __snake_case = 3.1 , __snake_case = 8 , __snake_case = [3, 3, 5, 3, 5, 5, 3] , __snake_case = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __snake_case = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __snake_case = [] , __snake_case = [1, 2, 2, 2, 1, 2, 1] , __snake_case = [1, 2, 2, 3, 3, 4, 1] , __snake_case = [1, 6, 6, 6, 6, 6, 6] , __snake_case = 0.25 , __snake_case = "swish" , __snake_case = 2_5_6_0 , __snake_case = "mean" , __snake_case = 0.02 , __snake_case = 0.001 , __snake_case = 0.99 , __snake_case = 0.5 , __snake_case = 0.2 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = num_channels snake_case = image_size snake_case = width_coefficient snake_case = depth_coefficient snake_case = depth_divisor snake_case = kernel_sizes snake_case = in_channels snake_case = out_channels snake_case = depthwise_padding snake_case = strides snake_case = num_block_repeats snake_case = expand_ratios snake_case = squeeze_expansion_ratio snake_case = hidden_act snake_case = hidden_dim snake_case = pooling_type snake_case = initializer_range snake_case = batch_norm_eps snake_case = batch_norm_momentum snake_case = dropout_rate snake_case = drop_connect_rate snake_case = sum(__snake_case ) * 4 class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a_ ( self ): return 1E-5
213
0
from manim import * class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : List[str] ): """simple docstring""" __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.2_5 , width=0.2_5 ) __snake_case = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''CPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(4 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''GPU''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Model''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) __snake_case = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) model_cpu_arr.append(a__ ) self.add(*a__ , *a__ , *a__ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Loaded Checkpoint''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a__ ) __snake_case = [] __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) ckpt_arr.append(a__ ) __snake_case = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a__ ) self.add(*a__ , *a__ ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) __snake_case = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a__ ) __snake_case = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(*a__ ).arrange(a__ , buff=0 ) __snake_case = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) __snake_case = Text('''Disk''' , font_size=24 ) __snake_case = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(a__ , run_time=3 ) , Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) __snake_case = [] for i, rect in enumerate(a__ ): __snake_case = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(FadeOut(a__ ) ) __snake_case = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ , run_time=3 ) ) self.play( FadeOut(a__ , a__ , *a__ , *a__ ) , ) self.wait()
24
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[str] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ = NewType("""DataClass""", Any) a_ = NewType("""DataClassType""", Any) def __lowercase ( snake_case_ : List[str] ) ->List[str]: '''simple docstring''' if isinstance(snake_case_ ,snake_case_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __lowercase ( snake_case_ : list ) ->Callable[[str], Any]: '''simple docstring''' __A : List[Any] = {str(snake_case_ ): choice for choice in choices} return lambda snake_case_ : str_to_choice.get(snake_case_ ,snake_case_ ) def __lowercase ( *, snake_case_ : Union[str, List[str]] = None ,snake_case_ : str = None ,snake_case_ : Any = dataclasses.MISSING ,snake_case_ : Callable[[], Any] = dataclasses.MISSING ,snake_case_ : dict = None ,**snake_case_ : str ,) ->dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A : Optional[Any] = {} if aliases is not None: __A : List[Any] = aliases if help is not None: __A : str = help return dataclasses.field(metadata=snake_case_ ,default=snake_case_ ,default_factory=snake_case_ ,**snake_case_ ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 def __init__( self , __lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' if "formatter_class" not in kwargs: __A : str = ArgumentDefaultsHelpFormatter super().__init__(**__lowerCamelCase ) if dataclasses.is_dataclass(__lowerCamelCase ): __A : Union[str, Any] = [dataclass_types] __A : Optional[Any] = list(__lowerCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowerCamelCase ) @staticmethod def UpperCamelCase__( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = F"""--{field.name}""" __A : List[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowerCamelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __A : Tuple = kwargs.pop('''aliases''' , [] ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : Optional[int] = [aliases] __A : str = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowerCamelCase , '''UnionType''' ) and isinstance(__lowerCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowerCamelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field '{field.name}'.""" ) if type(__lowerCamelCase ) not in field.type.__args__: # filter `str` in Union __A : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A : int = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A : int = ( field.type.__args__[0] if isinstance(__lowerCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __A : Tuple = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A : Union[str, Any] = {} if origin_type is Literal or (isinstance(field.type , __lowerCamelCase ) and issubclass(field.type , __lowerCamelCase )): if origin_type is Literal: __A : Union[str, Any] = field.type.__args__ else: __A : Union[str, Any] = [x.value for x in field.type] __A : Optional[int] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __A : Dict = field.default else: __A : Optional[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A : Any = copy(__lowerCamelCase ) # Hack because type=bool in argparse does not behave as we want. __A : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A : Optional[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A : Tuple = default # This tells argparse we accept 0 or 1 value after --field_name __A : str = '''?''' # This is the value that will get picked if we do --field_name (without value) __A : int = True elif isclass(__lowerCamelCase ) and issubclass(__lowerCamelCase , __lowerCamelCase ): __A : str = field.type.__args__[0] __A : List[str] = '''+''' if field.default_factory is not dataclasses.MISSING: __A : Optional[int] = field.default_factory() elif field.default is dataclasses.MISSING: __A : Tuple = True else: __A : Union[str, Any] = field.type if field.default is not dataclasses.MISSING: __A : Dict = field.default elif field.default_factory is not dataclasses.MISSING: __A : List[str] = field.default_factory() else: __A : str = True parser.add_argument(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A : List[str] = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if hasattr(__lowerCamelCase , '''_argument_group_name''' ): __A : Tuple = self.add_argument_group(dtype._argument_group_name ) else: __A : List[Any] = self try: __A : Dict[str, type] = get_type_hints(__lowerCamelCase ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__lowerCamelCase ): __A : List[str] = '''.'''.join(map(__lowerCamelCase , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowerCamelCase ): if not field.init: continue __A : int = type_hints[field.name] self._parse_dataclass_field(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase=None , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A : Tuple = [] if args_filename: args_files.append(Path(__lowerCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A : Dict = ArgumentParser() args_file_parser.add_argument(__lowerCamelCase , type=__lowerCamelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A : List[Any] = args_file_parser.parse_known_args(args=__lowerCamelCase ) __A : Dict = vars(__lowerCamelCase ).get(args_file_flag.lstrip('''-''' ) , __lowerCamelCase ) if cmd_args_file_paths: args_files.extend([Path(__lowerCamelCase ) for p in cmd_args_file_paths] ) __A : Any = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A : Tuple = self.parse_known_args(args=__lowerCamelCase ) __A : int = [] for dtype in self.dataclass_types: __A : List[str] = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : List[str] = {k: v for k, v in vars(__lowerCamelCase ).items() if k in keys} for k in keys: delattr(__lowerCamelCase , __lowerCamelCase ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowerCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Tuple = set(args.keys() ) __A : Union[str, Any] = [] for dtype in self.dataclass_types: __A : str = {f.name for f in dataclasses.fields(__lowerCamelCase ) if f.init} __A : Optional[int] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A : int = dtype(**__lowerCamelCase ) outputs.append(__lowerCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__lowerCamelCase )}""" ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' with open(Path(__lowerCamelCase ) , encoding='''utf-8''' ) as open_json_file: __A : List[str] = json.loads(open_json_file.read() ) __A : List[str] = self.parse_dict(__lowerCamelCase , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' __A : Dict = self.parse_dict(yaml.safe_load(Path(__lowerCamelCase ).read_text() ) , allow_extra_keys=__lowerCamelCase ) return tuple(__lowerCamelCase )
179
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _lowercase ( __A ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def _lowercase ( __A ,__A ): '''simple docstring''' return (-y * np.log(__A ) - (1 - y) * np.log(1 - h )).mean() def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = np.dot(__A ,__A ) return np.sum(y * scores - np.log(1 + np.exp(__A ) ) ) def _lowercase ( __A ,__A ,__A ,__A=70_000 ): '''simple docstring''' __UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__A ): __UpperCamelCase = np.dot(__A ,__A ) __UpperCamelCase = sigmoid_function(__A ) __UpperCamelCase = np.dot(x.T ,h - y ) / y.size __UpperCamelCase = theta - alpha * gradient # updating the weights __UpperCamelCase = np.dot(__A ,__A ) __UpperCamelCase = sigmoid_function(__A ) __UpperCamelCase = cost_function(__A ,__A ) if iterations % 100 == 0: print(f"loss: {j} \t" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a__ : Any = datasets.load_iris() a__ : str = iris.data[:, :2] a__ : Dict = (iris.target != 0) * 1 a__ : Union[str, Any] = 0.1 a__ : int = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('theta: ', theta) # printing the theta i.e our weights vector def _lowercase ( __A ): '''simple docstring''' return sigmoid_function( np.dot(__A ,__A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((a__) , (a__)) : str = (x[:, 0].min(), x[:, 0].max()) ((a__) , (a__)) : List[Any] = (x[:, 1].min(), x[:, 1].max()) ((a__) , (a__)) : Tuple = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a__ : Dict = np.c_[xxa.ravel(), xxa.ravel()] a__ : Dict = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
243
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = filter(lambda __A : p.requires_grad ,model.parameters() ) __UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Optional[Any] = logging.getLogger(__name__) def _lowercase ( __A ,__A ): '''simple docstring''' if metric == "rouge2": __UpperCamelCase = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __UpperCamelCase = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __UpperCamelCase = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) __UpperCamelCase = ModelCheckpoint( dirpath=__A ,filename=__A ,monitor=f"val_{metric}" ,mode="""max""" ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def _lowercase ( __A ,__A ): '''simple docstring''' return EarlyStopping( monitor=f"val_{metric}" ,mode="""min""" if """loss""" in metric else """max""" ,patience=__A ,verbose=__A ,) class UpperCAmelCase__ ( pl.Callback): def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase = {f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) __UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results __UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase = od / """test_results.txt""" __UpperCamelCase = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase = od / f"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCamelCase = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=lowercase ) generations_file.parent.mkdir(exist_ok=lowercase ) with open(lowercase , """a+""" ) as writer: for key in sorted(lowercase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase = metrics[key] if isinstance(lowercase , torch.Tensor ): __UpperCamelCase = val.item() __UpperCamelCase = f"{key}: {val:.6f}\n" writer.write(lowercase ) if not save_generations: return if "preds" in metrics: __UpperCamelCase = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> str: try: __UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase = pl_module.model.num_parameters() __UpperCamelCase = count_trainable_parameters(lowercase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase , lowercase , """test""" ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
