code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' a_ : Dict = 8.3_14_45_98 def a_ ( __snake_case : float , __snake_case : float ) -> float: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example a_ : Optional[Any] = 3_00 a_ : int = 28 a_ : Any = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
75
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : Union[str, Any] =FunnelTokenizer lowercase : List[str] =FunnelTokenizerFast lowercase : Union[str, Any] =True lowercase : int =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =[ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''UNwant\u00E9d,running''' lowerCamelCase_ ='''unwanted, running''' return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tokenizer_class(self.vocab_file ) lowerCamelCase_ =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase, ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [7, 4, 5, 10, 8, 9] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''' ) lowerCamelCase_ =len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len ) lowerCamelCase_ =tokenizer('''UNwant\u00E9d,running''', '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''], [2] + [0] * sentence_len + [1] * sentence_len )
75
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) __lowercase = VideoClassificationPipeline(model=__a, image_processor=__a, top_k=2 ) __lowercase = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def _lowercase ( self : List[str], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any ): for example in examples: __lowercase = video_classifier(__a ) self.assertEqual( __a, [ {"score": ANY(__a ), "label": ANY(__a )}, {"score": ANY(__a ), "label": ANY(__a )}, ], ) @require_torch def _lowercase ( self : List[Any] ): __lowercase = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" __lowercase = VideoMAEFeatureExtractor( size={"shortest_edge": 1_0}, crop_size={"height": 1_0, "width": 1_0} ) __lowercase = pipeline( "video-classification", model=__a, feature_extractor=__a, frame_sampling_rate=4 ) __lowercase = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) __lowercase = video_classifier(__a, top_k=2 ) self.assertEqual( nested_simplify(__a, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) __lowercase = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(__a, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def _lowercase ( self : Dict ): pass
368
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCAmelCase : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCAmelCase : Optional[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCAmelCase : Tuple = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self : Optional[int] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) __lowercase = text_classifier(["This is great !", "This is bad"], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier("This is great !", top_k=1 ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) __lowercase = text_classifier("This is great !", return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ], ) __lowercase = text_classifier(["This is great !", "Something else"], return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ], ) @require_torch def _lowercase ( self : Dict ): import torch __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt", device=torch.device("cpu" ), ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def _lowercase ( self : Union[str, Any] ): __lowercase = pipeline( task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline("text-classification" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def _lowercase ( self : Tuple ): __lowercase = pipeline("text-classification", framework="tf" ) __lowercase = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 1.0}] ) __lowercase = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "NEGATIVE", "score": 1.0}] ) __lowercase = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": "POSITIVE", "score": 0.988}] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ): __lowercase = TextClassificationPipeline(model=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str ): __lowercase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowercase = "HuggingFace is in" __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) __lowercase = ["HuggingFace is in ", "Paris is in France"] __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowercase = text_classifier(UpperCAmelCase__, top_k=UpperCAmelCase__ ) __lowercase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [[{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N, [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N], ) __lowercase = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} __lowercase = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowercase = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(UpperCAmelCase__ ): text_classifier(UpperCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowercase = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ), [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}], ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
144
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCAmelCase ( a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = SwinvaConfig() A_ : Optional[Any] = swinva_name.split("""_""" ) A_ : Tuple = name_split[1] if "to" in name_split[3]: A_ : Optional[Any] = int(name_split[3][-3:] ) else: A_ : List[Any] = int(name_split[3] ) if "to" in name_split[2]: A_ : int = int(name_split[2][-2:] ) else: A_ : int = int(name_split[2][6:] ) if model_size == "tiny": A_ : Any = 9_6 A_ : str = (2, 2, 6, 2) A_ : Tuple = (3, 6, 1_2, 2_4) elif model_size == "small": A_ : Tuple = 9_6 A_ : str = (2, 2, 1_8, 2) A_ : Optional[Any] = (3, 6, 1_2, 2_4) elif model_size == "base": A_ : int = 1_2_8 A_ : Tuple = (2, 2, 1_8, 2) A_ : Optional[int] = (4, 8, 1_6, 3_2) else: A_ : List[str] = 1_9_2 A_ : List[str] = (2, 2, 1_8, 2) A_ : List[str] = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: A_ : Tuple = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): A_ : List[Any] = 2_1_8_4_1 A_ : str = """huggingface/label-files""" A_ : Optional[int] = """imagenet-22k-id2label.json""" A_ : Optional[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : Dict = {int(a_ ): v for k, v in idalabel.items()} A_ : str = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} else: A_ : Optional[Any] = 1_0_0_0 A_ : str = """huggingface/label-files""" A_ : Tuple = """imagenet-1k-id2label.json""" A_ : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : int = {int(a_ ): v for k, v in idalabel.items()} A_ : List[str] = idalabel A_ : int = {v: k for k, v in idalabel.items()} A_ : Any = img_size A_ : Optional[Any] = num_classes A_ : Union[str, Any] = embed_dim A_ : Dict = depths A_ : str = num_heads A_ : Any = window_size return config def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" if "patch_embed.proj" in name: A_ : Dict = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A_ : List[str] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: A_ : int = """encoder.""" + name if "attn.proj" in name: A_ : Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: A_ : List[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: A_ : str = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A_ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A_ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A_ : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: A_ : Optional[Any] = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: A_ : Any = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: A_ : Tuple = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: A_ : Optional[Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": A_ : int = """layernorm.weight""" if name == "norm.bias": A_ : Tuple = """layernorm.bias""" if "head" in name: A_ : Union[str, Any] = name.replace("""head""" , """classifier""" ) else: A_ : Optional[int] = """swinv2.""" + name return name def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): A_ : Tuple = orig_state_dict.pop(a_ ) if "mask" in key: continue elif "qkv" in key: A_ : Any = key.split(""".""" ) A_ : Optional[int] = int(key_split[1] ) A_ : Optional[Any] = int(key_split[3] ) A_ : Optional[int] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A_ : str = val[:dim, :] A_ : List[str] = val[dim : dim * 2, :] A_ : Tuple = val[-dim:, :] else: A_ : Union[str, Any] = val[:dim] A_ : Dict = val[ dim : dim * 2 ] A_ : List[str] = val[-dim:] else: A_ : Any = val return orig_state_dict def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" A_ : Optional[Any] = timm.create_model(a_ , pretrained=a_ ) timm_model.eval() A_ : str = get_swinva_config(a_ ) A_ : List[str] = SwinvaForImageClassification(a_ ) model.eval() A_ : Optional[int] = convert_state_dict(timm_model.state_dict() , a_ ) model.load_state_dict(a_ ) A_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : List[str] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) A_ : Any = Image.open(requests.get(a_ , stream=a_ ).raw ) A_ : Dict = image_processor(images=a_ , return_tensors="""pt""" ) A_ : Tuple = timm_model(inputs["""pixel_values"""] ) A_ : Union[str, Any] = model(**a_ ).logits assert torch.allclose(a_ , a_ , atol=1E-3 ) print(F"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(a_ ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
344
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Any = '\\n Text data.\n Second line of data.' UpperCamelCase__ : List[Any] = 'file' @pytest.fixture(scope="""session""" ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : int = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") A_ : int = bytes(a_ , """utf-8""" ) with zstd.open(a_ , """wb""" ) as f: f.write(a_ ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , a_ ) , """w""" ) as f: f.write(a_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[str] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} A_ : Any = input_paths[compression_format] A_ : Tuple = tmp_path / """cache""" A_ : Tuple = DownloadConfig(cache_dir=a_ , extract_compressed_file=a_ ) A_ : Dict = cached_path(a_ , download_config=a_ ) with open(a_ ) as f: A_ : Optional[Any] = f.read() with open(a_ ) as f: A_ : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Union[str, Any] = """custom_cache""" A_ : List[str] = """custom_extracted_dir""" A_ : Optional[Any] = tmp_path / """custom_extracted_path""" if default_extracted: A_ : Any = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , a_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(a_ ) ) A_ : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A_ : List[Any] = xz_file A_ : Optional[int] = ( DownloadConfig(extract_compressed_file=a_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a_ ) ) A_ : Union[str, Any] = cached_path(a_ , download_config=a_ ) assert Path(a_ ).parent.parts[-2:] == expected def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : str = str(Path(a_ ).resolve() ) assert cached_path(a_ ) == text_file # relative path A_ : List[str] = str(Path(a_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a_ ) == text_file def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : Optional[Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(a_ ): cached_path(a_ ) # relative path A_ : Tuple = """./__missing_file__.txt""" with pytest.raises(a_ ): cached_path(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : Any = get_from_cache(F"tmp://{tmpfs_file}" ) with open(a_ ) as f: A_ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" with pytest.raises(a_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): http_get("""https://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): ftp_get("""ftp://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(a_ ): fsspec_get("""s3://huggingface.co""" , temp_file=a_ ) with pytest.raises(a_ ): fsspec_head("""s3://huggingface.co""" )
344
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A : str = logging.get_logger(__name__) A : str = {"""vocab_file""": """vocab.txt"""} A : Optional[int] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } A : List[Any] = { """YituTech/conv-bert-base""": 5_1_2, """YituTech/conv-bert-medium-small""": 5_1_2, """YituTech/conv-bert-small""": 5_1_2, } A : List[Any] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class A (SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCamelCase : List[str] = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : List[str] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[int]="[UNK]" , __lowerCAmelCase : Tuple="[SEP]" , __lowerCAmelCase : List[str]="[PAD]" , __lowerCAmelCase : List[Any]="[CLS]" , __lowerCAmelCase : List[str]="[MASK]" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : int=None , **__lowerCAmelCase : List[str] , ) -> str: """simple docstring""" super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , snake_case__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , snake_case__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , snake_case__ ) != tokenize_chinese_chars ): A__ = getattr(snake_case__ , normalizer_state.pop("""type""" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**snake_case__ ) A__ = do_lower_case def a_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int]=None ) -> str: """simple docstring""" A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict = None ) -> Optional[Any]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Any = None ) -> Tuple: """simple docstring""" A__ = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
353
from string import ascii_uppercase A : List[str] = {str(ord(c) - 5_5): c for c in ascii_uppercase} def __lowerCamelCase ( __a :int , __a :int ) -> str: """simple docstring""" if isinstance(__a , __a ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(__a , __a ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(__a , __a ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 3_6: raise ValueError("""base must be <= 36""" ) A__ = """""" A__ = 0 A__ = 0 while div != 1: A__ , A__ = divmod(__a , __a ) if base >= 1_1 and 9 < mod < 3_6: A__ = ALPHABET_VALUES[str(__a )] else: A__ = str(__a ) new_value += actual_value A__ = num // base A__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__a ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 3_7): for num in range(1_0_0_0): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
276
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _a = False, False, False @dataclass class __A : '''simple docstring''' lowerCAmelCase_ = None lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = None # Automatically constructed lowerCAmelCase_ = "dict" lowerCAmelCase_ = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) lowerCAmelCase_ = field(default="""Audio""" , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self ): '''simple docstring''' return self.pa_type def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(snake_case_ , snake_case_ ): return {"bytes": None, "path": value} elif isinstance(snake_case_ , snake_case_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCamelCase__ = BytesIO() sf.write(snake_case_ , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCamelCase__ = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: lowerCamelCase__ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2_7_6_7 lowerCamelCase__ = BytesIO(bytes() ) sf.write(snake_case_ , snake_case_ , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) lowerCamelCase__ = (value['path'], BytesIO(value['''bytes'''] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err lowerCamelCase__ = xsplitext(snake_case_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: lowerCamelCase__ = token_per_repo_id or {} lowerCamelCase__ = path.split('''::''' )[-1] try: lowerCamelCase__ = string_to_dict(snake_case_ , config.HUB_DATASETS_URL )['repo_id'] lowerCamelCase__ = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCamelCase__ = None with xopen(snake_case_ , '''rb''' , use_auth_token=snake_case_ ) as f: lowerCamelCase__ = sf.read(snake_case_ ) else: lowerCamelCase__ = sf.read(snake_case_ ) lowerCamelCase__ = array.T if self.mono: lowerCamelCase__ = librosa.to_mono(snake_case_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCamelCase__ = librosa.resample(snake_case_ , orig_sr=snake_case_ , target_sr=self.sampling_rate ) lowerCamelCase__ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __lowerCamelCase ( self ): '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if pa.types.is_string(storage.type ): lowerCamelCase__ = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) lowerCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase__ = pa.array([None] * len(snake_case_ ) , type=pa.string() ) lowerCamelCase__ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): lowerCamelCase__ = pa.array([Audio().encode_example(snake_case_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowerCamelCase__ = storage.field('''bytes''' ) else: lowerCamelCase__ = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowerCamelCase__ = storage.field('''path''' ) else: lowerCamelCase__ = pa.array([None] * len(snake_case_ ) , type=pa.string() ) lowerCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(snake_case_ , self.pa_type ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowerCAmelCase ): with xopen(snake_case_ , '''rb''' ) as f: lowerCamelCase__ = f.read() return bytes_ lowerCamelCase__ = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase__ = pa.array( [os.path.basename(snake_case_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) lowerCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(snake_case_ , self.pa_type )
209
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): """simple docstring""" super().__init__() A_ : Optional[int] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) A_ : Optional[int] = nn.Parameter(torch.ones(1 , snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ = None , snake_case_ = None , ): """simple docstring""" A_ : str = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) A_ : Optional[int] = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = (embeds * self.std) + self.mean return embeds
286
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : List[str] = '''▁''' _lowerCamelCase : Union[str, Any] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } _lowerCamelCase : List[Any] = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } _lowerCamelCase : Optional[int] = { '''facebook/s2t-small-librispeech-asr''': 10_24, } _lowerCamelCase : str = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] _lowerCamelCase : Any = {'''mustc''': MUSTC_LANGS} class lowercase ( a ): lowercase__ : List[str] = VOCAB_FILES_NAMES lowercase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Dict = MAX_MODEL_INPUT_SIZES lowercase__ : int = ["""input_ids""", """attention_mask"""] lowercase__ : List[int] = [] def __init__( self : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Any , _UpperCamelCase : int="<s>" , _UpperCamelCase : Dict="</s>" , _UpperCamelCase : Union[str, Any]="<pad>" , _UpperCamelCase : str="<unk>" , _UpperCamelCase : str=False , _UpperCamelCase : Tuple=False , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : int , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , do_upper_case=_UpperCamelCase , do_lower_case=_UpperCamelCase , tgt_lang=_UpperCamelCase , lang_codes=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = do_upper_case SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = load_json(_UpperCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = spm_file SCREAMING_SNAKE_CASE = load_spm(_UpperCamelCase , self.sp_model_kwargs ) if lang_codes is not None: SCREAMING_SNAKE_CASE = lang_codes SCREAMING_SNAKE_CASE = LANGUAGES[lang_codes] SCREAMING_SNAKE_CASE = [F"<lang:{lang}>" for lang in self.langs] SCREAMING_SNAKE_CASE = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} SCREAMING_SNAKE_CASE = self.lang_tokens SCREAMING_SNAKE_CASE = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: SCREAMING_SNAKE_CASE = {} @property def __snake_case( self : Tuple ) -> int: '''simple docstring''' return len(self.encoder ) @property def __snake_case( self : Dict ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __snake_case( self : Union[str, Any] , _UpperCamelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE = [lang_code_id] def __snake_case( self : Tuple , _UpperCamelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __snake_case( self : List[str] , _UpperCamelCase : str ) -> Any: '''simple docstring''' return self.encoder.get(_UpperCamelCase , self.encoder[self.unk_token] ) def __snake_case( self : List[str] , _UpperCamelCase : int ) -> str: '''simple docstring''' return self.decoder.get(_UpperCamelCase , self.unk_token ) def __snake_case( self : Optional[Any] , _UpperCamelCase : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: SCREAMING_SNAKE_CASE = self.sp_model.decode(_UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.sp_model.decode(_UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __snake_case( self : Any , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __snake_case( self : Dict ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Union[str, Any] , _UpperCamelCase : Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = load_spm(self.spm_file , self.sp_model_kwargs ) def __snake_case( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Path(_UpperCamelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (str(_UpperCamelCase ), str(_UpperCamelCase )) def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : Dict[str, Any] ): SCREAMING_SNAKE_CASE = sentencepiece.SentencePieceProcessor(**UpperCAmelCase__ ) spm.Load(str(UpperCAmelCase__ ) ) return spm def __lowerCamelCase (UpperCAmelCase__ : str ): with open(UpperCAmelCase__ , "r" ) as f: return json.load(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ): with open(UpperCAmelCase__ , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ , indent=2 )
206
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Dict = (UniPCMultistepScheduler,) lowercase__ : Optional[int] = (("""num_inference_steps""", 25),) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**_UpperCamelCase ) return config def __snake_case( self : List[str] , _UpperCamelCase : Dict=0 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(_UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Any , _UpperCamelCase : Union[str, Any]=0 , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : List[str] , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] ) -> str: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.timesteps[5] SCREAMING_SNAKE_CASE = scheduler.timesteps[6] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=_UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Dict ) -> int: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) assert not torch.isnan(_UpperCamelCase ).any(), "Samples have nan numbers" def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=_UpperCamelCase ) self.check_over_configs(lower_order_final=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_UpperCamelCase , time_step=0 ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __snake_case( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=_UpperCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def __snake_case( self : List[str] , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
206
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCAmelCase = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): def __init__( self: Tuple , *UpperCamelCase_: Tuple , **UpperCamelCase_: Optional[Any] ) -> None: """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
110
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['DPTFeatureExtractor'] lowerCAmelCase = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Tuple , lowercase__ : List[str]=80 , lowercase__ : Optional[int]=16_000 , lowercase__ : Any=80 , lowercase__ : Optional[Any]=0.0 , lowercase__ : int=True , lowercase__ : Optional[int]=True , lowercase__ : Any=True , **lowercase__ : Optional[Any] , ): '''simple docstring''' super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__) lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = do_ceptral_normalize lowerCAmelCase__ = normalize_means lowerCAmelCase__ = normalize_vars lowerCAmelCase__ = True def __snake_case ( self : List[Any] , lowercase__ : np.ndarray , ): '''simple docstring''' lowerCAmelCase__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCAmelCase__ = torch.from_numpy(lowercase__).unsqueeze(0) lowerCAmelCase__ = ta_kaldi.fbank(lowercase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def __snake_case ( lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : Optional[bool] = True , lowercase__ : Optional[bool] = True , lowercase__ : float = 0.0 , ): '''simple docstring''' if normalize_means: lowerCAmelCase__ = x[:input_length].mean(axis=0) lowerCAmelCase__ = np.subtract(lowercase__ , lowercase__) if normalize_vars: lowerCAmelCase__ = x[:input_length].std(axis=0) lowerCAmelCase__ = np.divide(lowercase__ , lowercase__) if input_length < x.shape[0]: lowerCAmelCase__ = padding_value # make sure array is in float32 lowerCAmelCase__ = x.astype(np.floataa) return x def __snake_case ( self : Dict , lowercase__ : List[np.ndarray] , lowercase__ : Optional[np.ndarray] = None): '''simple docstring''' lowerCAmelCase__ = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase__ , lowercase__ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(lowercase__ , lowercase__) ] def __call__( self : List[str] , lowercase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase__ : Union[bool, str, PaddingStrategy] = False , lowercase__ : Optional[int] = None , lowercase__ : bool = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') lowerCAmelCase__ = isinstance(lowercase__ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") lowerCAmelCase__ = is_batched_numpy or ( isinstance(lowercase__ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase__ , np.ndarray): lowerCAmelCase__ = np.asarray(lowercase__ , dtype=np.floataa) elif isinstance(lowercase__ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCAmelCase__ = raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase__ = [raw_speech] # extract fbank features lowerCAmelCase__ = [self._extract_fbank_features(lowercase__) for waveform in raw_speech] # convert into correct format for padding lowerCAmelCase__ = BatchFeature({'input_features': features}) lowerCAmelCase__ = self.pad( lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) # make sure list is in array format lowerCAmelCase__ = padded_inputs.get('input_features') if isinstance(input_features[0] , lowercase__): lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for feature in input_features] lowerCAmelCase__ = padded_inputs.get('attention_mask') if attention_mask is not None: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCAmelCase__ = ( np.array(lowercase__ , dtype=np.intaa) if self._get_padding_strategies(lowercase__ , max_length=lowercase__) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase__ = self.normalize( padded_inputs['input_features'] , attention_mask=lowercase__) if return_tensors is not None: lowerCAmelCase__ = padded_inputs.convert_to_tensors(lowercase__) return padded_inputs
119
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowerCAmelCase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowerCAmelCase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowerCAmelCase__ , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowerCAmelCase__ , default=0 , help='cuda_id.' , ) lowerCAmelCase__ = parser.parse_args() return args def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not len(lowerCAmelCase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase__ , lowerCAmelCase__ = imgs[0].size lowerCAmelCase__ = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase__ , lowerCAmelCase__ = grid.size for i, img in enumerate(lowerCAmelCase__ ): grid.paste(lowerCAmelCase__ , box=(i % cols * w, i // cols * h) ) return grid def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__="robotic cat with wings" , lowerCAmelCase__=7.5 , lowerCAmelCase__=5_0 , lowerCAmelCase__=1 , lowerCAmelCase__=4_2 , ): lowerCAmelCase__ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase__ = pipeline( lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , ).images lowerCAmelCase__ = int(math.sqrt(lowerCAmelCase__ ) ) lowerCAmelCase__ = image_grid(lowerCAmelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCAmelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCAmelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowerCAmelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowerCAmelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowerCAmelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCAmelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowerCAmelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowerCAmelCase__ = unet.to(torch.device('cuda', args.cuda_id)) lowerCAmelCase__ = pipeline.to(unet.device) lowerCAmelCase__ , lowerCAmelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowerCAmelCase__ = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
119
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( UpperCamelCase_ ): _a = ['''image_processor''', '''tokenizer'''] _a = '''CLIPImageProcessor''' _a = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : Optional[Any] , A_ : Union[str, Any]=None , A_ : List[Any]=None , **A_ : int): lowerCAmelCase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A_ , ) lowerCAmelCase_ : str = kwargs.pop('''feature_extractor''') lowerCAmelCase_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(A_ , A_) def __call__( self : Optional[Any] , A_ : Dict=None , A_ : int=None , A_ : str=None , **A_ : List[str]): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: lowerCAmelCase_ : str = self.tokenizer(A_ , return_tensors=A_ , **A_) if images is not None: lowerCAmelCase_ : str = self.image_processor(A_ , return_tensors=A_ , **A_) if text is not None and images is not None: lowerCAmelCase_ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_) , tensor_type=A_) def UpperCAmelCase__ ( self : Any , *A_ : Tuple , **A_ : List[str]): return self.tokenizer.batch_decode(*A_ , **A_) def UpperCAmelCase__ ( self : str , *A_ : List[str] , **A_ : Tuple): return self.tokenizer.decode(*A_ , **A_) @property def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Tuple = self.tokenizer.model_input_names lowerCAmelCase_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
103
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) A__ : Optional[Any] = logging.getLogger(__name__) def _snake_case ( ) -> int: lowerCamelCase_ : Tuple =argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCamelCase__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCamelCase__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCamelCase__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCamelCase__ , default="data/dump" , help="The dump file prefix." ) lowerCamelCase_ : Tuple =parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowerCamelCase_ : Tuple =BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : Optional[Any] =tokenizer.special_tokens_map["cls_token"] # `[CLS]` lowerCamelCase_ : Any =tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase_ : str =RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : List[Any] =tokenizer.special_tokens_map["cls_token"] # `<s>` lowerCamelCase_ : Any =tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase_ : Tuple =GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ : Dict =tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` lowerCamelCase_ : Any =tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: lowerCamelCase_ : Optional[int] =fp.readlines() logger.info("Start encoding" ) logger.info(F"""{len(lowerCamelCase__ )} examples to process.""" ) lowerCamelCase_ : str =[] lowerCamelCase_ : Union[str, Any] =0 lowerCamelCase_ : List[str] =10_000 lowerCamelCase_ : int =time.time() for text in data: lowerCamelCase_ : List[str] =F"""{bos} {text.strip()} {sep}""" lowerCamelCase_ : str =tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) rslt.append(lowerCamelCase__ ) iter += 1 if iter % interval == 0: lowerCamelCase_ : List[Any] =time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowerCamelCase_ : Tuple =time.time() logger.info("Finished binarization" ) logger.info(F"""{len(lowerCamelCase__ )} examples processed.""" ) lowerCamelCase_ : Optional[Any] =F"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowerCamelCase_ : Optional[int] =tokenizer.vocab_size if vocab_size < (1 << 16): lowerCamelCase_ : int =[np.uintaa(lowerCamelCase__ ) for d in rslt] else: lowerCamelCase_ : Tuple =[np.intaa(lowerCamelCase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(lowerCamelCase__ , "wb" ) as handle: pickle.dump(rslt_ , lowerCamelCase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
144
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__(self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=1_3 , __SCREAMING_SNAKE_CASE : Any=1_0 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Any=3_2 , __SCREAMING_SNAKE_CASE : str=5 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : Optional[int]=3_7 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : int=1_0 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0_2 , __SCREAMING_SNAKE_CASE : str=0.9 , __SCREAMING_SNAKE_CASE : int=None , ): A = parent A = batch_size A = image_size A = num_channels A = patch_size A = tubelet_size A = num_frames A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range A = mask_ratio A = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A = (image_size // patch_size) ** 2 A = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A = int(mask_ratio * self.seq_length) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size) A = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ (self : List[str]): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): A = VideoMAEModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() A = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ (self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]): A = VideoMAEForPreTraining(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A = torch.ones((self.num_masks,)) A = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) A = mask.expand(self.batch_size , -1).bool() A = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # model only returns predictions for masked patches A = mask.sum().item() A = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Any): A = VideoMAEModelTester(self) A = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7) def SCREAMING_SNAKE_CASE__ (self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int=False): A = copy.deepcopy(__SCREAMING_SNAKE_CASE) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A = torch.ones((self.model_tester.num_masks,)) A = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) A = mask.expand(self.model_tester.batch_size , -1).bool() A = bool_masked_pos.to(__SCREAMING_SNAKE_CASE) if return_labels: if model_class in [ *get_values(__SCREAMING_SNAKE_CASE), ]: A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE) return inputs_dict def SCREAMING_SNAKE_CASE__ (self : List[Any]): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds") def SCREAMING_SNAKE_CASE__ (self : Tuple): pass def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear)) def SCREAMING_SNAKE_CASE__ (self : Any): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(__SCREAMING_SNAKE_CASE) A = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__SCREAMING_SNAKE_CASE) @slow def SCREAMING_SNAKE_CASE__ (self : Any): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = VideoMAEModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): if not self.has_attentions: pass else: A , A = self.model_tester.prepare_config_and_inputs_for_common() A = True for model_class in self.all_model_classes: A = self.model_tester.seq_length - self.model_tester.num_masks A = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A = True A = False A = True A = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) A = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] A = True A = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) A = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A = len(__SCREAMING_SNAKE_CASE) # Check attention is always last and order is fine A = True A = True A = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) self.assertEqual(out_len + 1 , len(__SCREAMING_SNAKE_CASE)) A = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]): A = model_class(__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() with torch.no_grad(): A = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) A = outputs.hidden_states A = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) A = self.model_tester.seq_length - self.model_tester.num_masks A = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def SCREAMING_SNAKE_CASE__ (self : Tuple): pass def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) A = np.load(lowercase__ ) return list(lowercase__ ) @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ (self : Tuple): A = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to( __SCREAMING_SNAKE_CASE) A = self.default_image_processor A = prepare_video() A = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="pt").to(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): A = model(**__SCREAMING_SNAKE_CASE) # verify the logits A = torch.Size((1, 4_0_0)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) A = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1]).to(__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) @slow def SCREAMING_SNAKE_CASE__ (self : int): A = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(__SCREAMING_SNAKE_CASE) A = self.default_image_processor A = prepare_video() A = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="pt").to(__SCREAMING_SNAKE_CASE) # add boolean mask, indicating which patches to mask A = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt") A = torch.load(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): A = model(**__SCREAMING_SNAKE_CASE) # verify the logits A = torch.Size([1, 1_4_0_8, 1_5_3_6]) A = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=__SCREAMING_SNAKE_CASE) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `True`) A = torch.tensor([0.5_1_4_2] , device=__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.loss , __SCREAMING_SNAKE_CASE , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `False`) A = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=__SCREAMING_SNAKE_CASE).to( __SCREAMING_SNAKE_CASE) with torch.no_grad(): A = model(**__SCREAMING_SNAKE_CASE) A = torch.tensor(torch.tensor([0.6_4_6_9]) , device=__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.loss , __SCREAMING_SNAKE_CASE , atol=1E-4))
57
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : Optional[Any] = random.Random() if is_torch_available(): import torch def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): """simple docstring""" if rng is None: A = global_rng A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __UpperCamelCase ( unittest.TestCase ): def __init__(self : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=7 , __SCREAMING_SNAKE_CASE : Optional[int]=4_0_0 , __SCREAMING_SNAKE_CASE : Optional[int]=2_0_0_0 , __SCREAMING_SNAKE_CASE : Any=1 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : int=1_6_0_0_0 , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , ): A = parent A = batch_size A = min_seq_length A = max_seq_length A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A = feature_size A = padding_value A = sampling_rate A = return_attention_mask A = do_normalize def SCREAMING_SNAKE_CASE__ (self : Tuple): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Any=False): def _flatten(__SCREAMING_SNAKE_CASE : Dict): return list(itertools.chain(*__SCREAMING_SNAKE_CASE)) if equal_length: A = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size A = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: A = [np.asarray(__SCREAMING_SNAKE_CASE) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = ASTFeatureExtractor def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = ASTFeatureExtractionTester(self) def SCREAMING_SNAKE_CASE__ (self : Dict): # Tests that all call wrap to encode_plus and batch_encode_plus A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 A = [floats_list((1, x))[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0)] A = [np.asarray(__SCREAMING_SNAKE_CASE) for speech_input in speech_inputs] # Test not batched input A = feat_extract(speech_inputs[0] , return_tensors="np").input_values A = feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) # Test batched A = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np").input_values A = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) # Test 2-D numpy arrays are batched. A = [floats_list((1, x))[0] for x in (8_0_0, 8_0_0, 8_0_0)] A = np.asarray(__SCREAMING_SNAKE_CASE) A = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors="np").input_values A = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3)) @require_torch def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): import torch A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) A = np.random.rand(1_0_0).astype(np.floataa) A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) A = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict): from datasets import load_dataset A = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech A = ds.sort("id").select(range(__SCREAMING_SNAKE_CASE))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def SCREAMING_SNAKE_CASE__ (self : Dict): # fmt: off A = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9]) # fmt: on A = self._load_datasamples(1) A = ASTFeatureExtractor() A = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="pt").input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8)) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , __SCREAMING_SNAKE_CASE , atol=1E-4))
57
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase : str = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
18
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: List[str] = logging.get_logger(__name__) A__: Union[str, Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : int = "data2vec-text" def __init__( self :str , SCREAMING_SNAKE_CASE :Optional[Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE :Any=7_6_8 , SCREAMING_SNAKE_CASE :List[Any]=1_2 , SCREAMING_SNAKE_CASE :List[str]=1_2 , SCREAMING_SNAKE_CASE :Dict=3_0_7_2 , SCREAMING_SNAKE_CASE :List[str]="gelu" , SCREAMING_SNAKE_CASE :Any=0.1 , SCREAMING_SNAKE_CASE :List[str]=0.1 , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :int=2 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Dict=1e-12 , SCREAMING_SNAKE_CASE :int=1 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :List[Any]=2 , SCREAMING_SNAKE_CASE :str="absolute" , SCREAMING_SNAKE_CASE :Tuple=True , SCREAMING_SNAKE_CASE :Union[str, Any]=None , **SCREAMING_SNAKE_CASE :Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) _a : Optional[Any] =vocab_size _a : Optional[Any] =hidden_size _a : Any =num_hidden_layers _a : List[str] =num_attention_heads _a : Union[str, Any] =hidden_act _a : Any =intermediate_size _a : str =hidden_dropout_prob _a : Optional[Any] =attention_probs_dropout_prob _a : Optional[Any] =max_position_embeddings _a : Union[str, Any] =type_vocab_size _a : Tuple =initializer_range _a : Optional[int] =layer_norm_eps _a : Tuple =position_embedding_type _a : int =use_cache _a : List[str] =classifier_dropout class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _a : Tuple ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : List[Any] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
276
0
import enum import shutil import sys _a , _a = shutil.get_terminal_size() _a = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class A_ (enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 def __a ( __lowerCamelCase, __lowerCamelCase="" ): sys.stdout.write(str(__lowerCamelCase ) + end ) sys.stdout.flush() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="" ): forceWrite(f"""\u001b[{color}m{content}\u001b[0m""", __lowerCamelCase ) def __a ( ): forceWrite("\r" ) def __a ( __lowerCamelCase, __lowerCamelCase ): forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def __a ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def __a ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
368
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _a = object() # For specifying empty leaf dict `{}` _a = object() def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(__lowerCamelCase ) - len(__lowerCamelCase ) + 1 ): UpperCAmelCase_ : List[str] = [x.match(__lowerCamelCase ) for x, y in zip(__lowerCamelCase, ks[i:] )] if matches and all(__lowerCamelCase ): return True return False def __a ( __lowerCamelCase ): def replace(__lowerCamelCase, __lowerCamelCase ): for rule, replacement in rules: if _match(__lowerCamelCase, __lowerCamelCase ): return replacement return val return replace def __a ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P("mp", __lowerCamelCase )), (("transformer", "wte", "embedding"), P("mp", __lowerCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCamelCase, "mp" )), (("attention", "out_proj", "kernel"), P("mp", __lowerCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCamelCase, "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp", __lowerCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = _get_partition_rules() UpperCAmelCase_ : Any = _replacement_rules(__lowerCamelCase ) UpperCAmelCase_ : Any = {k: _unmatched for k in flatten_dict(__lowerCamelCase )} UpperCAmelCase_ : Dict = {k: replace(__lowerCamelCase, __lowerCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCamelCase ) )
23
0
'''simple docstring''' import math def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCamelCase :int = '''Enter the base and the power separated by a comma: ''' lowerCamelCase , lowerCamelCase :Optional[int] = map(int, input(prompt).split(''',''')) lowerCamelCase , lowerCamelCase :str = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCamelCase :Any = res(xa, ya) lowerCamelCase :List[str] = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
206
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a ( lowerCamelCase__=None ): '''simple docstring''' A_ : int = argparse.ArgumentParser(add_help=lowerCamelCase__ , allow_abbrev=lowerCamelCase__ ) # The main config parser A_ : int = config_command_parser(lowerCamelCase__ ) # The subparser to add commands to A_ : int = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(lowerCamelCase__ , parents=[parent_parser] ) update_command_parser(lowerCamelCase__ , parents=[parent_parser] ) return config_parser def a ( ): '''simple docstring''' A_ : Optional[int] = get_config_parser() A_ : List[str] = config_parser.parse_args() if not hasattr(lowerCamelCase__ , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(lowerCamelCase__ ) if __name__ == "__main__": main()
206
1
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> bool: '''simple docstring''' if curr_ind == len(__lowerCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0, len(__lowerCamelCase ) ): if valid_connection(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Insert current vertex into path as next transition lowerCAmelCase : Any = next_ver # Validate created path if util_hamilton_cycle(__lowerCamelCase, __lowerCamelCase, curr_ind + 1 ): return True # Backtrack lowerCAmelCase : List[str] = -1 return False def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = 0 ) -> list[int]: '''simple docstring''' lowerCAmelCase : Dict = [-1] * (len(__lowerCamelCase ) + 1) # initialize start and end of path with starting index lowerCAmelCase : Optional[int] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__lowerCamelCase, __lowerCamelCase, 1 ) else []
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
0
# Function to print upper half of diamond (pyramid) def UpperCamelCase ( snake_case__ : int ) -> List[Any]: for i in range(0 , snake_case__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCamelCase ( snake_case__ : Optional[Any] ) -> int: for i in range(snake_case__ , 0 , -1 ): for _ in range(snake_case__ , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Optional[int]: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(snake_case__ ) # upper half reverse_floyd(snake_case__ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __UpperCAmelCase = 1 while K: __UpperCAmelCase = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __UpperCAmelCase = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
119
import argparse import json from tqdm import tqdm def UpperCamelCase ( ) -> Optional[int]: UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=snake_case__ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=snake_case__ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=snake_case__ , help='where to store parsed gold_data_path file' , ) UpperCamelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCamelCase : int = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): UpperCamelCase : Union[str, Any] = dpr_record['question'] UpperCamelCase : Dict = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(snake_case__ ) + '\n' ) if __name__ == "__main__": main()
119
1
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _snake_case ( lowercase__ ): return 1 / (1 + np.exp(-z )) def _snake_case ( lowercase__ , lowercase__ ): return (-y * np.log(lowercase__ ) - (1 - y) * np.log(1 - h )).mean() def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = np.dot(lowercase__ , lowercase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowercase__ ) ) ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__=70000 ): _lowerCamelCase : int = np.zeros(x.shape[1] ) for iterations in range(lowercase__ ): _lowerCamelCase : Dict = np.dot(lowercase__ , lowercase__ ) _lowerCamelCase : List[Any] = sigmoid_function(lowercase__ ) _lowerCamelCase : Optional[int] = np.dot(x.T , h - y ) / y.size _lowerCamelCase : Any = theta - alpha * gradient # updating the weights _lowerCamelCase : int = np.dot(lowercase__ , lowercase__ ) _lowerCamelCase : Any = sigmoid_function(lowercase__ ) _lowerCamelCase : str = cost_function(lowercase__ , lowercase__ ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase__ = datasets.load_iris() lowercase__ = iris.data[:, :2] lowercase__ = (iris.target != 0) * 1 lowercase__ = 0.1 lowercase__ = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def _snake_case ( lowercase__ ): return sigmoid_function( np.dot(lowercase__ , lowercase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((lowercase__) , (lowercase__)) = (x[:, 0].min(), x[:, 0].max()) ((lowercase__) , (lowercase__)) = (x[:, 1].min(), x[:, 1].max()) ((lowercase__) , (lowercase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase__ = np.c_[xxa.ravel(), xxa.ravel()] lowercase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
368
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
0
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests A : int = open # noqa: we just need to have a builtin inside this module to test it properly
57
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A : str = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str =["""input_ids""", """attention_mask"""] def __init__( self , __a="</s>" , __a="<unk>" , __a="<pad>" , __a=1_25 , __a=None , **__a , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCAmelCase = [f"<extra_id_{i}>" for i in range(__a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowerCAmelCase = len(set(filter(lambda __a : bool("extra_id" in str(__a ) ) , __a ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) __lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token __lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token __lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token super().__init__( eos_token=__a , unk_token=__a , pad_token=__a , extra_ids=__a , additional_special_tokens=__a , **__a , ) __lowerCAmelCase = extra_ids __lowerCAmelCase = 2**8 # utf is 8 bits # define special tokens dict __lowerCAmelCase = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __lowerCAmelCase = len(self.special_tokens_encoder ) __lowerCAmelCase = len(__a ) for i, token in enumerate(__a ): __lowerCAmelCase = self.vocab_size + i - n __lowerCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case ( self , __a , __a = None , __a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__a )) + [1] return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def snake_case ( self , __a ): if len(__a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def snake_case ( self , __a , __a = None ): __lowerCAmelCase = self._add_eos_if_not_present(__a ) if token_ids_a is None: return token_ids_a else: __lowerCAmelCase = self._add_eos_if_not_present(__a ) return token_ids_a + token_ids_a def snake_case ( self , __a ): __lowerCAmelCase = [chr(__a ) for i in text.encode("utf-8" )] return tokens def snake_case ( self , __a ): if token in self.special_tokens_encoder: __lowerCAmelCase = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __lowerCAmelCase = self.added_tokens_encoder[token] elif len(__a ) != 1: __lowerCAmelCase = self.unk_token_id else: __lowerCAmelCase = ord(__a ) + self._num_special_tokens return token_id def snake_case ( self , __a ): if index in self.special_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[index] else: __lowerCAmelCase = chr(index - self._num_special_tokens ) return token def snake_case ( self , __a ): __lowerCAmelCase = B"" for token in tokens: if token in self.special_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: __lowerCAmelCase = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: __lowerCAmelCase = token.encode("utf-8" ) elif token in self.added_tokens_encoder: __lowerCAmelCase = token.encode("utf-8" ) else: __lowerCAmelCase = bytes([ord(__a )] ) bstring += tok_string __lowerCAmelCase = bstring.decode("utf-8" , errors="ignore" ) return string def snake_case ( self , __a , __a = None ): return ()
57
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : List[Any] ): lowercase__ = [] lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=__lowercase, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__lowercase ) lowercase__ = resnets lowercase__ = attentions if self.add_downsample: lowercase__ = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : List[Any], __lowercase : Tuple, __lowercase : Union[str, Any], __lowercase : Any, __lowercase : Tuple=True ): lowercase__ = () for resnet, attn in zip(self.resnets, self.attentions ): lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) lowercase__ = attn(__lowercase, __lowercase, deterministic=__lowercase ) output_states += (hidden_states,) if self.add_downsample: lowercase__ = self.downsamplers_a(__lowercase ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : int ): lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=__lowercase, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = resnets if self.add_downsample: lowercase__ = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : Optional[int], __lowercase : Any, __lowercase : int, __lowercase : int=True ): lowercase__ = () for resnet in self.resnets: lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) output_states += (hidden_states,) if self.add_downsample: lowercase__ = self.downsamplers_a(__lowercase ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : Optional[int] ): lowercase__ = [] lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase__ = self.prev_output_channel if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__lowercase ) lowercase__ = resnets lowercase__ = attentions if self.add_upsample: lowercase__ = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : List[str], __lowercase : str, __lowercase : Optional[Any], __lowercase : List[Any], __lowercase : List[str], __lowercase : Any=True ): for resnet, attn in zip(self.resnets, self.attentions ): # pop res hidden states lowercase__ = res_hidden_states_tuple[-1] lowercase__ = res_hidden_states_tuple[:-1] lowercase__ = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) lowercase__ = attn(__lowercase, __lowercase, deterministic=__lowercase ) if self.add_upsample: lowercase__ = self.upsamplers_a(__lowercase ) return hidden_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : str ): lowercase__ = [] for i in range(self.num_layers ): lowercase__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase__ = self.prev_output_channel if i == 0 else self.out_channels lowercase__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = resnets if self.add_upsample: lowercase__ = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self : Tuple, __lowercase : Optional[Any], __lowercase : Union[str, Any], __lowercase : Optional[int], __lowercase : Any=True ): for resnet in self.resnets: # pop res hidden states lowercase__ = res_hidden_states_tuple[-1] lowercase__ = res_hidden_states_tuple[:-1] lowercase__ = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) if self.add_upsample: lowercase__ = self.upsamplers_a(__lowercase ) return hidden_states class _snake_case ( nn.Module): UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def A__ ( self : List[Any] ): # there is always at least one resnet lowercase__ = [ FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] lowercase__ = [] for _ in range(self.num_layers ): lowercase__ = FlaxTransformeraDModel( in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(__lowercase ) lowercase__ = FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(__lowercase ) lowercase__ = resnets lowercase__ = attentions def __call__( self : Union[str, Any], __lowercase : Dict, __lowercase : List[str], __lowercase : Optional[Any], __lowercase : Union[str, Any]=True ): lowercase__ = self.resnets[0](__lowercase, __lowercase ) for attn, resnet in zip(self.attentions, self.resnets[1:] ): lowercase__ = attn(__lowercase, __lowercase, deterministic=__lowercase ) lowercase__ = resnet(__lowercase, __lowercase, deterministic=__lowercase ) return hidden_states
359
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] lowercase_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _snake_case ( lowercase__): UpperCamelCase__ : Optional[int] ="""whisper""" UpperCamelCase__ : Optional[int] =["""past_key_values"""] UpperCamelCase__ : Optional[Any] ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any], __lowercase : List[str]=5_1865, __lowercase : Dict=80, __lowercase : List[Any]=6, __lowercase : Union[str, Any]=4, __lowercase : Tuple=6, __lowercase : Dict=4, __lowercase : List[Any]=1536, __lowercase : Tuple=1536, __lowercase : Any=0.0, __lowercase : List[str]=0.0, __lowercase : List[Any]=5_0257, __lowercase : List[str]=True, __lowercase : str=True, __lowercase : int="gelu", __lowercase : Tuple=256, __lowercase : Tuple=0.0, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=0.0, __lowercase : List[Any]=0.02, __lowercase : Union[str, Any]=False, __lowercase : str=1500, __lowercase : Optional[int]=448, __lowercase : Optional[Any]=5_0256, __lowercase : Tuple=5_0256, __lowercase : Any=5_0256, __lowercase : Union[str, Any]=None, __lowercase : Any=[220, 5_0256], __lowercase : List[Any]=False, __lowercase : int=256, __lowercase : int=False, __lowercase : Tuple=0.05, __lowercase : int=10, __lowercase : Dict=2, __lowercase : List[Any]=0.0, __lowercase : Optional[int]=10, __lowercase : Union[str, Any]=0, __lowercase : Tuple=7, **__lowercase : Union[str, Any], ): lowercase__ = vocab_size lowercase__ = num_mel_bins lowercase__ = d_model lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = encoder_ffn_dim lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase__ = classifier_proj_size lowercase__ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks lowercase__ = median_filter_width super().__init__( pad_token_id=__lowercase, bos_token_id=__lowercase, eos_token_id=__lowercase, is_encoder_decoder=__lowercase, decoder_start_token_id=__lowercase, suppress_tokens=__lowercase, begin_suppress_tokens=__lowercase, **__lowercase, ) class _snake_case ( lowercase__): @property def A__ ( self : str ): lowercase__ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase__ = {0: "batch"} else: lowercase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowercase, direction="inputs" ) return common_inputs def A__ ( self : int, __lowercase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], __lowercase : int = -1, __lowercase : int = -1, __lowercase : bool = False, __lowercase : Optional["TensorType"] = None, __lowercase : int = 2_2050, __lowercase : float = 5.0, __lowercase : int = 220, ): lowercase__ = OrderedDict() lowercase__ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=__lowercase, framework=__lowercase, sampling_rate=__lowercase, time_duration=__lowercase, frequency=__lowercase, ) lowercase__ = encoder_inputs["input_features"].shape[2] lowercase__ = encoder_sequence_length // 2 if self.use_past else seq_length lowercase__ = super().generate_dummy_inputs( preprocessor.tokenizer, __lowercase, __lowercase, __lowercase, __lowercase ) lowercase__ = encoder_inputs.pop("input_features" ) lowercase__ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase__ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def A__ ( self : int ): return 1e-3
224
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( A__ , A__ , A__ , unittest.TestCase ): lowerCAmelCase_ = StableUnCLIPImgaImgPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ = frozenset([] ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE__ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) SCREAMING_SNAKE_CASE__ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="""v_prediction""" , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL() SCREAMING_SNAKE_CASE__ = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __a ( self : Dict , _lowercase : int , _lowercase : Union[str, Any]=0 , _lowercase : Union[str, Any]=True ): """simple docstring""" if str(__snake_case ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__snake_case ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: SCREAMING_SNAKE_CASE__ = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline(**__snake_case ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__snake_case ) inputs.update({"""image_embeds""": None} ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__snake_case ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __a ( self : Optional[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__snake_case , """anime turle""" , generator=__snake_case , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__snake_case , """anime turle""" , generator=__snake_case , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = pipe( __snake_case , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
219
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] UpperCamelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCamelCase = F'''down_blocks.{i}.resnets.{j}.''' UpperCamelCase = F'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCamelCase = F'''down_blocks.{i}.attentions.{j}.''' UpperCamelCase = F'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCamelCase = F'''up_blocks.{i}.resnets.{j}.''' UpperCamelCase = F'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCamelCase = F'''up_blocks.{i}.attentions.{j}.''' UpperCamelCase = F'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCamelCase = F'''down_blocks.{i}.downsamplers.0.conv.''' UpperCamelCase = F'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCamelCase = F'''up_blocks.{i}.upsamplers.0.''' UpperCamelCase = F'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCamelCase = """mid_block.attentions.0.""" UpperCamelCase = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCamelCase = F'''mid_block.resnets.{j}.''' UpperCamelCase = F'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. A_ : Optional[Any] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: A_ : Tuple = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: A_ : Optional[int] = v.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: A_ : int = v.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Dict = v A_ : Optional[int] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCamelCase = F'''encoder.down_blocks.{i}.resnets.{j}.''' UpperCamelCase = F'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCamelCase = F'''down_blocks.{i}.downsamplers.0.''' UpperCamelCase = F'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCamelCase = F'''up_blocks.{i}.upsamplers.0.''' UpperCamelCase = F'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCamelCase = F'''decoder.up_blocks.{i}.resnets.{j}.''' UpperCamelCase = F'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCamelCase = F'''mid_block.resnets.{i}.''' UpperCamelCase = F'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Tuple = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: A_ : List[str] = v.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Any = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: A_ : str = v.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = v A_ : Optional[int] = {v: vae_state_dict[k] for k, v in mapping.items()} A_ : Dict = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'''mid.attn_1.{weight_name}.weight''' in k: print(f'''Reshaping {k} for SD format''' ) A_ : Union[str, Any] = reshape_weight_for_sd(SCREAMING_SNAKE_CASE ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCamelCase = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] UpperCamelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCamelCase = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCamelCase = {"""q""": 0, """k""": 1, """v""": 2} def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = {} A_ : Optional[int] = {} A_ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): A_ : Dict = k[: -len('''.q_proj.weight''' )] A_ : Dict = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: A_ : Dict = [None, None, None] A_ : Tuple = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): A_ : Optional[Any] = k[: -len('''.q_proj.bias''' )] A_ : int = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: A_ : int = [None, None, None] A_ : Dict = v continue A_ : Optional[int] = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) A_ : Tuple = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) A_ : List[str] = textenc_pattern.sub(lambda SCREAMING_SNAKE_CASE : protected[re.escape(m.group(0 ) )] , SCREAMING_SNAKE_CASE ) A_ : Tuple = torch.cat(SCREAMING_SNAKE_CASE ) return new_state_dict def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return text_enc_dict if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) UpperCamelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCamelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") UpperCamelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") UpperCamelCase = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCamelCase = load_file(unet_path, device="""cpu""") else: UpperCamelCase = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") UpperCamelCase = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): UpperCamelCase = load_file(vae_path, device="""cpu""") else: UpperCamelCase = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") UpperCamelCase = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): UpperCamelCase = load_file(text_enc_path, device="""cpu""") else: UpperCamelCase = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") UpperCamelCase = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model UpperCamelCase = convert_unet_state_dict(unet_state_dict) UpperCamelCase = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCamelCase = convert_vae_state_dict(vae_state_dict) UpperCamelCase = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCamelCase = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCamelCase = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} UpperCamelCase = convert_text_enc_state_dict_vaa(text_enc_dict) UpperCamelCase = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: UpperCamelCase = convert_text_enc_state_dict(text_enc_dict) UpperCamelCase = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCamelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCamelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCamelCase = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
65
from manim import * class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A_ : Any = [mem.copy() for i in range(6 )] A_ : Tuple = [mem.copy() for i in range(6 )] A_ : str = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Optional[Any] = Text('''CPU''' , font_size=24 ) A_ : Union[str, Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : Any = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Dict = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.align_to(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = Text('''Model''' , font_size=24 ) A_ : List[Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , ) A_ : int = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A_ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(_SCREAMING_SNAKE_CASE ) , Write(_SCREAMING_SNAKE_CASE ) ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Dict = [] A_ : int = [] A_ : Optional[Any] = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(_SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A_ : Union[str, Any] = 0.4_6 / 4 A_ : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(_SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*_SCREAMING_SNAKE_CASE ) self.play(*_SCREAMING_SNAKE_CASE ) self.wait()
65
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple , __UpperCAmelCase : Any): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): a : Dict = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : Union[str, Any] = "sshleifer/tiny-gpt2" a : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : Union[str, Any] = PyTorchBenchmark(__UpperCAmelCase) a : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __snake_case ( self : Optional[int]): a : List[str] = "sgugger/tiny-distilbert-classification" a : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , only_pretrain_model=__UpperCAmelCase , ) a : Optional[int] = PyTorchBenchmark(__UpperCAmelCase) a : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __snake_case ( self : Any): a : List[str] = "sshleifer/tiny-gpt2" a : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , torchscript=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : str = PyTorchBenchmark(__UpperCAmelCase) a : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def __snake_case ( self : str): a : Any = "sshleifer/tiny-gpt2" a : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , fpaa=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : Any = PyTorchBenchmark(__UpperCAmelCase) a : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __snake_case ( self : Tuple): a : Any = "sshleifer/tiny-gpt2" a : Any = AutoConfig.from_pretrained(__UpperCAmelCase) # set architectures equal to `None` a : List[Any] = None a : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : List[Any] = PyTorchBenchmark(__UpperCAmelCase , configs=[config]) a : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __snake_case ( self : List[str]): a : Tuple = "sshleifer/tiny-gpt2" a : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : Dict = PyTorchBenchmark(__UpperCAmelCase) a : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def __snake_case ( self : Optional[Any]): a : Any = "sshleifer/tiny-gpt2" a : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) a : str = PyTorchBenchmark(__UpperCAmelCase) a : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __snake_case ( self : int): a : Optional[Any] = "sshleifer/tiny-gpt2" a : str = AutoConfig.from_pretrained(__UpperCAmelCase) a : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : int = PyTorchBenchmark(__UpperCAmelCase , configs=[config]) a : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __snake_case ( self : Any): a : str = "sshleifer/tinier_bart" a : Union[str, Any] = AutoConfig.from_pretrained(__UpperCAmelCase) a : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : List[str] = PyTorchBenchmark(__UpperCAmelCase , configs=[config]) a : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __snake_case ( self : Optional[Any]): a : Dict = "sshleifer/tiny-gpt2" a : Dict = AutoConfig.from_pretrained(__UpperCAmelCase) a : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : int = PyTorchBenchmark(__UpperCAmelCase , configs=[config]) a : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __snake_case ( self : Optional[int]): a : Any = "sshleifer/tinier_bart" a : Optional[Any] = AutoConfig.from_pretrained(__UpperCAmelCase) a : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCAmelCase , ) a : Dict = PyTorchBenchmark(__UpperCAmelCase , configs=[config]) a : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __snake_case ( self : int): a : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: a : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , save_to_csv=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCAmelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__UpperCAmelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__UpperCAmelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__UpperCAmelCase , "train_time.csv") , env_info_csv_file=os.path.join(__UpperCAmelCase , "env.csv") , multi_process=__UpperCAmelCase , ) a : List[str] = PyTorchBenchmark(__UpperCAmelCase) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "env.csv")).exists()) def __snake_case ( self : int): a : Union[str, Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__UpperCAmelCase : str): self.assertTrue(hasattr(__UpperCAmelCase , "sequential")) self.assertTrue(hasattr(__UpperCAmelCase , "cumulative")) self.assertTrue(hasattr(__UpperCAmelCase , "current")) self.assertTrue(hasattr(__UpperCAmelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: a : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCAmelCase , inference=__UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCAmelCase , "log.txt") , log_print=__UpperCAmelCase , trace_memory_line_by_line=__UpperCAmelCase , multi_process=__UpperCAmelCase , ) a : Optional[Any] = PyTorchBenchmark(__UpperCAmelCase) a : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__UpperCAmelCase , "log.txt")).exists())
40
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''efficientnet''' def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : int = width_coefficient SCREAMING_SNAKE_CASE : List[str] = depth_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor SCREAMING_SNAKE_CASE : List[str] = kernel_sizes SCREAMING_SNAKE_CASE : Dict = in_channels SCREAMING_SNAKE_CASE : List[str] = out_channels SCREAMING_SNAKE_CASE : Any = depthwise_padding SCREAMING_SNAKE_CASE : Dict = strides SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats SCREAMING_SNAKE_CASE : Any = expand_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dim SCREAMING_SNAKE_CASE : List[str] = pooling_type SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = batch_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum SCREAMING_SNAKE_CASE : Dict = dropout_rate SCREAMING_SNAKE_CASE : int = drop_connect_rate SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4 class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return 1e-5
323
0
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _lowercase ( __a ): """simple docstring""" lowercase__ = '''facebook/bart-large-mnli''' lowercase__ = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) lowercase__ = '''text_classifier''' lowercase__ = AutoTokenizer lowercase__ = AutoModelForSequenceClassification lowercase__ = ['''text''', ['''text''']] lowercase__ = ['''text'''] def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' super().setup() __UpperCamelCase =self.model.config __UpperCamelCase =-1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __UpperCamelCase =int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ) -> Any: '''simple docstring''' __UpperCamelCase =labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =outputs.logits __UpperCamelCase =torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
85