243
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __a = logging.get_logger(__name__) # General docstring __a = 'MobileNetV1Config' # Base docstring __a = 'google/mobilenet_v1_1.0_224' __a = [1, 1_0_2_4, 7, 7] # Image classification docstring __a = 'google/mobilenet_v1_1.0_224' __a = 'tabby, tabby cat' __a = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def a ( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] , snake_case__: List[Any]=None ): '''simple docstring''' lowercase_ = {} if isinstance(snake_case__ , snake_case__ ): lowercase_ = model.mobilenet_va else: lowercase_ = model lowercase_ = '''MobilenetV1/Conv2d_0/''' lowercase_ = backbone.conv_stem.convolution.weight lowercase_ = backbone.conv_stem.normalization.bias lowercase_ = backbone.conv_stem.normalization.weight lowercase_ = backbone.conv_stem.normalization.running_mean lowercase_ = backbone.conv_stem.normalization.running_var for i in range(13 ): lowercase_ = i + 1 lowercase_ = i * 2 lowercase_ = backbone.layer[pt_index] lowercase_ = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowercase_ = pointer.convolution.weight lowercase_ = pointer.normalization.bias lowercase_ = pointer.normalization.weight lowercase_ = pointer.normalization.running_mean lowercase_ = pointer.normalization.running_var lowercase_ = backbone.layer[pt_index + 1] lowercase_ = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowercase_ = pointer.convolution.weight lowercase_ = pointer.normalization.bias lowercase_ = pointer.normalization.weight lowercase_ = pointer.normalization.running_mean lowercase_ = pointer.normalization.running_var if isinstance(snake_case__ , snake_case__ ): lowercase_ = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' lowercase_ = model.classifier.weight lowercase_ = model.classifier.bias return tf_to_pt_map def a ( snake_case__: Dict , snake_case__: List[str] , snake_case__: List[Any] ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model lowercase_ = tf.train.list_variables(snake_case__ ) lowercase_ = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) lowercase_ = tf.train.load_variable(snake_case__ , snake_case__ ) lowercase_ = array # Build TF to PyTorch weights loading map lowercase_ = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue lowercase_ = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) lowercase_ = np.transpose(snake_case__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer lowercase_ = array.squeeze().transpose() else: lowercase_ = np.transpose(snake_case__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) lowercase_ = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ , snake_case__ ) tf_weights.pop(name + '''/RMSProp''' , snake_case__ ) tf_weights.pop(name + '''/RMSProp_1''' , snake_case__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , snake_case__ ) logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def a ( snake_case__: torch.Tensor , snake_case__: nn.Convad ): '''simple docstring''' lowercase_ , lowercase_ = features.shape[-2:] lowercase_ , lowercase_ = conv_layer.stride lowercase_ , lowercase_ = conv_layer.kernel_size if in_height % stride_height == 0: lowercase_ = max(kernel_height - stride_height , 0 ) else: lowercase_ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowercase_ = max(kernel_width - stride_width , 0 ) else: lowercase_ = max(kernel_width - (in_width % stride_width) , 0 ) lowercase_ = pad_along_width // 2 lowercase_ = pad_along_width - pad_left lowercase_ = pad_along_height // 2 lowercase_ = pad_along_height - pad_top lowercase_ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ , snake_case__ , '''constant''' , 0.0 ) class lowercase__( nn.Module ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool or str] = True , ) -> None: super().__init__() lowercase_ = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowercase_ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowercase_ = nn.Convad( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , padding_mode='''zeros''' , ) if use_normalization: lowercase_ = nn.BatchNormad( num_features=SCREAMING_SNAKE_CASE_ , eps=config.layer_norm_eps , momentum=0.99_97 , affine=SCREAMING_SNAKE_CASE_ , track_running_stats=SCREAMING_SNAKE_CASE_ , ) else: lowercase_ = None if use_activation: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = ACTaFN[use_activation] elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ): lowercase_ = ACTaFN[config.hidden_act] else: lowercase_ = config.hidden_act else: lowercase_ = None def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: lowercase_ = apply_tf_padding(SCREAMING_SNAKE_CASE_ , self.convolution ) lowercase_ = self.convolution(SCREAMING_SNAKE_CASE_ ) if self.normalization is not None: lowercase_ = self.normalization(SCREAMING_SNAKE_CASE_ ) if self.activation is not None: lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return features class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = MobileNetVaConfig a :Tuple = load_tf_weights_in_mobilenet_va a :Optional[Any] = 'mobilenet_v1' a :Any = 'pixel_values' a :Optional[Any] = False def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __a = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __a = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : bool = True ) -> Optional[int]: super().__init__(SCREAMING_SNAKE_CASE_ ) lowercase_ = config lowercase_ = 3_2 lowercase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowercase_ = MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=2 , ) lowercase_ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowercase_ = nn.ModuleList() for i in range(1_3 ): lowercase_ = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowercase_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE_ , ) ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=1 , ) ) lowercase_ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) lowercase_ = self.conv_stem(SCREAMING_SNAKE_CASE_ ) lowercase_ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: lowercase_ = all_hidden_states + (hidden_states,) lowercase_ = hidden_states if self.pooler is not None: lowercase_ = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE_ ) , start_dim=1 ) else: lowercase_ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig ) -> None: super().__init__(SCREAMING_SNAKE_CASE_ ) lowercase_ = config.num_labels lowercase_ = MobileNetVaModel(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowercase_ = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.Linear(SCREAMING_SNAKE_CASE_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.mobilenet_va(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.pooler_output if return_dict else outputs[1] lowercase_ = self.classifier(self.dropout(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase_ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase_ = '''single_label_classification''' else: lowercase_ = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase_ = MSELoss() if self.num_labels == 1: lowercase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase_ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase_ = BCEWithLogitsLoss() lowercase_ = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: lowercase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , )
30
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a = logging.get_logger(__name__) __a = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if config is None: assert isinstance(self.model , SCREAMING_SNAKE_CASE_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowercase_ = self.model.config else: lowercase_ = config lowercase_ = data_args lowercase_ = self.config.tgt_vocab_size if isinstance(self.config , SCREAMING_SNAKE_CASE_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: lowercase_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase_ = label_smoothed_nll_loss def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: if self.optimizer is None: lowercase_ = ['''bias''', '''LayerNorm.weight'''] lowercase_ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase_ = Adafactor lowercase_ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase_ = AdamW lowercase_ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase_ = self.args.learning_rate if self.sharded_ddp: lowercase_ = OSS( params=SCREAMING_SNAKE_CASE_ , optim=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) else: lowercase_ = optimizer_cls(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.lr_scheduler is None: lowercase_ = self._get_lr_scheduler(SCREAMING_SNAKE_CASE_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: lowercase_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) return scheduler def _lowercase ( self : Tuple ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase_ , lowercase_ = model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[:2] else: # compute label smoothed loss lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) lowercase_ , lowercase_ = self.loss_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: lowercase_ = inputs.pop('''labels''' ) lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return loss def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : Dict[str, Union[torch.Tensor, Any]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: lowercase_ = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase_ = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **SCREAMING_SNAKE_CASE_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) lowercase_ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: # If PAD token is not defined at least EOS token has to be defined lowercase_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) lowercase_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase_ = tensor return padded_tensor
30
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _A : Union[str, Any] =logging.get_logger(__name__) class _lowercase ( _lowercase ): def __init__( self: int , *UpperCamelCase__: Any , **UpperCamelCase__: List[str] ): warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
129
'''simple docstring''' from torch import nn def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
129
1
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : int =len(SCREAMING_SNAKE_CASE ) a__ : int =len(SCREAMING_SNAKE_CASE ) a__ : int =( first_str_length if first_str_length > second_str_length else second_str_length ) a__ : list =[] for char_count in range(SCREAMING_SNAKE_CASE ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
95
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] ): return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase__( ): lowercase_ : Any = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(__SCREAMING_SNAKE_CASE ) # Parse args lowercase_ , lowercase_ : Dict = parser.parse_known_args() if not hasattr(__SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) lowercase_ : int = parse_unknown_args(__SCREAMING_SNAKE_CASE ) # Run lowercase_ : List[Any] = args.func(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
213
0