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a__ = DebertaTokenizer a__ = True a__ = DebertaTokenizerFast def _lowercase ( self : str ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __magic_name__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] __magic_name__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __magic_name__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __magic_name__ = {"""unk_token""": """[UNK]"""} __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def _lowercase ( self : List[Any] , **UpperCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _lowercase ( self : Dict , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __magic_name__ = """lower newer""" __magic_name__ = """lower newer""" return input_text, output_text def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" __magic_name__ = self.get_tokenizer() __magic_name__ = """lower newer""" __magic_name__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __magic_name__ = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = tokens + [tokenizer.unk_token] __magic_name__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.get_tokenizer() __magic_name__ = tokenizer("""Hello""" , """World""" ) __magic_name__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , UpperCamelCase_ ) @slow def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __magic_name__ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __magic_name__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __magic_name__ = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __magic_name__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __magic_name__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __magic_name__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self : str ) -> int: """simple docstring""" __magic_name__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __magic_name__ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __magic_name__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] __magic_name__ = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ ) __magic_name__ = [tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for seq in encoding["""input_ids"""]] # fmt: off __magic_name__ = { """input_ids""": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __magic_name__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , UpperCamelCase_ ) for expected, decoded in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
88
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A : List[Any] = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if isinstance(_UpperCamelCase , np.ndarray ): return list(tensor.shape ) __lowerCAmelCase = tf.shape(_UpperCamelCase ) if tensor.shape == tf.TensorShape(_UpperCamelCase ): return dynamic __lowerCAmelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(_UpperCamelCase )] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None ): '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=_UpperCamelCase , name=_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-5 , _UpperCamelCase=-1 ): '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized __lowerCAmelCase = tf.nn.moments(_UpperCamelCase , axes=[axis] , keepdims=_UpperCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __lowerCAmelCase = [1] * inputs.shape.rank __lowerCAmelCase = shape_list(_UpperCamelCase )[axis] __lowerCAmelCase = tf.reshape(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = tf.reshape(_UpperCamelCase , _UpperCamelCase ) # Compute layer normalization using the batch_normalization # function. __lowerCAmelCase = tf.nn.batch_normalization( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , offset=_UpperCamelCase , scale=_UpperCamelCase , variance_epsilon=_UpperCamelCase , ) return outputs def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=0 , _UpperCamelCase=-1 ): '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __lowerCAmelCase = tf.shape(_UpperCamelCase ) __lowerCAmelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __lowerCAmelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , tf.Tensor ): __lowerCAmelCase = tf.convert_to_tensor(_UpperCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __lowerCAmelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __lowerCAmelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = "input_ids" ): '''simple docstring''' tf.debugging.assert_less( _UpperCamelCase , tf.cast(_UpperCamelCase , dtype=tensor.dtype ) , message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(_UpperCamelCase )}) must be smaller than the embedding " f"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ) , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __lowerCAmelCase = [x for x in data if len(_UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) __lowerCAmelCase = np.asarray(_UpperCamelCase ) __lowerCAmelCase = 1 __lowerCAmelCase = np.array_split(_UpperCamelCase , _UpperCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __lowerCAmelCase = np.array_split(_UpperCamelCase , _UpperCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(_UpperCamelCase ): __lowerCAmelCase = chunk_data else: __lowerCAmelCase = data def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if name in group.attrs: __lowerCAmelCase = [n.decode("utf8" ) if hasattr(_UpperCamelCase , "decode" ) else n for n in group.attrs[name]] else: __lowerCAmelCase = [] __lowerCAmelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(_UpperCamelCase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' def _expand_single_ad_tensor(_UpperCamelCase ): if isinstance(_UpperCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(_UpperCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , _UpperCamelCase )
357
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) A : Union[str, Any] = "https://openaipublic.azureedge.net/jukebox/models/" A : Tuple = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: __lowerCAmelCase = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: __lowerCAmelCase = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: __lowerCAmelCase = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowerCAmelCase = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: __lowerCAmelCase = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {} import re __lowerCAmelCase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __lowerCAmelCase = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __lowerCAmelCase = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) __lowerCAmelCase = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __lowerCAmelCase = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_encoder_block_conv_in.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCAmelCase = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" __lowerCAmelCase = re_encoder_block_conv_in.sub(_UpperCamelCase , _UpperCamelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_encoder_block_resnet.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCAmelCase = {"1": 1, "3": 2}[groups[-2]] __lowerCAmelCase = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." __lowerCAmelCase = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowerCAmelCase = prefix + resnet_block __lowerCAmelCase = re_encoder_block_resnet.sub(_UpperCamelCase , _UpperCamelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_encoder_block_proj_out.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = f"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" __lowerCAmelCase = re_encoder_block_proj_out.sub(_UpperCamelCase , _UpperCamelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_decoder_block_conv_out.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCAmelCase = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" __lowerCAmelCase = re_decoder_block_conv_out.sub(_UpperCamelCase , _UpperCamelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_decoder_block_resnet.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCAmelCase = {"1": 1, "3": 2}[groups[-2]] __lowerCAmelCase = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." __lowerCAmelCase = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowerCAmelCase = prefix + resnet_block __lowerCAmelCase = re_decoder_block_resnet.sub(_UpperCamelCase , _UpperCamelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_decoder_block_proj_in.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = f"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" __lowerCAmelCase = re_decoder_block_proj_in.sub(_UpperCamelCase , _UpperCamelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_prior_cond_conv_out.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCAmelCase = f"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" __lowerCAmelCase = re_prior_cond_conv_out.sub(_UpperCamelCase , _UpperCamelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_prior_cond_resnet.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCAmelCase = {"1": 1, "3": 2}[groups[-2]] __lowerCAmelCase = f"conditioner_blocks.upsampler.upsample_block.{block_index}." __lowerCAmelCase = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" __lowerCAmelCase = prefix + resnet_block __lowerCAmelCase = re_prior_cond_resnet.sub(_UpperCamelCase , _UpperCamelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCamelCase ): __lowerCAmelCase = re_prior_cond_proj_in.match(_UpperCamelCase ) __lowerCAmelCase = regex_match.groups() __lowerCAmelCase = f"conditioner_blocks.upsampler.proj_in.{groups[-1]}" __lowerCAmelCase = re_prior_cond_proj_in.sub(_UpperCamelCase , _UpperCamelCase ) # keep original key else: __lowerCAmelCase = original_key __lowerCAmelCase = replace_key(_UpperCamelCase ) if f"{key_prefix}.{key}" not in model_state_dict or key is None: print(f"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape: __lowerCAmelCase = model_state_dict[f"{key_prefix}.{key}"] print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) __lowerCAmelCase = original_key __lowerCAmelCase = original_key __lowerCAmelCase = value return new_dict @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase=None , _UpperCamelCase=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): __lowerCAmelCase = requests.get(f"{PREFIX}{file}" , allow_redirects=_UpperCamelCase ) os.makedirs(f"{pytorch_dump_folder_path}/" , exist_ok=_UpperCamelCase ) open(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) __lowerCAmelCase = MODEL_MAPPING[model_name.split("/" )[-1]] __lowerCAmelCase = JukeboxConfig.from_pretrained(_UpperCamelCase ) __lowerCAmelCase = JukeboxModel(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = {} for i, dict_name in enumerate(_UpperCamelCase ): __lowerCAmelCase = torch.load(f"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] __lowerCAmelCase = {} for k in old_dic.keys(): if k.endswith(".b" ): __lowerCAmelCase = old_dic[k] elif k.endswith(".w" ): __lowerCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowerCAmelCase = old_dic[k] else: __lowerCAmelCase = old_dic[k] __lowerCAmelCase = "vqvae" if i == 0 else f"priors.{3 - i}" __lowerCAmelCase = fix_jukebox_keys(_UpperCamelCase , model.state_dict() , _UpperCamelCase , _UpperCamelCase ) weight_dict.append(_UpperCamelCase ) __lowerCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) with open(f"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(_UpperCamelCase , _UpperCamelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) return weight_dict if __name__ == "__main__": A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) A : Union[str, Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
0
from __future__ import annotations from collections.abc import MutableSequence class __magic_name__ : """simple docstring""" def __init__( self :Optional[int] , snake_case :int , snake_case :MutableSequence[float] ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE_ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) A_ : list[float] = list(SCREAMING_SNAKE_CASE_ ) A_ : int = degree def __add__( self :Tuple , snake_case :Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: A_ : List[Any] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , SCREAMING_SNAKE_CASE_ ) else: A_ : Any = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def __sub__( self :List[Any] , snake_case :Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self :Any ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self :List[str] , snake_case :Polynomial ): '''simple docstring''' A_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :int | float ): '''simple docstring''' A_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self :Optional[int] ): '''simple docstring''' A_ : List[str] = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(SCREAMING_SNAKE_CASE_ ) return polynomial def __repr__( self :Union[str, Any] ): '''simple docstring''' return self.__str__() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : list[float] = [0] * self.degree for i in range(self.degree ): A_ : Union[str, Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :int | float = 0 ): '''simple docstring''' A_ : list[float] = [0] * (self.degree + 2) A_ : str = constant for i in range(self.degree + 1 ): A_ : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , SCREAMING_SNAKE_CASE_ ) def __eq__( self :Any , snake_case :object ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self :Optional[Any] , snake_case :object ): '''simple docstring''' return not self.__eq__(SCREAMING_SNAKE_CASE_ )
300
"""simple docstring""" import re def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> list: """simple docstring""" return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> str: """simple docstring""" lowerCAmelCase_ : str = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool , lowerCAmelCase__ : str ) -> str: """simple docstring""" try: lowerCAmelCase_ : int = split_input(lowerCAmelCase__ ) if upper: lowerCAmelCase_ : Optional[int] = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase_ : Any = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> str: """simple docstring""" return to_simple_case(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> str: """simple docstring""" try: lowerCAmelCase_ : Dict = to_simple_case(lowerCAmelCase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool ) -> str: """simple docstring""" return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , '_' ) def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool ) -> str: """simple docstring""" return to_complex_case(lowerCAmelCase__ , lowerCAmelCase__ , '-' ) if __name__ == "__main__": __import__("""doctest""").testmod()
224
0
import argparse import collections import json import os import re import string import sys import numpy as np __snake_case : List[str] =re.compile(R'\b(a|an|the)\b', re.UNICODE) __snake_case : Optional[Any] =None def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''') parser.add_argument('''data_file''' ,metavar='''data.json''' ,help='''Input data JSON file.''') parser.add_argument('''pred_file''' ,metavar='''pred.json''' ,help='''Model predictions.''') parser.add_argument( '''--out-file''' ,'''-o''' ,metavar='''eval.json''' ,help='''Write accuracy metrics to file (default is stdout).''') parser.add_argument( '''--na-prob-file''' ,'''-n''' ,metavar='''na_prob.json''' ,help='''Model estimates of probability of no answer.''') parser.add_argument( '''--na-prob-thresh''' ,'''-t''' ,type=lowerCamelCase_ ,default=1.0 ,help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' ,) parser.add_argument( '''--out-image-dir''' ,'''-p''' ,metavar='''out_images''' ,default=lowerCamelCase_ ,help='''Save precision-recall curves to directory.''') parser.add_argument('''--verbose''' ,'''-v''' ,action='''store_true''') if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def lowerCAmelCase__ ( lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase__ : int = bool(qa['''answers''']['''text''']) return qid_to_has_ans def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): '''simple docstring''' def remove_articles(lowerCamelCase_ : Tuple): return ARTICLES_REGEX.sub(''' ''' ,lowerCamelCase_) def white_space_fix(lowerCamelCase_ : Optional[int]): return " ".join(text.split()) def remove_punc(lowerCamelCase_ : str): lowerCAmelCase__ : Any = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase_ : Dict): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_)))) def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any]): '''simple docstring''' if not s: return [] return normalize_answer(lowerCamelCase_).split() def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : List[Any]): '''simple docstring''' return int(normalize_answer(lowerCamelCase_) == normalize_answer(lowerCamelCase_)) def lowerCAmelCase__ ( lowerCamelCase_ : Tuple ,lowerCamelCase_ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ : List[str] = get_tokens(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = get_tokens(lowerCamelCase_) lowerCAmelCase__ : Dict = collections.Counter(lowerCamelCase_) & collections.Counter(lowerCamelCase_) lowerCAmelCase__ : Dict = sum(common.values()) if len(lowerCamelCase_) == 0 or len(lowerCamelCase_) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase__ : List[str] = 1.0 * num_same / len(lowerCamelCase_) lowerCAmelCase__ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase_) lowerCAmelCase__ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Tuple): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase__ : Dict = qa['''id'''] lowerCAmelCase__ : str = [t for t in qa['''answers''']['''text'''] if normalize_answer(lowerCamelCase_)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase__ : Dict = [''''''] if qid not in preds: print(f"""Missing prediction for {qid}""") continue lowerCAmelCase__ : List[Any] = preds[qid] # Take max over all gold answers lowerCAmelCase__ : Optional[int] = max(compute_exact(lowerCamelCase_ ,lowerCamelCase_) for a in gold_answers) lowerCAmelCase__ : Any = max(compute_fa(lowerCamelCase_ ,lowerCamelCase_) for a in gold_answers) return exact_scores, fa_scores def lowerCAmelCase__ ( lowerCamelCase_ : str ,lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : str ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : List[Any] = {} for qid, s in scores.items(): lowerCAmelCase__ : List[str] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase__ : List[Any] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase__ : Optional[Any] = s return new_scores def lowerCAmelCase__ ( lowerCamelCase_ : int ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Tuple=None): '''simple docstring''' if not qid_list: lowerCAmelCase__ : Union[str, Any] = len(lowerCamelCase_) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values()) / total), ('''f1''', 100.0 * sum(fa_scores.values()) / total), ('''total''', total), ]) else: lowerCAmelCase__ : Optional[Any] = len(lowerCamelCase_) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list) / total), ('''total''', total), ]) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : int): '''simple docstring''' for k in new_eval: lowerCAmelCase__ : Tuple = new_eval[k] def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Any ,lowerCamelCase_ : Optional[int]): '''simple docstring''' plt.step(lowerCamelCase_ ,lowerCamelCase_ ,color='''b''' ,alpha=0.2 ,where='''post''') plt.fill_between(lowerCamelCase_ ,lowerCamelCase_ ,step='''post''' ,alpha=0.2 ,color='''b''') plt.xlabel('''Recall''') plt.ylabel('''Precision''') plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(lowerCamelCase_) plt.savefig(lowerCamelCase_) plt.clf() def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Dict ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : Tuple=None ,lowerCamelCase_ : Optional[int]=None): '''simple docstring''' lowerCAmelCase__ : str = sorted(lowerCamelCase_ ,key=lambda lowerCamelCase_: na_probs[k]) lowerCAmelCase__ : List[str] = 0.0 lowerCAmelCase__ : Optional[Any] = 1.0 lowerCAmelCase__ : Optional[Any] = 0.0 lowerCAmelCase__ : Optional[Any] = [1.0] lowerCAmelCase__ : Tuple = [0.0] lowerCAmelCase__ : List[str] = 0.0 for i, qid in enumerate(lowerCamelCase_): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase__ : List[Any] = true_pos / float(i + 1) lowerCAmelCase__ : Any = true_pos / float(lowerCamelCase_) if i == len(lowerCamelCase_) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCamelCase_) recalls.append(lowerCamelCase_) if out_image: plot_pr_curve(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) return {"ap": 100.0 * avg_prec} def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : int ,lowerCamelCase_ : str ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : Any ,lowerCamelCase_ : List[str]): '''simple docstring''' if out_image_dir and not os.path.exists(lowerCamelCase_): os.makedirs(lowerCamelCase_) lowerCAmelCase__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase__ : Optional[Any] = make_precision_recall_eval( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,out_image=os.path.join(lowerCamelCase_ ,'''pr_exact.png''') ,title='''Precision-Recall curve for Exact Match score''' ,) lowerCAmelCase__ : Any = make_precision_recall_eval( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,out_image=os.path.join(lowerCamelCase_ ,'''pr_f1.png''') ,title='''Precision-Recall curve for F1 score''' ,) lowerCAmelCase__ : Optional[Any] = {k: float(lowerCamelCase_) for k, v in qid_to_has_ans.items()} lowerCAmelCase__ : List[Any] = make_precision_recall_eval( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,out_image=os.path.join(lowerCamelCase_ ,'''pr_oracle.png''') ,title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' ,) merge_eval(lowerCamelCase_ ,lowerCamelCase_ ,'''pr_exact''') merge_eval(lowerCamelCase_ ,lowerCamelCase_ ,'''pr_f1''') merge_eval(lowerCamelCase_ ,lowerCamelCase_ ,'''pr_oracle''') def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' if not qid_list: return lowerCAmelCase__ : List[str] = [na_probs[k] for k in qid_list] lowerCAmelCase__ : Optional[Any] = np.ones_like(lowerCamelCase_) / float(len(lowerCamelCase_)) plt.hist(lowerCamelCase_ ,weights=lowerCamelCase_ ,bins=20 ,range=(0.0, 1.0)) plt.xlabel('''Model probability of no-answer''') plt.ylabel('''Proportion of dataset''') plt.title(f"""Histogram of no-answer probability: {name}""") plt.savefig(os.path.join(lowerCamelCase_ ,f"""na_prob_hist_{name}.png""")) plt.clf() def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : Optional[int] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ : List[str] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase__ : int = num_no_ans lowerCAmelCase__ : str = cur_score lowerCAmelCase__ : Tuple = 0.0 lowerCAmelCase__ : Tuple = sorted(lowerCamelCase_ ,key=lambda lowerCamelCase_: na_probs[k]) for i, qid in enumerate(lowerCamelCase_): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase__ : Any = scores[qid] else: if preds[qid]: lowerCAmelCase__ : str = -1 else: lowerCAmelCase__ : int = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase__ : Any = cur_score lowerCAmelCase__ : Any = na_probs[qid] return 100.0 * best_score / len(lowerCamelCase_), best_thresh def lowerCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = find_best_thresh(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = find_best_thresh(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Any = best_exact lowerCAmelCase__ : str = exact_thresh lowerCAmelCase__ : Dict = best_fa lowerCAmelCase__ : Optional[Any] = fa_thresh def lowerCAmelCase__ ( ): '''simple docstring''' with open(OPTS.data_file) as f: lowerCAmelCase__ : List[Any] = json.load(lowerCamelCase_) lowerCAmelCase__ : int = dataset_json['''data'''] with open(OPTS.pred_file) as f: lowerCAmelCase__ : Any = json.load(lowerCamelCase_) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase__ : List[Any] = json.load(lowerCamelCase_) else: lowerCAmelCase__ : str = {k: 0.0 for k in preds} lowerCAmelCase__ : Union[str, Any] = make_qid_to_has_ans(lowerCamelCase_) # maps qid to True/False lowerCAmelCase__ : List[Any] = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase__ : Optional[int] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = get_raw_scores(lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : Dict = apply_no_ans_threshold(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,OPTS.na_prob_thresh) lowerCAmelCase__ : Tuple = apply_no_ans_threshold(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,OPTS.na_prob_thresh) lowerCAmelCase__ : Any = make_eval_dict(lowerCamelCase_ ,lowerCamelCase_) if has_ans_qids: lowerCAmelCase__ : Optional[int] = make_eval_dict(lowerCamelCase_ ,lowerCamelCase_ ,qid_list=lowerCamelCase_) merge_eval(lowerCamelCase_ ,lowerCamelCase_ ,'''HasAns''') if no_ans_qids: lowerCAmelCase__ : List[Any] = make_eval_dict(lowerCamelCase_ ,lowerCamelCase_ ,qid_list=lowerCamelCase_) merge_eval(lowerCamelCase_ ,lowerCamelCase_ ,'''NoAns''') if OPTS.na_prob_file: find_all_best_thresh(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,OPTS.out_image_dir) histogram_na_prob(lowerCamelCase_ ,lowerCamelCase_ ,OPTS.out_image_dir ,'''hasAns''') histogram_na_prob(lowerCamelCase_ ,lowerCamelCase_ ,OPTS.out_image_dir ,'''noAns''') if OPTS.out_file: with open(OPTS.out_file ,'''w''') as f: json.dump(lowerCamelCase_ ,lowerCamelCase_) else: print(json.dumps(lowerCamelCase_ ,indent=2)) if __name__ == "__main__": __snake_case : List[str] =parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
94
def lowerCAmelCase__ ( lowerCamelCase_ : int = 1000): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = 1, 1 lowerCAmelCase__ : Any = 2 while True: lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Any = fa + fa lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = fa, f index += 1 for _ in str(lowerCamelCase_): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
94
1
UpperCamelCase__ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase__ = input("Enter message: " ) UpperCAmelCase__ = input("Enter key [alphanumeric]: " ) UpperCAmelCase__ = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): UpperCAmelCase__ = "encrypt" UpperCAmelCase__ = encrypt_message(__A, __A ) elif mode.lower().startswith("d" ): UpperCAmelCase__ = "decrypt" UpperCAmelCase__ = decrypt_message(__A, __A ) print(f"""\n{mode.title()}ed message:""" ) print(__A ) def lowerCAmelCase_ ( __A, __A ) -> str: '''simple docstring''' return translate_message(__A, __A, "encrypt" ) def lowerCAmelCase_ ( __A, __A ) -> str: '''simple docstring''' return translate_message(__A, __A, "decrypt" ) def lowerCAmelCase_ ( __A, __A, __A ) -> str: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = key.upper() for symbol in message: UpperCAmelCase__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__A ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__A ): UpperCAmelCase__ = 0 else: translated.append(__A ) return "".join(__A ) if __name__ == "__main__": main()
65
import math import random def lowerCAmelCase_ ( __A, __A = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCamelCase__ = 0.0_2 def lowerCAmelCase_ ( __A, __A ) -> float: '''simple docstring''' UpperCAmelCase__ = float(2 * (random.randint(1, 100 )) - 1 ) for _ in range(__A ): # Forward propagation UpperCAmelCase__ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase__ = (expected / 100) - layer_a # Error delta UpperCAmelCase__ = layer_1_error * sigmoid_function(__A, __A ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = int(input('Expected value: ')) UpperCamelCase__ = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
65
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class a_ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = str(id_ ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = [] UpperCamelCase = {} # {vertex:distance} def __lt__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.key < other.key def __repr__( self ) -> Union[str, Any]: """simple docstring""" return self.id def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" self.neighbors.append(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase = weight def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list: UpperCamelCase = [] for u in graph: UpperCamelCase = math.inf UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = graph[:] while q: UpperCamelCase = min(__UpperCamelCase ) q.remove(__UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCamelCase = u UpperCamelCase = u.edges[v.id] for i in range(1 , len(__UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Iterator[tuple]: for u in graph: UpperCamelCase = math.inf UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = list(__UpperCamelCase ) hq.heapify(__UpperCamelCase ) while h: UpperCamelCase = hq.heappop(__UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCamelCase = u UpperCamelCase = u.edges[v.id] hq.heapify(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( )-> None: pass if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __A( A__ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="None" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def UpperCAmelCase_ (self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ (self ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_config() UpperCamelCase__ = 3_00 return config def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = DebertaModel(config=__A ) model.to(__A ) model.eval() UpperCamelCase__ = model(__A , attention_mask=__A , token_type_ids=__A )[0] UpperCamelCase__ = model(__A , token_type_ids=__A )[0] UpperCamelCase__ = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = DebertaForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCamelCase__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaForSequenceClassification(__A ) model.to(__A ) model.eval() UpperCamelCase__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCamelCase__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = DebertaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() UpperCamelCase__ = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( UpperCamelCase__ ) = config_and_inputs UpperCamelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A( A__ , A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = DebertaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=__A , hidden_size=37 ) def UpperCAmelCase_ (self ): self.config_tester.run_common_tests() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) @slow def UpperCAmelCase_ (self ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class __A( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase_ (self ): pass @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) UpperCamelCase__ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(__A , attention_mask=__A )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
244
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> Optional[Any]: super().__init__() lowerCAmelCase_ :int = nn.ModuleList(__A ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , __A = None , __A = None , __A = None , __A = None , __A = False , __A = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__A , __A , self.nets ) ): lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = controlnet( __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) # merge samples if i == 0: lowerCAmelCase_ , lowerCAmelCase_ :Tuple = down_samples, mid_sample else: lowerCAmelCase_ :str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__A , __A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self , __A , __A = True , __A = None , __A = False , __A = None , ) -> Optional[Any]: lowerCAmelCase_ :int = 0 lowerCAmelCase_ :Dict = save_directory for controlnet in self.nets: controlnet.save_pretrained( __A , is_main_process=__A , save_function=__A , safe_serialization=__A , variant=__A , ) idx += 1 lowerCAmelCase_ :Any = model_path_to_save + f"""_{idx}""" @classmethod def __lowerCAmelCase ( cls , __A , **__A ) -> List[Any]: lowerCAmelCase_ :int = 0 lowerCAmelCase_ :Dict = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCAmelCase_ :List[Any] = pretrained_model_path while os.path.isdir(__A ): lowerCAmelCase_ :Tuple = ControlNetModel.from_pretrained(__A , **__A ) controlnets.append(__A ) idx += 1 lowerCAmelCase_ :Dict = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(__A )} controlnets loaded from {pretrained_model_path}.""" ) if len(__A ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(__A )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(__A )
84
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class snake_case ( unittest.TestCase ): def __init__( self : List[str] , A : Union[str, Any] , A : Optional[Any]=1_3 , A : List[Any]=3_0 , A : List[Any]=2 , A : Optional[Any]=3 , A : Union[str, Any]=True , A : Union[str, Any]=True , A : Optional[int]=3_2 , A : Tuple=5 , A : List[str]=4 , A : List[Any]=3_7 , A : Optional[Any]="gelu" , A : Any=0.1 , A : Tuple=0.1 , A : Optional[int]=1_0 , A : Union[str, Any]=0.02 , ): '''simple docstring''' a : Optional[Any] = parent a : Tuple = batch_size a : int = image_size a : str = patch_size a : List[str] = num_channels a : List[str] = is_training a : List[str] = use_labels a : Optional[int] = hidden_size a : Optional[Any] = num_hidden_layers a : Optional[int] = num_attention_heads a : str = intermediate_size a : List[str] = hidden_act a : List[str] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : List[Any] = type_sequence_label_size a : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[int] = (image_size // patch_size) ** 2 a : List[Any] = num_patches + 1 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCamelCase__ ( self : Union[str, Any] , A : str , A : Union[str, Any] ): '''simple docstring''' a : Tuple = FlaxViTModel(config=A ) a : int = model(A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (self.image_size, self.image_size) a : List[str] = (self.patch_size, self.patch_size) a : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCamelCase__ ( self : Tuple , A : Dict , A : Optional[int] ): '''simple docstring''' a : Optional[Any] = self.type_sequence_label_size a : List[Any] = FlaxViTForImageClassification(config=A ) a : Tuple = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a : Dict = 1 a : Tuple = FlaxViTForImageClassification(A ) a : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a : Optional[int] = model(A ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : Optional[int] = self.prepare_config_and_inputs() ( ( a ), ( a ), ) : Dict = config_and_inputs a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Any = FlaxViTModelTester(self ) a : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a, a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Tuple = model_class(A ) a : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : List[str] = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , A ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' a, a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : List[Any] = self._prepare_for_class(A , A ) a : Tuple = model_class(A ) @jax.jit def model_jitted(A : Tuple , **A : int ): return model(pixel_values=A , **A ) with self.subTest('JIT Enabled' ): a : List[str] = model_jitted(**A ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a : List[str] = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: a : List[str] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) a : Optional[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A )
186
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
186
1
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Sequence[float] ,_lowerCamelCase : float ) -> float: return sum(c * (x**i) for i, c in enumerate(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Sequence[float] ,_lowerCamelCase : float ) -> float: _lowerCAmelCase : Union[str, Any] = 0.0 for coeff in reversed(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = result * x + coeff return result if __name__ == "__main__": _a : Tuple = (0.0, 0.0, 5.0, 9.3, 7.0) _a : List[str] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
44
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : List[Any] =['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase :Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase :Optional[int] = do_resize UpperCamelCase :int = do_rescale UpperCamelCase :Tuple = do_normalize UpperCamelCase :str = do_center_crop UpperCamelCase :int = crop_size UpperCamelCase :Tuple = size UpperCamelCase :List[str] = resample UpperCamelCase :Tuple = rescale_factor UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase :Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "shortest_edge" in size: UpperCamelCase :str = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase :Optional[int] = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> BatchFeature: UpperCamelCase :Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase :Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = resample if resample is not None else self.resample UpperCamelCase :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase :Dict = image_std if image_std is not None else self.image_std UpperCamelCase :Dict = size if size is not None else self.size UpperCamelCase :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if not is_batched(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :str = [images] if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCamelCase :Tuple = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase :List[Any] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase :Tuple = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase :Union[str, Any] = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: UpperCamelCase :Union[str, Any] = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :List[str] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :int = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
259
0
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
362
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration snake_case : Dict = '''facebook/wmt19-en-de''' snake_case : List[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model snake_case : Optional[Any] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) snake_case : Optional[Any] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test snake_case : Union[str, Any] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') snake_case : int = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save snake_case : Optional[int] = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
94