import math def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__ ( lowerCAmelCase = 0.1 ): """simple docstring""" _lowerCAmelCase = 3 _lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A__ : List[str] =datasets.logging.get_logger(__name__) A__ : List[Any] ='''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' A__ : List[str] ='''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' A__ : List[Any] =''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase="dummy_doc" ): """simple docstring""" _lowerCAmelCase = {doc: key_lines} _lowerCAmelCase = {doc: sys_lines} _lowerCAmelCase = {} _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase , _lowerCAmelCase = reader.get_doc_mentions(lowerCAmelCase , key_doc_lines[doc] , lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase = reader.set_annotated_parse_trees(lowerCAmelCase , key_doc_lines[doc] , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = reader.get_doc_mentions(lowerCAmelCase , sys_doc_lines[doc] , lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: _lowerCAmelCase = reader.set_annotated_parse_trees(lowerCAmelCase , key_doc_lines[doc] , lowerCAmelCase , lowerCAmelCase ) if remove_nested: _lowerCAmelCase , _lowerCAmelCase = reader.remove_nested_coref_mentions(lowerCAmelCase , lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _lowerCAmelCase , _lowerCAmelCase = reader.remove_nested_coref_mentions(lowerCAmelCase , lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _lowerCAmelCase = reader.get_mention_assignments(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = reader.get_mention_assignments(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f"annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}" ) logger.info( """Number of resulting singleton clusters in the key """ f"annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}" ) if not keep_singletons: logger.info( f"{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system " """files, respectively""" ) return doc_coref_infos def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_coref_infos(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = {} _lowerCAmelCase = 0 _lowerCAmelCase = 0 for name, metric in metrics: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = evaluator.evaluate_documents(lowerCAmelCase , lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"{name}/recall": recall, f"{name}/precision": precision, f"{name}/f1": fa} ) logger.info( name.ljust(10 ) , f"Recall: {recall * 1_00:.2f}" , f" Precision: {precision * 1_00:.2f}" , f" F1: {fa * 1_00:.2f}" , ) if conll_subparts_num == 3: _lowerCAmelCase = (conll / 3) * 1_00 logger.info(f"CoNLL score: {conll:.2f}" ) output_scores.update({"""conll_score""": conll} ) return output_scores def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: _lowerCAmelCase = line.split()[5] if not parse_col == "-": _lowerCAmelCase = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def lowercase__ ( self : str ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def lowercase__ ( self : List[Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Dict=True , __snake_case : List[str]=False , __snake_case : List[Any]=False , __snake_case : Dict=False ) -> Union[str, Any]: _lowerCAmelCase = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: _lowerCAmelCase = util.check_gold_parse_annotation(__snake_case ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _lowerCAmelCase = evaluate( key_lines=__snake_case , sys_lines=__snake_case , metrics=__snake_case , NP_only=__snake_case , remove_nested=__snake_case , keep_singletons=__snake_case , min_span=__snake_case , ) return score
220
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase : def __init__( self ) -> Optional[int]: '''simple docstring''' _lowercase =False def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if not self.initialized: _lowercase =RagRetriever( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) _lowercase =True def A__ ( self ) -> List[Any]: '''simple docstring''' self.retriever.index.init_index() def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Any: '''simple docstring''' _lowercase , _lowercase =self.retriever._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class __lowerCAmelCase ( snake_case_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> Dict: '''simple docstring''' if index is not None and index.is_initialized() and len(lowerCAmelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) _lowercase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for worker in self.retrieval_workers ] ) def A__ ( self ) -> Optional[int]: '''simple docstring''' logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Dict: '''simple docstring''' if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _lowercase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] _lowercase , _lowercase =ray.get(random_worker.retrieve.remote(lowerCAmelCase , lowerCAmelCase ) ) else: _lowercase , _lowercase =self._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase ) @classmethod def A__ ( cls , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return super(lowerCAmelCase , cls ).get_tokenizers(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) @classmethod def A__ ( cls , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =kwargs.pop('config' , lowerCAmelCase ) or RagConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _lowercase =RagTokenizer.from_pretrained(lowerCAmelCase , config=lowerCAmelCase ) _lowercase =rag_tokenizer.question_encoder _lowercase =rag_tokenizer.generator if indexed_dataset is not None: _lowercase ='custom' _lowercase =CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase ) else: _lowercase =cls._build_index(lowerCAmelCase ) return cls( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , retrieval_workers=lowerCAmelCase , index=lowerCAmelCase , )
205
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = 13 lowerCamelCase_ = 7 lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = 99 lowerCamelCase_ = 32 lowerCamelCase_ = 2 lowerCamelCase_ = 4 lowerCamelCase_ = 37 lowerCamelCase_ = "gelu" lowerCamelCase_ = 0.1 lowerCamelCase_ = 0.1 lowerCamelCase_ = 512 lowerCamelCase_ = 16 lowerCamelCase_ = 2 lowerCamelCase_ = 0.0_2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = None def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> List[str]: ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = self.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = True lowerCamelCase_ = TFEsmModel(config=lowercase ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = [input_ids, input_mask] lowerCamelCase_ = model(lowercase , encoder_hidden_states=lowercase ) # Also check the case where encoder outputs are not passed lowerCamelCase_ = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = TFEsmForMaskedLM(config=lowercase ) lowerCamelCase_ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFEsmForTokenClassification(config=lowercase ) lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TFEsmModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEsmModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip("Protein models do not support embedding resizing." ) def SCREAMING_SNAKE_CASE_( self ) -> Any: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase_ = model.get_bias() assert isinstance(lowercase , lowercase ) for k, v in name.items(): assert isinstance(lowercase , tf.Variable ) else: lowerCamelCase_ = model.get_output_embeddings() assert x is None lowerCamelCase_ = model.get_bias() assert name is None @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowerCamelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase_ = model(lowercase )[0] # compare the actual values for a slice. lowerCamelCase_ = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function _snake_case = 1.054571817e-34 # unit of ℏ : J * s _snake_case = 3e8 # unit of c : m * s^-1 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: _A : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: _A : List[str] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: _A : int = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'vocab.txt'} UpperCamelCase_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } UpperCamelCase_ = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } UpperCamelCase_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = VOCAB_FILES_NAMES a_ : int = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION a_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any = ConvBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->List[str]: super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , __UpperCAmelCase) != do_lower_case or normalizer_state.get("strip_accents" , __UpperCAmelCase) != strip_accents or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase) != tokenize_chinese_chars ): a_ = getattr(__UpperCAmelCase , normalizer_state.pop("type")) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**__UpperCAmelCase) a_ = do_lower_case def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None) ->Optional[Any]: a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->Tuple[str]: a_ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase) return tuple(__UpperCAmelCase)
243
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = """""" a_ : Dict = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__(self , **__UpperCAmelCase) a_ = repo_info a_ = token a_ = None def UpperCAmelCase__ ( self) ->Tuple: if self.dir_cache is None: a_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCAmelCase): {"name": str(__UpperCAmelCase), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , **__UpperCAmelCase , ) ->List[Any]: if not isinstance(self.repo_info , __UpperCAmelCase): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''') a_ = hf_hub_url(self.repo_info.id , __UpperCAmelCase , revision=self.repo_info.sha) return fsspec.open( __UpperCAmelCase , mode=__UpperCAmelCase , headers=get_authentication_headers_for_url(__UpperCAmelCase , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open() def UpperCAmelCase__ ( self , __UpperCAmelCase , **__UpperCAmelCase) ->int: self._get_dirs() a_ = self._strip_protocol(__UpperCAmelCase) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase) ->List[Any]: self._get_dirs() a_ = PurePosixPath(path.strip("/")) a_ = {} for p, f in self.dir_cache.items(): a_ = PurePosixPath(p.strip("/")) a_ = p.parent if root == path: a_ = f a_ = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
243
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = b.T lowercase__ = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=1 ) lowercase__ = np.sum(np.square(SCREAMING_SNAKE_CASE ) , axis=0 ) lowercase__ = np.matmul(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = aa[:, None] - 2 * ab + ba[None, :] return d def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = x.reshape(-1 , 3 ) lowercase__ = squared_euclidean_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return np.argmin(SCREAMING_SNAKE_CASE , axis=1 ) class _a ( UpperCamelCase__ ): _lowercase : str = ['''pixel_values'''] def __init__( self: int , UpperCamelCase_: Optional[Union[List[List[int]], np.ndarray]] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , **UpperCamelCase_: Dict , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = size if size is not None else {'''height''': 256, '''width''': 256} lowercase__ = get_size_dict(UpperCamelCase_ ) lowercase__ = np.array(UpperCamelCase_ ) if clusters is not None else None lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_normalize lowercase__ = do_color_quantize def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Any , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase_ , size=(size['''height'''], size['''width''']) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: np.ndarray , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: """simple docstring""" lowercase__ = rescale(image=UpperCamelCase_ , scale=1 / 127.5 , data_format=UpperCamelCase_ ) lowercase__ = image - 1 return image def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: ImageInput , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[Union[List[List[int]], np.ndarray]] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCamelCase_: Tuple , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(UpperCamelCase_ ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase__ = clusters if clusters is not None else self.clusters lowercase__ = np.array(UpperCamelCase_ ) lowercase__ = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: lowercase__ = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=UpperCamelCase_ ) for image in images] if do_color_quantize: lowercase__ = [to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase__ = np.array(UpperCamelCase_ ) lowercase__ = color_quantize(UpperCamelCase_ , UpperCamelCase_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase__ = images.shape[0] lowercase__ = images.reshape(UpperCamelCase_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase__ = list(UpperCamelCase_ ) else: lowercase__ = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowercase__ = {'''input_ids''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