def __lowerCamelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int ): """simple docstring""" if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. a :Optional[int] = [p / w for p, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] # Creating a copy of the list and sorting profit/weight in ascending order a :List[Any] = sorted(UpperCAmelCase_ ) # declaring useful variables a :Dict = len(UpperCAmelCase_ ) a :Tuple = 0 a :List[Any] = 0 a :str = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight a :List[Any] = sorted_profit_by_weight[length - i - 1] a :Optional[Any] = profit_by_weight.index(UpperCAmelCase_ ) a :Optional[int] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) snake_case : Union[str, Any] = [int(x) for x in input('''Input profits separated by spaces: ''').split()] snake_case : Tuple = [int(x) for x in input('''Input weights separated by spaces: ''').split()] snake_case : str = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
94
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCAmelCase): _a = (DDIMParallelScheduler,) _a = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self: Any , **_lowerCAmelCase: Optional[Any] ): lowercase :List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**_lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self: str , **_lowerCAmelCase: Any ): lowercase :Optional[int] = self.scheduler_classes[0] lowercase :Dict = self.get_scheduler_config(**_lowerCAmelCase ) lowercase :List[str] = scheduler_class(**_lowerCAmelCase ) lowercase :str = 10, 0.0 lowercase :List[Any] = self.dummy_model() lowercase :int = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: lowercase :Optional[int] = model(_lowerCAmelCase , _lowerCAmelCase ) lowercase :Dict = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) lowercase :Optional[Any] = self.scheduler_classes[0] lowercase :List[str] = self.get_scheduler_config(steps_offset=1 ) lowercase :Optional[int] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def SCREAMING_SNAKE_CASE ( self: Tuple ): for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Dict ): self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self: str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Dict = self.scheduler_classes[0] lowercase :Tuple = self.get_scheduler_config() lowercase :Optional[Any] = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = self.scheduler_classes[0] lowercase :Union[str, Any] = self.get_scheduler_config() lowercase :Union[str, Any] = scheduler_class(**_lowerCAmelCase ) lowercase :Union[str, Any] = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) lowercase :Dict = self.dummy_model() lowercase :Dict = self.dummy_sample_deter lowercase :Union[str, Any] = self.dummy_sample_deter + 0.1 lowercase :int = self.dummy_sample_deter - 0.1 lowercase :Dict = samplea.shape[0] lowercase :Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) lowercase :Optional[Any] = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) lowercase :Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowercase :Optional[int] = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Optional[int] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :int = self.full_loop() lowercase :Optional[int] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Any = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :Dict = self.full_loop(prediction_type="v_prediction" ) lowercase :int = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Optional[int] ): # We specify different beta, so that the first alpha is 0.99 lowercase :List[Any] = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :List[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self: Any ): # We specify different beta, so that the first alpha is 0.99 lowercase :Tuple = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) lowercase :str = torch.sum(torch.abs(_lowerCAmelCase ) ) lowercase :List[str] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
360
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase): _a = 42 _a = None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=0.999, lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase :Optional[int] = [] for i in range(lowerCamelCase ): lowercase :Any = i / num_diffusion_timesteps lowercase :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ), lowerCamelCase ) ) return torch.tensor(lowerCamelCase, dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Any , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: float = 0.00_01 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = 0 , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: float = 1.0 , **_lowerCAmelCase: Union[str, Any] , ): if kwargs.get("set_alpha_to_one" , _lowerCAmelCase ) is not None: lowercase :Optional[int] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase :str = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase :int = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :List[Any] = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Any = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase :Dict = 1.0 - self.betas lowercase :Dict = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Union[str, Any] = 1.0 # setable values lowercase :str = None lowercase :List[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowercase :List[Any] = num_inference_steps lowercase :Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase :str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: bool = True , ): # 1. get previous step value (=t+1) lowercase :int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :Optional[Any] = model_output elif self.config.prediction_type == "sample": lowercase :Union[str, Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self: List[str] ): return self.config.num_train_timesteps
158
0
from __future__ import annotations import requests def UpperCamelCase (lowercase_: str ) -> dict: A__ : List[str] = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(_lowerCamelCase ).json() def UpperCamelCase (lowercase_: int = 10 ) -> list[dict]: A__ : List[str] = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" A__ : int = requests.get(_lowerCamelCase ).json()[:max_stories] return [get_hackernews_story(_lowerCamelCase ) for story_id in story_ids] def UpperCamelCase (lowercase_: int = 10 ) -> str: A__ : str = hackernews_top_stories(_lowerCamelCase ) return "\n".join("""* [{title}]({url})""".format(**_lowerCamelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
192
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( __snake_case ): SCREAMING_SNAKE_CASE : Dict = """Salesforce/blip-image-captioning-base""" SCREAMING_SNAKE_CASE : int = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) SCREAMING_SNAKE_CASE : Optional[int] = """image_captioner""" SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForVisionaSeq SCREAMING_SNAKE_CASE : int = ["""image"""] SCREAMING_SNAKE_CASE : Optional[Any] = ["""text"""] def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: requires_backends(self , ['vision'] ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : "Image" ) -> Dict: return self.pre_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> str: return self.model.generate(**__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: return self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0].strip()
183
0
lowercase_ = """Tobias Carryer""" from time import time class _snake_case : def __init__( self : Optional[int], __lowercase : Dict, __lowercase : Optional[Any], __lowercase : Tuple, __lowercase : Optional[Any]=int(time() ) ): # noqa: B008 lowercase__ = multiplier lowercase__ = increment lowercase__ = modulo lowercase__ = seed def A__ ( self : Optional[Any] ): lowercase__ = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowercase_ = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
224
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class _snake_case ( lowercase__): UpperCamelCase__ : str ="""dpr""" def __init__( self : int, __lowercase : List[str]=3_0522, __lowercase : Any=768, __lowercase : Union[str, Any]=12, __lowercase : Optional[int]=12, __lowercase : List[Any]=3072, __lowercase : List[str]="gelu", __lowercase : Union[str, Any]=0.1, __lowercase : str=0.1, __lowercase : List[str]=512, __lowercase : Optional[int]=2, __lowercase : Dict=0.02, __lowercase : Any=1e-1_2, __lowercase : List[Any]=0, __lowercase : str="absolute", __lowercase : int = 0, **__lowercase : str, ): super().__init__(pad_token_id=__lowercase, **__lowercase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = projection_dim lowercase__ = position_embedding_type
224
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 A_ : str = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
186
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""MobileViTFeatureExtractor"""] UpperCamelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
186
1
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Union[str, Any]: _a : Any = tesseract_config if tesseract_config is not None else '' # apply OCR _a : List[str] = to_pil_image(lowerCAmelCase_ ) _a , _a : List[Any] = pil_image.size _a : Any = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type='dict' , config=lowerCAmelCase_ ) _a , _a , _a , _a , _a : str = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _a : List[Any] = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] _a : Tuple = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] _a : List[str] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] _a : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] _a : int = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] _a : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _a : Dict = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _a : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes _a : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[Any] = ['pixel_values'] def __init__( self : List[str] ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : Dict[str, int] = None ,_UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR ,_UpperCAmelCase : bool = True ,_UpperCAmelCase : Optional[str] = None ,_UpperCAmelCase : Optional[str] = "" ,**_UpperCAmelCase : Dict ,): super().__init__(**_UpperCAmelCase ) _a : Dict = size if size is not None else {'height': 224, 'width': 224} _a : Union[str, Any] = get_size_dict(_UpperCAmelCase ) _a : List[Any] = do_resize _a : Dict = size _a : str = resample _a : Dict = apply_ocr _a : Tuple = ocr_lang _a : Optional[int] = tesseract_config def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : Dict[str, int] ,_UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR ,_UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ,**_UpperCAmelCase : List[str] ,): _a : Optional[Any] = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _a : List[Any] = (size['height'], size['width']) return resize(_UpperCAmelCase ,size=_UpperCAmelCase ,resample=_UpperCAmelCase ,data_format=_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Dict ,_UpperCAmelCase : ImageInput ,_UpperCAmelCase : bool = None ,_UpperCAmelCase : Dict[str, int] = None ,_UpperCAmelCase : PILImageResampling = None ,_UpperCAmelCase : bool = None ,_UpperCAmelCase : Optional[str] = None ,_UpperCAmelCase : Optional[str] = None ,_UpperCAmelCase : Optional[Union[str, TensorType]] = None ,_UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST ,**_UpperCAmelCase : Dict ,): _a : Any = do_resize if do_resize is not None else self.do_resize _a : Optional[Any] = size if size is not None else self.size _a : List[Any] = get_size_dict(_UpperCAmelCase ) _a : Optional[Any] = resample if resample is not None else self.resample _a : Optional[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr _a : List[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang _a : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config _a : str = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(_UpperCAmelCase ) for image in images] if apply_ocr: requires_backends(self ,'pytesseract' ) _a : Tuple = [] _a : str = [] for image in images: _a , _a : Dict = apply_tesseract(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) words_batch.append(_UpperCAmelCase ) boxes_batch.append(_UpperCAmelCase ) if do_resize: _a : Any = [self.resize(image=_UpperCAmelCase ,size=_UpperCAmelCase ,resample=_UpperCAmelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _a : Union[str, Any] = [flip_channel_order(_UpperCAmelCase ) for image in images] _a : int = [to_channel_dimension_format(_UpperCAmelCase ,_UpperCAmelCase ) for image in images] _a : Union[str, Any] = BatchFeature(data={'pixel_values': images} ,tensor_type=_UpperCAmelCase ) if apply_ocr: _a : Any = words_batch _a : Tuple = boxes_batch return data
107
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests __lowerCAmelCase = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowerCAmelCase = BASE_URL + '''/user''' # https://github.com/settings/tokens __lowerCAmelCase = os.environ.get('''USER_TOKEN''', '''''') def __lowerCamelCase ( lowerCAmelCase_ ) -> dict[Any, Any]: _a : Union[str, Any] = { 'Authorization': f"""token {auth_token}""", 'Accept': 'application/vnd.github.v3+json', } return requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
107
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowercase (UpperCAmelCase__ ): _UpperCamelCase = ["""image_processor""", """tokenizer"""] _UpperCamelCase = """OwlViTImageProcessor""" _UpperCamelCase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , A_=None , A_=None , **A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) __lowerCAmelCase : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __lowerCAmelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ) ->int: '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not isinstance(text[0] , _UpperCAmelCase )): __lowerCAmelCase : List[str] = [self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(text[0] , _UpperCAmelCase ): __lowerCAmelCase : str = [] # Maximum number of queries across batch __lowerCAmelCase : Dict = max([len(_UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCAmelCase ) != max_num_queries: __lowerCAmelCase : Tuple = t + [''' '''] * (max_num_queries - len(_UpperCAmelCase )) __lowerCAmelCase : Any = self.tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) encodings.append(_UpperCAmelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": __lowerCAmelCase : Tuple = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowerCAmelCase : Dict = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowerCAmelCase : Optional[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowerCAmelCase : int = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowerCAmelCase : int = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) __lowerCAmelCase : Dict = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowerCAmelCase : Tuple = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) __lowerCAmelCase : int = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) __lowerCAmelCase : Any = BatchEncoding() __lowerCAmelCase : Union[str, Any] = input_ids __lowerCAmelCase : Optional[Any] = attention_mask if query_images is not None: __lowerCAmelCase : List[Any] = BatchEncoding() __lowerCAmelCase : List[str] = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ).pixel_values __lowerCAmelCase : List[str] = query_pixel_values if images is not None: __lowerCAmelCase : Tuple = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __lowerCAmelCase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowerCAmelCase : Optional[int] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->List[str]: '''simple docstring''' return self.image_processor.post_process(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->Any: '''simple docstring''' return self.image_processor.post_process_object_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->str: '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCamelCase__ ( self , *A_ , **A_ ) ->Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _UpperCAmelCase , ) return self.image_processor_class @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _UpperCAmelCase , ) return self.image_processor
275
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ ( a__ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase) -> Dict: super().__init__() # make sure scheduler can always be converted to DDIM __UpperCamelCase :Dict = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=__lowercase , scheduler=__lowercase) @torch.no_grad() def __call__( self , __lowercase = 1 , __lowercase = None , __lowercase = 0.0 , __lowercase = 50 , __lowercase = None , __lowercase = "pil" , __lowercase = True , ) -> Tuple: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __lowercase): __UpperCamelCase :Any = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __UpperCamelCase :Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__lowercase , __lowercase) and len(__lowercase) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__lowercase)}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") __UpperCamelCase :str = randn_tensor(__lowercase , generator=__lowercase , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(__lowercase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output __UpperCamelCase :Any = self.unet(__lowercase , __lowercase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCamelCase :Union[str, Any] = self.scheduler.step( __lowercase , __lowercase , __lowercase , eta=__lowercase , use_clipped_model_output=__lowercase , generator=__lowercase).prev_sample __UpperCamelCase :Any = (image / 2 + 0.5).clamp(0 , 1) __UpperCamelCase :Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __UpperCamelCase :str = self.numpy_to_pil(__lowercase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase)
370
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[Any] = PhobertTokenizer a__ : Union[str, Any] = False def UpperCamelCase__ ( self) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase :Union[str, Any] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __UpperCamelCase :int = dict(zip(__lowercase , range(len(__lowercase)))) __UpperCamelCase :Dict = ['''#version: 0.2''', '''l à</w>'''] __UpperCamelCase :Any = {'''unk_token''': '''<unk>'''} __UpperCamelCase :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""") with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__lowercase)) def UpperCamelCase__ ( self , **__lowercase) -> Optional[Any]: kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :List[Any] = '''Tôi là VinAI Research''' __UpperCamelCase :List[str] = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Dict = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) __UpperCamelCase :List[Any] = '''Tôi là VinAI Research''' __UpperCamelCase :List[str] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __UpperCamelCase :int = tokenizer.tokenize(__lowercase) print(__lowercase) self.assertListEqual(__lowercase , __lowercase) __UpperCamelCase :Dict = tokens + [tokenizer.unk_token] __UpperCamelCase :Any = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase) , __lowercase)
105
0
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCAmelCase__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCAmelCase__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCAmelCase__ = subset[i - 1][j] if arr[i - 1] <= j: UpperCAmelCase__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __a(SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , args=(SCREAMING_SNAKE_CASE_) )[0] def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' return math.pow(SCREAMING_SNAKE_CASE_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
158
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=False ) -> Optional[int]: snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'module.blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'module.blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'module.blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'module.blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'module.blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: snake_case_ = '' else: snake_case_ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f'module.blocks.{i}.attn.qkv.weight' ) snake_case_ = state_dict.pop(f'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> List[str]: snake_case_ = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: snake_case_ = dct.pop(_UpperCamelCase ) snake_case_ = val def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: snake_case_ = ViTMSNConfig() snake_case_ = 1000 snake_case_ = 'datasets/huggingface/label-files' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase ) , 'r' ) ) snake_case_ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case_ = 384 snake_case_ = 1536 snake_case_ = 6 elif "l16" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = 0.1 elif "b4" in checkpoint_url: snake_case_ = 4 elif "l7" in checkpoint_url: snake_case_ = 7 snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = 0.1 snake_case_ = ViTMSNModel(_UpperCamelCase ) snake_case_ = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='cpu' )['target_encoder'] snake_case_ = ViTImageProcessor(size=config.image_size ) remove_projection_head(_UpperCamelCase ) snake_case_ = create_rename_keys(_UpperCamelCase , base_model=_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , base_model=_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) snake_case_ = ViTImageProcessor( size=config.image_size , image_mean=_UpperCamelCase , image_std=_UpperCamelCase ) snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) snake_case_ = model(**_UpperCamelCase ) snake_case_ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case_ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: snake_case_ = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case_ = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case_ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: snake_case_ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _UpperCamelCase , atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __UpperCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> str: """simple docstring""" lowerCAmelCase_ : int = int(lowerCAmelCase__ ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase__ ) lowerCAmelCase_ ,lowerCAmelCase_ : List[Any] = divmod(lowerCAmelCase__ , 2 ) return binary_recursive(lowerCAmelCase__ ) + str(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> str: """simple docstring""" lowerCAmelCase_ : int = str(lowerCAmelCase__ ).strip() if not number: raise ValueError('No input value was provided' ) lowerCAmelCase_ : str = '-' if number.startswith('-' ) else '' lowerCAmelCase_ : Union[str, Any] = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f"{negative}0b{binary_recursive(int(lowerCAmelCase__ ) )}" if __name__ == "__main__": from doctest import testmod testmod()
224
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase__ : List[str] = logging.getLogger() def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> Dict: """simple docstring""" lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'all_results.json' ) if os.path.exists(lowerCAmelCase__ ): with open(lowerCAmelCase__ , 'r' ) as f: lowerCAmelCase_ : Any = json.load(lowerCAmelCase__ ) else: raise ValueError(f"can't find {path}" ) return results lowercase__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Any ): import xla_spawn lowerCAmelCase_ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Optional[Any] = time() xla_spawn.main() lowerCAmelCase_ : Any = time() lowerCAmelCase_ : Dict = get_results(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): import xla_spawn lowerCAmelCase_ : Dict = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , 'argv' , SCREAMING_SNAKE_CASE_ ): xla_spawn.main()
224
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
369
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :torch.FloatTensor lowerCamelCase :torch.FloatTensor class a ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 20_00 , lowerCAmelCase_ = 0.15 , lowerCAmelCase_ = 0.01 , lowerCAmelCase_ = 1348.0 , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = 1 , ) -> Tuple: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None self.set_sigmas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Tuple: _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps _A = torch.linspace(1 , lowerCAmelCase_ , lowerCAmelCase_ , device=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Any: _A = sigma_min if sigma_min is not None else self.config.sigma_min _A = sigma_max if sigma_max is not None else self.config.sigma_max _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ ) _A = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _A = torch.exp(torch.linspace(math.log(lowerCAmelCase_ ) , math.log(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) _A = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _A = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _A = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _A = timesteps.to(self.discrete_sigmas.device ) _A = self.discrete_sigmas[timesteps].to(sample.device ) _A = self.get_adjacent_sigma(lowerCAmelCase_ , lowerCAmelCase_ ).to(sample.device ) _A = torch.zeros_like(lowerCAmelCase_ ) _A = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _A = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _A = diffusion.unsqueeze(-1 ) _A = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _A = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase_ , device=sample.device , dtype=sample.dtype ) _A = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _A = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase_ , prev_sample_mean=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _A = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _A = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _A = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _A = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _A = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _A = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _A = step_size.unsqueeze(-1 ) _A = sample + step_size * model_output _A = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A = timesteps.to(original_samples.device ) _A = self.discrete_sigmas.to(original_samples.device )[timesteps] _A = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase_ ) * sigmas[:, None, None, None] ) _A = noise + original_samples return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
81
0
def __magic_name__ ( A : str, A : list[str] ): '''simple docstring''' a = "" for word_or_phrase in separated: if not isinstance(A, A ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(A ) if __name__ == "__main__": from doctest import testmod testmod()
107
def __magic_name__ ( A : str ): '''simple docstring''' a = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __magic_name__ ( A : str ): '''simple docstring''' a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key a = remove_duplicates(key.upper() ) a = len(A ) # First fill cipher with key characters a = {alphabet[i]: char for i, char in enumerate(A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A ), 26 ): a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 a = alphabet[i - offset] a = char return cipher_alphabet def __magic_name__ ( A : str, A : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(A, A ) for ch in message.upper() ) def __magic_name__ ( A : str, A : dict[str, str] ): '''simple docstring''' a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A, A ) for ch in message.upper() ) def __magic_name__ ( ): '''simple docstring''' a = input("Enter message to encode or decode: " ).strip() a = input("Enter keyword: " ).strip() a = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: a = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) a = create_cipher_map(A ) print(func(A, A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
107
1
from ...processing_utils import ProcessorMixin class __lowerCAmelCase ( A ): UpperCamelCase = '''SpeechT5FeatureExtractor''' UpperCamelCase = '''SpeechT5Tokenizer''' def __init__( self : Optional[int] , A : Any , A : List[Any]) -> str: """simple docstring""" super().__init__(A , A) def __call__( self : int , *A : Optional[int] , **A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = kwargs.pop('audio' , A) _UpperCAmelCase = kwargs.pop('text' , A) _UpperCAmelCase = kwargs.pop('text_target' , A) _UpperCAmelCase = kwargs.pop('audio_target' , A) _UpperCAmelCase = kwargs.pop('sampling_rate' , A) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?') if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.') if audio is not None: _UpperCAmelCase = self.feature_extractor(A , *A , sampling_rate=A , **A) elif text is not None: _UpperCAmelCase = self.tokenizer(A , **A) else: _UpperCAmelCase = None if audio_target is not None: _UpperCAmelCase = self.feature_extractor(audio_target=A , *A , sampling_rate=A , **A) _UpperCAmelCase = targets['input_values'] elif text_target is not None: _UpperCAmelCase = self.tokenizer(A , **A) _UpperCAmelCase = targets['input_ids'] else: _UpperCAmelCase = None if inputs is None: return targets if targets is not None: _UpperCAmelCase = labels _UpperCAmelCase = targets.get('attention_mask') if decoder_attention_mask is not None: _UpperCAmelCase = decoder_attention_mask return inputs def _lowerCamelCase ( self : int , *A : Optional[Any] , **A : Dict) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = kwargs.pop('input_values' , A) _UpperCAmelCase = kwargs.pop('input_ids' , A) _UpperCAmelCase = kwargs.pop('labels' , A) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.') if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.') if input_values is not None: _UpperCAmelCase = self.feature_extractor.pad(A , *A , **A) elif input_ids is not None: _UpperCAmelCase = self.tokenizer.pad(A , **A) else: _UpperCAmelCase = None if labels is not None: if "input_ids" in labels or (isinstance(A , A) and "input_ids" in labels[0]): _UpperCAmelCase = self.tokenizer.pad(A , **A) _UpperCAmelCase = targets['input_ids'] else: _UpperCAmelCase = self.feature_extractor.feature_size _UpperCAmelCase = self.feature_extractor.num_mel_bins _UpperCAmelCase = self.feature_extractor.pad(A , *A , **A) _UpperCAmelCase = feature_size_hack _UpperCAmelCase = targets['input_values'] else: _UpperCAmelCase = None if inputs is None: return targets if targets is not None: _UpperCAmelCase = labels _UpperCAmelCase = targets.get('attention_mask') if decoder_attention_mask is not None: _UpperCAmelCase = decoder_attention_mask return inputs def _lowerCamelCase ( self : str , *A : Optional[Any] , **A : Optional[Any]) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*A , **A) def _lowerCamelCase ( self : List[str] , *A : List[Any] , **A : Dict) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*A , **A)
290
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def A ( ) -> tuple[list[int], int]: '''simple docstring''' _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) UpperCAmelCase__ = make_dataset() def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(_UpperCAmelCase , 3 ): if sum(_UpperCAmelCase ) == target: return tuple(sorted(_UpperCAmelCase ) ) return (0, 0, 0) def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() _UpperCAmelCase = len(_UpperCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def A ( ) -> tuple[float, float]: '''simple docstring''' _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=_UpperCAmelCase , stmt=_UpperCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=_UpperCAmelCase , stmt=_UpperCAmelCase , repeat=5 , number=10_000 ) return (min(_UpperCAmelCase ), min(_UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase__ = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
290
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL _a = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False, ): output_path.parent.mkdir(parents=__lowerCamelCase, exist_ok=__lowerCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCamelCase, __lowerCamelCase, f=output_path.as_posix(), input_names=__lowerCamelCase, output_names=__lowerCamelCase, dynamic_axes=__lowerCamelCase, do_constant_folding=__lowerCamelCase, use_external_data_format=__lowerCamelCase, enable_onnx_checker=__lowerCamelCase, opset_version=__lowerCamelCase, ) else: export( __lowerCamelCase, __lowerCamelCase, f=output_path.as_posix(), input_names=__lowerCamelCase, output_names=__lowerCamelCase, dynamic_axes=__lowerCamelCase, do_constant_folding=__lowerCamelCase, opset_version=__lowerCamelCase, ) @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : Optional[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase_ : Optional[Any] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: UpperCAmelCase_ : Any = "cpu" UpperCAmelCase_ : Optional[Any] = Path(__lowerCamelCase ) # VAE DECODER UpperCAmelCase_ : List[Any] = AutoencoderKL.from_pretrained(model_path + "/vae" ) UpperCAmelCase_ : List[str] = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase_ : List[Any] = vae_decoder.decode onnx_export( __lowerCamelCase, model_args=( torch.randn(1, __lowerCamelCase, 25, 25 ).to(device=__lowerCamelCase, dtype=__lowerCamelCase ), False, ), output_path=output_path / "vae_decoder" / "model.onnx", ordered_input_names=["latent_sample", "return_dict"], output_names=["sample"], dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, }, opset=__lowerCamelCase, ) del vae_decoder if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') _a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
61
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] , _lowercase : int ) ->int: '''simple docstring''' if len(_lowercase ) < k or k < 0: raise ValueError("Invalid Input" ) a : Optional[Any] = sum(array[:k] ) for i in range(len(_lowercase ) - k ): a : Optional[Any] = current_sum - array[i] + array[i + k] a : Union[str, Any] = max(_lowercase , _lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() a : Any = [randint(-1000, 1000) for i in range(100)] a : List[str] = randint(0, 110) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
105
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( A__ ): """simple docstring""" _a = ['image_processor', 'tokenizer'] _a = 'BlipImageProcessor' _a = 'AutoTokenizer' def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Any = self.image_processor def __call__( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: UpperCamelCase__ :Optional[int] = self.tokenizer UpperCamelCase__ :Union[str, Any] = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding # add pixel_values UpperCamelCase__ :int = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) if text is not None: UpperCamelCase__ :List[Any] = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) else: UpperCamelCase__ :int = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , *UpperCamelCase_ , **UpperCamelCase_ ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.tokenizer.model_input_names UpperCamelCase__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
219
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 , __a = "bert-base-cased" ) -> Any: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained(__a ) UpperCamelCase__ :List[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def a ( __a , __a , __a , __a ) -> str: '''simple docstring''' model.eval() UpperCamelCase__ :List[str] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ :int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: UpperCamelCase__ :Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a ( __a , __a ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Any = config['''lr'''] UpperCamelCase__ :Optional[int] = int(config['''num_epochs'''] ) UpperCamelCase__ :List[Any] = int(config['''seed'''] ) UpperCamelCase__ :List[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[Any] = args.model_name_or_path set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Any = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer UpperCamelCase__ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ :Dict = 1 UpperCamelCase__ :Tuple = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :Any = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: UpperCamelCase__ :Any = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Optional[int] = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ :List[Any] = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ :Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ :Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ :Tuple = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ :Any = int(__a ) + 1 UpperCamelCase__ :Dict = evaluation_loop(__a , __a , __a , __a ) accelerator.print('''resumed checkpoint performance:''' , __a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ :Optional[Any] = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): UpperCamelCase__ :Optional[int] = model(**__a ) UpperCamelCase__ :Optional[int] = outputs.loss UpperCamelCase__ :str = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ :Union[str, Any] = f'''epoch_{epoch}''' UpperCamelCase__ :List[Any] = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) UpperCamelCase__ :List[Any] = evaluation_loop(__a , __a , __a , __a ) UpperCamelCase__ :int = accuracy UpperCamelCase__ :List[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ :Any = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ :int = epoch UpperCamelCase__ :Tuple = overall_step accelerator.print(f'''epoch {epoch}:''' , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(__a , __a ) def a ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ :List[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , ) parser.add_argument( '''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ :Optional[int] = parser.parse_args() UpperCamelCase__ :List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
219