93
0
from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase_ : int | str): '''simple docstring''' lowerCAmelCase__ : List[Any] = str(lowerCamelCase_) return n == n[::-1] def lowerCAmelCase__ ( lowerCamelCase_ : int = 1000000): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 0 for i in range(1 ,lowerCamelCase_): if is_palindrome(lowerCamelCase_) and is_palindrome(bin(lowerCamelCase_).split('''b''')[1]): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
129
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =(DPMSolverSDEScheduler,) snake_case_ =10 def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[str] = { '''num_train_timesteps''': 11_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**__lowerCamelCase ) return config def lowerCAmelCase__ (self ) -> int: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] ,[0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__lowerCamelCase ,beta_end=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = self.dummy_model() lowerCAmelCase__ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Dict = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase__ : List[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Tuple = sample.to(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Optional[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Any = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = self.dummy_model() lowerCAmelCase__ : List[Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = output.prev_sample lowerCAmelCase__ : List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Union[str, Any] = scheduler_class(**__lowerCamelCase ,use_karras_sigmas=__lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ,device=__lowerCamelCase ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma lowerCAmelCase__ : Union[str, Any] = sample.to(__lowerCamelCase ) for t in scheduler.timesteps: lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Tuple = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : str = output.prev_sample lowerCAmelCase__ : Tuple = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
129
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : int = 9 lowerCAmelCase__ : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCAmelCase__ : Tuple = kruskal(A_ , A_ ) lowerCAmelCase__ : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(A_ ) == sorted(A_ )
74
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "" lowercase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowercase__ = None # compression type in fsspec. ex: "gzip" lowercase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Dict ,lowercase_ : str = "" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,**lowercase_ : Any ): super().__init__(self ,**lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase__ : Dict = fsspec.open( lowercase_ ,mode='''rb''' ,protocol=lowercase_ ,compression=self.compression ,client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) lowerCAmelCase__ : Any = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCAmelCase__ : Tuple = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCAmelCase__ : Any = None @classmethod def __lowerCAmelCase ( cls : Optional[int] ,lowercase_ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('''/''' ) def __lowerCAmelCase ( self : Optional[Any] ): if self.dir_cache is None: lowerCAmelCase__ : List[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCAmelCase__ : str = {f['''name''']: f} def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str ): return self.file.open().read() def __lowerCAmelCase ( self : Tuple ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : List[Any]=None ,lowercase_ : Dict=True ,lowercase_ : Any=None ,**lowercase_ : Tuple ,): lowerCAmelCase__ : Union[str, Any] = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "bz2" lowercase__ = "bz2" lowercase__ = ".bz2" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "gzip" lowercase__ = "gzip" lowercase__ = ".gz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "lz4" lowercase__ = "lz4" lowercase__ = ".lz4" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "xz" lowercase__ = "xz" lowercase__ = ".xz" class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "zstd" lowercase__ = "zstd" lowercase__ = ".zst" def __init__( self : str ,lowercase_ : str ,lowercase_ : str = "rb" ,lowercase_ : Optional[str] = None ,lowercase_ : Optional[dict] = None ,lowercase_ : int = DEFAULT_BLOCK_SIZE ,**lowercase_ : Union[str, Any] ,): super().__init__( fo=lowercase_ ,mode=lowercase_ ,target_protocol=lowercase_ ,target_options=lowercase_ ,block_size=lowercase_ ,**lowercase_ ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase__ : List[str] = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ,lowercase_ : Union[str, Any] ): lowerCAmelCase__ : Tuple = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : int ,*lowercase_ : str ,**lowercase_ : Optional[Any] ): self._file.__exit__(*lowercase_ ,**lowercase_ ) def __iter__( self : Union[str, Any] ): return iter(self._file ) def __lowerCAmelCase ( self : Tuple ): return next(self._file ) def __getattr__( self : str ,lowercase_ : Any ): return getattr(self._file ,lowercase_ ) def fixed_enter(*lowercase_ : List[Any] ,**lowercase_ : Dict ): return WrappedFile(_enter(*lowercase_ ,**lowercase_ ) ) lowerCAmelCase__ : Any = fixed_enter
74
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _snake_case ( snake_case__ : Optional[Any] ): A = SwinConfig() A = swin_name.split('_' ) A = name_split[1] A = int(name_split[4] ) A = int(name_split[3][-1] ) if model_size == "tiny": A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif model_size == "small": A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif model_size == "base": A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) else: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) if "in22k" in swin_name: A = 2_1841 else: A = 1000 A = 'huggingface/label-files' A = 'imagenet-1k-id2label.json' A = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) A = {int(snake_case__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} A = img_size A = num_classes A = embed_dim A = depths A = num_heads A = window_size return config def _snake_case ( snake_case__ : List[str] ): if "patch_embed.proj" in name: A = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: A = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: A = 'encoder.' + name if "attn.proj" in name: A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: A = name.replace('attn' , 'attention.self' ) if "norm1" in name: A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: A = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": A = 'layernorm.weight' if name == "norm.bias": A = 'layernorm.bias' if "head" in name: A = name.replace('head' , 'classifier' ) else: A = 'swin.' + name return name def _snake_case ( snake_case__ : List[str] , snake_case__ : Tuple ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: A = key.split('.' ) A = int(key_split[1] ) A = int(key_split[3] ) A = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A = val[:dim, :] A = val[ dim : dim * 2, : ] A = val[-dim:, :] else: A = val[ :dim ] A = val[ dim : dim * 2 ] A = val[ -dim: ] else: A = val return orig_state_dict def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): A = timm.create_model(snake_case__ , pretrained=snake_case__ ) timm_model.eval() A = get_swin_config(snake_case__ ) A = SwinForImageClassification(snake_case__ ) model.eval() A = convert_state_dict(timm_model.state_dict() , snake_case__ ) model.load_state_dict(snake_case__ ) A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) A = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) A = image_processor(images=snake_case__ , return_tensors='pt' ) A = timm_model(inputs['pixel_values'] ) A = model(**snake_case__ ).logits assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
74
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a : UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : torch.Tensor # [batch_size x 3] UpperCAmelCase_ : int UpperCAmelCase_ : int UpperCAmelCase_ : float UpperCAmelCase_ : float UpperCAmelCase_ : Tuple[int] def UpperCamelCase_ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase_ ( self ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase_ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase_ ( self ): lowercase = torch.arange(self.height * self.width ) lowercase = torch.stack( [ pixel_indices % self.width, torch.div(_lowerCamelCase , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def UpperCamelCase_ ( self ): lowercase , *lowercase = self.shape lowercase = int(np.prod(_lowerCamelCase ) ) lowercase = self.get_image_coords() lowercase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowercase = self.get_camera_rays(_lowerCamelCase ) lowercase = rays.view(_lowerCamelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase , *lowercase , lowercase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowercase = coords.view(_lowerCamelCase , -1 , 2 ) lowercase = self.resolution() lowercase = self.fov() lowercase = (flat.float() / (res - 1)) * 2 - 1 lowercase = fracs * torch.tan(fov / 2 ) lowercase = fracs.view(_lowerCamelCase , -1 , 2 ) lowercase = ( self.z.view(_lowerCamelCase , 1 , 3 ) + self.x.view(_lowerCamelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_lowerCamelCase , 1 , 3 ) * fracs[:, :, 1:] ) lowercase = directions / directions.norm(dim=-1 , keepdim=_lowerCamelCase ) lowercase = torch.stack( [ torch.broadcast_to(self.origin.view(_lowerCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_lowerCamelCase , *_lowerCamelCase , 2 , 3 ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_lowerCamelCase , height=_lowerCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = [] lowercase = [] lowercase = [] lowercase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): lowercase = np.array([np.sin(__snake_case ), np.cos(__snake_case ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowercase = -z * 4 lowercase = np.array([np.cos(__snake_case ), -np.sin(__snake_case ), 0.0] ) lowercase = np.cross(__snake_case , __snake_case ) origins.append(__snake_case ) xs.append(__snake_case ) ys.append(__snake_case ) zs.append(__snake_case ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__snake_case , axis=0 ) ).float() , width=__snake_case , height=__snake_case , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__snake_case )) , )
220
0