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = ["""pixel_values"""] def __init__( self : List[Any] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : List[str] , ) -> None: super().__init__(**__snake_case ) UpperCAmelCase : Any = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase : int = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' ) UpperCAmelCase : Any = do_resize UpperCAmelCase : List[Any] = size UpperCAmelCase : str = resample UpperCAmelCase : Tuple = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : str = do_rescale UpperCAmelCase : int = rescale_factor UpperCAmelCase : Union[str, Any] = do_normalize UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase : Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase : List[Any] = do_convert_rgb def A ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray: UpperCAmelCase : List[str] = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : Tuple , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Union[str, Any] , ) -> np.ndarray: UpperCAmelCase : Tuple = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def A ( self : Any , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ) -> List[str]: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : List[Any] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def A ( self : List[str] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Optional[int] , ) -> PIL.Image.Image: UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : str = size if size is not None else self.size UpperCAmelCase : Dict = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case ) UpperCAmelCase : List[str] = resample if resample is not None else self.resample UpperCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : Any = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case ) UpperCAmelCase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCAmelCase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase : List[str] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase : str = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase : Union[str, Any] = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase : int = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: UpperCAmelCase : Optional[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: UpperCAmelCase : Optional[int] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: UpperCAmelCase : int = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] UpperCAmelCase : List[Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase : Tuple = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
23
from __future__ import annotations def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(__UpperCamelCase ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
312
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _snake_case = getLogger(__name__) _snake_case = "cuda" if torch.cuda.is_available() else "cpu" def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 8,snake_case_ = DEFAULT_DEVICE,snake_case_=False,snake_case_="summarization",snake_case_=None,**snake_case_,): _A : Tuple = Path(snake_case_ ).open("""w""",encoding="""utf-8""" ) _A : Optional[int] = str(snake_case_ ) _A : Tuple = AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).to(snake_case_ ) if fpaa: _A : Optional[Any] = model.half() _A : Any = AutoTokenizer.from_pretrained(snake_case_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. _A : Tuple = time.time() # update config with task specific params use_task_specific_params(snake_case_,snake_case_ ) if prefix is None: _A : Dict = prefix or getattr(model.config,"""prefix""","""""" ) or """""" for examples_chunk in tqdm(list(chunks(snake_case_,snake_case_ ) ) ): _A : List[Any] = [prefix + text for text in examples_chunk] _A : Optional[Any] = tokenizer(snake_case_,return_tensors="""pt""",truncation=snake_case_,padding="""longest""" ).to(snake_case_ ) _A : List[str] = model.generate( input_ids=batch.input_ids,attention_mask=batch.attention_mask,**snake_case_,) _A : Optional[Any] = tokenizer.batch_decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ ) for hypothesis in dec: fout.write(hypothesis + """\n""" ) fout.flush() fout.close() _A : Any = int(time.time() - start_time ) # seconds _A : List[Any] = len(snake_case_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs,4 )} def lowerCAmelCase_ ( ): return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" ) def lowerCAmelCase_ ( snake_case_=True ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""model_name""",type=snake_case_,help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""input_path""",type=snake_case_,help="""like cnn_dm/test.source""" ) parser.add_argument("""save_path""",type=snake_case_,help="""where to save summaries""" ) parser.add_argument("""--reference_path""",type=snake_case_,required=snake_case_,help="""like cnn_dm/test.target""" ) parser.add_argument("""--score_path""",type=snake_case_,required=snake_case_,default="""metrics.json""",help="""where to save metrics""" ) parser.add_argument("""--device""",type=snake_case_,required=snake_case_,default=snake_case_,help="""cuda, cuda:1, cpu etc.""" ) parser.add_argument( """--prefix""",type=snake_case_,required=snake_case_,default=snake_case_,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--task""",type=snake_case_,default="""summarization""",help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""",type=snake_case_,default=8,required=snake_case_,help="""batch size""" ) parser.add_argument( """--n_obs""",type=snake_case_,default=-1,required=snake_case_,help="""How many observations. Defaults to all.""" ) parser.add_argument("""--fp16""",action="""store_true""" ) parser.add_argument("""--dump-args""",action="""store_true""",help="""print the custom hparams with the results""" ) parser.add_argument( """--info""",nargs="""?""",type=snake_case_,const=datetime_now(),help=( """use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g.""" """ lang=en-ru. If no value is passed, the current datetime string will be used.""" ),) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A : Optional[int] = parser.parse_known_args() _A : Dict = parse_numeric_n_bool_cl_kwargs(snake_case_ ) if parsed_args and verbose: print(f'''parsed the following generate kwargs: {parsed_args}''' ) _A : Dict = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A : Tuple = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("""Can't mix --fp16 and --device cpu""" ) _A : int = generate_summaries_or_translations( snake_case_,args.save_path,args.model_name,batch_size=args.bs,device=args.device,fpaa=args.fpaa,task=args.task,prefix=args.prefix,**snake_case_,) if args.reference_path is None: return {} # Compute scores _A : Any = calculate_bleu if """translation""" in args.task else calculate_rouge _A : str = [x.rstrip() for x in open(args.save_path ).readlines()] _A : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case_ )] _A : dict = score_fn(snake_case_,snake_case_ ) scores.update(snake_case_ ) if args.dump_args: scores.update(snake_case_ ) if args.info: _A : Dict = args.info if verbose: print(snake_case_ ) if args.score_path is not None: json.dump(snake_case_,open(args.score_path,"""w""" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
343
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __snake_case = logging.getLogger(__name__) if __name__ == "__main__": __snake_case = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) __snake_case = parser.parse_args() logger.info(f'Loading data from {args.data_file}') with open(args.data_file, '''rb''') as fp: __snake_case = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') __snake_case = Counter() for tk_ids in data: counter.update(tk_ids) __snake_case = [0] * args.vocab_size for k, v in counter.items(): __snake_case = v logger.info(f'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
348
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __a = logging.get_logger(__name__) @add_end_docstrings(_a ) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[Any] , *snake_case_ : Optional[Any] , **snake_case_ : Optional[int] ): super().__init__(*snake_case_ , **snake_case_ ) requires_backends(self , """vision""" ) self.check_model_type(snake_case_ ) def __call__( self : str , snake_case_ : Tuple , **snake_case_ : Any ): return super().__call__(snake_case_ , **snake_case_ ) def lowerCamelCase ( self : int , **snake_case_ : Tuple ): return {}, {}, {} def lowerCamelCase ( self : Optional[Any] , snake_case_ : str ): snake_case__ = load_image(snake_case_ ) snake_case__ = image.size snake_case__ = self.image_processor(images=snake_case_ , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self : List[Any] , snake_case_ : List[Any] ): snake_case__ = self.model(**snake_case_ ) return model_outputs def lowerCamelCase ( self : Tuple , snake_case_ : Optional[int] ): snake_case__ = model_outputs.predicted_depth snake_case__ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=snake_case_ ) snake_case__ = prediction.squeeze().cpu().numpy() snake_case__ = (output * 255 / np.max(snake_case_ )).astype("""uint8""" ) snake_case__ = Image.fromarray(snake_case_ ) snake_case__ = {} snake_case__ = predicted_depth snake_case__ = depth return output_dict
367
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Tuple=0 ): snake_case__ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case_ ) ) snake_case__ : List[str] = np.random.RandomState(snake_case_ ) snake_case__ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Optional[Any] ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Union[str, Any] = pipe(**snake_case_ ).images snake_case__ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = self.get_dummy_inputs() snake_case__ : int = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Tuple = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Optional[int] ): snake_case__ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations snake_case__ : List[Any] = pipe(**self.get_dummy_inputs() ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : Optional[int] = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Any = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = self.get_dummy_inputs() snake_case__ : List[Any] = pipe(**snake_case_ ).images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : Optional[Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : str ): snake_case__ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs() snake_case__ : Tuple = pipe(**snake_case_ ).images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : int = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) snake_case__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[str] = self.get_dummy_inputs() snake_case__ : List[str] = pipe(**snake_case_ ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) snake_case__ : List[str] = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self : Dict ): snake_case__ : Tuple = ort.SessionOptions() snake_case__ : Optional[Any] = False return options def lowerCamelCase ( self : List[str] ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default snake_case__ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = """A fantasy landscape, trending on artstation""" snake_case__ : str = np.random.RandomState(0 ) snake_case__ : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : str = output.images snake_case__ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Optional[Any] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase ( self : int ): snake_case__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : List[Any] = init_image.resize((768, 512) ) snake_case__ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case__ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Union[str, Any] = """A fantasy landscape, trending on artstation""" snake_case__ : Optional[int] = np.random.RandomState(0 ) snake_case__ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Any = output.images snake_case__ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) snake_case__ : Tuple = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
43
0
"""simple docstring""" class __snake_case ( __lowerCAmelCase ): pass class __snake_case ( __lowerCAmelCase ): pass class __snake_case : def __init__( self) -> Optional[Any]: '''simple docstring''' a__: Tuple = [ [], [], [], ] def lowerCamelCase_ ( self , lowercase , lowercase) -> None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError('Maximum queue size is 100') self.queues[priority].append(lowercase) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2') def lowerCamelCase_ ( self) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError('All queues are empty') def __str__( self) -> str: '''simple docstring''' return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues)) class __snake_case : def __init__( self) -> int: '''simple docstring''' a__: Optional[int] = [] def lowerCamelCase_ ( self , lowercase) -> None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError('Maximum queue size is 100') self.queue.append(lowercase) def lowerCamelCase_ ( self) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError('The queue is empty') else: a__: int = min(self.queue) self.queue.remove(lowercase) return data def __str__( self) -> str: '''simple docstring''' return str(self.queue) def __a ( ) ->int: a__: List[str] = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __a ( ) ->List[str]: a__: Tuple = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
290
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class __snake_case ( __lowerCAmelCase ): a__ = """roberta-prelayernorm""" def __init__( self , lowercase=5_02_65 , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_12 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase) a__: Union[str, Any] = vocab_size a__: str = hidden_size a__: Tuple = num_hidden_layers a__: List[str] = num_attention_heads a__: Dict = hidden_act a__: int = intermediate_size a__: Tuple = hidden_dropout_prob a__: str = attention_probs_dropout_prob a__: Tuple = max_position_embeddings a__: Tuple = type_vocab_size a__: Optional[Any] = initializer_range a__: Tuple = layer_norm_eps a__: Optional[int] = position_embedding_type a__: Any = use_cache a__: Dict = classifier_dropout class __snake_case ( __lowerCAmelCase ): @property def lowerCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a__: str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a__: Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
290
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0_0_0_0_0 ) ->int: A__ : int = set(range(3, UpperCAmelCase__, 2 ) ) primes.add(2 ) for p in range(3, UpperCAmelCase__, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, UpperCAmelCase__, UpperCAmelCase__ ) ) ) A__ : str = [float(UpperCAmelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'{solution() = }')
296
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
1
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : list[int] ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] , __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> bool: """simple docstring""" if curr_ind == len(__UpperCamelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__UpperCamelCase ) ): if valid_connection(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # Insert current vertex into path as next transition SCREAMING_SNAKE_CASE__ = next_ver # Validate created path if util_hamilton_cycle(__UpperCamelCase , __UpperCamelCase , curr_ind + 1 ): return True # Backtrack SCREAMING_SNAKE_CASE__ = -1 return False def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] , __UpperCamelCase : int = 0 ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [-1] * (len(__UpperCamelCase ) + 1) # initialize start and end of path with starting index SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__UpperCamelCase , __UpperCamelCase , 1 ) else []
219
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase_ ): def __init__( self : Dict , _lowercase : CLIPSegForImageSegmentation , _lowercase : CLIPSegProcessor , _lowercase : AutoencoderKL , _lowercase : CLIPTextModel , _lowercase : CLIPTokenizer , _lowercase : UNetaDConditionModel , _lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowercase : StableDiffusionSafetyChecker , _lowercase : CLIPImageProcessor , ): """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE__ = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , _lowercase , standard_warn=_lowercase ) SCREAMING_SNAKE_CASE__ = dict(scheduler.config ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FrozenDict(_lowercase ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=_lowercase , segmentation_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , ) def __a ( self : List[Any] , _lowercase : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def __a ( self : Any ): """simple docstring""" self.enable_attention_slicing(_lowercase ) def __a ( self : Optional[int] ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) SCREAMING_SNAKE_CASE__ = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self : Optional[int] ): """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , _lowercase : Union[str, List[str]] , _lowercase : Union[torch.FloatTensor, PIL.Image.Image] , _lowercase : str , _lowercase : int = 5_12 , _lowercase : int = 5_12 , _lowercase : int = 50 , _lowercase : float = 7.5 , _lowercase : Optional[Union[str, List[str]]] = None , _lowercase : Optional[int] = 1 , _lowercase : float = 0.0 , _lowercase : Optional[torch.Generator] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , **_lowercase : str , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) SCREAMING_SNAKE_CASE__ = self.segmentation_model(**_lowercase ) SCREAMING_SNAKE_CASE__ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(_lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , height=_lowercase , width=_lowercase , num_inference_steps=_lowercase , guidance_scale=_lowercase , negative_prompt=_lowercase , num_images_per_prompt=_lowercase , eta=_lowercase , generator=_lowercase , latents=_lowercase , output_type=_lowercase , return_dict=_lowercase , callback=_lowercase , callback_steps=_lowercase , )
219
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase__ = AlbertForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
61
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = """cvt""" def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=[7, 3, 3] , _UpperCAmelCase : Optional[Any]=[4, 2, 2] , _UpperCAmelCase : List[Any]=[2, 1, 1] , _UpperCAmelCase : Optional[int]=[64, 1_92, 3_84] , _UpperCAmelCase : Any=[1, 3, 6] , _UpperCAmelCase : Tuple=[1, 2, 10] , _UpperCAmelCase : Union[str, Any]=[4.0, 4.0, 4.0] , _UpperCAmelCase : Optional[int]=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.0] , _UpperCAmelCase : Dict=[0.0, 0.0, 0.1] , _UpperCAmelCase : Optional[int]=[True, True, True] , _UpperCAmelCase : Dict=[False, False, True] , _UpperCAmelCase : Dict=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase : int=[3, 3, 3] , _UpperCAmelCase : Optional[int]=[1, 1, 1] , _UpperCAmelCase : List[Any]=[2, 2, 2] , _UpperCAmelCase : Union[str, Any]=[1, 1, 1] , _UpperCAmelCase : str=[1, 1, 1] , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Dict=1E-12 , **_UpperCAmelCase : Any , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = patch_sizes UpperCAmelCase__ = patch_stride UpperCAmelCase__ = patch_padding UpperCAmelCase__ = embed_dim UpperCAmelCase__ = num_heads UpperCAmelCase__ = depth UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = attention_drop_rate UpperCAmelCase__ = drop_rate UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = cls_token UpperCAmelCase__ = qkv_projection_method UpperCAmelCase__ = kernel_qkv UpperCAmelCase__ = padding_kv UpperCAmelCase__ = stride_kv UpperCAmelCase__ = padding_q UpperCAmelCase__ = stride_q UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps
61
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) lowercase : int = hex_num[0] == """-""" if is_negative: lowercase : List[Any] = hex_num[1:] try: lowercase : str = int(SCREAMING_SNAKE_CASE__ , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) lowercase : Dict = """""" while int_num > 0: lowercase : str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
20
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
def UpperCamelCase ( _a = 1_0_0_0 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
352
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : List[Any] ="""gpt_bigcode""" lowercase : Dict =["""past_key_values"""] lowercase : List[Any] ={ """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase_=5_0257 , UpperCamelCase_=1024 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=None , UpperCamelCase_="gelu_pytorch_tanh" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.02 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=5_0256 , UpperCamelCase_=5_0256 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , **UpperCamelCase_ , ): lowercase_ :Any = vocab_size lowercase_ :List[str] = n_positions lowercase_ :Union[str, Any] = n_embd lowercase_ :Dict = n_layer lowercase_ :Optional[int] = n_head lowercase_ :List[str] = n_inner lowercase_ :List[str] = activation_function lowercase_ :Optional[int] = resid_pdrop lowercase_ :Union[str, Any] = embd_pdrop lowercase_ :Any = attn_pdrop lowercase_ :Optional[Any] = layer_norm_epsilon lowercase_ :str = initializer_range lowercase_ :Optional[Any] = scale_attn_weights lowercase_ :Any = use_cache lowercase_ :Union[str, Any] = attention_softmax_in_fpaa lowercase_ :int = scale_attention_softmax_in_fpaa lowercase_ :Union[str, Any] = multi_query lowercase_ :List[str] = bos_token_id lowercase_ :Optional[int] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
252
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') snake_case_ : Any = logging.getLogger(__name__) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) lowercase__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowercase__ : lowercase__ = field(default=lowercase , metadata={"""help""": """The input training data file (a text file)."""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowercase__ = field( default=lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowercase__ = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCamelCase_ ( self : str ): '''simple docstring''' if self.train_file is not None: _UpperCamelCase : List[Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCamelCase : Union[str, Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None def __call__( self : Optional[Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : List[str] = 'label' if 'label' in features[0].keys() else 'labels' _UpperCamelCase : List[Any] = [feature.pop(lowerCamelCase__ ) for feature in features] _UpperCamelCase : Dict = len(lowerCamelCase__ ) _UpperCamelCase : List[str] = len(features[0]['input_ids'] ) _UpperCamelCase : List[Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCamelCase__ )] for feature in features ] _UpperCamelCase : str = list(chain(*lowerCamelCase__ ) ) _UpperCamelCase : Tuple = self.tokenizer.pad( lowerCamelCase__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten _UpperCamelCase : str = {k: v.view(lowerCamelCase__ ,lowerCamelCase__ ,-1 ) for k, v in batch.items()} # Add back labels _UpperCamelCase : Optional[int] = torch.tensor(lowerCamelCase__ ,dtype=torch.intaa ) return batch def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) datasets.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _UpperCamelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCamelCase : Optional[int] = {} if data_args.train_file is not None: _UpperCamelCase : Tuple = data_args.train_file if data_args.validation_file is not None: _UpperCamelCase : Tuple = data_args.validation_file _UpperCamelCase : Any = data_args.train_file.split('.' )[-1] _UpperCamelCase : Union[str, Any] = load_dataset( UpperCAmelCase_ , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCamelCase : List[str] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : int = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCamelCase : Any = [f'ending{i}' for i in range(4 )] _UpperCamelCase : int = 'sent1' _UpperCamelCase : List[str] = 'sent2' if data_args.max_seq_length is None: _UpperCamelCase : int = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) _UpperCamelCase : int = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _UpperCamelCase : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase_ ): _UpperCamelCase : str = [[context] * 4 for context in examples[context_name]] _UpperCamelCase : Optional[Any] = examples[question_header_name] _UpperCamelCase : Tuple = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(UpperCAmelCase_ ) ] # Flatten out _UpperCamelCase : Optional[int] = list(chain(*UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = list(chain(*UpperCAmelCase_ ) ) # Tokenize _UpperCamelCase : Tuple = tokenizer( UpperCAmelCase_ , UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _UpperCamelCase : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: _UpperCamelCase : Tuple = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) _UpperCamelCase : Tuple = train_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _UpperCamelCase : Union[str, Any] = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _UpperCamelCase : str = raw_datasets['validation'] if data_args.max_eval_samples is not None: _UpperCamelCase : Union[str, Any] = min(len(UpperCAmelCase_ ) , data_args.max_eval_samples ) _UpperCamelCase : str = eval_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _UpperCamelCase : Dict = eval_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCamelCase : List[Any] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Union[str, Any] = eval_predictions _UpperCamelCase : List[str] = np.argmax(UpperCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCamelCase : Optional[int] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: _UpperCamelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase : int = last_checkpoint _UpperCamelCase : List[str] = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCamelCase : Union[str, Any] = train_result.metrics _UpperCamelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('train' , UpperCAmelCase_ ) trainer.save_metrics('train' , UpperCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCamelCase : List[Any] = trainer.evaluate() _UpperCamelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ ) _UpperCamelCase : int = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('eval' , UpperCAmelCase_ ) trainer.save_metrics('eval' , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
83
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase = logging.get_logger(__name__) __lowercase = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = """deformable_detr""" a__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __lowercase=True , __lowercase=None , __lowercase=3 , __lowercase=300 , __lowercase=1_024 , __lowercase=6 , __lowercase=1_024 , __lowercase=8 , __lowercase=6 , __lowercase=1_024 , __lowercase=8 , __lowercase=0.0 , __lowercase=True , __lowercase="relu" , __lowercase=256 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1.0 , __lowercase=True , __lowercase=False , __lowercase="sine" , __lowercase="resnet50" , __lowercase=True , __lowercase=False , __lowercase=4 , __lowercase=4 , __lowercase=4 , __lowercase=False , __lowercase=300 , __lowercase=False , __lowercase=1 , __lowercase=5 , __lowercase=2 , __lowercase=1 , __lowercase=1 , __lowercase=5 , __lowercase=2 , __lowercase=0.1 , __lowercase=0.25 , __lowercase=False , **__lowercase , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') __UpperCamelCase :str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__lowercase , __lowercase): __UpperCamelCase :str = backbone_config.get('''model_type''') __UpperCamelCase :Tuple = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase :Any = config_class.from_dict(__lowercase) __UpperCamelCase :int = use_timm_backbone __UpperCamelCase :Dict = backbone_config __UpperCamelCase :Any = num_channels __UpperCamelCase :Optional[int] = num_queries __UpperCamelCase :Any = max_position_embeddings __UpperCamelCase :str = d_model __UpperCamelCase :Tuple = encoder_ffn_dim __UpperCamelCase :Union[str, Any] = encoder_layers __UpperCamelCase :List[Any] = encoder_attention_heads __UpperCamelCase :Any = decoder_ffn_dim __UpperCamelCase :List[str] = decoder_layers __UpperCamelCase :int = decoder_attention_heads __UpperCamelCase :str = dropout __UpperCamelCase :Any = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :List[Any] = activation_function __UpperCamelCase :List[Any] = init_std __UpperCamelCase :List[Any] = init_xavier_std __UpperCamelCase :int = encoder_layerdrop __UpperCamelCase :str = auxiliary_loss __UpperCamelCase :Optional[Any] = position_embedding_type __UpperCamelCase :Union[str, Any] = backbone __UpperCamelCase :Any = use_pretrained_backbone __UpperCamelCase :str = dilation # deformable attributes __UpperCamelCase :Optional[Any] = num_feature_levels __UpperCamelCase :str = encoder_n_points __UpperCamelCase :int = decoder_n_points __UpperCamelCase :Union[str, Any] = two_stage __UpperCamelCase :Optional[Any] = two_stage_num_proposals __UpperCamelCase :Dict = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''') # Hungarian matcher __UpperCamelCase :Optional[int] = class_cost __UpperCamelCase :List[Any] = bbox_cost __UpperCamelCase :str = giou_cost # Loss coefficients __UpperCamelCase :Tuple = mask_loss_coefficient __UpperCamelCase :Tuple = dice_loss_coefficient __UpperCamelCase :int = bbox_loss_coefficient __UpperCamelCase :Any = giou_loss_coefficient __UpperCamelCase :Dict = eos_coefficient __UpperCamelCase :Optional[Any] = focal_alpha __UpperCamelCase :Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=__lowercase , **__lowercase) @property def UpperCamelCase__ ( self) -> int: return self.encoder_attention_heads @property def UpperCamelCase__ ( self) -> int: return self.d_model def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __UpperCamelCase :Tuple = self.backbone_config.to_dict() __UpperCamelCase :List[Any] = self.__class__.model_type return output
43
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Tuple = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from typing import Any class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = data A__ = None class a : """simple docstring""" def __init__( self: List[str] ): """simple docstring""" A__ = None def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.head while temp is not None: print(temp.data , end=""" """ ) A__ = temp.next print() def UpperCamelCase ( self: str , UpperCamelCase: Any ): """simple docstring""" A__ = Node(UpperCamelCase ) A__ = self.head A__ = new_node def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" if node_data_a == node_data_a: return else: A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next if node_a is None or node_a is None: return A__ , A__ = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
69
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any]=7 ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : List[str]=18 ,lowerCamelCase__ : Tuple=30 ,lowerCamelCase__ : Optional[Any]=400 ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] ,) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Optional[Any] = LevitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = LevitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,"""image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""size""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size ,{"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size ,{"""height""": 84, """width""": 84} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCamelCase__ ,return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) ,)
296
from pathlib import Path import fire def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) dest_dir.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE = [x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE = dest_dir.joinpath(path.name ) print(_SCREAMING_SNAKE_CASE ) dest_path.open("""w""" ).write("""\n""".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": fire.Fire(minify)
296
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch UpperCamelCase__ = logging.get_logger(__name__) @add_end_docstrings( _a , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __SCREAMING_SNAKE_CASE ( _a ): def _lowerCamelCase ( self , __lowerCAmelCase ): if self.framework == "tf": UpperCamelCase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__lowerCAmelCase ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.get_masked_index(__lowerCAmelCase ) UpperCamelCase__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ): if return_tensors is None: UpperCamelCase__ = self.framework UpperCamelCase__ = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.ensure_exactly_one_mask_token(__lowerCAmelCase ) return model_inputs def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.model(**__lowerCAmelCase ) UpperCamelCase__ = model_inputs["""input_ids"""] return model_outputs def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=5 , __lowerCAmelCase=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase__ = target_ids.shape[0] UpperCamelCase__ = model_outputs["""input_ids"""][0] UpperCamelCase__ = model_outputs["""logits"""] if self.framework == "tf": UpperCamelCase__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase__ = outputs.numpy() UpperCamelCase__ = outputs[0, masked_index, :] UpperCamelCase__ = stable_softmax(__lowerCAmelCase , axis=-1 ) if target_ids is not None: UpperCamelCase__ = tf.gather_nd(tf.squeeze(__lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase__ = tf.expand_dims(__lowerCAmelCase , 0 ) UpperCamelCase__ = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase__ = outputs[0, masked_index, :] UpperCamelCase__ = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase__ = probs[..., target_ids] UpperCamelCase__ , UpperCamelCase__ = probs.topk(__lowerCAmelCase ) UpperCamelCase__ = [] UpperCamelCase__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase__ = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase__ = target_ids[p].tolist() UpperCamelCase__ = p # Filter padding out: UpperCamelCase__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase__ = self.tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) UpperCamelCase__ = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(__lowerCAmelCase ) result.append(__lowerCAmelCase ) if single_mask: return result[0] return result def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = [targets] try: UpperCamelCase__ = self.tokenizer.get_vocab() except Exception: UpperCamelCase__ = {} UpperCamelCase__ = [] for target in targets: UpperCamelCase__ = vocab.get(__lowerCAmelCase , __lowerCAmelCase ) if id_ is None: UpperCamelCase__ = self.tokenizer( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , max_length=1 , truncation=__lowerCAmelCase , )["""input_ids"""] if len(__lowerCAmelCase ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCamelCase__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCamelCase__ = list(set(__lowerCAmelCase ) ) if len(__lowerCAmelCase ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCamelCase__ = np.array(__lowerCAmelCase ) return target_ids def _lowerCamelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None ): UpperCamelCase__ = {} if targets is not None: UpperCamelCase__ = self.get_target_ids(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = target_ids if top_k is not None: UpperCamelCase__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): UpperCamelCase__ = super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) == 1: return outputs[0] return outputs
358
def _UpperCamelCase (a__ :dict ): """simple docstring""" UpperCamelCase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCamelCase__ = set() return any( node not in visited and depth_first_search(a__ , a__ , a__ , a__ ) for node in graph ) def _UpperCamelCase (a__ :dict , a__ :int , a__ :set , a__ :set ): """simple docstring""" visited.add(a__ ) rec_stk.add(a__ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a__ , a__ , a__ , a__ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a__ ) return False if __name__ == "__main__": from doctest import testmod testmod()
87
0
"""simple docstring""" import os import sys _a = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _a = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): return AutoConfig.from_pretrained(*__lowerCamelCase, **__lowerCamelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): return AutoTokenizer.from_pretrained(*__lowerCamelCase, **__lowerCamelCase ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): return AutoModel.from_pretrained(*__lowerCamelCase, **__lowerCamelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): return AutoModelForCausalLM.from_pretrained(*__lowerCamelCase, **__lowerCamelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): return AutoModelForMaskedLM.from_pretrained(*__lowerCamelCase, **__lowerCamelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): return AutoModelForSequenceClassification.from_pretrained(*__lowerCamelCase, **__lowerCamelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *__lowerCamelCase, **__lowerCamelCase ): return AutoModelForQuestionAnswering.from_pretrained(*__lowerCamelCase, **__lowerCamelCase )
61
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ : Dict = MaskFormerConfig(backbone_config=__lowerCamelCase ) UpperCAmelCase_ : int = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ : Dict = 847 UpperCAmelCase_ : str = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ : Tuple = 150 UpperCAmelCase_ : int = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ : str = 171 UpperCAmelCase_ : Optional[int] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ : int = 133 UpperCAmelCase_ : Tuple = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ : List[Any] = 19 UpperCAmelCase_ : Optional[int] = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ : Any = 65 UpperCAmelCase_ : Union[str, Any] = "mapillary-vistas-id2label.json" UpperCAmelCase_ : Any = json.load(open(hf_hub_download(__lowerCamelCase, __lowerCamelCase, repo_type="dataset" ), "r" ) ) UpperCAmelCase_ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} return config def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = dct.pop(__lowerCamelCase ) UpperCAmelCase_ : str = val def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Tuple = in_proj_weight[:dim, :] UpperCAmelCase_ : List[Any] = in_proj_bias[: dim] UpperCAmelCase_ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : Tuple = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-dim :] # fmt: on def __a ( __lowerCamelCase, __lowerCamelCase ): # fmt: off UpperCAmelCase_ : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ : int = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : int = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : Dict = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : str = in_proj_weight[: hidden_size, :] UpperCAmelCase_ : Tuple = in_proj_bias[:config.hidden_size] UpperCAmelCase_ : int = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ : List[str] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : List[Any] = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-hidden_size :] # fmt: on def __a ( ): UpperCAmelCase_ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : Tuple = Image.open(requests.get(__lowerCamelCase, stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = False ): UpperCAmelCase_ : List[str] = get_maskformer_config(__lowerCamelCase ) # load original state_dict with open(__lowerCamelCase, "rb" ) as f: UpperCAmelCase_ : Union[str, Any] = pickle.load(__lowerCamelCase ) UpperCAmelCase_ : str = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ : int = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) read_in_swin_q_k_v(__lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(__lowerCamelCase, __lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ : Optional[int] = torch.from_numpy(__lowerCamelCase ) # load 🤗 model UpperCAmelCase_ : Dict = MaskFormerForInstanceSegmentation(__lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCamelCase, param.shape ) UpperCAmelCase_ , UpperCAmelCase_ : str = model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCamelCase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ : Optional[int] = prepare_img() if "vistas" in model_name: UpperCAmelCase_ : List[str] = 65 elif "cityscapes" in model_name: UpperCAmelCase_ : Tuple = 6_5535 else: UpperCAmelCase_ : Dict = 255 UpperCAmelCase_ : Optional[Any] = True if "ade" in model_name else False UpperCAmelCase_ : Dict = MaskFormerImageProcessor(ignore_index=__lowerCamelCase, reduce_labels=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = image_processor(__lowerCamelCase, return_tensors="pt" ) UpperCAmelCase_ : Dict = model(**__lowerCamelCase ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ : Any = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowerCamelCase, atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
61
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : List[str] = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _A (__a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : str = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Optional[int] , lowercase_ : List[Any]=13 , lowercase_ : Optional[int]=7 , lowercase_ : Dict=True , lowercase_ : Tuple=False , lowercase_ : List[Any]=99 , lowercase_ : Dict=16 , lowercase_ : Any=2 , lowercase_ : List[Any]=4 , lowercase_ : Optional[int]=4 , lowercase_ : Dict="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Optional[Any]=32 , lowercase_ : Tuple=2 , lowercase_ : List[Any]=1 , lowercase_ : str=0 , lowercase_ : Any=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : Any = initializer_range def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) SCREAMING_SNAKE_CASE_ : Tuple = shift_tokens_right(_a , 1 , 2) SCREAMING_SNAKE_CASE_ : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_a , ) SCREAMING_SNAKE_CASE_ : Tuple = prepare_blenderbot_inputs_dict(_a , _a , _a) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class_name(_a) SCREAMING_SNAKE_CASE_ : Optional[Any] = model.encode(inputs_dict['''input_ids''']) SCREAMING_SNAKE_CASE_ : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE_ : Any = model.init_cache(decoder_input_ids.shape[0] , _a , _a) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') SCREAMING_SNAKE_CASE_ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) SCREAMING_SNAKE_CASE_ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') SCREAMING_SNAKE_CASE_ : Any = model.decode( decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.decode(_a , _a) SCREAMING_SNAKE_CASE_ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 20 SCREAMING_SNAKE_CASE_ : str = model_class_name(_a) SCREAMING_SNAKE_CASE_ : Optional[int] = model.encode(inputs_dict['''input_ids''']) SCREAMING_SNAKE_CASE_ : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE_ : str = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ : Tuple = model.init_cache(decoder_input_ids.shape[0] , _a , _a) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ : List[str] = model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') SCREAMING_SNAKE_CASE_ : List[str] = model.decode( decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , ) SCREAMING_SNAKE_CASE_ : Dict = model.decode(_a , _a , decoder_attention_mask=_a) SCREAMING_SNAKE_CASE_ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = 9_9 def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_ : List[str] = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self._get_config_and_data() SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_a) SCREAMING_SNAKE_CASE_ : Dict = lm_model(input_ids=_a) SCREAMING_SNAKE_CASE_ : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _a) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_a) SCREAMING_SNAKE_CASE_ : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ : Tuple = lm_model(input_ids=_a , decoder_input_ids=_a) SCREAMING_SNAKE_CASE_ : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _a) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_ : List[str] = shift_tokens_right(_a , 1 , 2) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.equal(_a , 1).astype(np.floataa).sum() SCREAMING_SNAKE_CASE_ : int = np.equal(_a , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(_a , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class lowerCAmelCase__ ( __lowercase , unittest.TestCase , __lowercase ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCamelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxBlenderbotModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_a , _a , _a) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_ : List[Any] = self._prepare_for_class(_a , _a) SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_a) @jax.jit def encode_jitted(lowercase_ : Tuple , lowercase_ : str=None , **lowercase_ : Union[str, Any]): return model.encode(input_ids=_a , attention_mask=_a) with self.subTest('''JIT Enabled'''): SCREAMING_SNAKE_CASE_ : Optional[Any] = encode_jitted(**_a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Tuple = encode_jitted(**_a).to_tuple() self.assertEqual(len(_a) , len(_a)) for jitted_output, output in zip(_a , _a): self.assertEqual(jitted_output.shape , output.shape) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_ : List[str] = model_class(_a) SCREAMING_SNAKE_CASE_ : List[Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : List[str]): return model.decode( decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , ) with self.subTest('''JIT Enabled'''): SCREAMING_SNAKE_CASE_ : Optional[int] = decode_jitted(**_a).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Dict = decode_jitted(**_a).to_tuple() self.assertEqual(len(_a) , len(_a)) for jitted_output, output in zip(_a , _a): self.assertEqual(jitted_output.shape , output.shape) @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : str = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.ones((1, 1)) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ : str = model(_a) self.assertIsNotNone(_a) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''') @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} SCREAMING_SNAKE_CASE_ : Tuple = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_a) SCREAMING_SNAKE_CASE_ : str = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''') SCREAMING_SNAKE_CASE_ : List[Any] = ['''Sam'''] SCREAMING_SNAKE_CASE_ : str = tokenizer(_a , return_tensors='''jax''') SCREAMING_SNAKE_CASE_ : List[Any] = model.generate(**_a , **_a) SCREAMING_SNAKE_CASE_ : Optional[Any] = '''Sam is a great name. It means "sun" in Gaelic.''' SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(_a , **_a) assert generated_txt[0].strip() == tgt_text
365
"""simple docstring""" from itertools import permutations def _A (__a ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A (__a = 10 ) -> int: """simple docstring""" return sum( int(''''''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(f'''{solution() = }''')
318
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase ( a_,a_,a_,unittest.TestCase ): _a = StableDiffusionControlNetImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) _a = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ ( self ) -> Dict: torch.manual_seed(0 ) _A : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _A : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _A : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _A : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _A : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : List[Any] = CLIPTextModel(_a ) _A : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A : List[str] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self , _a , _a=0 ) -> Any: if str(_a ).startswith("""mps""" ): _A : Union[str, Any] = torch.manual_seed(_a ) else: _A : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _A : str = 2 _A : Union[str, Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) _A : str = floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) _A : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : List[str] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) _A : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def a__ ( self ) -> int: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a__ ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def a__ ( self ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowercase ( a_,a_,unittest.TestCase ): _a = StableDiffusionControlNetImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def a__ ( self ) -> Dict: torch.manual_seed(0 ) _A : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_a ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _A : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) _A : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) _A : Union[str, Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _A : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : str = CLIPTextModel(_a ) _A : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A : Optional[Any] = MultiControlNetModel([controlneta, controlneta] ) _A : Any = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self , _a , _a=0 ) -> Tuple: if str(_a ).startswith("""mps""" ): _A : Union[str, Any] = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : List[str] = 2 _A : Dict = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] _A : List[str] = floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) _A : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Tuple = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) _A : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = self.get_dummy_components() _A : int = self.pipeline_class(**_a ) pipe.to(_a ) _A : int = 10.0 _A : int = 4 _A : Dict = self.get_dummy_inputs(_a ) _A : Dict = steps _A : Any = scale _A : Tuple = pipe(**_a )[0] _A : Union[str, Any] = self.get_dummy_inputs(_a ) _A : Optional[Any] = steps _A : Optional[Any] = scale _A : Tuple = pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : Union[str, Any] = steps _A : int = scale _A : List[str] = pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : Optional[int] = steps _A : int = scale _A : List[Any] = pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def a__ ( self ) -> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a__ ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def a__ ( self ) -> Dict: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def a__ ( self ) -> Optional[Any]: _A : Optional[Any] = self.get_dummy_components() _A : Union[str, Any] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Tuple: _A : Tuple = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _A : Optional[Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) _A : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A : Union[str, Any] = """evil space-punk bird""" _A : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) _A : List[str] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) _A : List[Any] = pipe( _a , _a , control_image=_a , generator=_a , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) _A : List[Any] = output.images[0] assert image.shape == (512, 512, 3) _A : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9e-2
26
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") UpperCAmelCase, UpperCAmelCase : Optional[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") UpperCAmelCase : Dict = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: UpperCAmelCase : str = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCAmelCase : str = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
252
0
"""simple docstring""" from __future__ import annotations a__ : Optional[int] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_snake_case ) ) ] # the reference grid __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_snake_case ) ) ] # the action grid __SCREAMING_SNAKE_CASE = init[0] __SCREAMING_SNAKE_CASE = init[1] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = g + heuristic[x][y] # cost from starting cell to destination cell __SCREAMING_SNAKE_CASE = [[f, g, x, y]] __SCREAMING_SNAKE_CASE = False # flag that is set when search is complete __SCREAMING_SNAKE_CASE = False # flag set if we can't find expand while not found and not resign: if len(_snake_case ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __SCREAMING_SNAKE_CASE = cell.pop() __SCREAMING_SNAKE_CASE = next_cell[2] __SCREAMING_SNAKE_CASE = next_cell[3] __SCREAMING_SNAKE_CASE = next_cell[1] if x == goal[0] and y == goal[1]: __SCREAMING_SNAKE_CASE = True else: for i in range(len(_snake_case ) ): # to try out different valid actions __SCREAMING_SNAKE_CASE = x + DIRECTIONS[i][0] __SCREAMING_SNAKE_CASE = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_snake_case ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __SCREAMING_SNAKE_CASE = g + cost __SCREAMING_SNAKE_CASE = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = goal[0] __SCREAMING_SNAKE_CASE = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __SCREAMING_SNAKE_CASE = x - DIRECTIONS[action[x][y]][0] __SCREAMING_SNAKE_CASE = y - DIRECTIONS[action[x][y]][1] __SCREAMING_SNAKE_CASE = xa __SCREAMING_SNAKE_CASE = ya invpath.append([x, y] ) __SCREAMING_SNAKE_CASE = [] for i in range(len(_snake_case ) ): path.append(invpath[len(_snake_case ) - 1 - i] ) return path, action if __name__ == "__main__": a__ : List[str] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] a__ : List[Any] = [0, 0] # all coordinates are given in format [y,x] a__ : Optional[int] = [len(grid) - 1, len(grid[0]) - 1] a__ : Any = 1 # the cost map which pushes the path closer to the goal a__ : Dict = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): a__ : List[Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map a__ : Optional[int] = 9_9 a__ : Optional[int] = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
352
"""simple docstring""" from __future__ import annotations import requests def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(lowerCAmelCase_ ).json() def UpperCAmelCase__ (lowerCAmelCase_ = 10 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" __SCREAMING_SNAKE_CASE = requests.get(lowerCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase_ ) for story_id in story_ids] def UpperCAmelCase__ (lowerCAmelCase_ = 10 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hackernews_top_stories(lowerCAmelCase_ ) return "\n".join("* [{title}]({url})".format(**lowerCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
195
0
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __UpperCamelCase = data_utils.TransfoXLTokenizer __UpperCamelCase = data_utils.TransfoXLCorpus __UpperCamelCase = data_utils __UpperCamelCase = data_utils def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase , 'rb' ) as fp: snake_case_ = pickle.load(UpperCAmelCase , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) snake_case_ = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(f'Save vocabulary to {pytorch_vocab_dump_path}' ) snake_case_ = corpus.vocab.__dict__ torch.save(UpperCAmelCase , UpperCAmelCase ) snake_case_ = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase ) snake_case_ = pytorch_dump_folder_path + '/' + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(UpperCAmelCase , UpperCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model snake_case_ = os.path.abspath(UpperCAmelCase ) snake_case_ = os.path.abspath(UpperCAmelCase ) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": snake_case_ = TransfoXLConfig() else: snake_case_ = TransfoXLConfig.from_json_file(UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ = TransfoXLLMHeadModel(UpperCAmelCase ) snake_case_ = load_tf_weights_in_transfo_xl(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) print(f'Save PyTorch model to {os.path.abspath(UpperCAmelCase )}' ) torch.save(model.state_dict() , UpperCAmelCase ) print(f'Save configuration file to {os.path.abspath(UpperCAmelCase )}' ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) __UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
69
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __UpperCamelCase = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = None # source code of `config_class` snake_case_ = inspect.getsource(UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ = ckpt_name break return checkpoint def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase ) snake_case_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = '\n'.join(sorted(UpperCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
69
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : Dict = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A : '''simple docstring''' __lowerCamelCase : Optional[Any] = BlenderbotSmallConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : List[Any] = '''gelu''' def __init__( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=99 , __lowerCAmelCase : Union[str, Any]=32 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : List[str]=20 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : int=0 , ) -> Any: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def a_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def a_ ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" A__ = TFBlenderbotSmallModel(config=__lowerCAmelCase ).get_decoder() A__ = inputs_dict["""input_ids"""] A__ = input_ids[:1, :] A__ = inputs_dict["""attention_mask"""][:1, :] A__ = inputs_dict["""head_mask"""] A__ = 1 # first forward pass A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def __lowerCamelCase ( __a :Dict , __a :Tuple , __a :List[Any] , __a :List[str]=None , __a :List[Any]=None , __a :Optional[Any]=None , __a :List[str]=None , __a :int=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: A__ = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Tuple = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Dict = True __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Tuple = False def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase ) def a_ ( self : List[str] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) @require_tokenizers @require_tf class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] __lowerCamelCase : Optional[int] = '''facebook/blenderbot_small-90M''' @cached_property def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def a_ ( self : List[str] ) -> List[str]: """simple docstring""" A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a_ ( self : int ) -> Optional[Any]: """simple docstring""" A__ = self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCAmelCase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
276
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A__: List[str] = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Dict = ['''DPTFeatureExtractor'''] A__: List[str] = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[int] = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A__: Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
UpperCamelCase = [0, 2, 4, 6, 8] UpperCamelCase = [1, 3, 5, 7, 9] def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ : str = 0 for digit in range(10): lowercase__ : str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase) return result lowercase__ : Dict = 0 for digita in range(10): lowercase__ : int = digita if (remainder + digita) % 2 == 0: lowercase__ : Optional[Any] = ODD_DIGITS else: lowercase__ : str = EVEN_DIGITS for digita in other_parity_digits: lowercase__ : List[str] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowercase_ ( _lowerCamelCase : int = 9): lowercase__ : Tuple = 0 for length in range(1 , max_power + 1): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase) return result if __name__ == "__main__": print(f"{solution() = }")
87
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ): # vision encoder if "img_encoder.pos_embed" in name: lowercase_ :Any = name.replace("img_encoder.pos_embed" ,"vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowercase_ :Union[str, Any] = name.replace("img_encoder.patch_embed.proj" ,"vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowercase_ :Tuple = name.replace("img_encoder.patch_embed.norm" ,"vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowercase_ :Any = name.replace("img_encoder.layers" ,"vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowercase_ :List[str] = name.replace("blocks" ,"layers" ) if "attn" in name and "pre_assign" not in name: lowercase_ :Dict = name.replace("attn" ,"self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase_ :List[str] = name.replace("proj" ,"out_proj" ) if "pre_assign_attn.attn.proj" in name: lowercase_ :int = name.replace("pre_assign_attn.attn.proj" ,"pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowercase_ :List[Any] = name.replace("norm1" ,"layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowercase_ :List[Any] = name.replace("norm2" ,"layer_norm2" ) if "img_encoder.norm" in name: lowercase_ :Any = name.replace("img_encoder.norm" ,"vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowercase_ :List[str] = name.replace("text_encoder.token_embedding" ,"text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowercase_ :Optional[Any] = name.replace("text_encoder.positional_embedding" ,"text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowercase_ :str = name.replace("text_encoder.transformer.resblocks." ,"text_model.encoder.layers." ) if "ln_1" in name: lowercase_ :List[str] = name.replace("ln_1" ,"layer_norm1" ) if "ln_2" in name: lowercase_ :Dict = name.replace("ln_2" ,"layer_norm2" ) if "c_fc" in name: lowercase_ :Optional[Any] = name.replace("c_fc" ,"fc1" ) if "c_proj" in name: lowercase_ :int = name.replace("c_proj" ,"fc2" ) if "text_encoder" in name: lowercase_ :List[str] = name.replace("text_encoder" ,"text_model" ) if "ln_final" in name: lowercase_ :Optional[int] = name.replace("ln_final" ,"final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowercase_ :List[str] = name.replace("img_projector.linear_hidden." ,"visual_projection." ) if "img_projector.linear_out." in name: lowercase_ :Optional[Any] = name.replace("img_projector.linear_out." ,"visual_projection.3." ) if "text_projector.linear_hidden" in name: lowercase_ :List[str] = name.replace("text_projector.linear_hidden" ,"text_projection" ) if "text_projector.linear_out" in name: lowercase_ :Optional[Any] = name.replace("text_projector.linear_out" ,"text_projection.3" ) return name def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Tuple ): for key in orig_state_dict.copy().keys(): lowercase_ :Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ :int = key.split("." ) lowercase_ :List[Any] = int(key_split[2] ), int(key_split[4] ) lowercase_ :Optional[Any] = config.vision_config.hidden_size if "weight" in key: lowercase_ :Tuple = val[:dim, :] lowercase_ :Optional[int] = val[dim : dim * 2, :] lowercase_ :Any = val[-dim:, :] else: lowercase_ :int = val[:dim] lowercase_ :Tuple = val[dim : dim * 2] lowercase_ :int = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ :Union[str, Any] = key.split("." ) lowercase_ :str = int(key_split[3] ) lowercase_ :int = config.text_config.hidden_size if "weight" in key: lowercase_ :Optional[int] = val[:dim, :] lowercase_ :Optional[Any] = val[ dim : dim * 2, : ] lowercase_ :Tuple = val[-dim:, :] else: lowercase_ :List[str] = val[:dim] lowercase_ :str = val[dim : dim * 2] lowercase_ :Union[str, Any] = val[-dim:] else: lowercase_ :Dict = rename_key(__lowerCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase_ :Optional[int] = val.squeeze_() else: lowercase_ :Optional[Any] = val return orig_state_dict def UpperCAmelCase_ ( ): lowercase_ :str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ :int = Image.open(requests.get(__lowerCamelCase ,stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : str ,__lowerCamelCase : int="groupvit-gcc-yfcc" ,__lowerCamelCase : List[Any]=False ): lowercase_ :Union[str, Any] = GroupViTConfig() lowercase_ :Tuple = GroupViTModel(__lowerCamelCase ).eval() lowercase_ :Any = torch.load(__lowerCamelCase ,map_location="cpu" )["model"] lowercase_ :Optional[Any] = convert_state_dict(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Any = model.load_state_dict(__lowerCamelCase ,strict=__lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__lowerCamelCase ) == 0) # verify result lowercase_ :Union[str, Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowercase_ :str = prepare_img() lowercase_ :Any = processor(text=["a photo of a cat", "a photo of a dog"] ,images=__lowerCamelCase ,padding=__lowerCamelCase ,return_tensors="pt" ) with torch.no_grad(): lowercase_ :int = model(**__lowerCamelCase ) if model_name == "groupvit-gcc-yfcc": lowercase_ :Dict = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase_ :List[Any] = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image ,__lowerCamelCase ,atol=1e-3 ) processor.save_pretrained(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print("Successfully saved processor and model to" ,__lowerCamelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(__lowerCamelCase ,organization="nielsr" ) model.push_to_hub(__lowerCamelCase ,organization="nielsr" ) if __name__ == "__main__": lowerCAmelCase : Optional[int] =argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
364
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] ={'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] =[ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
147
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "EncodecFeatureExtractor" snake_case_ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Tuple ,A : Any ,A : List[str] ): super().__init__(A ,A ) __A = self.feature_extractor __A = False def UpperCamelCase_ ( self : Optional[int] ,A : Tuple=None ,A : List[str]=None ,A : Union[str, Any]=True ): return self.tokenizer.get_decoder_prompt_ids(task=A ,language=A ,no_timestamps=A ) def __call__( self : int ,*A : Any ,**A : Any ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A ,**A ) __A = kwargs.pop("audio" ,A ) __A = kwargs.pop("sampling_rate" ,A ) __A = kwargs.pop("text" ,A ) if len(A ) > 0: __A = args[0] __A = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: __A = self.tokenizer(A ,**A ) if audio is not None: __A = self.feature_extractor(A ,*A ,sampling_rate=A ,**A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __A = audio_inputs["padding_mask"] return inputs def UpperCamelCase_ ( self : List[Any] ,*A : Optional[Any] ,**A : Optional[int] ): __A = kwargs.pop("audio" ,A ) __A = kwargs.pop("padding_mask" ,A ) if len(A ) > 0: __A = args[0] __A = args[1:] if audio_values is not None: return self._decode_audio(A ,padding_mask=A ) else: return self.tokenizer.batch_decode(*A ,**A ) def UpperCamelCase_ ( self : List[Any] ,*A : Dict ,**A : Tuple ): return self.tokenizer.decode(*A ,**A ) def UpperCamelCase_ ( self : int ,A : Union[str, Any] ,A : Optional = None ): __A = to_numpy(A ) __A , __A , __A = audio_values.shape if padding_mask is None: return list(A ) __A = to_numpy(A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A = seq_len - padding_mask.shape[-1] __A = 1 - self.feature_extractor.padding_value __A = np.pad(A ,((0, 0), (0, difference)) ,"constant" ,constant_values=A ) __A = audio_values.tolist() for i in range(A ): __A = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A = sliced_audio.reshape(A ,-1 ) return audio_values
15
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
0
"""simple docstring""" def __lowercase ( snake_case_ : int ) ->bool: '''simple docstring''' if number < 0: raise ValueError('''number must not be negative''' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BarthezTokenizer _lowerCamelCase = BarthezTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCamelCase__( self ): '''simple docstring''' super().setUp() __A : List[Any] = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) __A : Any = tokenizer def UpperCamelCase__( self ): '''simple docstring''' __A : Any = '''<pad>''' __A : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCamelCase ) , 10_1122 ) def UpperCamelCase__( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __A : Any = [0, 57, 3018, 7_0307, 91, 2] __A : List[Any] = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __A : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __A : Tuple = self.get_tokenizer() __A : Dict = self.get_rust_tokenizer() __A : Union[str, Any] = '''I was born in 92000, and this is falsé.''' __A : List[Any] = tokenizer.tokenize(__lowerCamelCase ) __A : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __A : Union[str, Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = self.get_rust_tokenizer() __A : Optional[int] = tokenizer.encode(__lowerCamelCase ) __A : Any = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __A : Union[str, Any] = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__lowerCamelCase , )
291
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : Optional[Any] = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __snake_case ( lowerCAmelCase ): _a : Tuple= "trocr" _a : Optional[int]= ["past_key_values"] _a : str= { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self ,snake_case=50265 ,snake_case=1024 ,snake_case=12 ,snake_case=16 ,snake_case=4096 ,snake_case="gelu" ,snake_case=512 ,snake_case=0.1 ,snake_case=0.0 ,snake_case=0.0 ,snake_case=2 ,snake_case=0.02 ,snake_case=0.0 ,snake_case=True ,snake_case=False ,snake_case=True ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' lowercase : Dict = vocab_size lowercase : List[str] = d_model lowercase : Dict = decoder_layers lowercase : Union[str, Any] = decoder_attention_heads lowercase : Optional[Any] = decoder_ffn_dim lowercase : Union[str, Any] = activation_function lowercase : Optional[int] = max_position_embeddings lowercase : List[Any] = dropout lowercase : Optional[Any] = attention_dropout lowercase : Tuple = activation_dropout lowercase : int = init_std lowercase : str = decoder_layerdrop lowercase : List[Any] = use_cache lowercase : int = scale_embedding lowercase : List[Any] = use_learned_position_embeddings lowercase : int = layernorm_embedding super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
20
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=snake_case , speech_processor=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , feature_extractor=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case = "auto" ): if slice_size == "auto": lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): self.enable_attention_slicing(snake_case ) @torch.no_grad() def __call__( self , snake_case , snake_case=1_6000 , snake_case = 512 , snake_case = 512 , snake_case = 50 , snake_case = 7.5 , snake_case = None , snake_case = 1 , snake_case = 0.0 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , **snake_case , ): lowercase = self.speech_processor.feature_extractor( snake_case , return_tensors='pt' , sampling_rate=snake_case ).input_features.to(self.device ) lowercase = self.speech_model.generate(snake_case , max_length=48_0000 ) lowercase = self.speech_processor.tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , normalize=snake_case )[ 0 ] if isinstance(snake_case , snake_case ): lowercase = 1 elif isinstance(snake_case , snake_case ): lowercase = len(snake_case ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(snake_case )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(snake_case )}.''' ) # get prompt text embeddings lowercase = self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase = text_input_ids[:, : self.tokenizer.model_max_length] lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase , lowercase , lowercase = text_embeddings.shape lowercase = text_embeddings.repeat(1 , snake_case , 1 ) lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = 42 if negative_prompt is None: lowercase = [''] * batch_size elif type(snake_case ) is not type(snake_case ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=''' F''' {type(snake_case )}.''' ) elif isinstance(snake_case , snake_case ): lowercase = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: lowercase = negative_prompt lowercase = text_input_ids.shape[-1] lowercase = self.tokenizer( snake_case , padding='max_length' , max_length=snake_case , truncation=snake_case , return_tensors='pt' , ) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase = uncond_embeddings.shape[1] lowercase = uncond_embeddings.repeat(1 , snake_case , 1 ) lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase = torch.randn(snake_case , generator=snake_case , device='cpu' , dtype=snake_case ).to( self.device ) else: lowercase = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase = {} if accepts_eta: lowercase = eta for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(snake_case , snake_case ) # predict the noise residual lowercase = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample # perform guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2 ) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case ) lowercase = 1 / 0.18_215 * latents lowercase = self.vae.decode(snake_case ).sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase = self.numpy_to_pil(snake_case ) if not return_dict: return image return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
195
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _snake_case : str = logging.get_logger(__name__) _snake_case : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _snake_case : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _snake_case : int = { "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase_ ( ): __snake_case : Optional[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __snake_case : str = bs[:] __snake_case : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCamelCase ) cs.append(2**8 + n ) n += 1 __snake_case : Dict = [chr(__lowerCamelCase ) for n in cs] return dict(zip(__lowerCamelCase , __lowerCamelCase ) ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = set() __snake_case : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : List[str] = char return pairs class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Dict="replace" , lowerCamelCase : List[str]="<s>" , lowerCamelCase : Any="</s>" , lowerCamelCase : Union[str, Any]="</s>" , lowerCamelCase : Union[str, Any]="<s>" , lowerCamelCase : str="<unk>" , lowerCamelCase : Any="<pad>" , lowerCamelCase : Optional[int]="<mask>" , lowerCamelCase : List[Any]=False , **lowerCamelCase : str , ) -> Tuple: __snake_case : Tuple = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __snake_case : Dict = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __snake_case : int = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __snake_case : str = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __snake_case : Any = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __snake_case : int = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case : Union[str, Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __snake_case : Tuple = json.load(lowerCamelCase ) __snake_case : Union[str, Any] = {v: k for k, v in self.encoder.items()} __snake_case : str = errors # how to handle errors in decoding __snake_case : Any = bytes_to_unicode() __snake_case : Any = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __snake_case : Optional[Any] = merges_handle.read().split("\n" )[1:-1] __snake_case : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __snake_case : Optional[int] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __snake_case : Optional[Any] = {} __snake_case : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case : Optional[int] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __snake_case ( self : List[Any] ) -> Union[str, Any]: return len(self.encoder ) def __snake_case ( self : Union[str, Any] ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self : List[Any] , lowerCamelCase : Tuple ) -> Tuple: if token in self.cache: return self.cache[token] __snake_case : List[Any] = tuple(lowerCamelCase ) __snake_case : int = get_pairs(lowerCamelCase ) if not pairs: return token while True: __snake_case : Union[str, Any] = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __snake_case : List[str] = bigram __snake_case : Any = [] __snake_case : Union[str, Any] = 0 while i < len(lowerCamelCase ): try: __snake_case : Dict = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case : Optional[int] = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : List[Any] = tuple(lowerCamelCase ) __snake_case : Tuple = new_word if len(lowerCamelCase ) == 1: break else: __snake_case : Any = get_pairs(lowerCamelCase ) __snake_case : Optional[int] = " ".join(lowerCamelCase ) __snake_case : Dict = word return word def __snake_case ( self : List[Any] , lowerCamelCase : str ) -> Union[str, Any]: __snake_case : Any = [] for token in re.findall(self.pat , lowerCamelCase ): __snake_case : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def __snake_case ( self : Optional[int] , lowerCamelCase : List[str] ) -> Optional[int]: return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def __snake_case ( self : str , lowerCamelCase : Tuple ) -> int: return self.decoder.get(lowerCamelCase ) def __snake_case ( self : Dict , lowerCamelCase : List[Any] ) -> Tuple: __snake_case : List[Any] = "".join(lowerCamelCase ) __snake_case : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __snake_case ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case : Tuple = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __snake_case : Tuple = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __snake_case : List[str] = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) __snake_case : Any = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def __snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: __snake_case : Dict = [self.sep_token_id] __snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict=False , **lowerCamelCase : Optional[Any] ) -> Tuple: __snake_case : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __snake_case : int = " " + text return (text, kwargs) def __snake_case ( self : Union[str, Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ) -> dict: __snake_case : Optional[Any] = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __snake_case : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __snake_case : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __snake_case : List[Any] = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __snake_case : List[Any] = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __snake_case : Any = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __snake_case : List[str] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