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __a: Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase ( enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 @add_end_docstrings(a__ ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "generated" def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _lowerCAmelCase( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> int: lowercase__ : Any = {} if truncation is not None: lowercase__ : List[str] = truncation lowercase__ : Union[str, Any] = generate_kwargs lowercase__ : List[str] = {} if return_tensors is not None and return_type is None: lowercase__ : Optional[int] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase__ : Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: lowercase__ : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowercase__ : Any = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase__ : int = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: return True def _lowerCAmelCase( self , *__lowerCAmelCase , __lowerCAmelCase ) -> str: lowercase__ : Optional[int] = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , __lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase__ : Dict = ([prefix + arg for arg in args[0]],) lowercase__ : List[Any] = True elif isinstance(args[0] , __lowerCAmelCase ): lowercase__ : Any = (prefix + args[0],) lowercase__ : Any = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase__ : Optional[Any] = self.tokenizer(*__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[int]: lowercase__ : Optional[Any] = super().__call__(*__lowerCAmelCase , **__lowerCAmelCase ) if ( isinstance(args[0] , __lowerCAmelCase ) and all(isinstance(__lowerCAmelCase , __lowerCAmelCase ) for el in args[0] ) and all(len(__lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE , **__lowerCAmelCase ) -> int: lowercase__ : Optional[int] = self._parse_and_tokenize(__lowerCAmelCase , truncation=__lowerCAmelCase , **__lowerCAmelCase ) return inputs def _lowerCAmelCase( self , __lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]: if self.framework == "pt": lowercase__ : Union[str, Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase__ : Any = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase__ : List[Any] = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase__ : Any = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(__lowerCAmelCase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase__ : List[Any] = self.model.generate(**__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : str = output_ids.shape[0] if self.framework == "pt": lowercase__ : Any = output_ids.reshape(__lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase__ : List[str] = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=ReturnType.TEXT , __lowerCAmelCase=False ) -> List[Any]: lowercase__ : Union[str, Any] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase__ : Tuple = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase__ : List[Any] = { F"""{self.return_name}_text""": self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) } records.append(__lowerCAmelCase ) return records @add_end_docstrings(a__ ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "summary" def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Tuple: return super().__call__(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(a__ ) class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "translation" def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def _lowerCAmelCase( self , *__lowerCAmelCase , __lowerCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Any: if getattr(self.tokenizer , '''_build_translation_inputs''' , __lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *__lowerCAmelCase , return_tensors=self.framework , truncation=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase ) else: return super()._parse_and_tokenize(*__lowerCAmelCase , truncation=__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Any: lowercase__ : Optional[int] = super()._sanitize_parameters(**__lowerCAmelCase ) if src_lang is not None: lowercase__ : List[str] = src_lang if tgt_lang is not None: lowercase__ : int = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase__ : List[str] = kwargs.get('''task''' , self.task ) lowercase__ : List[str] = task.split('''_''' ) if task and len(__lowerCAmelCase ) == 4: # translation, XX, to YY lowercase__ : Optional[int] = items[1] lowercase__ : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> Dict: return super().__call__(*__lowerCAmelCase , **__lowerCAmelCase )
370
'''simple docstring''' def __UpperCamelCase ( ): lowercase__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ : Any = 6 lowercase__ : Optional[Any] = 1 lowercase__ : int = 1901 lowercase__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ : Any = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ : Dict = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
214
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : Tuple = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCamelCase__ : Dict = MaskFormerConfig(backbone_config=_A ) lowerCamelCase__ : int = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok lowerCamelCase__ : Any = 847 lowerCamelCase__ : Optional[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok lowerCamelCase__ : List[str] = 150 lowerCamelCase__ : int = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase__ : str = 171 lowerCamelCase__ : Optional[Any] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO lowerCamelCase__ : str = 133 lowerCamelCase__ : str = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok lowerCamelCase__ : Tuple = 19 lowerCamelCase__ : Any = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok lowerCamelCase__ : Tuple = 65 lowerCamelCase__ : Optional[Any] = '''mapillary-vistas-id2label.json''' lowerCamelCase__ : List[Any] = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : str = {int(_A ): v for k, v in idalabel.items()} return config def lowercase_ ( _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.attn.proj.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.norm2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.layers.{i}.downsample.reduction.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.weight", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.layers.{i}.downsample.norm.bias", F"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"sem_seg_head.adapter_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((F"sem_seg_head.adapter_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.weight", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((F"sem_seg_head.layer_{source_index}.norm.bias", F"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", F"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", F"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", F"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", F"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", F"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", F"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", F"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.weight", F"mask_embedder.{i}.0.weight") ) rename_keys.append((F"sem_seg_head.predictor.mask_embed.layers.{i}.bias", F"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def lowercase_ ( _A : Any , _A : Any , _A : List[str] ): """simple docstring""" lowerCamelCase__ : Any = dct.pop(_A ) lowerCamelCase__ : List[Any] = val def lowercase_ ( _A : Optional[Any] , _A : List[Any] ): """simple docstring""" lowerCamelCase__ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase__ : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ : List[Any] = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) lowerCamelCase__ : Any = state_dict.pop(F"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : str = in_proj_weight[:dim, :] lowerCamelCase__ : int = in_proj_bias[: dim] lowerCamelCase__ : Dict = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ : Optional[Any] = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ : Dict = in_proj_weight[ -dim :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-dim :] # fmt: on def lowercase_ ( _A : str , _A : int ): """simple docstring""" lowerCamelCase__ : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : Any = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) lowerCamelCase__ : Optional[int] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Tuple = in_proj_weight[: hidden_size, :] lowerCamelCase__ : Optional[int] = in_proj_bias[:config.hidden_size] lowerCamelCase__ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Optional[Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) lowerCamelCase__ : Dict = state_dict.pop(F"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Dict = in_proj_weight[: hidden_size, :] lowerCamelCase__ : Dict = in_proj_bias[:config.hidden_size] lowerCamelCase__ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase__ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase__ : Union[str, Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase__ : int = in_proj_bias[-hidden_size :] # fmt: on def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ : Dict = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowercase_ ( _A : str , _A : str , _A : str , _A : bool = False ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = get_maskformer_config(_A ) # load original state_dict with open(_A , "rb" ) as f: lowerCamelCase__ : Optional[Any] = pickle.load(_A ) lowerCamelCase__ : Any = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase__ : List[str] = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_swin_q_k_v(_A , config.backbone_config ) read_in_decoder_q_k_v(_A , _A ) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase__ : List[str] = torch.from_numpy(_A ) # load 🤗 model lowerCamelCase__ : Tuple = MaskFormerForInstanceSegmentation(_A ) model.eval() for name, param in model.named_parameters(): print(_A , param.shape ) lowerCamelCase__ : int = model.load_state_dict(_A , strict=_A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_A ) == 0, F"Unexpected keys: {unexpected_keys}" # verify results lowerCamelCase__ : Optional[Any] = prepare_img() if "vistas" in model_name: lowerCamelCase__ : List[str] = 65 elif "cityscapes" in model_name: lowerCamelCase__ : List[str] = 65535 else: lowerCamelCase__ : str = 255 lowerCamelCase__ : Union[str, Any] = True if '''ade''' in model_name else False lowerCamelCase__ : Any = MaskFormerImageProcessor(ignore_index=_A , reduce_labels=_A ) lowerCamelCase__ : int = image_processor(_A , return_tensors="pt" ) lowerCamelCase__ : Any = model(**_A ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase__ : int = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"nielsr/{model_name}" ) image_processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : Optional[int] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
184
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__ , lowercase__: Any = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowercase__ , lowercase__: List[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowercase__: Optional[int] = controlnet_params lowercase__: Optional[int] = 'bird' lowercase__: str = jax.device_count() lowercase__: List[str] = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__: Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowercase__: Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase__: List[Any] = jax.random.PRNGKey(0 ) lowercase__: Tuple = jax.random.split(lowerCAmelCase__ , jax.device_count() ) lowercase__: Dict = replicate(lowerCAmelCase__ ) lowercase__: str = shard(lowerCAmelCase__ ) lowercase__: int = shard(lowerCAmelCase__ ) lowercase__: Dict = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase__: Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__: List[str] = images[0, 253:256, 253:256, -1] lowercase__: Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__: Union[str, Any] = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__ , lowercase__: Dict = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowercase__ , lowercase__: Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowerCAmelCase__ , from_pt=lowerCAmelCase__ , dtype=jnp.bfloataa ) lowercase__: List[str] = controlnet_params lowercase__: List[Any] = 'Chef in the kitchen' lowercase__: Optional[int] = jax.device_count() lowercase__: int = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase__: Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowercase__: Any = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase__: List[Any] = jax.random.PRNGKey(0 ) lowercase__: Dict = jax.random.split(lowerCAmelCase__ , jax.device_count() ) lowercase__: List[str] = replicate(lowerCAmelCase__ ) lowercase__: Optional[Any] = shard(lowerCAmelCase__ ) lowercase__: List[Any] = shard(lowerCAmelCase__ ) lowercase__: int = pipe( prompt_ids=lowerCAmelCase__ , image=lowerCAmelCase__ , params=lowerCAmelCase__ , prng_seed=lowerCAmelCase__ , num_inference_steps=50 , jit=lowerCAmelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase__: Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase__: Tuple = images[0, 253:256, 253:256, -1] lowercase__: Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__: Tuple = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
288