360
import logging from transformers.configuration_utils import PretrainedConfig _snake_case : Optional[Any] = logging.getLogger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = "masked_bert" def __init__( self : Optional[int] , lowerCamelCase : Any=30522 , lowerCamelCase : Tuple=768 , lowerCamelCase : str=12 , lowerCamelCase : Dict=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : int=2 , lowerCamelCase : str=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Any=0 , lowerCamelCase : Dict="topK" , lowerCamelCase : List[Any]="constant" , lowerCamelCase : Dict=0.0 , **lowerCamelCase : List[Any] , ) -> Dict: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __snake_case : Optional[Any] = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : str = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Any = initializer_range __snake_case : str = layer_norm_eps __snake_case : str = pruning_method __snake_case : int = mask_init __snake_case : Any = mask_scale
134
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self :Tuple , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Union[str, Any]=1_3 , SCREAMING_SNAKE_CASE :List[Any]=3_2 , SCREAMING_SNAKE_CASE :List[Any]=3 , SCREAMING_SNAKE_CASE :Optional[int]=4 , SCREAMING_SNAKE_CASE :Any=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE :str=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :str=3_7 , SCREAMING_SNAKE_CASE :List[Any]="gelu" , SCREAMING_SNAKE_CASE :List[Any]=1_0 , SCREAMING_SNAKE_CASE :List[str]=0.02 , SCREAMING_SNAKE_CASE :List[str]=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE :Optional[Any]=[2, 3, 4] , SCREAMING_SNAKE_CASE :Tuple=None , ) -> str: '''simple docstring''' _a : Any =parent _a : Union[str, Any] =batch_size _a : int =image_size _a : Optional[Any] =num_channels _a : Tuple =num_stages _a : List[Any] =hidden_sizes _a : Union[str, Any] =depths _a : List[str] =is_training _a : str =use_labels _a : Optional[Any] =intermediate_size _a : Optional[Any] =hidden_act _a : Any =num_labels _a : str =initializer_range _a : Optional[Any] =out_features _a : Any =out_indices _a : List[Any] =scope def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' _a : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Any =None if self.use_labels: _a : Optional[Any] =ids_tensor([self.batch_size] , self.num_labels ) _a : Optional[int] =self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> List[Any]: '''simple docstring''' _a : Tuple =ConvNextVaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : List[str] =model(SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :int ) -> List[str]: '''simple docstring''' _a : int =ConvNextVaForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Optional[Any] =model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :str ) -> Any: '''simple docstring''' _a : Union[str, Any] =ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Tuple =model(SCREAMING_SNAKE_CASE ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a : Union[str, Any] =None _a : Optional[Any] =ConvNextVaBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Optional[int] =model(SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCAmelCase ( self :Tuple ) -> Dict: '''simple docstring''' _a : Dict =self.prepare_config_and_inputs() _a , _a , _a : Any =config_and_inputs _a : Union[str, Any] ={"""pixel_values""": pixel_values} return config, inputs_dict def __UpperCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' _a : Tuple =self.prepare_config_and_inputs() _a , _a , _a : List[Any] =config_and_inputs _a : Tuple ={"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCamelCase : Tuple = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Any = False __UpperCamelCase : Any = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Any = False __UpperCamelCase : List[Any] = False def __UpperCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' _a : Optional[int] =ConvNextVaModelTester(self ) _a : List[str] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self :List[str] ) -> Any: '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __UpperCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __UpperCAmelCase ( self :Any ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : Any =self.model_tester.prepare_config_and_inputs_with_labels() _a : Dict =True if model_class.__name__ in [ *get_values(SCREAMING_SNAKE_CASE ), *get_values(SCREAMING_SNAKE_CASE ), ]: continue _a : Union[str, Any] =model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() _a : Optional[Any] =self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) _a : List[Any] =model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : Any =self.model_tester.prepare_config_and_inputs_with_labels() _a : List[str] =False _a : Any =True if ( model_class.__name__ in [*get_values(SCREAMING_SNAKE_CASE ), *get_values(SCREAMING_SNAKE_CASE )] or not model_class.supports_gradient_checkpointing ): continue _a : List[str] =model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() _a : Union[str, Any] =self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) _a : Any =model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' _a , _a : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Any =model_class(SCREAMING_SNAKE_CASE ) _a : Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Union[str, Any] =[*signature.parameters.keys()] _a : List[str] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' _a : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple ): _a : str =model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _a : Tuple =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _a : Optional[Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : str =self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] =True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : List[Any] =True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' _a : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict =ConvNextVaModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: _a : Any =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self :List[Any] ) -> Dict: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __UpperCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' _a : Any =ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(SCREAMING_SNAKE_CASE ) _a : Tuple =self.default_image_processor _a : Optional[int] =prepare_img() _a : List[Any] =preprocessor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _a : List[Any] =model(**SCREAMING_SNAKE_CASE ) # verify the logits _a : Any =torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) _a : Optional[Any] =torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
276
'''simple docstring''' from math import isqrt def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 ,isqrt(_UpperCAmelCase ) + 1 ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10**6 ) -> int: _a : List[Any] =0 _a : str =1 _a : Optional[Any] =7 while prime_candidate < max_prime: primes_count += is_prime(_UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
276
1
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def _snake_case ( A , A , A , A=None , A=None , A=None , A=None , A=None , ) -> Tuple: if attention_mask is None: lowerCAmelCase__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A ) if decoder_head_mask is None: lowerCAmelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A ) if cross_attn_head_mask is None: lowerCAmelCase__ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=99 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=4 , lowerCamelCase_="relu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=20 , lowerCamelCase_=2 , lowerCamelCase_=1 , lowerCamelCase_=0 , ) -> Any: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = encoder_layerdrop lowerCAmelCase__ = decoder_layerdrop lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = self.eos_token_id # Eos Token lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ = self.get_config() lowerCAmelCase__ = prepare_mam_aaa_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = MaMaaaModel(config=lowerCamelCase_ ).get_decoder().to(lowerCamelCase_ ).eval() lowerCAmelCase__ = inputs_dict['''input_ids'''] lowerCAmelCase__ = inputs_dict['''attention_mask'''] lowerCAmelCase__ = inputs_dict['''head_mask'''] # first forward pass lowerCAmelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , head_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )['''last_hidden_state'''] lowerCAmelCase__ = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ )[ '''last_hidden_state''' ] # select random slice lowerCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2 ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = MaMaaaModel(config=lowerCamelCase_ ).to(lowerCamelCase_ ).eval() lowerCAmelCase__ = model(**lowerCamelCase_ ) lowerCAmelCase__ = outputs.encoder_last_hidden_state lowerCAmelCase__ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = model.get_encoder() encoder.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = MaMaaaEncoder.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) lowerCAmelCase__ = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ = model.get_decoder() decoder.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = MaMaaaDecoder.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) lowerCAmelCase__ = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a__ ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : str = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowercase__ : int = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowercase__ : str = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowercase__ : Optional[int] = True lowercase__ : int = True lowercase__ : int = False lowercase__ : List[str] = False def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = MaMaaaModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = model_class.from_pretrained(lowerCamelCase_ , output_loading_info=lowerCamelCase_ ) self.assertEqual(info['''missing_keys'''] , [] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) if not self.is_encoder_decoder: lowerCAmelCase__ = inputs['''input_ids'''] del inputs["input_ids"] else: lowerCAmelCase__ = inputs['''input_ids'''] lowerCAmelCase__ = inputs.get('''decoder_input_ids''' , lowerCamelCase_ ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , lowerCamelCase_ ) lowerCAmelCase__ = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase__ = wte(lowerCamelCase_ ) else: lowerCAmelCase__ = wte(lowerCamelCase_ ) lowerCAmelCase__ = wte(lowerCamelCase_ ) with torch.no_grad(): model(**lowerCamelCase_ )[0] def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = input_dict['''input_ids'''] lowerCAmelCase__ = input_ids.ne(1 ).to(lowerCamelCase_ ) lowerCAmelCase__ = MaMaaaForConditionalGeneration(lowerCamelCase_ ).eval().to(lowerCamelCase_ ) if torch_device == "cuda": model.half() model.generate(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) model.generate(num_beams=4 , do_sample=lowerCamelCase_ , early_stopping=lowerCamelCase_ , num_return_sequences=3 ) def _snake_case ( A ) -> str: return torch.tensor(A , dtype=torch.long , device=A ) __UpperCAmelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(lowerCamelCase_ ) lowerCAmelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) lowerCAmelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) lowerCAmelCase__ = prepare_mam_aaa_inputs_dict(model.config , lowerCamelCase_ , lowerCamelCase_ ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ )[0] lowerCAmelCase__ = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , lowerCamelCase_ ) # change to expected output here lowerCAmelCase__ = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=lowerCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowerCamelCase_ ) # change to intended input lowerCAmelCase__ = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) lowerCAmelCase__ = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) lowerCAmelCase__ = prepare_mam_aaa_inputs_dict(model.config , lowerCamelCase_ , lowerCamelCase_ ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ )[0] lowerCAmelCase__ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , lowerCamelCase_ ) # change to expected output here lowerCAmelCase__ = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=lowerCamelCase_ ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(lowerCamelCase_ ) lowerCAmelCase__ = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) lowerCAmelCase__ = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase__ = tokenizer(lowerCamelCase_ , padding=lowerCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase__ = model.generate( input_ids=dct['''input_ids'''].to(lowerCamelCase_ ) , attention_mask=dct['''attention_mask'''].to(lowerCamelCase_ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) lowerCAmelCase__ = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] lowerCAmelCase__ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) assert generated == expected_en
228
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''https://openaipublic.azureedge.net/jukebox/models/''' __UpperCAmelCase = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def _snake_case ( A ) -> Union[str, Any]: if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCAmelCase__ = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCAmelCase__ = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCAmelCase__ = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase__ = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCAmelCase__ = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _snake_case ( A , A , A , A ) -> Optional[int]: lowerCAmelCase__ = {} import re lowerCAmelCase__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCAmelCase__ = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCAmelCase__ = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_conv_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_encoder_block_conv_in.sub(A , A ) elif re_encoder_block_resnet.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_encoder_block_resnet.sub(A , A ) elif re_encoder_block_proj_out.fullmatch(A ): lowerCAmelCase__ = re_encoder_block_proj_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" lowerCAmelCase__ = re_encoder_block_proj_out.sub(A , A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_conv_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_decoder_block_conv_out.sub(A , A ) elif re_decoder_block_resnet.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_decoder_block_resnet.sub(A , A ) elif re_decoder_block_proj_in.fullmatch(A ): lowerCAmelCase__ = re_decoder_block_proj_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" lowerCAmelCase__ = re_decoder_block_proj_in.sub(A , A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_conv_out.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" lowerCAmelCase__ = re_prior_cond_conv_out.sub(A , A ) elif re_prior_cond_resnet.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_resnet.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCAmelCase__ = {'''1''': 1, '''3''': 2}[groups[-2]] lowerCAmelCase__ = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" lowerCAmelCase__ = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" lowerCAmelCase__ = prefix + resnet_block lowerCAmelCase__ = re_prior_cond_resnet.sub(A , A ) elif re_prior_cond_proj_in.fullmatch(A ): lowerCAmelCase__ = re_prior_cond_proj_in.match(A ) lowerCAmelCase__ = regex_match.groups() lowerCAmelCase__ = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" lowerCAmelCase__ = re_prior_cond_proj_in.sub(A , A ) # keep original key else: lowerCAmelCase__ = original_key lowerCAmelCase__ = replace_key(A ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: lowerCAmelCase__ = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) lowerCAmelCase__ = original_key lowerCAmelCase__ = original_key lowerCAmelCase__ = value return new_dict @torch.no_grad() def _snake_case ( A=None , A=None ) -> str: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): lowerCAmelCase__ = requests.get(F"""{PREFIX}{file}""" , allow_redirects=A ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=A ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , '''wb''' ).write(r.content ) lowerCAmelCase__ = MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCAmelCase__ = JukeboxConfig.from_pretrained(A ) lowerCAmelCase__ = JukeboxModel(A ) lowerCAmelCase__ = [] lowerCAmelCase__ = {} for i, dict_name in enumerate(A ): lowerCAmelCase__ = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['''model'''] lowerCAmelCase__ = {} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCAmelCase__ = old_dic[k] elif k.endswith('''.w''' ): lowerCAmelCase__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase__ = old_dic[k] else: lowerCAmelCase__ = old_dic[k] lowerCAmelCase__ = '''vqvae''' if i == 0 else F"""priors.{3 - i}""" lowerCAmelCase__ = fix_jukebox_keys(A , model.state_dict() , A , A ) weight_dict.append(A ) lowerCAmelCase__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(A ) for i in range(len(A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A ).mkdir(exist_ok=A ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(A , A ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) return weight_dict if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __UpperCAmelCase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
228
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers _snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ) -> Optional[int]: _lowercase : Any = os.path.dirname(os.path.realpath(lowerCAmelCase__ ) ) _lowercase : List[Any] = os.path.join(lowerCAmelCase__ , "words.txt" ) _lowercase : int = """""" with open(lowerCAmelCase__ ) as f: _lowercase : str = f.readline() _lowercase : Optional[int] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _lowercase : Union[str, Any] = [ word for word in [sum(ord(lowerCAmelCase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
250
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 1_0, """max_num_jobs""": 1}, [range(1_0 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 1_0}, [range(lowerCAmelCase__ , i + 1 ) for i in range(1_0 )]), ({"""num_shards""": 1, """max_num_jobs""": 1_0}, [range(1 )]), ({"""num_shards""": 1_0, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"""num_shards""": 3, """max_num_jobs""": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: Optional[Any] = _distribute_shards(**lowerCAmelCase__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 1_0, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: str , lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Optional[int] = _split_gen_kwargs(lowerCAmelCase__ , lowerCAmelCase__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" if expected is RuntimeError: with pytest.raises(lowerCAmelCase__ ): _number_of_shards_in_gen_kwargs(lowerCAmelCase__ ) else: UpperCAmelCase_: List[str] = _number_of_shards_in_gen_kwargs(lowerCAmelCase__ ) assert out == expected
147
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _A ( __lowercase ): def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """num_attention_heads""" ) ) class _A : def __init__( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : str=13 , __magic_name__ : int=64 , __magic_name__ : str=3 , __magic_name__ : Tuple=3 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Any=[1_28, 2_56, 3_84] , __magic_name__ : List[Any]=[4, 6, 8] , __magic_name__ : Union[str, Any]=[2, 3, 4] , __magic_name__ : Union[str, Any]=[16, 16, 16] , __magic_name__ : Optional[Any]=0 , __magic_name__ : List[str]=[2, 2, 2] , __magic_name__ : int=[2, 2, 2] , __magic_name__ : List[str]=0.02 , __magic_name__ : Tuple=True , __magic_name__ : int=True , __magic_name__ : Dict=2 , ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : str = batch_size __snake_case : Optional[Any] = image_size __snake_case : Dict = num_channels __snake_case : int = kernel_size __snake_case : List[Any] = stride __snake_case : Union[str, Any] = padding __snake_case : List[str] = hidden_sizes __snake_case : int = num_attention_heads __snake_case : List[Any] = depths __snake_case : Tuple = key_dim __snake_case : List[str] = drop_path_rate __snake_case : Tuple = patch_size __snake_case : List[str] = attention_ratio __snake_case : Tuple = mlp_ratio __snake_case : int = initializer_range __snake_case : Optional[int] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __snake_case : List[Any] = is_training __snake_case : List[Any] = use_labels __snake_case : Dict = num_labels __snake_case : str = initializer_range def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Any = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" __snake_case : List[Any] = LevitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[Any] = model(__magic_name__ ) __snake_case : Optional[Any] = (self.image_size, self.image_size) __snake_case , __snake_case : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): __snake_case : Dict = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __snake_case : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : int = self.num_labels __snake_case : Optional[int] = LevitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__: List[Any] = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__: Optional[int] = False lowercase__: str = False lowercase__: List[Any] = False lowercase__: Optional[int] = False lowercase__: Tuple = False def lowercase__ ( self : str ) -> str: """simple docstring""" __snake_case : str = LevitModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def lowercase__ ( self : Any ) -> str: """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""" ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(__magic_name__ ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[Any] ): __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.hidden_states __snake_case : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : Tuple = (self.model_tester.image_size, self.model_tester.image_size) __snake_case , __snake_case : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): __snake_case : List[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __snake_case : Optional[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Union[str, Any]=False ) -> Tuple: """simple docstring""" __snake_case : Dict = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Any ) -> Dict: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" if not self.model_tester.is_training: return __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__magic_name__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __snake_case : int = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() __snake_case : Optional[Any] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : str = model(**__magic_name__ ).loss loss.backward() def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __snake_case : int = False __snake_case : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__magic_name__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __snake_case : Any = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() __snake_case : List[str] = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) __snake_case : Dict = model(**__magic_name__ ).loss loss.backward() def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__magic_name__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): __snake_case : Tuple = problem_type["""title"""] __snake_case : Optional[int] = problem_type["""num_labels"""] __snake_case : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() __snake_case : int = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if problem_type["num_labels"] > 1: __snake_case : Dict = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) __snake_case : str = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__magic_name__ ) as warning_list: __snake_case : List[Any] = model(**__magic_name__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = LevitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : int ) -> List[Any]: """simple docstring""" __snake_case : str = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __magic_name__ ) __snake_case : Optional[int] = self.default_image_processor __snake_case : List[Any] = prepare_img() __snake_case : Union[str, Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Optional[int] = model(**__magic_name__ ) # verify the logits __snake_case : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
352
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : def __init__( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : int=10 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=2 , __magic_name__ : List[Any]=2 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=32 , __magic_name__ : int=5 , __magic_name__ : Optional[int]=4 , __magic_name__ : List[Any]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[Any]="divided_space_time" , __magic_name__ : int=None , ) -> List[str]: """simple docstring""" __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[Any] = num_channels __snake_case : List[str] = patch_size __snake_case : List[str] = num_frames __snake_case : Union[str, Any] = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Dict = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = attention_probs_dropout_prob __snake_case : Union[str, Any] = attention_type __snake_case : Optional[Any] = initializer_range __snake_case : Optional[Any] = scope __snake_case : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __snake_case : str = (image_size // patch_size) ** 2 __snake_case : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __snake_case : str = self.num_labels return config def lowercase__ ( self : List[Any] , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Dict ) -> int: """simple docstring""" __snake_case : Optional[int] = TimesformerModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Any = TimesformerForVideoClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) # verify the logits shape __snake_case : Dict = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__: List[Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__: List[str] = False lowercase__: List[Any] = False lowercase__: Dict = False lowercase__: int = False def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case : List[str] = TimesformerModelTester(self ) __snake_case : List[Any] = ConfigTester( self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any]=False ) -> int: """simple docstring""" __snake_case : Dict = copy.deepcopy(__magic_name__ ) if return_labels: if model_class in get_values(__magic_name__ ): __snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" pass def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : Any ) -> int: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__magic_name__ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Union[str, Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__magic_name__ ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = TimesformerModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = True for model_class in self.all_model_classes: __snake_case : List[str] = self.model_tester.seq_length __snake_case : Tuple = self.model_tester.num_frames __snake_case : str = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Dict = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Optional[int] = True __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __snake_case : int = len(__magic_name__ ) # Check attention is always last and order is fine __snake_case : Optional[int] = True __snake_case : Optional[int] = True __snake_case : Union[str, Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Dict = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) self.assertEqual(out_len + 1 , len(__magic_name__ ) ) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(__magic_name__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[Any] ): __snake_case : str = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Tuple = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : int = outputs.hidden_states __snake_case : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __snake_case : List[Any] = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( __magic_name__ ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : Dict = prepare_video() __snake_case : Any = image_processor(video[:8] , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Any = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
13
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A =logging.get_logger(__name__) __A ={ '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __A =[ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): for attribute in key.split("." ): lowerCamelCase_ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCamelCase_ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value elif weight_type == "running_mean": lowerCamelCase_ = value elif weight_type == "running_var": lowerCamelCase_ = value elif weight_type == "num_batches_tracked": lowerCamelCase_ = value elif weight_type == "inv_freq": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(lowerCamelCase__ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , lowerCamelCase__ ) if "pos_bias_u" in name: lowerCamelCase_ = None elif "pos_bias_v" in name: lowerCamelCase_ = None elif "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "bias" in name: lowerCamelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ = "weight" elif "running_mean" in name: lowerCamelCase_ = "running_mean" elif "inv_freq" in name: lowerCamelCase_ = "inv_freq" elif "running_var" in name: lowerCamelCase_ = "running_var" elif "num_batches_tracked" in name: lowerCamelCase_ = "num_batches_tracked" else: lowerCamelCase_ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True ): if config_path is not None: lowerCamelCase_ = WavaVecaConformerConfig.from_pretrained(lowerCamelCase__ , hidden_act="swish" ) else: lowerCamelCase_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCamelCase_ = "rotary" if is_finetuned: if dict_path: lowerCamelCase_ = Dictionary.load(lowerCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase_ = target_dict.pad_index lowerCamelCase_ = target_dict.bos_index lowerCamelCase_ = target_dict.eos_index lowerCamelCase_ = len(target_dict.symbols ) lowerCamelCase_ = os.path.join(lowerCamelCase__ , "vocab.json" ) if not os.path.isdir(lowerCamelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCamelCase__ ) ) return os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) lowerCamelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase_ = 0 lowerCamelCase_ = 1 with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = WavaVecaCTCTokenizer( lowerCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCamelCase__ , ) lowerCamelCase_ = True if config.feat_extract_norm == "layer" else False lowerCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) lowerCamelCase_ = WavaVecaProcessor(feature_extractor=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) lowerCamelCase_ = WavaVecaConformerForCTC(lowerCamelCase__ ) else: lowerCamelCase_ = WavaVecaConformerForPreTraining(lowerCamelCase__ ) if is_finetuned: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCamelCase_ = argparse.Namespace(task="audio_pretraining" ) lowerCamelCase_ = fairseq.tasks.setup_task(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase__ ) lowerCamelCase_ = model[0].eval() recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __A =parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
19
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , _a=2_048 , _a=1 , _a=[16, 16] , _a=128 , _a=44_100 , _a=86 , _a=2_048 , _a=0.0 , **_a , ): """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , **_a , ) lowerCamelCase = spectrogram_length lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = feature_size // self.patch_size[1] lowerCamelCase = n_fft lowerCamelCase = sampling_rate // hop_length_to_sampling_rate lowerCamelCase = sampling_rate lowerCamelCase = padding_value lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=_a , norm="""slaney""" , mel_scale="""slaney""" , ).T def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = spectrogram( _a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = log_spec - 20.0 lowerCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _a , _a = None , _a = True , _a = None , _a = False , _a = False , **_a , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): lowerCamelCase = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _a ): lowerCamelCase = [np.asarray(_a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase = np.array(_a ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase = np.ones([len(_a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase = padded_audio_features * self.padding_value for i in range(len(_a ) ): lowerCamelCase = audio_features[i] lowerCamelCase = feature # return as BatchFeature if return_attention_mask: lowerCamelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCamelCase = {"""audio_values""": padded_audio_features} lowerCamelCase = BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
291
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCAmelCase ={"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
'''simple docstring''' __UpperCAmelCase ="ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __lowerCAmelCase ( ) -> None: __lowerCamelCase = input('''Enter message: ''' ) __lowerCamelCase = input('''Enter key [alphanumeric]: ''' ) __lowerCamelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowerCamelCase = '''encrypt''' __lowerCamelCase = encrypt_message(UpperCamelCase__ , UpperCamelCase__ ) elif mode.lower().startswith('''d''' ): __lowerCamelCase = '''decrypt''' __lowerCamelCase = decrypt_message(UpperCamelCase__ , UpperCamelCase__ ) print(f"""\n{mode.title()}ed message:""" ) print(UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''encrypt''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: return translate_message(UpperCamelCase__ , UpperCamelCase__ , '''decrypt''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = key.upper() for symbol in message: __lowerCamelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCamelCase__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCamelCase__ ): __lowerCamelCase = 0 else: translated.append(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) if __name__ == "__main__": main()
237
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __snake_case : Any = pytest.mark.integration @pytest.mark.parametrize("""path""", ["""paws""", """csv"""] ) def __lowerCamelCase ( __snake_case : Any, __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" inspect_dataset(__snake_case, __snake_case ) A__ : Dict =path + """.py""" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""", ["""accuracy"""] ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Any ) -> int: """simple docstring""" inspect_metric(__snake_case, __snake_case ) A__ : int =path + """.py""" assert script_name in os.listdir(__snake_case ) assert "__pycache__" not in os.listdir(__snake_case ) @pytest.mark.parametrize( """path, config_name, expected_splits""", [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ], ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : Union[str, Any], __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =get_dataset_config_info(__snake_case, config_name=__snake_case ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""", [ ("""paws""", None, ValueError), ], ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Optional[Any], __snake_case : List[Any] ) -> List[str]: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_config_info(__snake_case, config_name=__snake_case ) @pytest.mark.parametrize( """path, expected""", [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ], ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : str ) -> Optional[Any]: """simple docstring""" A__ : Optional[int] =get_dataset_config_names(__snake_case ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""", [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ], ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : Optional[Any] ) -> int: """simple docstring""" A__ : List[Any] =get_dataset_infos(__snake_case ) assert list(infos.keys() ) == expected_configs A__ : Optional[int] =expected_configs[0] assert expected_config in infos A__ : List[str] =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""", [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ], ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : List[Any], __snake_case : Optional[Any] ) -> Any: """simple docstring""" A__ : str =get_dataset_infos(__snake_case ) assert expected_config in infos A__ : int =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""", [ ("""paws""", None, ValueError), ], ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : Optional[int], __snake_case : Dict ) -> Tuple: """simple docstring""" with pytest.raises(__snake_case ): get_dataset_split_names(__snake_case, config_name=__snake_case )
134
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCAmelCase_ ( __UpperCamelCase, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[int] = CpmAntTokenizer __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" super().setUp() UpperCamelCase : Optional[Any] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) UpperCamelCase : Any = """今天天气真好!""" UpperCamelCase : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] UpperCamelCase : int = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : Dict = """今天天气真好!""" UpperCamelCase : List[Any] = [tokenizer.bos_token] + tokens UpperCamelCase : List[str] = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) UpperCamelCase : Any = tokenizer.decode(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
370
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Union[str, Any] = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
315
0
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase ) -> float: a = sorted(numsa + numsa ) a , a = divmod(len(__lowerCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] __UpperCamelCase : List[Any] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
228
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __UpperCamelCase : List[str] = logging.get_logger(__name__) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = WavaVecaForSequenceClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""projector.weight"""] a = downstream_dict["""projector.bias"""] a = downstream_dict["""model.post_net.linear.weight"""] a = downstream_dict["""model.post_net.linear.bias"""] return model def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = WavaVecaForAudioFrameClassification.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""model.linear.weight"""] a = downstream_dict["""model.linear.bias"""] return model def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: a = WavaVecaForXVector.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) a = downstream_dict["""connector.weight"""] a = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] a = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] a = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] a = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] a = downstream_dict["""objective.W"""] return model @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: a = torch.load(__lowerCamelCase , map_location="""cpu""" ) a = checkpoint["""Downstream"""] a = WavaVecaConfig.from_pretrained(__lowerCamelCase ) a = WavaVecaFeatureExtractor.from_pretrained( __lowerCamelCase , return_attention_mask=__lowerCamelCase , do_normalize=__lowerCamelCase ) a = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): a = convert_classification(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): a = convert_diarization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) elif arch.endswith("""ForXVector""" ): a = convert_xvector(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: a = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __UpperCamelCase : List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
228
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case ( snake_case__ :Tuple) -> Union[str, Any]: _A = {} _A = job["""started_at"""] _A = job["""completed_at"""] _A = date_parser.parse(snake_case__) _A = date_parser.parse(snake_case__) _A = round((end_datetime - start_datetime).total_seconds() / 60.0) _A = start _A = end _A = duration_in_min return job_info def snake_case ( snake_case__ :Optional[Any] , snake_case__ :Union[str, Any]=None) -> List[Any]: _A = None if token is not None: _A = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} _A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A = requests.get(snake_case__ , headers=snake_case__).json() _A = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__) for job in result["""jobs"""]}) _A = math.ceil((result["""total_count"""] - 100) / 100) for i in range(snake_case__): _A = requests.get(url + F'''&page={i + 2}''' , headers=snake_case__).json() job_time.update({job["""name"""]: extract_time_from_single_job(snake_case__) for job in result["""jobs"""]}) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''') return {} if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = get_job_time(args.workflow_run_id) _SCREAMING_SNAKE_CASE = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
81
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def snake_case ( snake_case__ :str = "dhaka" , snake_case__ :int = 5) -> int: _A = min(snake_case__ , 50) # Prevent abuse! _A = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _A = requests.get("""https://www.google.com/search""" , params=snake_case__ , headers=snake_case__) _A = BeautifulSoup(html.text , """html.parser""") _A = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""")))) _A = json.dumps(snake_case__) _A = json.loads(snake_case__) _A = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , snake_case__ , ) if not matched_google_image_data: return 0 _A = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(snake_case__) , ) _A = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , snake_case__ , ) for index, fixed_full_res_image in enumerate(snake_case__): if index >= max_images: return index _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = bytes(snake_case__ , """ascii""").decode( """unicode-escape""") _A = urllib.request.build_opener() _A = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(snake_case__) _A = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(snake_case__): os.makedirs(snake_case__) urllib.request.urlretrieve( # noqa: S310 snake_case__ , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: _SCREAMING_SNAKE_CASE = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
81
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "philschmid/bart-large-cnn-samsum" __UpperCamelCase = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) __UpperCamelCase = "summarizer" __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ["text"] __UpperCamelCase = ["text"] def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Any): '''simple docstring''' return self.pre_processor(lowercase_ , return_tensors='''pt''' , truncation=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[str]): '''simple docstring''' return self.model.generate(**lowercase_)[0] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[int]): '''simple docstring''' return self.pre_processor.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_)
91
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCamelCase = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase (SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , SCREAMING_SNAKE_CASE_ : str=None , ) -> str: if attention_mask is None: SCREAMING_SNAKE_CASE = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=0.02 , ) -> Dict: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = initializer_range def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) SCREAMING_SNAKE_CASE = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) SCREAMING_SNAKE_CASE = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = 9_9 def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE = input_ids.shape[0] SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __A ( self ) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._get_config_and_data() SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = lm_model(input_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE = shift_tokens_right(lowerCAmelCase__ , 1 , 2 ) SCREAMING_SNAKE_CASE = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase , lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = FlaxBlenderbotModelTester(self ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self ) -> List[Any]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} SCREAMING_SNAKE_CASE = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) SCREAMING_SNAKE_CASE = ['Sam'] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors='jax' ) SCREAMING_SNAKE_CASE = model.generate(**lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'Sam is a great name. It means "sun" in Gaelic.' SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , **lowerCAmelCase__ ) assert generated_txt[0].strip() == tgt_text
38
"""simple docstring""" from math import sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_00_00 ) -> int: SCREAMING_SNAKE_CASE = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
38
1
"""simple docstring""" import enum import shutil import sys _a , _a : int = shutil.get_terminal_size() _a : Optional[Any] = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class __A ( enum.Enum ): _UpperCamelCase : int = 0 _UpperCamelCase : List[str] = 1 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Tuple="" ) -> Optional[int]: sys.stdout.write(str(_lowerCamelCase ) + end ) sys.stdout.flush() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : str ,_lowerCamelCase : Union[str, Any]="" ) -> Optional[int]: forceWrite(f"\u001b[{color}m{content}\u001b[0m" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: forceWrite("""\r""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : str ) -> Optional[Any]: forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def SCREAMING_SNAKE_CASE ( ) -> Any: reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
44
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def UpperCamelCase ( _lowerCamelCase : list[list[float]] ): A__ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix A__ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements A__ = [[0.0, 0.0], [0.0, 0.0]] A__, A__ = matrix[1][1], matrix[0][0] A__, A__ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule A__ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix A__ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] A__ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) A__ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) A__ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) A__ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) A__ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) A__ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) A__ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) A__ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) A__ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) A__ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): A__ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix A__ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
237
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
import argparse import datetime def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } __lowerCamelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month __lowerCamelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) __lowerCamelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day __lowerCamelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator __lowerCamelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year __lowerCamelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation __lowerCamelCase = datetime.date(int(A__ ) , int(A__ ) , int(A__ ) ) # Start math if m <= 2: __lowerCamelCase = y - 1 __lowerCamelCase = m + 12 # maths var __lowerCamelCase = int(str(A__ )[:2] ) __lowerCamelCase = int(str(A__ )[2:] ) __lowerCamelCase = int(2.6 * m - 5.39 ) __lowerCamelCase = int(c / 4 ) __lowerCamelCase = int(k / 4 ) __lowerCamelCase = int(d + k ) __lowerCamelCase = int(t + u + v + x ) __lowerCamelCase = int(z - (2 * c) ) __lowerCamelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response __lowerCamelCase = f'Your date {date_input}, is a {days[str(A__ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) UpperCAmelCase_ = parser.parse_args() zeller(args.date_input)
12
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
from functools import lru_cache @lru_cache def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1 , ): UpperCamelCase : Tuple = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[Any] = seq_length UpperCamelCase : int = is_training UpperCamelCase : Union[str, Any] = use_input_mask UpperCamelCase : Union[str, Any] = use_token_type_ids UpperCamelCase : Dict = use_labels UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : int = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : int = type_sequence_label_size UpperCamelCase : Dict = initializer_range UpperCamelCase : Dict = num_labels UpperCamelCase : Tuple = num_choices UpperCamelCase : Optional[int] = scope UpperCamelCase : List[Any] = q_groups UpperCamelCase : Tuple = k_groups UpperCamelCase : Any = v_groups UpperCamelCase : List[str] = post_attention_groups UpperCamelCase : Tuple = intermediate_groups UpperCamelCase : int = output_groups def a_ ( self ): UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Tuple = None if self.use_input_mask: UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Optional[int] = None UpperCamelCase : List[Any] = None UpperCamelCase : Dict = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = SqueezeBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = SqueezeBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : str = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = self.num_labels UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = self.num_labels UpperCamelCase : str = SqueezeBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = self.num_choices UpperCamelCase : Tuple = SqueezeBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) : Optional[int] = config_and_inputs UpperCamelCase : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowercase : Dict = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Dict = False lowercase : str = True lowercase : str = False def a_ ( self ): UpperCamelCase : Any = SqueezeBertModelTester(self ) UpperCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def a_ ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = SqueezeBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) UpperCamelCase : Dict = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : Optional[Any] = torch.Size((1, 3) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
27
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Any = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "trajectory_transformer" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __A=100 , __A=5 , __A=1 , __A=1 , __A=249 , __A=6 , __A=17 , __A=25 , __A=4 , __A=4 , __A=128 , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0_006 , __A=512 , __A=0.02 , __A=1E-1_2 , __A=1 , __A=True , __A=1 , __A=5_0256 , __A=5_0256 , **__A , ) -> List[Any]: a =vocab_size a =action_weight a =reward_weight a =value_weight a =max_position_embeddings a =block_size a =action_dim a =observation_dim a =transition_dim a =learning_rate a =n_layer a =n_head a =n_embd a =embd_pdrop a =attn_pdrop a =resid_pdrop a =initializer_range a =layer_norm_eps a =kaiming_initializer_range a =use_cache super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A )
81
"""simple docstring""" from __future__ import annotations import math def _A ( lowercase ): """simple docstring""" if num <= 0: a =f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowercase ) a =[True] * (num + 1) a =[] a =2 a =int(math.sqrt(lowercase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowercase ) # Set multiples of start be False for i in range(start * start , num + 1 , lowercase ): if sieve[i] is True: a =False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowercase ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
81
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin UpperCAmelCase_ : Optional[Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _SCREAMING_SNAKE_CASE : def __init__( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=16 , __lowerCamelCase : Any=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : Dict=14 , __lowerCamelCase : Any=10 , __lowerCamelCase : Optional[int]=19 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : str=4 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : str=2 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=[1, 2, 3, 4, 5] , __lowerCamelCase : Tuple=25 , __lowerCamelCase : str=5 , ): UpperCamelCase :Any = d_model UpperCamelCase :Dict = parent UpperCamelCase :List[str] = batch_size UpperCamelCase :Optional[int] = prediction_length UpperCamelCase :List[str] = context_length UpperCamelCase :List[Any] = cardinality UpperCamelCase :Tuple = num_time_features UpperCamelCase :List[Any] = lags_sequence UpperCamelCase :List[str] = embedding_dimension UpperCamelCase :Optional[int] = is_training UpperCamelCase :List[str] = hidden_size UpperCamelCase :List[Any] = num_hidden_layers UpperCamelCase :Tuple = num_attention_heads UpperCamelCase :int = intermediate_size UpperCamelCase :Union[str, Any] = hidden_act UpperCamelCase :Optional[Any] = hidden_dropout_prob UpperCamelCase :List[Any] = attention_probs_dropout_prob UpperCamelCase :Union[str, Any] = context_length UpperCamelCase :Tuple = prediction_length + label_length UpperCamelCase :Tuple = label_length UpperCamelCase :List[str] = moving_average UpperCamelCase :Any = autocorrelation_factor def _A ( self : str ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _A ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :str = config.context_length + max(config.lags_sequence ) UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) UpperCamelCase :int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) UpperCamelCase :Dict = floats_tensor([self.batch_size, _past_length] ) UpperCamelCase :Optional[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs UpperCamelCase :List[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) UpperCamelCase :Any = floats_tensor([self.batch_size, config.prediction_length] ) UpperCamelCase :Union[str, Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _A ( self : List[Any] ): UpperCamelCase :Optional[int] = self.get_config() UpperCamelCase :Dict = self.prepare_autoformer_inputs_dict(__lowerCamelCase ) return config, inputs_dict def _A ( self : Optional[Any] ): UpperCamelCase , UpperCamelCase :Tuple = self.prepare_config_and_inputs() return config, inputs_dict def _A ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ): UpperCamelCase :str = AutoformerModel(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() UpperCamelCase :Optional[int] = model(**__lowerCamelCase ) UpperCamelCase :str = outputs.encoder_last_hidden_state UpperCamelCase :List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase :List[Any] = model.get_encoder() encoder.save_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = AutoformerEncoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = model.create_network_inputs(**__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Any = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) UpperCamelCase :Tuple = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) UpperCamelCase :Optional[int] = encoder(inputs_embeds=__lowerCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) UpperCamelCase :str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) UpperCamelCase :Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) UpperCamelCase :Dict = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) UpperCamelCase :Any = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase :Optional[int] = model.get_decoder() decoder.save_pretrained(__lowerCamelCase ) UpperCamelCase :Optional[Any] = AutoformerDecoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) UpperCamelCase :Optional[int] = decoder( trend=__lowerCamelCase , inputs_embeds=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): snake_case__ : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () snake_case__ : str = (AutoformerForPrediction,) if is_torch_available() else () snake_case__ : List[Any] = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} snake_case__ : Optional[int] = False snake_case__ : List[str] = False snake_case__ : Any = False snake_case__ : Tuple = False snake_case__ : int = False snake_case__ : Optional[int] = False def _A ( self : Any ): UpperCamelCase :Any = AutoformerModelTester(self ) UpperCamelCase :Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def _A ( self : Dict ): self.config_tester.run_common_tests() def _A ( self : Tuple ): UpperCamelCase , UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCamelCase :Union[str, Any] = model_class(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[Any] = model_class.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def _A ( self : str ): UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowerCamelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def _A ( self : List[Any] ): pass def _A ( self : Dict ): UpperCamelCase :List[Any] = inspect.signature(getattr(__lowerCamelCase , """forward""" ) ) # The main input is the name of the argument after `self` UpperCamelCase :Optional[int] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase , UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :int = model_class(__lowerCamelCase ) UpperCamelCase :List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Optional[int] = [*signature.parameters.keys()] UpperCamelCase :List[str] = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__lowerCamelCase )] , __lowerCamelCase ) def _A ( self : Tuple ): UpperCamelCase , UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = True UpperCamelCase :Optional[int] = getattr(self.model_tester , """seq_length""" , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = getattr(self.model_tester , """decoder_seq_length""" , __lowerCamelCase ) UpperCamelCase :List[str] = getattr(self.model_tester , """encoder_seq_length""" , __lowerCamelCase ) UpperCamelCase :str = getattr(self.model_tester , """d_model""" , __lowerCamelCase ) UpperCamelCase :str = getattr(self.model_tester , """num_attention_heads""" , __lowerCamelCase ) UpperCamelCase :List[Any] = d_model // num_attention_heads for model_class in self.all_model_classes: UpperCamelCase :Union[str, Any] = True UpperCamelCase :Tuple = False UpperCamelCase :List[str] = True UpperCamelCase :Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase :List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase :int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase :List[Any] = True UpperCamelCase :Tuple = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase :Dict = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase :List[Any] = outputs.encoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) UpperCamelCase :int = len(__lowerCamelCase ) UpperCamelCase :Dict = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__lowerCamelCase , __lowerCamelCase ) # decoder attentions UpperCamelCase :Optional[int] = outputs.decoder_attentions self.assertIsInstance(__lowerCamelCase , (list, tuple) ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions UpperCamelCase :Union[str, Any] = outputs.cross_attentions self.assertIsInstance(__lowerCamelCase , (list, tuple) ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine UpperCamelCase :Dict = True UpperCamelCase :Optional[Any] = True UpperCamelCase :Tuple = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase :str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 2 , len(__lowerCamelCase ) ) UpperCamelCase :Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _A ( self : str ): super().test_retain_grad_hidden_states_attentions() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict="train-batch.pt" ) -> int: """simple docstring""" UpperCamelCase :Tuple = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=__magic_name__ , repo_type="""dataset""" ) UpperCamelCase :Optional[int] = torch.load(__magic_name__ , map_location=__magic_name__ ) return batch @require_torch @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : str ): UpperCamelCase :Optional[Any] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowerCamelCase ) UpperCamelCase :int = prepare_batch() with torch.no_grad(): UpperCamelCase :Any = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] UpperCamelCase :int = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase :Optional[int] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowerCamelCase , atol=__lowerCamelCase ) ) def _A ( self : Union[str, Any] ): UpperCamelCase :str = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowerCamelCase ) UpperCamelCase :Any = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): UpperCamelCase :Optional[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state UpperCamelCase :str = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowerCamelCase , atol=__lowerCamelCase ) ) def _A ( self : Dict ): UpperCamelCase :List[str] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__lowerCamelCase ) UpperCamelCase :str = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): UpperCamelCase :str = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) UpperCamelCase :Union[str, Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __lowerCamelCase ) UpperCamelCase :Any = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __lowerCamelCase , rtol=1E-1 ) )
38
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[Any] = TransfoXLTokenizer snake_case__ : List[Any] = False snake_case__ : Tuple = False def _A ( self : str ): super().setUp() UpperCamelCase :Dict = [ """<unk>""", """[CLS]""", """[SEP]""", """want""", """unwanted""", """wa""", """un""", """running""", """,""", """low""", """l""", ] UpperCamelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _A ( self : List[str] , **__lowerCamelCase : Any ): UpperCamelCase :Any = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : Any , __lowerCamelCase : int ): UpperCamelCase :List[Any] = """<unk> UNwanted , running""" UpperCamelCase :int = """<unk> unwanted, running""" return input_text, output_text def _A ( self : Tuple ): UpperCamelCase :List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCamelCase ) UpperCamelCase :Any = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(__lowerCamelCase , ["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [0, 4, 8, 7] ) def _A ( self : Optional[Any] ): UpperCamelCase :List[Any] = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def _A ( self : Union[str, Any] ): UpperCamelCase :int = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _A ( self : Tuple ): UpperCamelCase :Any = TransfoXLTokenizer(lower_case=__lowerCamelCase ) UpperCamelCase :Optional[int] = """Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?""" UpperCamelCase :Optional[int] = [ """Hello""", """(""", """bracket""", """)""", """and""", """side""", """@-@""", """scrolled""", """[""", """and""", """]""", """Henry""", """'s""", """$""", """5""", """@,@""", """000""", """with""", """3""", """@.@""", """34""", """m""", """.""", """What""", """'s""", """up""", """!""", """?""", ] self.assertListEqual(tokenizer.tokenize(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCamelCase ) , __lowerCamelCase ) def _A ( self : List[Any] ): UpperCamelCase :Any = self.get_tokenizer() UpperCamelCase :List[str] = len(__lowerCamelCase ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCamelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , """new1""" )
38
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a : Any = logging.get_logger(__name__) @dataclass class __UpperCAmelCase( A__ ): """simple docstring""" __lowerCamelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **snake_case__ ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase__ : int= deprecated_arg[3:] setattr(self , __A , not kwargs.pop(__A ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase__ : Optional[int]= kwargs.pop("torchscript" , self.torchscript ) lowercase__ : List[str]= kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) lowercase__ : Tuple= kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**__A ) __lowerCamelCase = field(default=A__ , metadata={"help": "Trace the models using torchscript"} ) __lowerCamelCase = field(default=A__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) __lowerCamelCase = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def UpperCAmelCase_ ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: lowercase__ : str= torch.device("cpu" ) lowercase__ : Tuple= 0 elif is_torch_tpu_available(): lowercase__ : int= xm.xla_device() lowercase__ : Optional[Any]= 0 else: lowercase__ : Tuple= torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowercase__ : List[str]= torch.cuda.device_count() return device, n_gpu @property def UpperCAmelCase_ ( self ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def UpperCAmelCase_ ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCAmelCase_ ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def UpperCAmelCase_ ( self ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def UpperCAmelCase_ ( self ): '''simple docstring''' return self.n_gpu > 0
351
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Union[str, Any] = False class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= "A painting of a squirrel eating a burger " lowercase__ : Optional[Any]= torch.manual_seed(0 ) lowercase__ : List[str]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowercase__ : Optional[Any]= VersatileDiffusionTextToImagePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= generator.manual_seed(0 ) lowercase__ : Tuple= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : List[str]= "A painting of a squirrel eating a burger " lowercase__ : Union[str, Any]= torch.manual_seed(0 ) lowercase__ : Optional[Any]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images lowercase__ : List[str]= image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Optional[int]= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
150
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'rwkv' lowerCAmelCase__ = {'max_position_embeddings': 'context_length'} def __init__( self , lowercase=50277 , lowercase=1024 , lowercase=4096 , lowercase=32 , lowercase=None , lowercase=None , lowercase=1e-5 , lowercase=0 , lowercase=0 , lowercase=6 , lowercase=False , lowercase=True , **lowercase , ) -> Tuple: lowerCamelCase_ = vocab_size lowerCamelCase_ = context_length lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase_ = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = rescale_every lowerCamelCase_ = use_cache lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id super().__init__( tie_word_embeddings=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
19
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
1
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowerCAmelCase__ : def __init__( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ) ->None: '''simple docstring''' if len(lowerCamelCase__ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) _UpperCAmelCase : List[str] = list(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = degree def __add__( self : Optional[Any] , lowerCamelCase__ : List[str] ) ->Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: _UpperCAmelCase : Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCamelCase__ ) else: _UpperCAmelCase : Dict = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCamelCase__ ) def __sub__( self : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[int] ) ->Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : int , lowerCamelCase__ : Any ) ->Polynomial: '''simple docstring''' _UpperCAmelCase : Dict = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Dict ) ->int | float: '''simple docstring''' _UpperCAmelCase : Dict = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase__ ) return polynomial def __repr__( self : Any ) ->str: '''simple docstring''' return self.__str__() def lowerCAmelCase__ ( self : int ) ->Polynomial: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [0] * self.degree for i in range(self.degree ): _UpperCAmelCase : Optional[int] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Any = 0 ) ->Polynomial: '''simple docstring''' _UpperCAmelCase : List[Any] = [0] * (self.degree + 2) _UpperCAmelCase : List[str] = constant for i in range(self.degree + 1 ): _UpperCAmelCase : str = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCamelCase__ ) def __eq__( self : Optional[Any] , lowerCamelCase__ : Tuple ) ->bool: '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowerCamelCase__ : List[str] ) ->bool: '''simple docstring''' return not self.__eq__(lowerCamelCase__ )
366
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
0
'''simple docstring''' import math import sys def a ( __a ) -> int: '''simple docstring''' if number != int(__a ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 UpperCamelCase__ :str = [-1] * (number + 1) UpperCamelCase__ :Optional[int] = 0 for i in range(1 , number + 1 ): UpperCamelCase__ :List[Any] = sys.maxsize UpperCamelCase__ :int = int(math.sqrt(__a ) ) for j in range(1 , root + 1 ): UpperCamelCase__ :int = 1 + answers[i - (j**2)] UpperCamelCase__ :str = min(__a , __a ) UpperCamelCase__ :Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
97
'''simple docstring''' import torch from transformers import AutoModel class __UpperCamelCase ( torch.nn.Module ): def __init__( self , __a="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(__a , self ).__init__() __a : Tuple = AutoModel.from_pretrained(__a , return_dict=__a ) __a : int = torch.nn.CosineSimilarity(3 , 1E-0_8 ) __a : Union[str, Any] = torch.nn.Softmax(dim=1 ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return self.bert(**__a ).last_hidden_state def __UpperCAmelCase ( self , __a ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=__a ) def __UpperCAmelCase ( self , __a , __a , __a=1 ): '''simple docstring''' return self.softmax(T * self.cos(__a , __a ) ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : str = W_supports['sizes'].tolist() __a : Union[str, Any] = W_supports['start_token_id'].item() __a : Any = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a : Tuple = self.BERT(**__a ) __a : str = self.BERT(**__a ) __a : Any = None __a : Dict = None __a : Dict = W_supports['input_ids'] == start_token_id __a : Union[str, Any] = W_supports['input_ids'] == end_token_id for i, size in enumerate(__a ): if i == 0: __a : Optional[int] = 0 else: __a : Union[str, Any] = support_sizes[i - 1] __a : int = S[s : s + size][start_token_masks[s : s + size]] __a : Union[str, Any] = S[s : s + size][end_token_masks[s : s + size]] __a : Tuple = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a : Dict = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a : str = torch.vstack((p_starts, p_start) ) __a : str = torch.vstack((p_ends, p_end) ) else: __a : List[str] = p_start __a : int = p_end return p_starts, p_ends
27
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase = False class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipe( image=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images SCREAMING_SNAKE_CASE_ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
257
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["transformers", "torch", "note_seq"] def __init__( self , *_A , **_A ) -> Any: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> List[str]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def _UpperCamelCase ( cls , *_A , **_A ) -> Tuple: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
257
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : int ): '''simple docstring''' debug_launcher(test_script.main ) def _UpperCamelCase ( self : int ): '''simple docstring''' debug_launcher(test_ops.main )
360
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ = 0 A_ = 1 A_ = 2 A_ = 3 A_ = 4 class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 'left' def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) A__ : str = 3 A__ : str = do_lower_case A__ : Optional[Any] = remove_space A__ : List[Any] = keep_accents A__ : Union[str, Any] = vocab_file A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): '''simple docstring''' A__ : int = self.__dict__.copy() A__ : int = None return state def __setstate__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Optional[int] = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ): '''simple docstring''' if self.remove_space: A__ : Optional[Any] = """ """.join(inputs.strip().split() ) else: A__ : Dict = inputs A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A__ : Any = unicodedata.normalize("""NFKD""" , snake_case ) A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: A__ : Any = outputs.lower() return outputs def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ): '''simple docstring''' A__ : Dict = self.preprocess_text(snake_case ) A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case ) A__ : Optional[int] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ : int = cur_pieces[1:] else: A__ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _UpperCamelCase ( self : List[str] , snake_case : Tuple ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _UpperCamelCase ( self : List[str] , snake_case : Any ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip() return out_string def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case ) A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ : Any = [] A__ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) A__ : str = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A__ : Dict = """""".join(snake_case ) A__ : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ : Tuple = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Tuple = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Any = [self.sep_token_id] A__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ : List[Any] = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: A__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
296
0