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __lowerCAmelCase = '''base_with_context''' def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Tuple = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowercase__: Optional[int] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: List[str] = weights[f'layers_{lyr_num}'] lowercase__: List[Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: Any = ly_weight['attention'] lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> List[str]: lowercase__: str = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) for lyr_num, lyr in enumerate(model.encoders ): lowercase__: str = weights[f'layers_{lyr_num}'] lowercase__: Optional[Any] = ly_weight['attention'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: int = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case ) lowercase__: Dict = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase__: Optional[Any] = weights[f'layers_{lyr_num}'] lowercase__: Any = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = ly_weight['self_attention'] lowercase__: Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = ly_weight['MultiHeadDotProductAttention_0'] lowercase__: List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowercase__: Dict = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowercase__: Any = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowercase__: int = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowercase__: List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowercase__: int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowercase__: str = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowercase__: Optional[Any] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowercase__: Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def snake_case_ ( snake_case ) -> Any: lowercase__: int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase__: Tuple = jnp.tree_util.tree_map(onp.array , snake_case ) lowercase__: List[str] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowercase__: List[Any] = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowercase__: Optional[Any] = inference.parse_training_gin_file(snake_case , snake_case ) lowercase__: str = inference.InferenceModel(args.checkpoint_path , snake_case ) lowercase__: Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowercase__: List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowercase__: Optional[Any] = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase__: Dict = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , snake_case ) lowercase__: int = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , snake_case ) lowercase__: Optional[int] = load_decoder(ta_checkpoint['target']['decoder'] , snake_case ) lowercase__: int = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowercase__: List[Any] = SpectrogramDiffusionPipeline( notes_encoder=snake_case , continuous_encoder=snake_case , decoder=snake_case , scheduler=snake_case , melgan=snake_case , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __lowerCAmelCase = parser.parse_args() main(args)
288
1
"""simple docstring""" class lowercase__ : def __init__( self : List[str] , snake_case__ : Tuple , snake_case__ : List[str]=None , snake_case__ : Optional[int]=None ): lowerCamelCase_ : Optional[Any] =data lowerCamelCase_ : List[Any] =previous lowerCamelCase_ : int =next_node def __str__( self : Tuple ): return F"""{self.data}""" def UpperCAmelCase__ ( self : int ): return self.data def UpperCAmelCase__ ( self : List[str] ): return self.next def UpperCAmelCase__ ( self : Optional[int] ): return self.previous class lowercase__ : def __init__( self : int , snake_case__ : Optional[Any] ): lowerCamelCase_ : Any =head def __iter__( self : Optional[Any] ): return self def UpperCAmelCase__ ( self : Optional[int] ): if not self.current: raise StopIteration else: lowerCamelCase_ : Union[str, Any] =self.current.get_data() lowerCamelCase_ : Optional[Any] =self.current.get_next() return value class lowercase__ : def __init__( self : List[Any] ): lowerCamelCase_ : Dict =None # First node in list lowerCamelCase_ : Optional[int] =None # Last node in list def __str__( self : str ): lowerCamelCase_ : Any =self.head lowerCamelCase_ : List[Any] =[] while current is not None: nodes.append(current.get_data() ) lowerCamelCase_ : str =current.get_next() return " ".join(str(__SCREAMING_SNAKE_CASE ) for node in nodes ) def __contains__( self : List[Any] , snake_case__ : List[str] ): lowerCamelCase_ : Optional[Any] =self.head while current: if current.get_data() == value: return True lowerCamelCase_ : int =current.get_next() return False def __iter__( self : List[str] ): return LinkedListIterator(self.head ) def UpperCAmelCase__ ( self : Optional[Any] ): if self.head: return self.head.get_data() return None def UpperCAmelCase__ ( self : Any ): if self.tail: return self.tail.get_data() return None def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Union[str, Any] ): if self.head is None: lowerCamelCase_ : int =node lowerCamelCase_ : List[Any] =node else: self.insert_before_node(self.head , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Dict ): if self.head is None: self.set_head(__SCREAMING_SNAKE_CASE ) else: self.insert_after_node(self.tail , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[Any] ): lowerCamelCase_ : Dict =Node(__SCREAMING_SNAKE_CASE ) if self.head is None: self.set_head(__SCREAMING_SNAKE_CASE ) else: self.set_tail(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Any ): lowerCamelCase_ : Dict =node lowerCamelCase_ : List[str] =node.previous if node.get_previous() is None: lowerCamelCase_ : Union[str, Any] =node_to_insert else: lowerCamelCase_ : Optional[Any] =node_to_insert lowerCamelCase_ : Any =node_to_insert def UpperCAmelCase__ ( self : Dict , snake_case__ : str , snake_case__ : List[str] ): lowerCamelCase_ : Optional[Any] =node lowerCamelCase_ : Dict =node.next if node.get_next() is None: lowerCamelCase_ : Union[str, Any] =node_to_insert else: lowerCamelCase_ : Any =node_to_insert lowerCamelCase_ : Union[str, Any] =node_to_insert def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[Any] , snake_case__ : Optional[int] ): lowerCamelCase_ : List[str] =1 lowerCamelCase_ : Tuple =Node(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Dict =self.head while node: if current_position == position: self.insert_before_node(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return current_position += 1 lowerCamelCase_ : List[Any] =node.next self.insert_after_node(self.tail , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : str ): lowerCamelCase_ : Optional[Any] =self.head while node: if node.get_data() == item: return node lowerCamelCase_ : Tuple =node.get_next() raise Exception("Node not found" ) def UpperCAmelCase__ ( self : Dict , snake_case__ : int ): if (node := self.get_node(__SCREAMING_SNAKE_CASE )) is not None: if node == self.head: lowerCamelCase_ : Union[str, Any] =self.head.get_next() if node == self.tail: lowerCamelCase_ : List[Any] =self.tail.get_previous() self.remove_node_pointers(__SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase__ ( snake_case__ : Tuple ): if node.get_next(): lowerCamelCase_ : str =node.previous if node.get_previous(): lowerCamelCase_ : List[Any] =node.next lowerCamelCase_ : Optional[Any] =None lowerCamelCase_ : Dict =None def UpperCAmelCase__ ( self : List[Any] ): return self.head is None def _snake_case ( ) -> Dict: pass if __name__ == "__main__": import doctest doctest.testmod()
144
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = [10, 20, 30, 40, 50, 60] lowercase_ : Optional[Any] = [2, 4, 6, 8, 10, 12] lowercase_ : Union[str, Any] = 1_00 self.assertEqual(kp.calc_profit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , 2_10 ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Weight can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''Profit can not be negative.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , '''max_weight must greater than zero.''' ) def _snake_case ( self ): """simple docstring""" self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
93
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap snake_case : Dict = "Usage of script: script_name <size_of_canvas:int>" snake_case : List[Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCAmelCase_ ( _snake_case : int ) -> list[list[bool]]: '''simple docstring''' __magic_name__ : int = [[False for i in range(_snake_case )] for j in range(_snake_case )] return canvas def lowerCAmelCase_ ( _snake_case : list[list[bool]] ) -> None: '''simple docstring''' for i, row in enumerate(_snake_case ): for j, _ in enumerate(_snake_case ): __magic_name__ : Optional[int] = bool(random.getrandbits(1 ) ) def lowerCAmelCase_ ( _snake_case : list[list[bool]] ) -> list[list[bool]]: '''simple docstring''' __magic_name__ : List[Any] = np.array(_snake_case ) __magic_name__ : Tuple = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(_snake_case ): for c, pt in enumerate(_snake_case ): __magic_name__ : Any = __judge_point( _snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __magic_name__ : Tuple = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __magic_name__ : list[list[bool]] = current_canvas.tolist() return return_canvas def lowerCAmelCase_ ( _snake_case : bool , _snake_case : list[list[bool]] ) -> bool: '''simple docstring''' __magic_name__ : List[Any] = 0 __magic_name__ : Optional[int] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __magic_name__ : Union[str, Any] = pt if pt: if alive < 2: __magic_name__ : Optional[Any] = False elif alive == 2 or alive == 3: __magic_name__ : Optional[int] = True elif alive > 3: __magic_name__ : Dict = False else: if alive == 3: __magic_name__ : List[str] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) snake_case : List[Any] = int(sys.argv[1]) # main working structure of this module. snake_case : int = create_canvas(canvas_size) seed(c) snake_case : Union[str, Any] = plt.subplots() fig.show() snake_case : List[Any] = ListedColormap(["w", "k"]) try: while True: snake_case : Tuple = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
371
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) snake_case : List[str] = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = ["BeitFeatureExtractor"] snake_case : Optional[int] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys snake_case : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
41
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = '''''' _lowerCamelCase: str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase: str = None # compression type in fsspec. ex: "gzip" _lowerCamelCase: str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Union[str, Any] ,A_ : str = "" ,A_ : Optional[str] = None ,A_ : Optional[dict] = None ,**A_ : int ) -> Optional[int]: super().__init__(self ,**A_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode A = fsspec.open( A_ ,mode='rb' ,protocol=A_ ,compression=self.compression ,client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) A = os.path.basename(self.file.path.split('::' )[0] ) A = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) A = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] ,A_ : Union[str, Any] ) -> Dict: # compressed file paths are always relative to the archive root return super()._strip_protocol(A_ ).lstrip('/' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: if self.dir_cache is None: A = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} A = {f['name']: f} def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ) -> Dict: return self.file.open().read() def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : str ,A_ : str = "rb" ,A_ : List[str]=None ,A_ : Optional[int]=True ,A_ : Dict=None ,**A_ : int ,) -> Tuple: A = self._strip_protocol(A_ ) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = '''bz2''' _lowerCamelCase: Tuple = '''bz2''' _lowerCamelCase: Tuple = '''.bz2''' class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = '''gzip''' _lowerCamelCase: str = '''gzip''' _lowerCamelCase: Dict = '''.gz''' class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = '''lz4''' _lowerCamelCase: Dict = '''lz4''' _lowerCamelCase: List[Any] = '''.lz4''' class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[Any] = '''xz''' _lowerCamelCase: Tuple = '''xz''' _lowerCamelCase: List[str] = '''.xz''' class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = '''zstd''' _lowerCamelCase: int = '''zstd''' _lowerCamelCase: str = '''.zst''' def __init__( self : Optional[Any] ,A_ : str ,A_ : str = "rb" ,A_ : Optional[str] = None ,A_ : Optional[dict] = None ,A_ : int = DEFAULT_BLOCK_SIZE ,**A_ : int ,) -> int: super().__init__( fo=A_ ,mode=A_ ,target_protocol=A_ ,target_options=A_ ,block_size=A_ ,**A_ ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 A = self.file.__enter__ class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : int ) -> Any: A = file_ def __enter__( self : Union[str, Any] ) -> Tuple: self._file.__enter__() return self def __exit__( self : Dict ,*A_ : Dict ,**A_ : List[str] ) -> int: self._file.__exit__(*A_ ,**A_ ) def __iter__( self : Optional[int] ) -> Optional[int]: return iter(self._file ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: return next(self._file ) def __getattr__( self : Optional[Any] ,A_ : int ) -> List[Any]: return getattr(self._file ,A_ ) def fixed_enter(*A_ : List[Any] ,**A_ : List[str] ): return WrappedFile(_enter(*A_ ,**A_ ) ) A = fixed_enter
74
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _snake_case ( snake_case__ : List[Any] , snake_case__ : Optional[int]=0.999 , snake_case__ : Union[str, Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : Union[str, Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) A = [] for i in range(snake_case__ ): A = i / num_diffusion_timesteps A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[int] = [e.name for e in KarrasDiffusionSchedulers] _lowerCamelCase: Optional[Any] = 2 @register_to_config def __init__( self : str ,A_ : int = 1000 ,A_ : float = 0.0_00_85 ,A_ : float = 0.0_12 ,A_ : str = "linear" ,A_ : Optional[Union[np.ndarray, List[float]]] = None ,A_ : str = "epsilon" ,A_ : Optional[bool] = False ,A_ : Optional[bool] = False ,A_ : float = 1.0 ,A_ : str = "linspace" ,A_ : int = 0 ,) -> List[str]: if trained_betas is not None: A = torch.tensor(A_ ,dtype=torch.floataa ) elif beta_schedule == "linear": A = torch.linspace(A_ ,A_ ,A_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. A = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,A_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule A = betas_for_alpha_bar(A_ ,alpha_transform_type='cosine' ) elif beta_schedule == "exp": A = betas_for_alpha_bar(A_ ,alpha_transform_type='exp' ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) A = 1.0 - self.betas A = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(A_ ,A_ ,A_ ) A = use_karras_sigmas def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Tuple ,A_ : Tuple=None ) -> Tuple: if schedule_timesteps is None: A = self.timesteps A = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: A = 1 if len(A_ ) > 1 else 0 else: A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep A = self._index_counter[timestep_int] return indices[pos].item() @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : torch.FloatTensor ,A_ : Union[float, torch.FloatTensor] ,) -> torch.FloatTensor: A = self.index_for_timestep(A_ ) A = self.sigmas[step_index] A = sample / ((sigma**2 + 1) ** 0.5) return sample def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : Union[str, torch.device] = None ,A_ : Optional[int] = None ,) -> Optional[Any]: A = num_inference_steps A = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": A = np.linspace(0 ,num_train_timesteps - 1 ,A_ ,dtype=A_ )[::-1].copy() elif self.config.timestep_spacing == "leading": A = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(0 ,A_ ) * step_ratio).round()[::-1].copy().astype(A_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": A = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 A = (np.arange(A_ ,0 ,-step_ratio )).round().copy().astype(A_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) A = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) A = np.log(A_ ) A = np.interp(A_ ,np.arange(0 ,len(A_ ) ) ,A_ ) if self.config.use_karras_sigmas: A = self._convert_to_karras(in_sigmas=A_ ,num_inference_steps=self.num_inference_steps ) A = np.array([self._sigma_to_t(A_ ,A_ ) for sigma in sigmas] ) A = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) A = torch.from_numpy(A_ ).to(device=A_ ) A = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) A = torch.from_numpy(A_ ) A = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(A_ ).startswith('mps' ): # mps does not support float64 A = timesteps.to(A_ ,dtype=torch.floataa ) else: A = timesteps.to(device=A_ ) # empty dt and derivative A = None A = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter A = defaultdict(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : List[str] ) -> Dict: # get log sigma A = np.log(A_ ) # get distribution A = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range A = np.cumsum((dists >= 0) ,axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) A = low_idx + 1 A = log_sigmas[low_idx] A = log_sigmas[high_idx] # interpolate sigmas A = (low - log_sigma) / (low - high) A = np.clip(A_ ,0 ,1 ) # transform interpolation to time range A = (1 - w) * low_idx + w * high_idx A = t.reshape(sigma.shape ) return t def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : torch.FloatTensor ,A_ : int ) -> torch.FloatTensor: A = in_sigmas[-1].item() A = in_sigmas[0].item() A = 7.0 # 7.0 is the value used in the paper A = np.linspace(0 ,1 ,A_ ) A = sigma_min ** (1 / rho) A = sigma_max ** (1 / rho) A = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: return self.dt is None def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : Union[float, torch.FloatTensor] ,A_ : Union[torch.FloatTensor, np.ndarray] ,A_ : bool = True ,) -> Union[SchedulerOutput, Tuple]: A = self.index_for_timestep(A_ ) # advance index counter by 1 A = timestep.cpu().item() if torch.is_tensor(A_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: A = self.sigmas[step_index] A = self.sigmas[step_index + 1] else: # 2nd order / Heun's method A = self.sigmas[step_index - 1] A = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API A = 0 A = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": A = sigma_hat if self.state_in_first_order else sigma_next A = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": A = sigma_hat if self.state_in_first_order else sigma_next A = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": A = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: A = pred_original_sample.clamp( -self.config.clip_sample_range ,self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order A = (sample - pred_original_sample) / sigma_hat # 3. delta timestep A = sigma_next - sigma_hat # store for 2nd order step A = derivative A = dt A = sample else: # 2. 2nd order / Heun's method A = (sample - pred_original_sample) / sigma_next A = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample A = self.dt A = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" A = None A = None A = None A = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A_ ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,A_ : torch.FloatTensor ,) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples A = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(A_ ): # mps does not support float64 A = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) A = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: A = self.timesteps.to(original_samples.device ) A = timesteps.to(original_samples.device ) A = [self.index_for_timestep(A_ ,A_ ) for t in timesteps] A = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): A = sigma.unsqueeze(-1 ) A = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ) -> int: return self.config.num_train_timesteps
74
1
import math import sys import cva import numpy as np def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: """simple docstring""" snake_case__ : int = math.sqrt(__lowerCAmelCase ) snake_case__ : Tuple = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: """simple docstring""" snake_case__ : Any = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: """simple docstring""" snake_case__ : Dict = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCAmelCase ): for j in range(0 , __lowerCAmelCase ): snake_case__ : Any = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> np.ndarray: """simple docstring""" snake_case__ : Optional[int] = np.zeros(img.shape ) snake_case__ : List[Any] = get_gauss_kernel(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ , snake_case__ : Optional[int] = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): snake_case__ : Tuple = get_slice(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Optional[Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] snake_case__ : List[str] = vec_gaussian(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Optional[int] = np.multiply(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Union[str, Any] = np.multiply(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Tuple = np.sum(__lowerCAmelCase ) / np.sum(__lowerCAmelCase ) snake_case__ : int = val return imga def _lowerCAmelCase ( __lowerCAmelCase ) -> tuple: """simple docstring""" snake_case__ : List[Any] = args[1] if args[1:] else '''../image_data/lena.jpg''' snake_case__ : int = float(args[2] ) if args[2:] else 1.0 snake_case__ : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: snake_case__ : Dict = int(args[4] ) snake_case__ : int = kernel_size + abs(kernel_size % 2 - 1 ) else: snake_case__ : Any = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": A__ , A__ , A__ , A__ = parse_args(sys.argv) A__ = cva.imread(filename, 0) cva.imshow('''input image''', img) A__ = img / 255 A__ = out.astype('''float32''') A__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) A__ = out * 255 A__ = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
44
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[Any] = original_name.split('''.''' )[0] snake_case__ : List[str] = key.split('''.''' ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 2] ) snake_case__ : Optional[int] = int(key_list[key_list.index(__lowerCAmelCase ) - 1] ) snake_case__ : Any = orig_block_num - offset snake_case__ : Tuple = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" snake_case__ : Optional[int] = OrderedDict() snake_case__ , snake_case__ : List[str] = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case__ : int = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case__ : Tuple = key[: key.find('''proj''' )] snake_case__ : Union[str, Any] = key.replace(__lowerCAmelCase , f"""patch_embeddings.{total_embed_found}.""" ) snake_case__ : Dict = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case__ : Optional[int] = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case__ : Optional[Any] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case__ : int = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case__ : Tuple = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case__ : str = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case__ : Optional[int] = replace_key_with_offset(__lowerCAmelCase , __lowerCAmelCase , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case__ : Union[str, Any] = key.replace('''head''' , '''classifier''' ) snake_case__ : Union[str, Any] = value return new_state_dict def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ : List[str] = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image @torch.no_grad() def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : List[str] = PoolFormerConfig() # set attributes based on model_name snake_case__ : List[Any] = '''huggingface/label-files''' snake_case__ : Union[str, Any] = model_name[-3:] snake_case__ : List[Any] = 1000 snake_case__ : Tuple = '''imagenet-1k-id2label.json''' snake_case__ : Optional[int] = (1, 1000) # set config attributes snake_case__ : Dict = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Tuple = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} if size == "s12": snake_case__ : List[str] = [2, 2, 6, 2] snake_case__ : Union[str, Any] = [64, 128, 320, 512] snake_case__ : Optional[int] = 4.0 snake_case__ : Tuple = 0.9 elif size == "s24": snake_case__ : Tuple = [4, 4, 12, 4] snake_case__ : Tuple = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Dict = 0.9 elif size == "s36": snake_case__ : Optional[Any] = [6, 6, 18, 6] snake_case__ : str = [64, 128, 320, 512] snake_case__ : List[Any] = 4.0 snake_case__ : Any = 1E-6 snake_case__ : Any = 0.9 elif size == "m36": snake_case__ : Any = [6, 6, 18, 6] snake_case__ : Union[str, Any] = [96, 192, 384, 768] snake_case__ : Dict = 4.0 snake_case__ : Union[str, Any] = 1E-6 snake_case__ : List[Any] = 0.95 elif size == "m48": snake_case__ : Optional[int] = [8, 8, 24, 8] snake_case__ : List[str] = [96, 192, 384, 768] snake_case__ : str = 4.0 snake_case__ : str = 1E-6 snake_case__ : Any = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor snake_case__ : Optional[Any] = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) # Prepare image snake_case__ : Optional[int] = prepare_img() snake_case__ : str = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict snake_case__ : List[str] = torch.load(__lowerCAmelCase , map_location=torch.device('''cpu''' ) ) # rename keys snake_case__ : str = rename_keys(__lowerCAmelCase ) # create HuggingFace model and load state dict snake_case__ : List[str] = PoolFormerForImageClassification(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # Define image processor snake_case__ : int = PoolFormerImageProcessor(crop_pct=__lowerCAmelCase ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case__ : Dict = model(__lowerCAmelCase ) snake_case__ : str = outputs.logits # define expected logit slices for different models if size == "s12": snake_case__ : Tuple = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": snake_case__ : Optional[int] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": snake_case__ : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": snake_case__ : Optional[int] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": snake_case__ : List[str] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : str = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _UpperCAmelCase ( __snake_case ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : str=None , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if config is None: assert isinstance(self.model , lowerCAmelCase_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) __lowerCAmelCase = self.model.config else: __lowerCAmelCase = config __lowerCAmelCase = data_args __lowerCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , lowerCAmelCase_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ' padding..' ) if self.args.label_smoothing == 0: __lowerCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __lowerCAmelCase = label_smoothed_nll_loss def lowercase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: if self.optimizer is None: __lowerCAmelCase = ['bias', 'LayerNorm.weight'] __lowerCAmelCase = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] __lowerCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __lowerCAmelCase = Adafactor __lowerCAmelCase = {'scale_parameter': False, 'relative_step': False} else: __lowerCAmelCase = AdamW __lowerCAmelCase = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } __lowerCAmelCase = self.args.learning_rate if self.sharded_ddp: __lowerCAmelCase = OSS( params=lowerCAmelCase_ , optim=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: __lowerCAmelCase = optimizer_cls(lowerCAmelCase_ , **lowerCAmelCase_ ) if self.lr_scheduler is None: __lowerCAmelCase = self._get_lr_scheduler(lowerCAmelCase_ ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def lowercase ( self : str , lowerCAmelCase_ : Dict ) -> Tuple: __lowerCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __lowerCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __lowerCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __lowerCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCAmelCase_ ) return scheduler def lowercase ( self : List[Any] ) -> Optional[Any]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Optional[int]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __lowerCAmelCase = model(**lowerCAmelCase_ , use_cache=lowerCAmelCase_ )[0] __lowerCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __lowerCAmelCase = model(**lowerCAmelCase_ , labels=lowerCAmelCase_ , use_cache=lowerCAmelCase_ )[:2] else: # compute label smoothed loss __lowerCAmelCase = model(**lowerCAmelCase_ , use_cache=lowerCAmelCase_ )[0] __lowerCAmelCase = torch.nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) __lowerCAmelCase = self.loss_fn(lowerCAmelCase_ , lowerCAmelCase_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> List[Any]: __lowerCAmelCase = inputs.pop('labels' ) __lowerCAmelCase = self._compute_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return loss def lowercase ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple = None , ) -> int: __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) __lowerCAmelCase = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __lowerCAmelCase = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **lowerCAmelCase_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __lowerCAmelCase = self._pad_tensors_to_max_len(lowerCAmelCase_ , gen_kwargs['max_length'] ) __lowerCAmelCase = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data __lowerCAmelCase = self._compute_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __lowerCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __lowerCAmelCase = self._pad_tensors_to_max_len(lowerCAmelCase_ , gen_kwargs['max_length'] ) return (loss, logits, labels) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ) -> Any: # If PAD token is not defined at least EOS token has to be defined __lowerCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' f""" padded to `max_length`={max_length}""" ) __lowerCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __lowerCAmelCase = tensor return padded_tensor
284
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): def __init__( self , *a , **a): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , a , ) super().__init__(*a , **a)
214
0
from timeit import timeit def a__ ( A__ ): if number < 0: raise ValueError('the value of input must not be negative' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( A__ ): if number < 0: raise ValueError('the value of input must not be negative' ) SCREAMING_SNAKE_CASE_ : int = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): def do_benchmark(A__ ) -> None: SCREAMING_SNAKE_CASE_ : Any = 'import __main__ as z' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(A__ ) = }''' ) SCREAMING_SNAKE_CASE_ : Any = timeit('z.get_set_bits_count_using_modulo_operator(25)', setup=A__ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(A__ ) = }''' ) SCREAMING_SNAKE_CASE_ : str = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)', setup=A__, ) print(F'''timeit() runs in {timing} seconds''' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(A__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
162
from __future__ import annotations class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = key def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned SCREAMING_SNAKE_CASE_ : Dict = '' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned SCREAMING_SNAKE_CASE_ : str = '' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('encrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('decrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
162
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = IFInpaintingSuperResolutionPipeline __a = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __a = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase ( self : Tuple ): return self._get_superresolution_dummy_components() def lowercase ( self : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any]=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): _snake_case = torch.manual_seed(_lowerCamelCase ) else: _snake_case = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) _snake_case = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) _snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase ( self : int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowercase ( self : Tuple ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self : Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self : List[Any] ): self._test_save_load_local() def lowercase ( self : int ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
288
"""simple docstring""" from math import pow def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _snake_case = int(pow(__lowerCamelCase , __lowerCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _snake_case , _snake_case = backtrack( __lowerCamelCase , __lowerCamelCase , current_number + 1 , __lowerCamelCase , __lowerCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _snake_case , _snake_case = backtrack( __lowerCamelCase , __lowerCamelCase , current_number + 1 , __lowerCamelCase , __lowerCamelCase ) return current_sum, solutions_count def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) -> int: if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(__lowerCamelCase , __lowerCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
288
1
def UpperCAmelCase_ ( _A ): # noqa: E741 '''simple docstring''' SCREAMING_SNAKE_CASE__ = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [0] * n SCREAMING_SNAKE_CASE__ = [False] * n SCREAMING_SNAKE_CASE__ = [False] * n def dfs(_A , _A , _A , _A ): if parent == root: out_edge_count += 1 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = at for to in l[at]: if to == parent: pass elif not visited[to]: SCREAMING_SNAKE_CASE__ = dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: SCREAMING_SNAKE_CASE__ = True # AP found via cycle if at == low[to]: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = min(low[at] , __lowerCAmelCase ) return out_edge_count for i in range(__lowerCAmelCase ): if not visited[i]: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = dfs(__lowerCAmelCase , __lowerCAmelCase , -1 , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = out_edge_count > 1 for x in range(len(__lowerCAmelCase ) ): if is_art[x] is True: print(__lowerCAmelCase ) # Adjacency list of graph _SCREAMING_SNAKE_CASE : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
362
import argparse import copy def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} with open(_A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[1], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: SCREAMING_SNAKE_CASE__ = [] _list.append([line.split()[0], line.split()[2]] ) SCREAMING_SNAKE_CASE__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' with open(_A ) as f: SCREAMING_SNAKE_CASE__ = f.read(1 ) SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = start_node SCREAMING_SNAKE_CASE__ = 0 while visiting not in first_solution: SCREAMING_SNAKE_CASE__ = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(_A ) and k[0] not in first_solution: SCREAMING_SNAKE_CASE__ = k[1] SCREAMING_SNAKE_CASE__ = k[0] first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = distance_of_first_solution + int(_A ) SCREAMING_SNAKE_CASE__ = best_node first_solution.append(_A ) SCREAMING_SNAKE_CASE__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 SCREAMING_SNAKE_CASE__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for n in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) for kn in solution[1:-1]: SCREAMING_SNAKE_CASE__ = solution.index(_A ) if n == kn: continue SCREAMING_SNAKE_CASE__ = copy.deepcopy(_A ) SCREAMING_SNAKE_CASE__ = kn SCREAMING_SNAKE_CASE__ = n SCREAMING_SNAKE_CASE__ = 0 for k in _tmp[:-1]: SCREAMING_SNAKE_CASE__ = _tmp[_tmp.index(_A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: SCREAMING_SNAKE_CASE__ = distance + int(i[1] ) _tmp.append(_A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) SCREAMING_SNAKE_CASE__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda _A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase_ ( _A , _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = first_solution SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = distance_of_first_solution SCREAMING_SNAKE_CASE__ = solution while count <= iters: SCREAMING_SNAKE_CASE__ = find_neighborhood(_A , _A ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] SCREAMING_SNAKE_CASE__ = len(_A ) - 1 SCREAMING_SNAKE_CASE__ = False while not found: SCREAMING_SNAKE_CASE__ = 0 while i < len(_A ): if best_solution[i] != solution[i]: SCREAMING_SNAKE_CASE__ = best_solution[i] SCREAMING_SNAKE_CASE__ = solution[i] break SCREAMING_SNAKE_CASE__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = best_solution[:-1] SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: SCREAMING_SNAKE_CASE__ = cost SCREAMING_SNAKE_CASE__ = solution else: SCREAMING_SNAKE_CASE__ = index_of_best_solution + 1 SCREAMING_SNAKE_CASE__ = neighborhood[index_of_best_solution] if len(_A ) >= size: tabu_list.pop(0 ) SCREAMING_SNAKE_CASE__ = count + 1 return best_solution_ever, best_cost def UpperCAmelCase_ ( _A=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = generate_neighbours(args.File ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = generate_first_solution( args.File , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = tabu_search( _A , _A , _A , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
218
0